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ABSTRACT: The geometric phase effect at arbitrary integral N-fold electronic
degeneracies is investigated in Jahn–Teller systems. It is shown to be a property
inherent to inversion of the adiabatic electronic wave vectors in the N-dimensional
electronic wave-vector space. The relationship between the geometric phase and mixing
angles has also been established. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem 99:
385–392, 2004
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1. Introduction

A bout four decades have elapsed since Herz-
berg and Longuet-Higgins [1] showed that a

real-valued electronic wave function changes
sign when the nuclear coordinates traverse a cy-
clic path around a conical intersection (two-fold
electronic degeneracy; for reviews, see [2– 4]).
Such a geometric phase (GP) effect was later dem-
onstrated on a wider context by Berry [5], and
hence it is also known under his name. Moreover,
it is often referred to as the Aharonov–Bohm
effect [6] because the differential equations in-

volved are similar to those of a charged particle
moving in the presence of a magnetic solenoid.
Although research on the GP effect has a long
history and is currently a very active field of
research [3, 5, 7–21] (references to further work
on this topic may be extracted through cross-
referencing), the issue of cyclic phases at N-fold
electronic degeneracy is a much more recent one
[22, 23]. Specifically, for a model Hamiltonian,
Manolopoulos and Child [22] studied the possi-
ble sign changes that can occur when N real
quantum states are transported adiabatically
around an N-fold electronic degeneracy, while
Baer [23] focused on the topological features and
existence of pure diabatic states. The major goal
of this work is to examine the case of any N-fold
electronic degeneracy in Jahn–Teller systems [24,
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25] and to establish the GP angle in terms of the
involved mixing angles.

The plan of the paper is as follows. In section 2
we present the theoretical approach. Specifically,
we examine in subsections 2.1 and 2.2 the E R e and
T R (e � t2) Jahn–Teller cases, which are prototypes
of the N � 2 and N � 3 electronic degeneracies,
respectively. The method is extended to N � 4 in
subsection 2.3, and generalized to any N-fold elec-
tronic degeneracy in subsection 2.4. Conclusions
are in section 3.

2. Theoretical Approach

In present the theory, we begin with a detailed
treatment of the simplest N � 2 Jahn–Teller system
as this is important for an understanding of the
higher-index cases. Note that we imply by Jahn–
Teller system the so-called Jahn–Teller center [25],
i.e., the group of atoms involved in the degenerate
electronic states. Thus, although the orbital doublet
of H3 is a well established prototype [4] for the E R
e case, the conclusions drawn below are far more
general.

2.1. THE N � 2 CASE: E R e

As it is well established [25], the degeneracy of
electronic states owing to the symmetry of the nu-
clear configuration (belonging to the point group G)
exists only in polyatomic systems which have at
least one rotation (Cn) or roto-reflection (Sn) sym-
metry axis of order n � 2. For electronic orbital
doublets, there are two types of possible Jahn–
Teller effects. The first occurs when the electronic
degeneracy Ek is removed by nuclear displacements
that transform according to the doublet E2k repre-
sentation, the so-called E R e case. The second type
is possible only in polyatomic systems with Cn or Sn

axes of order n � 4k. In this case, the nuclear dis-
placements of B1 or B2 symmetry are active in the
linear vibronic interaction, leading to the E R (b1 �
b2) Jahn–Teller case. For the present analysis, we
consider only the more widespread E R e case.

The Hamiltonian of the linear E R e Jahn–Teller
problem (i.e., quadratic and higher-order terms of
the vibronic interaction are ignored), written in the
basis of electronic states {�Ex(r)�, �Ey(r)�} where r is
the set of electronic coordinates, assumes the form
[25]

H�Q� � He � Hv � Hev, (1)

He � E0�0 (2)

Hv �
1
2 �PEx

2 � PEy

2 � �E
2�QEx

2 � QEy

2 ���0, (3)

Hev � VE�QEx�x � QEy�y�, (4)

with Q	� being the � component of the nuclear
displacements which transform according to the
irreducible representation 	, P	� the corresponding
conjugate momentum, Q � {Q	�} the nuclear coor-
dinates, and Q0 a reference nuclear configuration
which will be taken as the point of electronic de-
generacy. In turn, �Ex(r)� � �Ex(r, Q0)� is one of the
eigenvectors of the Hamiltonian H(Q0), and so on.
Furthermore, E0 is the energy of the orbital doublet,
�E is the vibrational frequency of the E mode, VE is
the so-called linear vibronic interaction constant,
and �i are the well-known Pauli matrices.

