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Abstract

Sprouting angiogenesis is a mechanism the body uses to create new capillaries that will

deliver oxygen and nutrients to the cells that constitute the surrounding tissue. This

process is characterized by the protrusion of new sprouts from a preexisting vessel, a

consequence of endothelial cell migration and proliferation. What makes angiogenesis so

complex is that it involves chemical signaling, mechanical forces between the cells and

the extracellular matrix, and endothelial cell coordination.

In this work we are interested in studying how the mechanical properties of the extra-

cellular matrix influences endothelial cell’s migratory behavior and how some cells are

capable of changing those properties by degrading the collagen that forms the matrix.

Using a continuous approach, we developed a phase field model from where we derive a

set of partial differential equations that describe the dynamics of the vascular network

as well as the reaction-diffusion processes that occur in parallel. One of the main ad-

vantages of this model is that it has a reduced number of parameters, whose value can

be estimated based on experimental results. To solve the model we developed software

capable of integrating the equations numerically and simulating the rule–based dynamics

of endothelial cell activation.

The results we obtained allow us to characterize how endothelial cell migration is influ-

enced by the mechanical properties of the matrix, especially its rigidity. For substrates

with low rigidity the cells tend to separate from the starting vessel and migrate alone.

On the other hand, stiffer matrices allow for the elongation of sprouts to occur, resulting

in new, well structured vessels. We also characterize the role matrix metalloproteinases

have in successful endothelial cell migration.





Resumo

A angiogénese é o mecanismo que o corpo utiliza para criar novos capilares que levarão

oxigénio e nutrientes às células do tecido vizinho. Este processo é caracterizado pela

protrusão de novos vasos a partir de um pré-existente, acompanhado por migração

e proliferação das células endoteliais. O que torna a angiogénese tão complexa é o

envolvimento de sinais químicos, forças mecânicas entre as células e a matriz extracelular,

e coordenação entre as células endoteliais.

Neste trabalho, estamos interessados em estudar em que medida as propriedades mecâni-

cas da matrix extracelular influenciam o comportamento migratório das células e como

algumas delas são capazes de alterar essas propriedades, degradando o colagénio que

forma a matriz. Usando um modelo contínuo de campo de fases, derivamos um con-

junto de equações diferenciais com derivadas parciais que descrevem a dinâmica da rede

vascular, assim como os processos de reação-difusão que ocorrem em paralelo. Uma

das principais vantagens do modelo é o seu reduzido número de parâmetros, cujo valor

podemos estimar baseando-nos em resultados experimentais. Para resolver o modelo,

desenvolvemos um programa capaz de integrar as equações numericamente, ao mesmo

tempo que impõe um conjunto de regras ao comportamento das células endoteliais.

Os resultados obtidos permitem-nos concluir que a migração de células endoteliais é

influênciado pelas propriedades mecânicas da matriz, principalmente pela sua rigidez.

Para substratos com baixa rigidez as células tendem a separar-se do vasos principal

e migrar sozinhas. Por outro lado, matrizes muito duras facilitam a elongação dos

vasos, dando a origem a novos vasos bem estruturados. Vimos também que a ação das

metaloproteínases é essencial para a migração das células endoteliais.
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• Basement Membrane: Thin layer that separates the endothelial tissue from

the extracellular matrix.

• Endothelial Cell: Cells that compose the endothelium, which is the main

constituent of capillaries.

• Extracellular Matrix: Collection of fibers and proteins that provides support

to the surrounding cells and structures.

• Hypoxia Inducible Factor: Formation of new blood vessels from precursor

cells.

• Knockout Mice: Formation of new blood vessels from precursor cells.

• Matrix Metalloproteinases: Formation of new blood vessels from precursor

cells.

• Notch Mechanism: Formation of new blood vessels from precursor cells.
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• Vasculogenesis: Formation of new blood vessels from precursor cells.
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Chapter 1

Biological introduction

Before developing a mathematical model to describe a certain physical system, be

it a cell or a black hole, it is essential to know as much as we can about it in order to

identify and understand the key mechanisms that lead to the properties we are interested

in studying. When building a model around a biological system, like in our case, we have

to grasp the essential processes that occur and the entities that play a part in it. These

include types of cells and tissues, chemical signals and other pathways that coordinate

in order for the system to work the way it does.

In this first chapter, we introduce important concepts related to angiogenesis using

an hands-on approach for non–biology specialists and without going into too much detail.

1.1 Angiogenesis – Overview

The animal body is a highly complex and dynamic system which undergoes continuous

change and renovation. This property becomes stunning when we think, for instance,

in the time it takes for the cells in the lining of our stomach’s to be renewed. If you

are reading this, let us say, on a Monday, by Friday the cells of your stomach’s inner

surface will not be the same as when you started (due to the low pH environment they do

not last very long).1 Almost all tissues that constitute our organs undergo this process,

1On a philosophical note: We may be nothing more than a flesh and bone ship of Theseus.
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although the time it takes for this cycle to complete varies from days to years.

One vital part of our body that is also in constant reconstruction is our circulatory

system, for both physiological and pathological reasons. Due to the short length of

diffusion of oxygen in the tissues, blood vessels are destroyed and created to guarantee

that sufficient irrigation reaches the cells that are in hypoxia or in need of nutrients and

other essential substances, establishing extremely complex networks (Figure 1.1). Cells

also use these networks to get rid of byproducts that result from their metabolism, like

carbon dioxide ([1]), and that are poisonous to themselves. Since every organ in our

body is made up of cells, the circulatory system covers its entirety, from our brain to our

toes.

Figure 1.1: Blood vessel network in the human arm.

It is important to distinguish the two processes that give rise to the formation of new

blood vessels, for they are sometimes taken to be the same thing.

• Vasculogenesis: De novo formation of blood vessels, which involves the differenti-

ation of new endothelial cells from their precursors (called angioblasts) recruited

directly from the bone marrow.

• Angiogenesis: New blood vessels are arise from preexisting ones.

In the context of this work, we will focus only on the second one, specifically on

sprouting angiogenesis, a process where tubular structures (referred to as sprouts) made

up of endothelial cells start diverging from an initial vessel forming new ramifications.

The other way new capillary are formed from preexisting vessels is called intussusceptive

angiogenesis or simply, splitting angiogenesis. There, a functional blood vessel splits

2



in two, originating new ramifications separated by a newly formed arterial wall. An

illustration of the two kinds of formation are show in Figure 1.2.

Figure 1.2: Diagram showing the two possible angiogenic processes [2].

The excessive and lack of occurrence of sprouting angiogenesis have been linked to

the development of many disorders such as blindness (in diabetic patients) ([3]) and

rheumatoid arthritis ([4],[5]), in the first case and heart disease ([6],[7]), ulcers ([8]) or

wound healing problems ([9]) in the second. Also angiogenic activity is one of the main

mechanisms involved in solid tumor growth ([10]), since their appearance is accompanied

by the recruitment of new blood vessels to feed itself and to help its spreading and

metastasis. For these reasons angiogenesis is considered one of the hallmarks of cancer

([11]).

Therefore it is of utmost importance to gain a proper understanding of the mechanisms

behind sprouting angiogenesis as well as the conditions of the cellular environment that

inhibit or enhance its occurrence. What makes it such a complex (and interesting)

phenomenon is that it is only possible because of the perfect synchronization between

many different processes and parts. Involved in angiogenesis are chemical (growth

factors, proteins, oxygen, . . . ) and mechanical factors, as well as collective endothelial

cell coordination ([12]). The contribution of these phenomena to angiogenesis is still

not completely clear, namely the mechanical sub-processes, which makes it an active

area of research and collaborative work between the exact science community (physicists,
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mathematicians, computer scientists) and the medical experts, each delving into its

theoretical and experimental aspects, respectively.

The process of sprouting angiogenesis can be divided into three major steps, illustrated

in Figure 1.3 :

1. Tissue cells in an hypoxic state produce and release VEGF–A to the extracellular

matrix (a).

2. VEGF and other pro-angiogenic diffusible proteins reach the blood vessels which

respond by producing sprouts that migrate in the direction of the starving cells

(b).

3. Those sprouts fuse together (anastomosis) to form a functional network where

blood can now flow, supplying oxygen to the cells. Meanwhile, production of

pro-angiogenic proteins ceases and angiogenic activity decreases (c).

(a) (b) (c)

Figure 1.3: Three main steps in sprouting angiogenesis.

A more detailed explanation of the complex mechanisms behind these steps will be

provided in the following sections.
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1.2 Endothelial cells

(a) (b)

Figure 1.4: Individual (a) and coordinated (b) endothelial cells [13].

Endothelial cells compose a single cell–thin layer lining the inside of blood and

lymphatic vessels (called the endothelium) all around the circulatory system, from the

thinnest capillaries to the largest arteries, such as the aorta. In larger vessels, the

endothelium makes up only a small portion of the vessel’s structure, sitting on top

of muscle and elastic fibers. However, in capillaries they sit on top of the basement

membrane and are responsible for the integrity of the entire vessel’s wall.

The main function of the endothelium is to control the passage of material from

the vessels to the surrounding tissue and vice versa. For this reason the endothelium is

considered selectively semi-permeable. White blood cells, for instance, must leave the

blood vessels to fight infections in various tissues. In the brain, this function is essential,

since it stops bacteria and unwanted material to cross to the neurons, while allowing

essential nutrients to pass.

Endothelial cells are also responsible for the dilation and contraction of blood vessels,

which is a requirement for the organism to adapt to certain conditions.

The reason why these cells are important in the context of this thesis is because they

are responsible for the structure of new blood vessels, meaning they are the main cell

type involved in angiogenesis.

Endothelial cells can express different phenotypes, conferring them distinct charac-
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teristics. This property will be made clear in further sections for it is one of the key

mechanisms in sprouting angiogenesis.

1.3 VEGF signaling

VEGF stands for vascular endothelial growth factor and there are 7 different proteins

that belong to the VEGF family and intervene in different physiological/pathological

processes related to the formation of new vessel like structures. The occurrence of angio-

genesis and vasculogenesis is highly dependent on the existence of growth factors, which

are signaling proteins found in the ECM that promote the proliferation of endothelial

cells. There are many families of growth factors, such as FGFs, KGFs, TGFs and VEGFs,

the last ones being the most important in the context of angiogenesis.

Figure 1.5: 3D representation of the VEGF molecule [14].

Table 1.1: Different kinds of VEGF and the processes where they are involved.

Protein Function

VEGF-A Angiogenesis

VEGF-B Embryonic angiogenesis.

VEGF-C Lymphangiogenesis

VEGF-D Lymphangiogenesis in the lungs

PLGF Vasculogenesis and wound healing

Since we are focusing on the study of angiogenesis the properties and the role of

VEGF–A are the most interesting for us. VEGF–A can present itself in 8 isoforms:
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VEGF–A121, VEGF–A145, VEGF–A148, VEGF–A165, VEGF–A183, VEGF–A189, VEGF–

A206 and VEGF–A110. The existence of these isoforms is a result of the alternative

splicing process of exons present in the gene that encodes the production of VEGF–A

and different kinds of VEGF–A have different affinities to cell membrane receptors. From

this point on we will refer to VEGF–A simply as VEGF.

One interesting property of VEGF is that it can exist in both soluble and insoluble

forms. The soluble VEGF is freely diffusible on the ECM, possessing very high motility.

On the other hand, there are insoluble forms of the growth factor that are bound to the

matrix ([15]) and are released more slowly, partly due to the action of the MMPs that

degrade the collagen trapping the VEGF molecules in the ECM.

Some phenomena that are crucial to the process of angiogenesis and depend on the

concentration/gradient of VEGF–A are endothelial cell migration ([16]) and proliferation,

lumen development and the secretion of metalloproteases ECM by ECs. The importance

of VEGF in angiogenesis is backed by experiments performed in knockout mice, where

they observed that the loss of a single VEGF–A allele results in embryo fatality due to

abnormal or absent capillary formation [17].

1.3.1 VEGF production

The production of VEGF by tissue cells in environments with low oxygen concen-

tration is the trigger for the formation of new blood vessels. Inside the cell exists a

transcription factor for VEGF called HIF–1 (hypoxia inducible factor), a dimer made

up of HIF–1α and HIF–1β.

In the presence of oxygen, both of these factors are produced at a certain rate but

HIF-1α is immediately decomposed in the cell into its constituents, meaning there will be

no dimer formation and the production of VEGF will not happen. However, in hypoxia,

the two monomers meet in the nucleus forming HIF–1 which serves as a transcription

factor, leading to the production of the growth factor.

The VEGF is then released to the ECM and starts diffusing, creating a concentration

gradient that will act as a breadcrumb trail for the sprouts to follow.
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1.3.2 VEGF receptors

When VEGF molecules reach the vicinity of endothelial cells they attach to receptors

located in the surface of the membrane ([18]). There are two main VEGF receptors:

• VEGFR1.

• VEGFR2.

Depending on what receptor captures the VEGF, different pathways are activated,

which has different consequences in terms of the changes the endothelial cell will suffer. In

sprouting angiogenesis the most important receptor is the VEGFR2 which is responsible

for the pathway leading to the migratory behavior of tip cells (the concept of tip and

stalk cell will be explained in the following sections). In turn, the VEGFR1 receptor is

related to the proliferation and cell division of stalk cells, important for the structural

integrity of the newly formed sprout.

1.4 Endothelial cell activation

The capability of endothelial cells to take on different roles during the angiogenic

process is one of the key starting points for most theoretical models that try to explain

the formation of new blood vessels. On the context of sprout formation, endothelial cells

can be divided into two classes:

• Stalk cells

• Tip cells

A third class of cells called phalanx cells is sometimes considered too. These are en-

dothelial cells that are not activated and remain quiescent, performing only a supporting

role.

The process by which endothelial cells take on different roles occurs at a deeper level

through the expression of certain genes. This difference is reflected on the way cells react
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to the concentration of certain chemicals, their shape, and also on the presence of extra

appendices/structures like filopodia.

Figure 1.6: Illustrative diagram of a sprout.

1.4.1 Tip cells

The leading cells that guide the growth of the new sprout are called tip cells for they

are located at the tip of the protrusion. The migratory behavior exhibited by tip cells can

be explained by their higher motility when compared to regular endothelial cells which

in turn is related to their different morphology and their response to the presence of

growth factors. EC’s that acquire this phenotype develop antenna-like structures called

filipodia that scan the ECM for VEGF while also exerting traction forces, pulling along

the rest of the sprout.

These specialized EC’s are able to produce MMPs which degrade the basal membrane

of the original vessel allowing for the forming sprout break through and invade the

extracellular matrix starting the process of forming a new capillary. These matrixins

also degrade surrounding collagen fibers allowing more room for the tip cell to advance,

moving the vessel towards the hypoxic regions.

When different tip cells meet in space, they use their filipodia to connect and establish

a new, functioning vessel network, allowing for blood to flow and irrigate the starving

cells.
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1.4.2 Stalk cells

While the function of the tip cell is to guide the new vessel sprout, other endothelial

cells are in charge of maintaining its structural integrity. These cells proliferate, i.e. they

divide by mitosis giving rise to new ones, thus strengthening the sprout. The recruitment

of pericytes (supporting cells) and the formation of new basement membrane gives an

extra sturdiness to the new capillary.

1.5 Tip cell selection

Now that we know that endothelial cells must undergo specification in order for

sprouting angiogenesis to occur, we are interested in knowing how the role of each EC

is decided. Why do some cells exhibit a migratory behavior, while others simply follow

along?

The expression of the tip cell phenotype is related to their ability to detect the presence

of growth factors such as VEGF and then follow its gradient towards the starving, hypoxic

cell. Contrarily, stalk cells possess high proliferative potential, regulated by the presence

of growth factors but have low migratory tendencies. Since the interaction between

endothelial cells and VEGF happens through receptors located in the membrane of said

cells, one way to solve the mistery of the different phenotype expression is by looking at

the number of receptors each type of cell has in their surface. It was indeed observed

that cells in a supportive role present less VEGF receptors than the cells that migrate,

so there must be some kind of mechanism in action that suppresses the development of

more binding sites for growth factors.

Studies on the formation of new arteries in the zebrafish revealed that something

called Notch mechanism is responsible for this tip cell selection process. Specimens where

this mechanism was suppressed showed an excessive amount of sprouting activity and its

origin was tracked to the front of the new vessel. It was also shown that fish where the

Notch activity was deficient presented a similar phenotype to embryos with deactivated

VEGF pathways ([19]).
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1.5.1 Notch signaling

In the context of angiogenesis, the Notch mechanism is thought to occur in two

separate stages. First, the VEGF–A binds to the VEGFR2 receptors located in the

surface of EC’s leading to the production of delta-like ligand 4. Often referred as Dll4,

it belongs to a family of proteins involved in this signaling pathway. Other members are

Jag-1, Jag-2 and Delta-like-1,3.

Afterwards, Dll4 is captured by receptors in the neighboring cells and the expression of

the gene responsible for the production of their VEGFR2 receptors is severely diminished.

This numbs the sensing of VEGF by those cells reducing the probability of them becoming

tip cells.

Figure 1.7: Lateral inhibition through Delta–Notch mechanism [20].

This process is called lateral inhibition, meaning the existence of a tip cell at a certain

spot inhibits the activation of other ECs to the same phenotype in its neighborhood

([21]). Lateral inhibition occurs between cells that are directly in contact, for there is

no diffusion of any chemical responsible for the signaling process that would allow a

"wireless" communication.
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1.6 Mechanical factors in angiogenesis

1.6.1 Tip cell traction force

The importance of chemical signaling in angiogenesis has long been recognized and

studied over the years. However, these factors are not enough to explain how the cells

move, making their way through the ECM.

It is known that tip cells exert traction forces on the ECM and surrounding tissues,

that allows them to progress, while pulling along the stalk part of the sprout, maintaining

the connection to the parent vessel ([22]).

These traction forces have been measured for endothelial cells during the process of

changing their shape, while spreading on the ECM ([23]). In Figure 1.8 we see a diagram

of that force, determined experimentally, when the endothelial cell was in its relaxed

state.

Figure 1.8: Diagram showing the traction force field inside an EC and the corresponding micro-

scope image of said cell ([23]).

We can see the cell’s force is directed towards its center and its intensity is maximum

at the boundary.

Since the migration process of the endothelial cell and therefore the growth of the

new sprout depends on the application of this traction force on the ECM, we are led to

believe that the mechanical properties of the matrix may influence the way angiogenesis
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occurs.

1.6.2 Mechanical properties of the ECM

The extracellular matrix is the medium that serves as substrate for the surrounding

cells and in its constitution there are many fibers and proteins. It is composed mainly

of collagen, responsible for its stiffness, and of elastin which provides the matrix with

an elastic behavior allowing it to stretch when needed and after, to return to its relaxed

state, just like a spring. Depending on the concentration of these two substances, the

mechanical properties of the ECM can be very different from one tissue to the next. This

difference can influence the way the cells behave and perform their functions.

Cell migration is also dependent on the stiffness of the matrix, and they are known

to move along the gradient of rigidity. This guided cell movement is called durotaxis.

The ECM’s integrity is not constant, for it is susceptible to remodeling processes and

degradation due to the existence of matrix metalloproteinases.

1.7 MMP’s and ECM remodeling

1.7.1 What are MMPs?

Matrix metalloproteinases, or as they are commonly known, MMPs, are a family of

enzymes that play a fundamental role in angiogenesis. Their existence was first noted

in 1962 by Gross and Lapiere while studying the metamorphosis process of the tadpole

(larval state of some amphibian creatures). One of its stages consisted of the tail of

the tadpole being dropped and the process of how this happened intrigued the pair of

scientists. Eventually they discovered there was some kind of enzyme-like structure that

destroyed the collagen that gives shape to the tadpole’s tail. This enzyme was called

collagenase which today is known as MMP-1.

Since then, over 20 types of MMP have been described, each having different efficiency

when acting on different kinds of substrate and related to this we can further separate

MMPs into families. Also, they can be found in places other than the ECM, for they
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can be located in the membrane of some cells (transmembranal) just like VEGF can be

found in soluble and bound state.

Table 1.2: MMP families

Class Members

Collagenases MMP-1,8,13

Gelatinases MMP-2,9

Membrane-type MMP-14,15,16

Matrilysin MMP-7,26

MMPs are produced inside the nucleus of endothelial cells and are secreted, moving

around the ECM by diffusion. At first they are not ready to start degrading fibers and

need to be activated. They possess a structure that acts like a switch that needs to be

destroyed in order for the MMP to do its job. Interestingly, this responsibility often falls

on the shoulders of other MMPs, i.e. an activation chain is formed (Figure 1.9). The

reason why this ON button is important is that MMPs are so good at degrading other

proteins that they could eventually degrade themselves.