The symmetry groups of the electronic Hamilto-
nian He and the vibrational Hamiltonian Hv are
both at least the second-order special unitary group
SU(2). Thus, in the absence of a vibronic interaction,
the symmetry of the E R e Jahn–Teller system must
be described by the Lie group SU(2) 
 SU(2). An
arbitrary element of this group will then depend on
six parameters [25–27], namely

G � exp�i��� � �L��, (5)

with the parameters of � � {�i} and � � {�i} (i � x,
y, z). The vibronic interaction leads to a lowering of
the symmetry of the problem. For example, by tak-
ing into account the linear vibronic interaction, the
symmetry of the system is known [25] to reduce to
the one-parameter (�z) axial group O(2). The group
element then assumes the form

Ĝ � exp�i�z�Lz �
1
2 �z��, (6)

which is a result of the requirement that [Ĝ, Ĥ] � 0,
or

���� � �L�, �QEx�x � QEy�y�� � 0. (7)

In fact, Eq. (7) leads to the following restrictions:

�x � �y � 0, (8)

�x � �y � 0, (9)
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�z � 2�z, (10)

and hence reduces the six parameters to just one
parameter. As a result, the corresponding infinites-
imal operator [24, 25]

Ĵz � L̂z �
1
2 �̂z (11)

will be an integral of motion because it commutes
with the Hamiltonian in Eq. (1), with the operator
L̂z assuming in polar coordinates (Qx � � cos 	,
Qy � � sin 	) the form

L̂z � �i




	
. (12)

The Hamiltonian H can be diagonalized by the
unitary transformation [25]

S†�QEx�x � QEy�y�S � ��z, (13)

where S is a unitary matrix defined by

S �
1

�2
�exp��i	/2� exp��i	/2�

exp�i	/2� �exp�i	/2��. (14)

Such a transformation leads to [25]

Ŝ†ĴzŜ � L̂z, (15)

which shows that L̂z is an integral of motion in the
adiabatic representation.

In the absence of a vibronic interaction, the mo-
tions of the electronic and nuclear subsystems can
be treated separately. The electronic states �Ex(r)�
and �Ey(r)�, with certain values of the projection of
the energy spin 1/2 � on the z axis, will then cor-
respond (in the case of an X3 molecule) to the wave
of electronic density propagating along the perim-
eter of the molecule clockwise or counterclockwise,
respectively. In turn, the vibrational states with a
certain value of Lz correspond to the wave of dis-
tortions of an equilateral triangle running clockwise
or counterclockwise. The energy spin 1/2 � and
vibrational momentum L are in such a case con-
served separately. This ceases to be the case when
the vibronic coupling is introduced. The projection
of the vibronic angular momentum J � L � 1/2 �
onto the z axis now becomes the good quantum

number, with the waves of electronic density and
nuclear distortions propagating coherently.

As a result of the above analysis, the adiabatic
electronic wave vectors {��I(r; Q)�} propagate
around the conical intersection as the one-parame-
ter, two-dimensional (2D) rotation [O(2)] of the ini-
tial electronic wave vectors �Ex(r)� and �Ey(r)�. We
emphasize that the symmetry of the Hamiltonian
for the E R e Jahn–Teller system is O(2), not SO(2),
because, for arbitrary rotations around the z axis,
the Hamiltonian has two extra symmetry opera-
tions [28]: P � R̂Ey

�x, where R̂Ey
is an operator that

changes the sign of QEy
, and � � K̂�x, where K̂ is

the complex conjugation operator.
In polar coordinates, the adiabatic electronic

wave vectors will then propagate around the coni-
cal intersection as

� ��1�r; �z��

��2�r; �z��
� � �cos �z �sin �z

sin �z cos �z
���Ex�r��

�Ey�r��
�, (16)

where the angle �z � �z/2 is the relevant parame-
ter. In matrix notation, one has

��r; �z� � R2��z���r�. (17)