Figure 1.9: MMP activation chain [24].

A number of inhibitors are known to stop metalloproteanases from functioning cor-
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rectly and they were given the name TIMPs, acronym for tissue inhibitor of metallopro-

teinases. The balance between the concentration of MMPs and its inhibitors is essential

for the organism to function correctly, for example when it comes to wound healing.

Experiments involving aortic tissue have revealed that the presence of MMPs is a must

for the endothelial cells to move towards the wound site. In MMP transcription gene

knockout mice endothelial cell migration was close to null, while in TIMPs knockout

mice the damaged tissue was promptly healed.

Matrixins also play a part in the development of some cardiac diseases, seeing that

it is involved, for instance, in the detachment of atherosclerotic plaque in blood vessels

which can then lead to strokes and, eventually, death.

1.7.2 MMPs in angiogenesis

We have already established that tip cell migration through the ECM is probably the

most important mechanism for angiogenesis. However, the extracellular environment is

not homogeneous but instead is made up of fibers that become an obstacle, not allowing

the leading cell to advance towards the hypoxic center. Thankfully, we know that they

are able to overcome these barrier and that is mainly due to the activity of MMPs.

The role of the matrixins in this angiogenic play begins even before the tip cells starts

its migration, because MMPs are responsible for the drilling of the basement membrane

that surrounds the parent blood vessel, allowing the tip cell to break through and give

rise to a new protrusion.

After that, something needs to be done regarding the hard fibers in the matrix.

MMPs also take care of them, opening a trail for the sprout to progress.

1.8 Angiogenesis-related therapies

Since angiogenesis is one of the key processes involved in tumor growth and its

spreading, it has been the target of some therapeutic procedures in cancer patients. In

order to grow, tumor cells need nutrients and oxygen, just like regular, healthy cells, and
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a new network must be established in order to provide them with those substances. This

means that if we are able to cut off the blood supply to these malignant cells, they will

eventually starve to death and the development of a potentially deadly cancer will be

stopped.

This, however, was revealed to be a naïve approach to the problem for it was shown

that disrupting the tumor’s blood supply, only made it more agressive in the long run.

An explanation for this fact is that when in an hypoxic environment, the migratory

phenotype of the cancer cells became more active and the tumor would try to enter the

nearby blood stream and spread to other organs and tissues.

Anti-angiogenic drugs can act by interfering with different processes, for they can

attach to the VEGF molecule itself and inhibit its action or they can disrupt the VEGF

receptors that exist in the membrane of ECs. Angiogenesis inhibitors have been used not

only for cancer but for other diseases related to excess formation of vessels like macular

degeneration and diabetic retinopathy.
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Chapter 2

Relevant physical concepts

After we became acquainted with the biological background relevant to this thesis,

we moved on to the mathematical and physical theory that is necessary to create an

adequate model that describes the system’s relevant processes as close to the biological

reality as possible. The key concepts behind this work are related to the field of statistical

mechanics, more specifically the theory of phase transitions, culminating in the phase

field model which forms the starting point for the whole model. We also take a look at

some of the basic theory of elastic interactions which is important to understand the

mechanical interaction between cells and tissues involved in sprout formation. We start,

however, by talking about the calculus of variations and the concept of a functional,

essential in understanding the way we extract information from the system’s free energy.

2.1 Calculus of variations

Most of the time when studying mathematics we deal with scalar functions, a concept

we can compare to a "machine" that takes in a number and returns another number. For

instance, if we define

f(x) = x2

what f will do is take the provided value of x and return its square, both of them

numbers.
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We can now introduce the new concept we will call a functional which is another

kind of "machine" that accepts functions as input and outputs a number. Perhaps the

simplest example of a functional is the definite integral

F [f(x)] =
∫ b

a
f(x)dx

and also

F [f(x)] = f(x0)

where x0 is some point that belongs to the domain of f(x). Next, after studying functions

and their properties we learned about the concept of limits and derivatives. If we wanted

to know how the value of a function varies at a certain point we calculate its derivative

there and examine the result. Returning to our f(x), its derivative will be

df
dx = 2x

Many times it is useful to know what happens to the value of a functional when the

input function changes its shape. We define the functional derivative δF
δφ as

δF = F [φ+ δφ]− F [φ] =
∫
δF

δφ
δφ dx (2.1)

There is a big difference of interpretation between the derivative of a function and a

functional derivative, for in the first case we are measuring how the value of the function

changes when the x value also changes. With functionals we are interested in how its

value, which depends on the shape of the input function extending through the whole

domain, changes when the shape is distorted.

Let us calculate the functional derivative of a functional F [ρ] defined as

F [ρ] =
∫ +∞

−∞
ρ

5/3dx (2.2)

which appears in the context of the Thomas-Fermi model, where ρ(x) is the electron

density. We start by evaluating

F [ρ+ δρ] =
∫ +∞

−∞
(ρ+ δρ)5/3 dx =

∫ +∞

−∞
ρ

5/3
(

1 + δρ

ρ

)5/3

dx
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and using the Taylor expansion

(1 + x)5/3 ≈ 1 + 5
3x+ 5

9x
2 − 5

81x
3 + · · ·

keeping the terms of δρ up to first order we get

F [ρ+ δρ] =
∫ +∞

−∞
ρ

5/3dx+
∫ +∞

−∞

5
3ρ

2/3δρ dx = F [ρ] +
∫ +∞

−∞

5
3ρ

2/3δρ dx

From the definition of functional derivative in 2.1 we get

δF

δρ
= 5

3ρ
2/3

Another example, this one well known to any physicist, are the Euler-Lagrange

equations. One way to solve a mechanics problem, for instance, is to say that the

trajectory a particle takes is the one that minimizes the action of the system. The action

is defined as the integral of the Lagrangian

S =
∫ b

a
L(t, qi, q̇i)dt

We want to solve the equation

δS =
∫ b

a
L(t, qi + δqi, q̇i + δq̇i)dt−

∫ b

a
L(t, qi, q̇i)dt

=
∫ b

a

∂L

∂qi
δqidt+

∫ b

a

∂L

∂q̇i
δq̇idt

=
∫ b

a

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
δqidt+ ∂L

∂qi
δqi

∣∣∣∣b
a

= 0

(2.3)

If we assume that

δqi(a) = δqi(b) = 0

and since the minimization condition must be valid for any δqi, we arrive at the famous

Euler-Lagrange equations.
d
dt

(
∂L

∂q̇i

)
= ∂L

∂qi
(2.4)

These concepts of functional derivative will be important in the context of this

dissertation for the system’s free energy that will be presented in later sections, is a

functional that we want to minimize.
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2.2 Elasticity

Note: Based on [25] and [26].

When under the influence of an external force, a deformable body will change its

shape and/or its volume. In a coordinate system, an infinitesimal portion of the body

located at ~r = (x, y, z) is initially at rest and after the deformation that same mass

element can be at a different position ~r′ = (x′, y′, z′). We define the displacement vector

~u as

~u = ~r′ − ~r

and since the force that caused the deformation affects the body differently at distinct

points, it is a function of the initial position, ~r.

2.2.1 Strain tensor

Since the position of a point is altered after the deformation, the distance between

two distinct points will also be different when the body changes shape.

Suppose we have two points A and B on a body at rest, initially separated by a

distance l. After the deformation, the same points are now at their new positions A′

and B′, and the distance between them changed, and is now given by l′. The distance

between two very close points is given by

dl2 = dx2 + dy2 + dz2

before the action of the external force and after the force is applied, this distance becomes

dl′2 = dx′2 + dy′2 + dz′2

If we write

dx′i = dxi + dui = dxi + ∂ui
∂xj

dxj

(where x ≡ x1, y ≡ x2, z ≡ x3 and the Einstein summation convention is implied) and

assuming the deformation is very small, we can keep only first order terms, getting

dl′2 = dl2 + 2εijdxidxj
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where we define the strain tensor components as

εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
We define the components such that the tensor is symmetric, meaning

εij = εji

We can interpret the ij component of the strain tensor as the variation of the

displacement vector component i in the j direction. If we know the form of the strain

tensor we know how the body’s shape will be altered when a specific force is applied to

it.

2.2.2 Stress tensor

A point that belongs to a body is in contact with its closest neighbors and they exert

forces on each other on the surface that surrounds them. These can be split into shear

stresses and pressures and if we assume that the force does not depend on the shape of

surface, we can write

dFi = σijdSj

where we can define σij as the components of the stress tensor. The geometrical inter-

pretation of its value is the tension in the i direction on a surface whose normal is in the

j direction. For instance, the element σxy is defined as

σxy = x component of the force
Area of a surface with its normal oriented in the y direction

The diagonal elements of the tensor, σii, represent normal tensions to the respective

surface normals.

2.2.3 Equilibrium conditon

If we want to impose that the body is in an equilibrium state, we use the usual

condition from classical mechanics ∑
i

~Fi = 0
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The forces acting on each mass element of the body can be due to the interaction with

its neighbors (surface) or they can be external forces like gravity (volumetric forces), for

example. The equilibrium condition in this case is translated into∮
S
σijdSj +

∫
V
fidV = 0

Using the Gauss theorem we can turn the integral over the closed surface as an

integral over the enclosed volume of a divergence∫
V

[∂jσij + fi] dV = 0

Since the above condition must be valid for any infinitesimal volume, we get

∂jσij + fi = 0

which is called Cauchy’s equilibrium equation.

We can also show that the conservation of angular momentum forces the stress tensor

to be symmetric, meaning

σij = σji

2.2.4 Elastic energy

Let us calculate the elastic energy associated with the deformations that occur in the

body, by calculating the work done by the forces involved. Suppose that those forces

cause an infinitesimal displacement δsi on a certain point. Then, the work done by it

can be written as

δU =
∮
S
σijδsidSj +

∫
V
fiδsidV

=
∫
V
∂j (σijδsi) dV +

∫
V
fiδsidV

Expanding the derivative of the product in the first term, we get

δU =
∫
V

[(∂jσij + fi) δsi + σij∂jδsi] dV
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If the deformation is quasi-static, meaning after each displacement the system reaches a

momentary state of equilibrium, the first term is zero, so

δU =
∫
V
σij∂jδsidV

Using the symmetry of the stress tensor and the definition of the components of the

strain tensor, we can rewrite the above expression as

δU =
∫
V
σijδεijdV

such that the energy density u can be defined as

δu = σijδεij (2.5)

Using this expression we have a way of calculating the stress tensor components only by

knowing the energy density and the strain tensor

σij = ∂u

∂εij
(2.6)

2.2.5 Hooke’s law

Since the stress tensor represents forces and the strain tensor represents the effect

those forces have on a body, we are interested in writing an equation that relates the

two tensors.

The most general way we can relate the causes and effects is by writing

σij = γijklεkl (2.7)

an equation known as the generalized Hooke’s law, valid for linear deformations, where

γijkl is known as the elasticity tensor.

Using Hooke’s law and equation 2.5, a small variation in the elastic energy density

of the system can be written as

δu = γijklεklδεij = 1
2γijklδ(εijεkl)
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and if we integrate both sides of the expression we get

u = 1
2γijklεijεkl

which has a similar form to the energy of the harmonic oscillator.

In the case where the material is isotropic and homogeneous, there are no preferential

directions in the system so the elastic energy does not depend on those directions.

Therefore, the energy must be invariant under any rotation operation. For these materials

the components of the elasticity tensor have the form

γijkl = λδijδkl + τ (δikδjl + δilδjk)

and so the energy density is given by

u = 1
2
[
λ(εii)2 + 2µεijεij

]
(2.8)

where λ and µ are called the Lamé parameters.

Using 2.6 we can write the stress tensor components as a function of the strain tensor

as

σij = λεkkδij + 2µεij

which is called the Cauchy equation.

We can rewrite the equation using a couple of new parameters

σij = Kδijεkk + 2G
(
εij −

1
d
δijεkk

)
where K and G are the compressibility and rigidity constants, respectively. These are

related to the Lamé parameters through

λ = K − 2µ
d

µ = G

where d represents the dimensionality of the system 1.

1Throughout this thesis µ will be the symbol used for rigidity. We can do this since G = µ
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These two parameters can, in turn, be written in terms of the Poisson ratio (ν) and

the Young’s modulus (E), two characteristic properties of materials, as

µ = E

2(1 + ν)

K = E

3(1− 2ν)

(2.9)

Using these parameters is useful for they are observable quantities that can be easily

measured for most of materials.

2.3 Landau theory of phase transition

Note: Based on [27] and [28].

Usually when looking for phase transitions on a certain thermodynamic system we

start by analyzing it at the microscopic level, usually through the principles of statistical

mechanics. In the end, we arrive at an expression for the free energy of the system, from

where we extract relevant information about its behavior, such as entropy, specific heat,

etc. We may also be interested in looking for discontinuities in some of these functions

and if we find some, we can be in the presence of a phase transition. The problem with

this approach is that a complete microscopic analysis of complex, many-particle systems

is very hard, time consuming and, in most cases, impossible.

Landau’s theory of phase transitions ([29]) is a phenomenological, mean-field theory

that bypasses the need of knowing the microscopic aspects of the system by assuming

that close to the critical temperature

1. The free energy function of the entire thermodynamic system can be expanded as

a power series of a certain variable, which we will call the order parameter.

2. This function maintains the same symmetry properties of the original system’s

Hamiltonian.

Under Landau’s theory many systems that have very different microscopic behaviors

end up being described by the same free energy function, as long as their Hamiltonians
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are invariant under the same transformations. This formalism was first presented by

Landau in 1937 and was one of the basis for his work with Ginzburg on superconductivity.

Knowing why Landau’s theory works was only rigorously justified by the works of Wilson

on the topic of the renormalization group, which is beyond the scope of this dissertation.

2.3.1 Order parameter

The concept of order parameter is essential to the Landau theory of phase transitions

and to the phase field model, which forms the basis of the model described in this thesis.

We look at this quantity as characterization of the phase of the system. The order

parameter can be represented by a scalar, vector or tensor field which can, in principle,

have different values at different points, i.e. is a function of position. Most of the times

its value is defined such that it is null in the unordered phase and has some nonzero

value in the neighboring ordered regions. Some examples of order parameter used in

physics are:

• Magnetization (scalar), usually in magnetic system’s such as the Ising Model.

• Magnetization (vector), for instance in the XY Model .

• When studying liquid-gas/liquid-liquid transitions the order parameter is chosen

to be the difference between the densities of the two substances.

• In a Bose-Einstein condensate the order parameter is the value of the wavefunction

that describes the condensate.

We see that the order parameter does not have enough information to give a detailed

microscopic description of the system at hand but can be a useful measure of the global,

macroscopic ordering of the system as a whole.

Another way of looking at the concept of order parameter is using a probabilistic

approach. We can say that its value measures how likely it is for a neighbor of a certain

point being in the same phase as itself. Ed Caruthers, a retired physicist from UT Austin

gave the following explanation when asked what an order parameter is:
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"The order parameter for conservatives in Texas is higher than for liberals in

Texas. Statistically, a conservative in Texas is likely to have more conservative

neighbors than liberal neighbors."

2.3.2 Free energy function

The first assumption that Landau made in his theory was that, near the critical point,

the free energy F of the system could be written as a Taylor expansion with respect to

the order parameter, φ. This means that near the critical point F (φ) has the form

F = a0 +
∞∑
n=1

an
n
φn (2.10)

From the second assumption, F must obey the same symmetry operations as the

Hamiltonian. To visualize what this means, let us construct the free energy that describes

the Ising model for ferromagnetism. In this case, φ ≡ M and since the Hamiltonian is

invariant under a sign exchange of the spin, it follows that

a2k+1 = 0 where k = 0, 1, 2, 3, . . .

To find the values of the order parameter that minimize the free energy, we have to

find the solutions to
dF
dφ = a2φ+ a4φ

3 + a6φ
5 + · · · = 0

and if we set that F = 0 when φ = 0, we set a0 = 0.

Bearing these condition in mind, one possible shape for F in the context of the Ising

model is

F (φ) = a2
2 φ

2 + a4
4 φ

4 (2.11)

Minimizing this free energy we get

a2φ+ a4φ
3 = 0

Its solutions are

φ = 0 ∨ φ = ±
√
−a2
a4
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and we can see that depending on the value of a2 and a4, the equation either has two

or no real nonzero solutions. If a2 and a4 are both positive, then φ = 0 is the only

minima of the system and there will be no two coexisting phases. For them to coexist,

we require that a2 < 0 while a4 must also be positive since we do not want the system

to be minimized by φ =∞, for we are looking for finite equilibrium states.

Due to the dependence of the number of equilibrium states on the sign of a2, we can

associate it with the reduced temperature of the system, meaning

a2 = a0
2
T − Tc
Tc

where a0
2 is a positive number. In the Ising model, above Tc, a2 > 0, therefore the system

has zero magnetization since it is the only stable state. However, when T < Tc, a2 < 0

and a spontaneous non-zero magnetization arises.

We can also try and find out how a4 depends on the temperature. Writing it as a

Taylor series around Tc and keeping only first order terms we get

a4 = a0
4 + a1

4(T − Tc)

and since we are working very close to the critical temperature the linear term vanishes

and we are left with a4 = a0
4.

Thus, below Tc the two stable values of φ can be written as

φ ≈ ±
√
a0

2
a0

4

(Tc − T )
Tc

A representation of the free energy for both positive and negative values of a2 is

presented in Figure 2.1.
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Figure 2.1: Shape of a double well function when a2 > 0 (purple) and a2 ≤ 0 (green).

A free energy with this particular expression will be relevant in this work in the

following sections.

Other functionals are used to describe different physical systems

• H 6= 0 Ising Model:

F (φ) = aφ2 + bφ4 −Hφ

In this case the nonzero magnetic field breaks the symmetry of the system, meaning

that F (φ) 6= F (−φ).

• For systems that exhibit a tricritical point, a proper free energy function is

F (φ) = 1
2aφ

2 + 1
4bφ

4 + 1
6cφ

6 − hφ

.

2.3.3 Spinodal decomposition

Suppose we have a homogeneous mixture of two fluids A and B at a certain tempera-

ture. As we bring the mixture down to lower temperatures we start to see the formation

of well defined domains of both fluids. This phenomenon is called spinodal decomposition
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and this domain formation will occur until there is a single cluster of fluid A and another

one of fluid B.

If we calculate the second derivative of our free energy function and make it equal to

zero we get the so called spinodal line. In the case of a free energy like 2.11 we get

d2F

dφ2 = 0⇔ φ2 = − a2
3a4

= − a0
2

3a0
4
(T − Tc) (2.12)

or, if our initial state corresponds to φ ≡ φ0

T = Tc −
3a4
a2

φ2
0 (2.13)

What this condition means is that if T < Tc− 3a4
a2
φ2

0 the system will be unstable to small

fluctuations around the minimum energy state and spinodal decomposition will occur.

2.4 Phase field model

Note: Based on [27] and [30].

The idea behind a phase field model is the introduction of an auxiliary scalar field

φ(~r, t) that takes on values between two defined numbers, each representing a different

phase of the system. This field is usually the order parameter, borrowing the term from

Landau’s theory of phase transitions.

For example, to describe an alloy that consists of an heterogeneous mixture of two

metals, A and B, we can use a phase field variable that has the value −1 inside a domain

of metal A and +1 when in a cluster of metal B. On the transition zone between a cluster

of metal A and another one from B, i.e. the interface, the order parameter has a value

close to 0.

Phase field models have gained popularity when modeling systems where there is

phase separation and the formation of domains, for it bypasses the need of defining

boundary conditions at the interface and the necessity of its tracking. Some areas where

these models have been applied are fracture in materials ([31]), dendritic growth ([32])

and alloy solidification ([33]). Lately, the use of phase field models in studying biological
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systems has increased, specifically in blood vessel growth ([34],[35], [36]), multicelular

systems ([37]) and tumor growth.

Normally, in order to describe a mixture of two components we would use a set of

differential equations that would tell us how the domains evolve with time. As those

clusters expand or shrink, the interface that separates the two phases changes its shape

and at each step we would have to apply boundary conditions describing the balance of

concentration of each substance at that same interface. This forces us to keep track of

that separation layer which is not an easy task, since it can take any shape imaginable.

These models are usually referred to as sharp interface models.

Figure 2.2: Distinction between a diffuse and sharp interface model [38].

The idea behind a phase field model is to relieve us of this need of keeping track of

the interface and applying boundary conditions, by substituting the sharp interface by a

diffuse interface of a certain width (Figure 2.2) and so we are in the presence of a diffuse

interface model. The way this is done is by introducing the order parameter field that

varies smoothly and continuously from one phase to the other. This way we do not need

boundary conditions since, technically, there is no boundary!