Clearly, for �z 3 �z � �, one has R2(�z � �) �
�R2(�z). This implies that, upon inversion (ı̂2), the
adiabatic electronic wave vectors change direction
in the electronic wave-vector space {�Ex(r)�, �Ey(r)�}.
We now note that �z is the angle associated to the
2-D nuclear configuration space spanned by Qx and
Qy. In polar coordinates, it will then be identical to
	, a notation that we keep from here onward. Thus,
	 � 2�z, which implies that inversion in the 2-D
electronic wave-vector space leads to the GP effect
[1] (i.e., the wave function changes sign when trans-
ported adiabatically along a loop in configuration
space that encircles the degeneracy point). To our
knowledge, this provides a novel understanding of
the GP effect for systems with an orbital doublet
degeneracy. We emphasize that the electronically
adiabatic wave vectors must reverse their direction
under inversion in the electronic wave-vector space
or, equivalently, after closing a loop in configura-
tion space around the conical intersection. Because
a physical state may be described by any wave
vector ��� in a ray [27], exp[iA(R)]���, the corre-
sponding real wave function will be double-valued
(in other words, two opposing wave vectors repre-
sent a unique physical state).
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Similarly to Eq. (16), the general adiabatic elec-
tronic wave vectors {��I(r; R)�} can be represented
by a one-parameter orthogonal transformation of
the initial electronic wave vectors �Ex(r)� and �Ey(r)�;
R represents the full set of nuclear coordinates. For
the two-state problem, one has

� ��1�r; R��

��2�r; R��� � �cos ��R� �sin ��R�
sin ��R� cos ��R� ���Ex�r��

�Ey�r��
�, (18)

or, in matrix form,

��r; R� � T2���R����r�, (19)

where �(R) is the mixing angle [16, 17, 29] (this has
been shown [17] to be equivalent, up to a constant,
to the so-called adiabatic to diabatic transformation
angle [30–33]). We observe that �i (i � 1, 2) are real
and that they change sign over a closed loop
around the degeneracy point. Clearly, this prevents
the use of the standard Born–Oppenheimer treat-
ment for each state since the involved electronic
wave functions are not well behaved. To develop a
generalized Born–Oppenheimer approach to the
problem in the vicinity of the degeneracy seam, we
consider the auxiliary electronic wave functions

�̃a�r; R� �
1

�2
��1 � i�2�, (20)

�̃b�r; R� �
1

�2
�i�1 � �2�, (21)

where the tilde indicates that we are dealing with
complex wave functions; whenever causing no am-
biguity, we omit the dependence of the wave func-
tions on the electronic and nuclear coordinates.
From Eq. (20), we obtain [34]

��̃a��̃a� � i��1��2�, (22)

where the bracket notation implies integration over
the electronic coordinates. A similar result, except
for the sign, holds for ��̃b��̃b�. We will use only �̃a

in the following discussion, although the result is
later generalized to �̃b. Consider now Eq. (20) writ-
ten in the form

�̃a�r; R� � exp�iB�r, R���a�r; R�, (23)

where B(r, R) is a phase which we assume for
generality to depend both on the nuclear and elec-
tronic coordinates. Using Eq. (23), one obtains

��̃a�r; R���̃a�r; R�� � iA�R� � ��a�r; R���a�r; R��,

(24)

where A(R) � ��̃a�B(r; R)��̃a�. By now comparing
Eq. (22) with Eq. (24), one obtains A(R) � ��1��2�.
Furthermore, by recalling [16, 17] that ��1��2� �
�(R), we may write, up to a constant,

A�R� � ��R�. (25)

Because the mixing angle �(R) has been shown [17,
19] to lead to the proper sign change when looping
around a conical intersection (as well as the proper
behavior in loops which do not encircle it), we may,
for most purposes, identify A(R) with the GP angle;
note that �� � � for a cyclic path encircling the
conical intersection, otherwise �� � 0. Finally, we
return to Eq. (21) to note that a development similar
to the one carried out above for �̃a leads to A(R) �
��(R) in the case of �̃b. Of course, the sign change
has no practical implications, as it simply implies a
clockwise measurement of the phase angle if posi-
tive phase angles are assumed to be defined coun-
terclockwise in Eq. (25).