The Landau framework, as discussed above, can be used to construct a dynamical

model of these diffuse interface, as we discuss below. In this dynamical model we will

see that a sharp interface is just a particular case of a diffuse problem when the width
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of the interface layer ε goes to zero. In this limit, we are back at the original problem.

This means that as long as we choose the value of ε not to be very large, we do not stray

too far from our objective.

Before showing how we can build a phase field model, it is important to distinguish this

theory from Landau’s. First, the order parameter has different interpretations depending

on the model. In Landau’s theory, the order parameter has a physical meaning related

to the system we are studying (magnetization, for example). In the context of phase

field models, φ is nothing more than an identification tag for each of the phases and we

do not necessarily have to attribute a meaningful interpretation to it.

Secondly, while in Landau’s theory we are dealing with a thermodynamic system

where its behavior is dependent on the temperature and there are fluctuations due to

thermal noise, in phase field models we are only interested on the dynamics of the

interface and the behavior of the bulk at different temperatures is somewhat ignored.

We assume, however, that the system we are studying is at sufficiently low temperature

for domain formation to occur (spinodal decomposition).

2.4.1 Free energy functional

The key step when building a phase field model is to write a free energy functional

that depends on the order parameter, F [φ(~r, t)], and contains information about all the

physical properties and interactions relevant to the interface dynamics description.

For the phase field model to make sense, the free energy functional must include a

term that takes into account the co-existence of the two distinct phases in the system and

the creation of an interface between them. Usually this term is written in the following

form

FCH[φ(~r, t)] =
∫ [

f0(φ) + ε2

2 |∇φ|
2
]

d~r (2.14)

The ∇φ is simply a way to energetically penalize the creation of new interface i.e.

points where the spatial variation of the scalar field is non zero. This term gives rise to a

surface tension in the model. In the expression, the parameter ε is related to the width

of the interface.
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Next we need to tell the system that it has two different states where its energy is

minimal, so that it eventually settles into one of them. A possible form for this energy

is the double-well potential borrowed from the Landau theory of phase transitions

f0(φ) = a+ a2
2 φ

2 + a4
4 φ

4 (2.15)

Now that a basic free energy for an interface driven by surface tension is written we

can build upon it and include other terms closely related to the nature of the system.

These terms can be due to applied external forces, elastic interactions, etc.

2.4.2 Cahn–Hilliard equation

Finally, we can derive an equation that tells us how the domains and the interface

evolve with time, or more simply, how φ evolves with time. One way to find that equation

is to say that the order parameter is neither created or destroyed, it is invariant, which

leads to a conservation law similar to the one we find in classical electrodynamics

∂φ

∂t
+∇ · ~J = 0 (2.16)

In electrodynamics, however, it is easy to know the physical meaning of ~J , since we can

directly identify it as the electric current. Here, the current of φ is driven by the system’s

free energy functional 2.14.
~J = −M∇µ

where M is a mobility/diffusion function. We can define the chemical potential (µ) of

the system as the functional derivative of the free energy

µ = δF

δφ

that tells us how the free energy varies when the domains move and change their shape.

Plugging the current into (2.16) we arrive at the so called Cahn–Hilliard equation

∂φ

∂t
=∇ ·

(
M∇δF

δφ

)
(2.17)
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that allows us to study the dynamics of the order parameter. We can see that the

equation has the form of a diffusion equation which is a well know parabolic partial

differential equation.

In the case when M is a constant or a function of time, (2.17) simplifies to

∂φ

∂t
= M∇2 δF

δφ

The CH equation does not have an analytical solution and we must employ numerical

integration methods that work on PDEs.

One of the systems that is accurately described by the CH equation is binary mixtures

where spinodal decomposition occurs. If the system’s free energy is a double well potential,

its dynamics is given by the Cahn–Hilliard equation with the form

∂φ

∂t
= ∇2

[
−φ+ φ3 − ε2∇2φ

]
(2.18)

To show the occurrence of spinodal decomposition we can simulate a system whose

initial order parameter distribution is random. At every site, the field value when t = 0

was chosen from a gaussian distribution centered at 〈φ〉 = 0 and with a width of σφ = 0.1.

The laplacian terms were calculated using a finite-difference scheme and equation 2.18 was

then integrated numerically using a FTCS method (described in the appendix section)

with periodic boundary conditions. In Figure 2.3 we can follow the evolution of the order

parameter field and clearly see the formation of distinct domains. If we continued the

simulation for a long time, we would eventually get two single domains, one for each

phase.
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(a) (b) (c)

Figure 2.3: Evolution of a system under the Cahn–Hilliard equation. (a) t = 0 (b) t = 500 (c)

t = 3000.

2.4.3 Other phase field models

The formalism we just described, where the order parameter is a conserved quantity,

gives rise to the so called Model B and the dynamics is given, as we showed, by the CH

equation.

Two other models are also used

• Model A

In this model, the total quantity of φ can vary with time and the evolution equation

is
∂φ

∂t
= −M δF

δφ

and it is called the Allen–Cahn equation.

• Model C

This kind of phase field model is more complicated than the previous two, since it

is used on systems where the order parameter is not enough to describe the whole

system and additional variables are used, giving rise to extra coupled equations.

These variables can describe things like the density of impurities in a solid, acting

as a second order parameter with its own dynamical equation.
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Chapter 3

Model implementation

Now that all of the basic biological, physical and mathematical concepts have been

explored, it is time to introduce the actual model we created to study sprouting angio-

genesis. The work presented is based on the one described in the article "The Force at

the Tip - Modelling Tension and Proliferation in Sprouting Angiogenesis" ([36]) and it

aims at adding more complexity to its description in order to better approximate it to

the biological system.

The first part of this chapter is dedicated to the process of building the free energy

functional that describes the system and how we can derive a set of partial differential

equations that govern its evolution. After that we show how we include tip cell traction

forces, VEGF signaling and other mechanisms important in angiogenesis.

3.1 State of the art

Before describing our phase field model of sprouting angiogenesis, let us take a look

at what other options exist when modeling this particular biological system.

3.1.1 Continuous models

Phase field models are included in the category of continuous models and the basic

idea behind them is to derive a set of equations (usually PDEs) that tell us how the
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system will evolve with time. In this type of model we avoid an individual description of

the endothelial cells and study the dynamics of the bulk material. Anderson and Chaplain

([39]) were some of the first people to create a continuous model of angiogenesis, using a

diffusion model to study the movement of endothelial cells. In their model, this movement

was influenced by chemical factors like VEGF, haptotaxis (directed by the gradient of

adhesion factors) and it presented a random behavior.

Over the years many continuous models have been developed to study angiogenesis

in different contexts, such as tumor growth and wound healing, as well as in different

scales i.e. single cell, multicellular, networks and tissues.

3.1.2 Cellular Potts models

Another popular method of simulating the growth of new vessels is by using a discrete

model known as Cellular Potts model. Here, cells are modeled individually as groups

of lattice points that have a common identifier tag and the dynamics of the system is

based on the minimization of an Hamiltonian function, through the use of Monte–Carlo

methods and the Metropolis–Hastings algorithm.

The Cellular Potts model was proposed by James Glazier and François Graner, who

took a well known model from statistical mechanics used to study magnetic systems

(called the Potts model) by setting an energy cost for variations of volume of domains,

relative to a target value, and applied it to the study of cell systems.

Since then, people have used CPMs in the context of angiogenesis, notably Roeland

Merks who has numerous articles published on the topic, including some with James

Glazier ([40], [41], [42]).

3.2 Constructing the free energy

The first and perhaps most important step in building our model is writing an

appropriate free energy functional that accounts the relevant physical details that are

relevant to the interface motion. In our case, the free energy will be composed of two
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parts

F = FCH + Fmech

FCH is the energy that describes phenomena related to interface creation, phase

separation and surface tension. It is the term we usually associate with the standard

Cahn-Hilliard equation for a binary mixture and in this model it has the form

FCH =
∫
ρφ

(
f0 + ε2

2 (∇φ)2
)

d~r (3.1)

where

f0 = −aφ
2

2 + φ4

4 (3.2)

and ρφ is a scale factor that controls the balance between the surface tension term (this

one) and the elastic term in the free energy. Since in this model we want the system’s

dynamics to be driven by the elastic energy term, we should use a value for this parameter

high enough for the interface to be stable but not so high as to not let the Cahn–Hilliard

energy term obfuscate the mechanical contribution. An analysis of this kind of potential

and the meaning of the parameter a was already done when describing Landau’s theory.

If we solve the Cahn–Hilliard equation simply with this free energy term we get results

similar to the ones obtained in spinodal decomposition.

The second term in the free energy, Fmech, is the one that contains all of the contri-

butions related to mechanical interactions in the system and can be further decomposed

into

Fmech = Fela + Fcell

where Fela is the energy that arises from the elastic interactions between the various

parts of the system and Fcell is the energy that comes from the force exerted by the cells

on the surrounding tissue and ECM.

Fela is written as the direct product of the strain and stress tensors

Fela =
∫ 1

2σijεijd~r (3.3)
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and, considering that the vessel and ECM parts of the system are both homogeneous

and isotropic, the strain tensor elements can be calculated using

εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)

where ui are the components of the displacement vector, and Cauchy’s relation holds

true

σij = Kδijεkk + 2µ
(
εij −

1
d
δijεkk

)
Plugging in the tensor definitions into the expression for the elastic energy we arrive

at

Fela =
∫ 1

2

[(
K − 2µ

d

)
∂iui∂juj + µ

[
(∂iuj)2 + ∂iuj∂jui

]]
d~r (3.4)

We write the free energy associated with the force exerted by the cells as

Fcell = −
∫
χ∇ · ~u d~r (3.5)

and later, we will relate the χ function with the force density exerted by the cells.

Altogether, the total mechanical energy’s expression is

Fmech =
∫ 1

2

[(
K − 2µ

d

)
∂iui∂juj + µ

[
(∂iuj)2 + ∂iuj∂jui

]
− χ∂iui

]
d~r (3.6)

We can write µ and K as a linear function in φ, such that

µ = µ0 − µ1φ

K = K0 −K1φ
(3.7)

and where the constants µ0, µ1, K0 and K1 are defined as

K0 = KECM +KEC
2 µ0 = µECM + µEC

2

i.e. they represent the average compressibility and rigidity of the system, while K1 and

µ1 represent half the difference in the value of those two parameter between the ECM

and vessel phase.

K1 = KECM −KEC
2 µ1 = µECM − µEC

2
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Assuming that both µ1 andK1 are very small compared to the average compressibility

and rigidity we can write the displacement field as a perturbation series and keep only

terms up to first order

• ui = u0
i + u1

i , such that u0
i = ∂iω

• µ = µ0 − µ1φ

• K = K0 −K1φ

We define the function ω as the potential for the zero order term in the displacement

field’s expansion and from that definition we see that

∇ω = ~u

or

∇2ω =∇ · ~u (3.8)

so what ∇2ω tells us is where the tip cell compresses or decompresses the surrounding

tissue.

The reason why we do this expansion is that we want to be able to describe all

of the interactions in the system as a function of the order parameter, including the

displacements.

3.2.1 Mechanical equilibrium

Before doing some more work on the mechanical free energy we obtained, let us see

what happens when we consider that the system is in a mechanical equilibrium. In order

to do that, we impose that the system’s free energy is invariant when the displacement

field ui suffers a small variation, meaning that

δF

δui
= 0

or, since FCH is solely a function of the order parameter and independent of the displace-

ment field
δFmech
δui

= δFela
δui

+ δFcell
δui

= 0
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Performing the functional derivative, the equilibrium condition translates into the fol-

lowing equation

δFmech
δui

= −
(
K − 2µ

d

)
∂ijui − µ (∂iiuj + ∂ijui) + ∂jχ

= −∂jσij − fj
(3.9)

where the last equation comes from the equilibrium condition (2.2.3) we discussed in the

elasticity section of the thesis. Looking at this expression we can try to interpret the

meaning of the function χ. Since

∂jχ = −fj

i.e. we see that χ is the potential associated with the force field

~f = −∇χ (3.10)

Plugging in the above perturbative expansions into equation (3.9) and keeping only

the lowest order terms we get

δFmech
δu0

i

= −
(
K0 −

2µ0
d

)
∂iju

0
i − µ0

(
∂iiu

0
j + ∂jiui

)
+ ∂jχ

= ∂j

[
−
(
K0 −

2µ0
d

)
∂iiω − 2µ0∂iiω + χ

]
We arrive at a Poisson equation for the function ω

∇2ω = χ

L0
(3.11)

where we can define L0 = K0 − 2µ0
d + 2µ0.

3.3 Mechanical forces

As we saw, χ is a function from which the forces applied to the system can be derived.

In our case we write that function as the sum of a cell-cell adhesion term χa and a term

that comes from the traction forces, χt so that

χ = χa + χt (3.12)
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The adhesion term has the simple form

χa = −αφ

meaning its value will be −α inside the endothelial cell phase and α in the ECM. The

adhesion force associated with this energy is, according to 3.10

~fa = α∇φ (3.13)

and it represents the tendency endothelial cells have to stick together.

In turn, χt is defined such that

∇χt = −~ft

however, since it is easier to solve a single scalar equation than two equations, one for

each component, we write it as

∇2χt = −∇ · ~ft (3.14)

a simpler Poisson equation.

After describing the forces we can rewrite equation 3.11 as

∇2ω = −αφ+ χt
L0

3.4 Mechanical free energy

We will now apply the same perturbation expansion to the expression for the me-

chanical energy. If we do that, we can write it as the sum of a zeroth and first order free

energy

Fmech = F 0
mech + F 1

mech

After some lengthy calculations (presented in the appendix section) we arrive at

Fmech = −
∫ {

χ2

2L0
+ φ

[1
2

(
K1 −

2µ1
d

)(
∇2ω

)2
+ µ1∂ijω∂ijω

]}
d~r (3.15)
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Adding the Cahn–Hilliard term we had before, we finally have the complete free

energy functional

F =−
∫ {

ρφ

(
−aφ

2

2 + φ4

4 + ε2

2 (∇φ)2
)

+ χ2

2L0
+

+ φ

[1
2

(
K1 −

2µ1
d

)(
∇2ω

)2
+ µ1∂ijω∂ijω

]}
d~r

(3.16)

Using the Cahn–Hilliard equation we can determine the temporal evolution of the

order parameter field only by knowing the chemical potential of the system, which is

given by the functional derivative of the free energy with respect to φ. If we calculate it

we obtain
δF

δφ
=ρφ

[
−aφ+ φ3 − ε2∇2φ

]
− α

L0
(αφ− χt) +

+ 1
2

(
K1 −

2µ1
d

)[2αφ
L0
∇2ω − (∇2ω)2

]
−

− µ1

[
∂ijω∂ijω −

2α
L0
∇−2 [∂ij (φ∂ijω)]

]
where ∇−2 represents the inverse laplacian operator, defined as

∇−2
(
∇2f

)
= f (3.17)

We can set the value of a, such that

a+ α2

L0ρφ
= 1

and the reason why we do this is because the presence of adhesion forces in the system

tends to cause an accumulation of order parameter around the vessel phase, thus rein-

forcing the cohesion of the endothelial tissue. As a consequence, the stable states of the

system will be shifted to values different from φ = ±1 and redefining the parameter a is

the way to reset them to the intended value.

With this in mind we arrive at
δF

δφ
= ρφ

[
−φ+ φ3 − ε2∇2φ

]
+ αχt

L0
+

+ 1
2

(
K1 −

2µ1
d

)[2αφ
L0
∇2ω − (∇2ω)2

]
−

− µ1

[
∂ijω∂ijω −

2α
L0
∇−2 [∂ij (φ∂ijω)]

] (3.18)
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3.5 Tip cell force field

Let us now describe how we include mechanical forces exerted by the tip cell in the

model. The traction force will be responsible for the pulling effect of the tip cell on the

rest of the endothelial cells and on the surrounding ECM. We saw that this mechanical

effect is given by the χf function defined as

∇χt = −~ft

leading to the definition presented in equation 3.14. What we need now is to find a

suitable function ~ft that represents the tip cell traction force as closely as possible to the

results presented in the biological introduction of this thesis, specifically the vector field

in Figure 1.8.

Finding a force field that correctly mimics the one obtained from experiments is

perhaps one of the hardest tasks we face when building the model. The way we do

it is we reverse engineer the force by choosing a shape for the −∇ · ft and then solve

the Poisson equation to find χ. If after, we calculate the gradient of the function we

just obtained, we get the corresponding force field and we can analyze the physical

consequences of having a tip cell force with such a shape.

The function we use for the divergence of ft is

∇ · ~ft = Atip
R2
x +R2

y

[
R2
x (y − y0)2 +R2

y (x− x0)2

cosh2 ζ
+R2

xR
2
y (tanh ζ − 1)

]
(3.19)

where

ζ = Rx
2

[
(x− x0)2

R2
x

+ (y − y0)2

R2
y

− 1
]

and Rx and Ry are the value of the cell’s axis, Atip is the amplitude of the force, while

(x0, y0) are the coordinates of the force application center.
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Figure 3.1: Grafical representation of ∇ · ft.

As we can see from the graph in Figure 3.1 the divergence of the force has practically

the same value inside the cell and then the intensity drops at the border.

When we calculate the function χt we get the results presented in Figure 3.2. The

equation is solved numerically using Fast Fourier Transforms (FFT) which automatically

imposes periodic boundary conditions to the system, but we will see this has no effect

on the problem when we use a large enough grid. Also, to properly define the solution

to the Poisson equation we have to set the average value of the solution, and in this case

we choose 〈χt〉 = 0.

(a) 3D view.
(b) 2D top view map.

Figure 3.2: χf function corresponding to the force field in Figure 3.3.

46



The force that correspond to the χ function we just calculated is represented in

Figure 3.3

Figure 3.3: Tip cell force field

Comparing the result with the experimental measurements of an endothelial cell’s

force field, we see that the chosen function for the divergence of the field is able to capture

some of the relevant properties. For instance, in Figure 3.3 the amplitude of the force

is higher at the boundary of the cell. Also, its direction points towards the geometrical

center of the ellipse.

Initially, the force is applied only in a forward direction but in reality we want the

cell to move in the direction of the VEGF gradient so we have to rotate the tip cell

accordingly. To do that we calculate the VEGF gradient at the grid point where we want

to apply the force and then we determine

cos θR = (∇VEGF)x
|∇VEGF|

sin θR = (∇VEGF)y
|∇VEGF|

(3.20)

where θR is the rotation angle. With this angle we can build the well known rotation
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matrix and apply it to the coordinates of the application center(x− x0)′

(y − y0)′

 =

 cos θR sin θR
− sin θR cos θR


(x− x0)

(y − y0)


obtaining a new set of coordinates.

There is only one more equation to solve that is related to the mechanical part of

the system. What we have left to calculate is the function ω and the equation that gives

its value is 3.11

∇2ω = −αφ+ χt
L0

Since we know χt, calculated previously, and the other term is easily determined we can

solve this equation, once again using FFT.

3.6 Solving the mechanical Cahn–Hilliard equation

To get the values of the order parameter field, φ, in the grid at subsequent values of

time we need to solve the Cahn–Hilliard equation with the mechanical terms.

If the motility is the same for both phases the CH equation is simply

∂φ

∂t
= M∇2 δF

δφ

and we simply need to calculate the laplacian of δF
δφ . We can do this analytically by

applying the operator to equation 3.18 and afterwards we can integrate the equation

numerically.

If, however, we have a variable motility, calculating the laplacian is not enough. Since

we also need the gradient of the functional derivative, we need to know the function

everywhere on the grid.

The only difficulty this presents is due to the inverse laplacian operator that appears

in expression 3.18. However, this is nothing more than solving another Poisson equation.

If we say that

∇−2 [∂ij (φ∂ijω)] = g
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and apply the laplacian operator to the whole equation, we get

∇2g = ∂ij (φ∂ijω)

Now that we know the value of the functional derivative, what we have to do next is

calculate

Ji,j = −M(~r)
(
δF

δφ

)
i,j

followed by its divergence and that gives us the complete RHS of the Cahn–Hilliard

equation. After that, we simply have to integrate the equation using the FTCS method,

assuming the solution has periodic boundary conditions.

This most general method is valid when M is either a constant or a function of φ.

3.7 VEGF dynamics

The way we model the dynamics of the vascular growth factor is by writing a reaction–

diffusion equation for its concentration on the grid.