2.2. THE N � 3 CASE: T R (e � t2)

We turn next to three-fold electronic degenera-
cies which are associated to cubic and icosahedral
symmetry groups [25]. The doubly degenerate E-
type vibrations and the triply degenerate T-type
vibrations are now Jahn–Teller active, leading to
the T R (e � t2) problem of which the best well-
known example is perhaps that of an octahedral
ML6 molecule (Oh point group). Without vibronic
interactions, the Jahn–Teller Hamiltonian has in
this case Lie group symmetry SU(3) 
 SU(5), re-
ducing to SO(3) if the linear vibronic interaction is
included [25]. This implies three Lie group param-
eters. However, of the three {�Ex(r)�, �Ey(r)�, �Ez(r)�}
electronic wave vectors, only two are independent
as their sum of squares must be equal to unity.
Thus, any adiabatic electronic wave vector can be
characterized in terms of two angles and a modulus
in the {�Ex(r)�, �Ey(r)�, �Ez(r)�} space. This implies that
we may choose those two angles from three Lie
group parameters: one has three sets of two angles
as possible choices.
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Now, by analogy with the n � 2 case, we assign
to each chosen parameter a 3 
 3 unitary planar
rotation matrix [35]. Thus, the full matrix assumes
the form

T3 � t12��12�t23��23�, (26)

where �ij are the two relevant angles in the 3-D
polar coordinate system, and tnm are 3 
 3 matrices
defined by [tnm]nn � [tnm]mm � cos(�nm) and
[tnm]nm � �[tnm]mn � sin(�nm), with all other entries
satisfying [tnm]ij � ij. The real electronic wave func-
tions will now be given by the three rows of T3
matrix, namely

�
��1�r; �23, �12��

��2�r; �23, �12��

��3�r; �23, �12��
�

� 	cos �23sin �12 sin �23sin �12 cos �12

cos �23cos �12 sin �23cos �12 �sin �12

�sin �23 cos �23 0 

� �

�Ex�r��
�Ey�r��
�Ez�r��

�, (27)

which shows that, under inversion ı̂3 in {�Ex(r)�,
�Ey(r)�, �Ez(r)�} (�12 3 � � �12, �23 3 �23 � �), the
adiabatic electronic wave vectors ��1� and ��3� will
change direction (i.e., the corresponding electronic
wave functions change sign). In other words, ��1�
and ��3� will be subject to the GP effect while ��2� is
not. Of course, state labeling is arbitrary, and hence
the conclusion is that only one pair of states
changes sign. We may then think of 2�12 and 2�23 in
the 5-D nuclear configuration space spanned by
(QEx, QEy, QTx, QTy, QTz) as being pseudorotational
angles for the nuclei. In this case, too, the GP effect
is shown to be a property inherent to inversion of
the adiabatic electronic wave vectors, now in the
space {�Ex(r)�, �Ey(r)�, �Ez(r)�}. The above result seems
to corroborate the observation made by Chancey
and O’Brien [10] that the appearance of a GP in the
T R (e � t2) system is tied to the occurrence of a
ground-state triplet. Moreover, it suggests that the
procedure adopted for the N � 2 and 3 Jahn–Teller
cases warrants generalization to higher index val-
ues.

We may proceed by defining the following real
electronic wave functions:

�1 � �cos �23sin �12

sin �23sin �12

cos �12

�, �2 � �cos �23cos �12

sin �23cos �12

�sin �12

�,

�3 � ��sin �23

cos �23

0
�, (28)

where �12(R) is the first mixing angle (which de-
scribes mixing of �1 and �2 to form an intermediate
state �12) and �23(R) is the second mixing angle
(which describes mixing of �12 and �3). In addition,
by analogy with Eq. (20), we write the complex
wave function as

�̃ �
1

�3
�

n�1

3

exp�2�n � 1��i
3 ��n, (29)

which, upon evaluation using Eq. (28), yields

��̃��̃� � �
i

�3
��12 � cos �12�23 � sin �12�23�.

(30)

Thus, if we extend Eq. (23) and Eq. (24) to define
A(R), we obtain

��̃��̃� � iA�R�. (31)

Comparing Eq. (30) with Eq. (31) then yields

A�R� � �
1

�3
��12 � cos �12�23 � sin �12�23�,

(32)

which provides an explicit relation between the GP
angle and the mixing angles �12(R) and �23(R). We
emphasize that there are three possible mixing an-
gles, from which we may define the two indepen-
dent Lie group parameters (see also the next sub-
section).