∂CV
∂t

= DV∇2CV − kV CV φΘ(φ) (3.21)

where DV is the VEGF diffusion constant, kV its consumption rate (kV > 0) and Θ(φ)

is the Heavyside function. The laplacian operator takes care of the diffusion process

and is accompanied by a concentration-dependent consumption term. This last term

is written such that the concentration drastically decreases when φ > 1, meaning there

is no VEGF inside the endothelial cells that are a part of the vessel. Since we want

the tip cell to follow the VEGF gradient, if we allowed the concentration inside the

endothelial tissue to have a nonzero value, the tip cell would not know where to go and

the gradient at its position would probably be close to zero. By using a decay term

in equation 3.21, we avoid restricting the presence of VEGF to the ECM and the need

to apply zero-flux boundary conditions at the interface, which would complicate the

computational implementation.
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We can solve the equation for the equilibrium distribution in one dimension, which

reduces to a simple decay situation (when φ = 1)

DV
d2CV
dx2 = kV CV

Its solution is well know

CV = Ae
−
√

kV
DV

x
+Be

√
kV
DV

x

In order for the function to always have a finite value and for it to be zero away from the

sources of VEGF, we set B = 0 and keep only the exponential with a negative argument

CV = Cmaxe
−
√

kV
DV

x
= Cmaxe

− x
λ

where Cmax is the concentration of VEGF reached at the interface. Furthermore, since

the argument of the exponential must be dimensionless, we can interpret the exponent

in the solution as a characteristic length λ related to the decay of CV . If we set x = λ

we see that

CV = Cmax
e
≈ 0.4 Cmax

meaning that when we are at a distance of λ from the VEGF source, the concentration

has decreased by approximately 60%. We can call that length the radius of influence of

VEGF

RVEGF =
√
DV

kV
(3.22)

To solve equation 3.21 we use a finite difference scheme to discretize the laplacian

term, followed by integration in time using the FTCS method. The choice for the value

of the diffusion constant DV must be carefully coordinated with the choice of integration

time step to avoid stability problems. At the limits of the grid we use Neumann boundary

conditions, meaning there will be no growth factor gradient at the grid’s boundary.

3.8 Chemotaxis

Tip cell migration occurs from places where VEGF concentration is lower to where

it is higher, i.e. it follows the direction of the growth factor’s gradient. In this model we

do not track the position of the tip cell at every time step.
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We do this because the tip cells do not exert a force on their surroundings at all time,

instead they apply the force, then migrate and then reapply it after some time. Because

of this, we only need to know where the tip cell is when it is time to apply the traction

force once again; until then we let the system evolve freely. But how do we know where

to apply the force next if we do not know where the tip cell is? All we have to do is

follow the VEGF gradient starting from the previous known location of the tip cell until

we reach the vessel interface. That is now the new position of the tip cell where a force

will be applied.

To perform this numerically, we use a simple (yet effective) modified bissection

algorithm along an axis oriented with the direction of the VEGF gradient.

While running this algorithm it is essential to know the value of φ evaluated at certain

positions that do not belong to the grid, meaning we have to obtain this value based

on the surrounding grid points. To do that we use an interpolation algorithm called

bilinear interpolation (described in the appendix section) which we have found to provide

a sufficiently accurate approximation with small computational cost.

Algorithm description

1. Take a small step from the position of the tip cell in the opposite direction of

the VEGF gradient, to a new position xnew. We do this just in case the interface

evolved backwards.

2. Advance in the direction of the gradient to a new position xnew.

3. Calculate the value of φ at xnew using the bilinear interpolation algorithm.

4. If φ < 0 we have gone too far, meaning we passed the interface and reached the

ECM so we reduce the stepsize by half. If φ > 0 we have not yet reached the

interface and are still inside the vessel so we take xnew as our next starting point.

5. Repeat steps 2. to 4. until the desired accuracy is obtained.
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This algorithm is executed at regular intervals, more specifically, every time we want the

tip cells to apply a force in the ECM.

3.9 Stalk cell proliferation

For a new sprout to remain attached to the parent vessel, stalk cells must proliferate

in order to strengthen the connection to it. To include that phenomena into our model

we add an extra term to the Cahn–Hilliard equation, that will then read

∂φ

∂t
=∇ ·

(
M∇δF

δφ

)
+ p̄(φ)Θ(∇2ω + α) (3.23)

where p̄(φ) is the value of the proliferation averaged on the area of the cell i.e

p̄(φ,CV , ω) =
∫

Ω p(CV )Θ(φ)∫
Ω Θ(φ) (3.24)

The value of function p is dependent on the VEGF concentration and on two param-

eters, Mp and Cmax
V , as so

p(CV ) =


2MpCV
Cmax
V

CV < Cmax
V

2Mp CV ≥ Cmax
V

(3.25)

Mp limits the amount of proliferation that can occur or, in other words, how much can

the order parameter φ locally increase. Cmax
V corresponds to the value of local VEGF

concentration necessary for the proliferation rate to reach Mp.

We should note that by adding the proliferation term to the CH equation, the amount

of φ in the whole grid is no longer conserved.

3.10 Notch mechanism

Coupled to the continuum phase-field model described in the preceding sections,

there is a small, but essential, rule that allows us to describe the process of tip/stalk cell

differentiation via the Delta-Notch mechanism. This algorithm is responsible for loss of

tip cell status when two cells get too close to one another.
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Suppose also that we want to add a new tip cell to our system. First, new tip cells

must originate from the cells around the interface. But, most importantly, we cannot

put it anywhere we want since we know that tip cells that are already activated will stop

their first neighbors from acquiring that phenotype so we have to choose that position

taking into account where the other leading cells are located. Also, we know that the

Notch mechanism is contact-dependent, so calculating the euclidean distance between

the place where we are trying to place the new cell and the other tip cells may not be

enough. Since this distance can be shorter than the chosen minimum but the two places

may not be connected by tissue, the Notch mechanism can be ineffective. The need for

a new algorithm to calculate the distance, that takes into account vessel connectivity

must be found.

This kind of analysis is also important when two active tip cells get too close to each

other. In this case, one of them must loose its status and revert their phenotype back to

stalk cell or become quiescent.

One way to calculate the shortest distance between two places while checking for

connectivity is to measure that distance along the interface of the vessel. To do that we

use an algorithm created to solve mazes.

3.10.1 Maze solving algorithm

The maze solving algorithm is fairly intuitive since what it does is go to the starting

point and calculate the distance from it to the neighboring points that belong to the

interface. When we reach a point that does not belong to the interface we mark its

distance as ∞ (or a very big number). If we consider first and second neighbors of the

starting point, the distance will be

• First neighbors: 1

• Second neighbors:
√

2

Then we move on to the neighbors of the neighbors and give the value

• First neighbors of a first neighbor: 1 + 1
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• First neighbors of a second neighbor: 1 +
√

2

• Second neighbors of a first neighbor:
√

2 + 1

• Second neighbors of a second neighbor:
√

2 +
√

2

and so on until we have covered all of the interface points. Since we will revisit the same

points eventually, we only change their distance value if the new one is smaller than the

current one.

When we are done with the entire interface, we just have to check the value of the

end point to get its distance to the starting point. If it is a finite number, that means

the two of them are connected and that number represents the distance. If, however, the

value is ∞ that means we were not able to find a path between the two points along the

interface, telling us that they are not connected.

3.10.2 Adding a new tip

The steps to add a new tip cell to the simulation are

1. Select a random interface point where we will try to place a tip cell.

2. Calculate the euclidean distance between the trial point and the other tip cells

positions. If all these distances are higher than the predefined condition, the

interface distance will surely be higher too and we do not need to determine it. If

some are smaller, we need to do the calculation.

3. Calculate the interface distance using the maze solving algorithm. If this distance

is larger for all tip cells than the set value we can add a new tip cell at the trial

position.

3.10.3 Deactivating tip cells

To check if a pair of tip cells are too close for them to maintain their status, we apply

the following algorithm
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1. Calculate the euclidean distance between the two cells. If it is higher than the

minimum distance we leave them be.

2. If, however, that distance is lower than the minimum, we calculate the distance

along the interface and check again. If it is lower still, one of the tip cells must be

removed.

3. We randomly choose one of the two tip cells to be deactivated.

Both these algorithms are used after the tip cells move, when they will apply a new

force.

3.11 Matrix degradation

One of the improvements made on the model by Santos–Oliveira et al [36] is the

possibility of ECM degradation occurring due to the existence of MMPs. Previously

the motility of both the vessel and matrix phase was the same but we know that this

is not true since, in reality, the ECM has a much lower mobility rate, thus presenting

an obstacle for the progression of the tip cell. The inclusion of these matrixins in the

model is a way to describe the behavior of the matrix more accurately, since we stop

using the same mobility for both ECM and endothelial cells by saying that the mobility

of the matrix is close to zero everywhere, except when in the presence of MMPs. The

equation for the dynamics of its concentration is

∂CM
∂t

= DM∇2CM − kMCM (3.26)

Just like the equation we presented for the VEGF concentration we have a diffusion

process (laplacian term) and a decay process that is dependent on the local concentration

of MMP. Also, as we did for the growth factor equation, we can define a characteristic

length as

RMMP =
√
DM

kM
(3.27)
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Numerically this equation is once again solved using the FTCS integration algorithm and

imposing that the function CM goes to zero at the boundaries of the grid. Furthermore,

we keep its value constant inside the TC’s that at each step act as MMP sources.

The mobility function M will then have different values depending on the local value

of MMP, as such

M(CM ) =


1 φ > 1

CM φ < 2CM − 1
1
2 (φ+ 1) otherwise

(3.28)

This function sets an upper limit to the mobility of the vessel to 1 while at the same

time raising it for regions of the ECM where there is a nonzero concentration of MMPs.

Regions where there are no matrixins have zero mobility, meaning that locally

∂φ

∂t
= 0

according to the CH equation.
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Chapter 4

Results and discussion

Finally we are in possession of a functional model capable of simulating different

systems where angiogenesis occurs, and now it is time to explore its capabilities. We

can also obtain useful results that shed light on the factors that influence sprouting and

vessel formation.

We start by running single tip cell systems in order to fine tune the value of parameters

being used in subsequent simulations and to study the migration in different conditions.

Then, we move on to more complex systems with many tip cells and observe the network

morphologies that are obtained while continuing to study how the differences in migratory

behavior of endothelial cells can give rise to blood vessels with distinct characteristics.

4.1 Changing the mechanical properties of the system

Since we are interested in studying the influence of mechanical factors in angiogenesis,

we have to find a way to change the mechanical properties of the system, meaning both

ECM and endothelial tissue that forms the vessel.