2.3. THE N � 4 CASE: G R (g � h)

Consider now a four-fold electronic degeneracy,
which occurs in Jahn–Teller systems such as (s � p)
R (a1g � t1u � eg � t2g) and G R (g � h). The Lie
group symmetry of the corresponding Jahn–Teller
Hamiltonians with inclusion of linear vibronic in-
teractions [25] is in this case O(4). Thus, there will
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be six Lie group parameters. On the other hand, in
the four-fold degeneracy problem, we have 4 elec-
tronic wave vectors and hence 6 possible mixing
angles (one for each pair). Such electronic wave
vectors define a 4-D space in which an arbitrary
adiabatic electronic vector can be characterized by
its modulus and three angles. The question then
arises of how to relate these three angles to the six
parameters predicted from Lie group theory (or,
equivalently, to the six mixing angles). In other
words, the general T4 matrix assumes the form

T4 � t12��12�t23��23�t34��34�t45��45�t56��56�t61��61�, (33)

although only three of these 4 
 4 unitary planar
rotation matrices (one for each mixing angle) can be
treated independently. In principle, any set of such
angles (out of a total of 20 possibilities) will be
equally appropriate, but the three corresponding
matrices must form an ordered sequence in order to
lead to physically meaningful solutions: upon in-
version, an arbitrary wave vector must either
change sign or remain sign unchanged. Possible
selections are therefore t12t23t34, t34t45t56, and so on,
but not, e.g., t12t45t61. Of course, because all indices
are equivalent, any ordered sequence can be rela-
beled as T4 � t12t23t34, which is the one chosen for
the following analysis.

Following the previous cases, the real electronic
wave functions will now be given by the four rows
of T4, namely,

�1 � �
�S12S23S34

S12C23

S12S23C34

C12

�, �2 � �
�C12S23S34

C12C23

C12S23C34

�S12

�,

�3 � �
�C23S34

�S23

C23C34

0
�, �4 � �

�C34

0
�S34

0
�, (34)

where Cij � cos �ij and Sij � sin �ij. We now require
a procedure for the inversion operation in four
dimensions, ı̂4. As we are not aware of such a
procedure, it will be based on requiring that the
image point obtained upon application of ı̂4 must
show its n coordinates xi sign-reversed. For a vector
of unit length in four dimensions, one has

x1 � C12, x2 � S12C23,

x3 � S12S23C34, x4 � S12S23S34, (35)

and hence it is easy to show that inversion ı̂4 cor-
responds to �123 � � �12, �233 � � �23, and �343
� � �34. Clearly, the wave functions �1 and �4 in Eq.
(34) are seen to change sign, while the signs of �2
and �3 remain unchanged. This corresponds to case
(2, 2) of Ref. [23] and has no correspondence in the
model Hamiltonian work of Ref. [22].

We proceed by calculating the first-derivative
coupling terms as a function of the mixing angles.
After some algebra, one obtains

��1��2� � ��12, ��1��3� � �s12�23,

��1��4� � �s12s23�34, (36)

��2��3� � �c12�23, ��2��4� � �c12s23�34,

��3��4� � �c23�34, (37)

where cij � cos �ij and sij � sin �ij. By writing the
complex electronic wave function as

�̃ �
1

�4
�

n�1

4

exp�2�n � 1��i
4 ��n, (38)

one now obtains

��̃��̃� �
i

�4
���1��2� � ��2��3�

� ��3��4� � ��4��1��, (39)

and, by defining the GP angle A(R) as in previous
cases, one obtains

A�R� � �
1

�4
��12 � c12�23

� c23�34 � s12s23�34�, (40)

which provides a novel explicit relation for the GP
angle in terms of the mixing angles.

2.4. THE ARBITRARY N-INTEGRAL CASE

Finally, we consider the integral (N � 3)-fold
degeneracy case. The necessary orthogonal trans-
formation matrix assumes the form

TN � t12��12�t23��23�t34��34� · · · tN�1,N��N�1,N�, (41)

where tnm are N 
 N matrices defined in a manner
similar to Eq. (33). The N real electronic wave func-
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tions now become the N rows of TN, which can be
written by induction using the previous cases. To
examine the effect of the inversion ı̂N, we then
require the following generalization of Eq. (35):

x1 � C12,

xk � � �
i�1

k�1

Si,i�1�Ck,k�1 �k � 2, 3, . . . , N � 1�,

xN � � �
i�1

N�1

Si,i�1� . (42)

As seen by induction from previous cases, ı̂N im-
plies �i,i�1 3 � � �i,i�1 (i � 1, 2, . . ., N � 2), and
�N�1,N 3 � � �N�1,N.

After extensive algebraic manipulation, one ob-
tains for ��k

(N)��i
(N)� (i � 1, 2, N)

��k
�N���1

�N�� � 2,k�12

� �
m�1

N�2 �
j�1

m

sj, j�1m�2,k�m�1,m�2,

��k
�N���2

�N�� � �1,k�12 � c123,k�23

� c12 �
m�2

N�2 �
i�2

m

si,i�1m�2,k�m�1,m�2,

��k
�N���N

�N�� � �k
�N�� 
�N

�N�


�N�1,N
��N�1,N. (43)

In turn, for i � N � m � 3, one obtains

��k
�N���N�m

�N� � � �k
�N�� 
�N�m

�N�


�N�m�1,N�m
��N�m�1,N�m

� cN�m�1,N�m�N�m�1,k�N�m,N�m�1

� �
l�0

N�5 �
j�0

l

sN�m�j,N�m�j�1N�m�2�l,k�N�m�1�l,N�m�2�l� .

(44)

Note that the only nonzero integrals ��k
(N)�(
�N

(N)/

�ij)� in Eq. (43) and Eq. (44) are

�1� 
�3


�23
� � �s12, �2�
�3


�23
� � �c12, (45)

�1� 
�4


�34
� � �s12s23, �2�
�4


�34
�

� �c12s23, �3�
�4


�34
� � �c23, (46)

�1� 
�5


�45
� � �s12s23s34, �2�
�5


�45
� � �c12s23s34,

(47)

�3� 
�5


�45
� � �c23s34, �4�
�5


�45
� � �c34. (48)

By now writing the N-state complex electronic
wave function as

�̃ �
1

�N
�

n�1

N

exp�2�n � 1��i
N ��n, (49)

we obtain for the derivative coupling term

��̃��̃� �
1
N �

m�n

N

exp�2�n � m��i
N ���m��n� (50)

or

��̃��̃� �
i

�N
���1��2� � ��2��3� � ��3��4�

� · · · � ��N��1��. (51)

If A(R) is then defined similarly to previous cases,
one obtains

A�R� �
1

�N
���1��2� � ��2��3�

� ��3��4� � · · · � ��N��1��, (52)

which gives the explicit relation between the GP
angle and the first derivative coupling terms. More-
over, by using Eq. (43) and Eq. (44), we obtain the
relation between the GP angle and the N � 1 mix-
ing angles for the general N � 3 state case:
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A�R� � �
1

�N ��12 � �
n�1

N�2

cn,n�1�n�1,n�2

� �
n�1

N�2

sn,n�1�N�1,N�. (53)

3. Conclusions

We now summarize the major results. For an
N-fold electronic degeneracy in Jahn–Teller sys-
tems, propagation of the adiabatic electronic wave
vectors around the point of degeneracy can be rep-
resented as a rotation in N � 1 parameters in the
N-dimensional electronic wave-vector space. Inver-
sion in such a space leads to the GP effect. Thus, for
N � 2, any adiabatic electronic wave vector can be
represented as a one-parameter (i.e., the mixing
angle, which is identical up to an initial phase to the
GP angle [16, 17]) rotation in the 2-D wave-vector
space. For N � 3, such a rotation will take place in
the 3-D electronic wave-vector space, with inver-
sion then showing that only two adiabatic elec-
tronic wave vectors are subject to the GP effect.
Correspondingly, the N � 4 case can be viewed by
looking at the action of ı̂4. The result is that two
electronic wave vectors change sign and hence are
subject to the GP effect, while the other two are not.
For an arbitrary integer � N value, such a rotation
involves N � 1 mixing angles as parameters in the
N-dimensional electronic wave-vector space. To
look at the GP effect, we must then examine the
results of applying ı̂N to the adiabatic electronic
wave vectors. As already observed, we are not ex-
pected to obtain all sign changes reported by
Manolopoulos and Child [22] and Baer [23], since
only Jahn–Teller systems with very specific symme-
try requirements have been considered in this
work. Finally, the GP angle for the general N-state
case has been shown for the first time to connect the
N � 1 independent mixing angles.
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