When describing the model we introduced 4 parameters, µ0, µ1, K0 and K1, and we

defined them in terms of the rigidity and compressibility of the ECM and endothelial

cells. In truth, the value of these parameters is dependent on the Young modulus, E,
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and the Poisson ratio, ν, as described in the section dedicated to the theory of elasticity

µ = E

2(1 + ν)

K = E

3(1− 2ν)

Therefore, the input parameters we have to change are

• EECM

• νECM

• EEC

• νEC

Out of these 4 parameters we are particularly interested in varying EECM, that is what

we are able to measure and control in experiments, allowing us to study the difference it

has on the mechanical properties of the matrix and how it influences the migration of

ECs and network formation.

Before starting to run simulations it is of paramount importance to define the appro-

priate units of the parameters used, so we can compare the results to experiment.

4.2 Units

For the sake of simplicity, the value of the many parameters in the model is not their

real value. Instead we scale them, so that the numbers are easier to work with.

Our unit of force/pressure was set to

F0 = 4.74× 103 Pa = 4.74 kPa

meaning that, for instance, an ECM with a Young modulus of EECM = 3.0× 103 Pa, has

a value of

EECM = 3.0× 103 Pa
4.74× 103 Pa ≈ 0.6

in the simulation.
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Since the traction force exerted by the tip cell is not constant and depends on the

position (as we saw in Chapter 3), we have to find a way to measure it. If we look at

the average traction force on the tip cell area as a function of the parameter we use to

control the intensity of the force, we get a straight line given by the equation

〈ft〉 = 97×Atip

Because we average the force on the area of the tip cell, the result will have units of

pressure so in order know the true value of the traction force we have to multiply by F0.

The value used in most of the simulation is Atip = 5× 10−4 which corresponds to

Ftraction = 97×Atip × F0 ≈ 250 Pa

In the model, the unit of distance is the easiest to scale since one spacing of the grid

corresponds to 1µm, or

∆x = 1 = 1µm

The hardest of these conversions from scaled units to real ones, with actual meaning,

was the one relating the integration step used in the simulation with the real time. To

do that we simulate the migration of a single loose tip cell and calculate its velocity. We

know from experiment that this velocity is more or less constant for different VEGF

concentrations and has a value of 9.5 µm/hr [36]. Comparing with the the velocity we

obtained in the simulation we find that

∆t = 0.02 ≈ 0.2 s

Since most of the simulations present in this results section ran for 105 time iterations,

this corresponds to around 5 hours and 30 minutes. Others ran for twice that long,

meaning, 11 hours.

4.3 Parameter adjustment

Before getting results for more complex systems and networks, we must choose the

right set of parameters that guarantees the production of sprouts whose properties are
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close to the ones observed in experiments. Since we are mainly interested in studying

the effect of different mechanical properties of the ECM in vessel growth, we do not want

to vary parameters that are not related to it.

In order to do that, we run the simulation for a single sprout growing in only one

direction dictated by the VEGF field gradient, for different values of the adhesion coeffi-

cient α, surface tension ρφ, tip cell force amplitude Atip, with no stalk cell proliferation.

Also, the compressibility of both the ECM and endothelial tissue were considered the

same, i.e. K1 = 0, as was their mobility (MECM = MEC = 1). Afterwards, we analyze

the results in terms of sprout shape, maximum migration distance and terminal velocity

while checking if the tip cell broke its connection to the parent vessel.
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(a) ρφ = 0.1 and α = 0.1
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(b) ρφ = 1 and α = 0.1
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(c) ρφ = 0.1 and α = 0.3

Figure 4.1: Migration distance as a function of the tip cell force and the ECM rigidity and the

corresponding shapes of the sprout. The ECM rigidity range goes from 0 to 2.5 and the force

amplitude goes from 0.001 to 0.005. The black pixels in the phase diagrams indicate runs where

the tip cell broke away from the main vessel.
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In Figure 4.1 we can see migration diagrams for different values of the surface tension

and adhesion parameters and the corresponding shape of the resulting sprout. Clearly

we see that the parameters that give rise to the best sprout in terms of length and

structure is ρφ = 0.1 and α = 0.3 which correspond to pictures (c). However the phase

diagram does not give us much information for in this range of force amplitude the tip

cell breaks in most cases. With that in mind, and in order to get more information, we

simulated the same system but using less intense forces while keeping the same ρ and α,

and obtained the phase diagram presented in Figure 4.2

Figure 4.2: New phase diagram for less intense force amplitudes. ρφ = 1 and α = 0.3.

With this information we can now set a value for the surface tension and adhesion

parameters, as well as for the tip cell force amplitude. From the analysis of Figure 4.2

the following values have been chosen.

• ρφ = 0.1

• α = 0.3

• Atip = 5× 10−4
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Table 4.1: Value used in the simulation for some important parameters that describe the system

and the corresponding physical value.

Parameter Value Physical Value

Grid spacing 1 1 µm

dt 0.02 0.2 s

EEC 0.084 0.40 kPa

νECM 0.13 –

νEC 0.49 –

KEC 1.4 6.65 kPa

µEC 0.028 0.13 kPa

ρφ 0.1 0.47 kJ m−3

α 0.3 1.42 kPa

Atip 5× 10−4 0.25 kPa

These values guarantee the formation of sprouts with a shape close to the one we

observe in experimental assays, while allowing for low rigidity regimes where the tip cell

breaks and higher ones where the sprouts maintain the connection to the parent vessel.

In the next sections we vary the mechanical properties of the ECM while keeping all

of the other parameters fixed (unless indicated otherwise).

4.4 Single tip cell

4.4.1 Effects of MMP on migration

One of the things we are most interested in knowing is the effect that the matrix

degradation process started by the MMPs has on the migratory behaviour of the tip

cells. For comparison, we first determined the migration distance of a single tip cell for

different values of ECM mobility, this value being equal everywhere in it and having the

value M = 1 for the vessel phase. The results are shown in Figure 4.3. Also, we included
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in the graph a run where the action of the MMPs was taken into account.
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Figure 4.3: Tip cell migration distance for different values of extracellular matrix rigidity and

mobility. Also one of the curves belongs to a system where MMP production by the tip cell was

activated.

As expected we notice that for low mobility values (purple curve), the tip cell barely

moves from its starting position. This is due to the lack of yielding from the part of the

ECM that does not allow the tip cell to penetrate and advance. For higher values of

MECM the tip cell is able to migrate and we see that the distance covered by it decreases

as the matrix becomes more rigid. This result comes off as intuitive since the higher

stiffness of the ECM leads us to expect that the tip cell will have a harder job at "drilling"

through it.

We see that the run where MMP activity was modeled (with RMMP = 15) gives similar

results to when MECM = 0.5, although when we consider the presence of matrixins we

are closer to the biological scenario we are trying to model.

After, we wanted to know how the cell migration was dependent on the radius of

diffusion of the metalloproteinases so we ran the same system, changing only the value

of that radius for different values of rigidity of the ECM (Figure 4.4).

64



 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0  0.5  1  1.5  2  2.5

M
ig

ra
ti
o

n
 d

is
ta

n
c
e

ECM Rigidity

R=10
R=20
R=30
R=40
R=50
M=1

Figure 4.4: Tip cell migration distance for different values RMMP. A curve with where M = 1

was inserted for comparison.

Here we see that increasing the range of the MMP diffusion, the tip cell is able to go

further, although we also see that the difference between curves becomes smaller as the

radius goes up. If the diffusion of MMP was instantaneous, we would expect that when

increase the radius of action to higher and higher values, the migration curve would tend

to the MECM = 1 result. However, since the MMPs take some time to reach places far

away, the motility will fall short of M = 1.

4.5 Multicellular systems

Now that we have studied some properties about the migration of a single tip cell,

it is time to simulate multicellular systems, meaning systems where multiple sprouts

start forming due to the existence of many tip cells. The system we use as a starting

point is a spheroid of a certain radius emerged in a uniform VEGF distribution and on

an extracellular matrix with certain mechanical properties. Also we use systems where

MMPs degrade the ECM and others with constant mobility, for both the vessel and

matrix phase.
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4.5.1 Morphology

The first thing we can do with multicellular systems is to study how the resulting

network is arranged i.e. its morphology. In systems where there are many tip cells leading

the growth of new vessels, there are many possible network configurations, depending

on the properties of the ECM and endothelial tissue, as well as the influence of Notch

mechanism on the behavior of those same tip cells.

The starting point for these simulation are spheroids, circular shaped structures made

up of endothelial cells. When placed in an environment where there are growth factors

such as VEGF, the sprouting activity of these clusters is intensified and new vessels start

growing radially outwards.

Figure 4.5: Experimental results for sprouting angiogenesis in spheroids [43].

Figure 4.5 shows two images taken in experiments where spheroids were used, where

the formation of new vessels is evident ([43]).

In Figure 4.6 we have the morphologies obtained for different values of ECM rigidity.

On the left column the mobility of both vessel and ECM was the same and on the right

there are MMPs degrading the matrix.

We see that for low rigidity matrices, the tip cells tend to separate from the initial

spheroid and migrate alone and the distance they cover is dependent on the whether

there is matrix remodeling happening at the same time. For higher values of ECM

rigidity, we start seeing the formation of well structured vessels that diverge from the

spheroid in the radial direction. The morphology of these networks is also altered by the

presence of MMPs as we see that it shortens the length of the vessels. These effects will
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be seen in the following section when we present a more quantitative analysis.

(a) EECM = 0.1 and MECM = MEC = 1. (b) EECM = 0.1 with MMP.

(c) EECM = 1.3 and MECM = MEC = 1. (d) EECM = 1.3 with MMP.

(e) EECM = 2.5 and MECM = MEC = 1. (f) EECM = 2.5 with MMP.

Figure 4.6: Various morphologies for different values of ECM rigidity and with (left column) or

without (right column) matrix remodeling.

67



4.5.2 Tip cell rupture

When analyzing a network, one of the things we can quantify is the number of tip

cells that detach from the original spheroid and migrate alone. In Figure 4.7 we present

the result of measuring that number of cells while varying the rigidity of the ECM. The

data comes from running the system for a number of different seeds, since the system

has a random component, specifically in the algorithms to add and remove tip cells.

-5

 0

 5

 10

 15

 20

 25

 0  0.5  1  1.5  2  2.5

T
ip

 c
e
lls

ECM Rigidity

MMP
M=1

Figure 4.7: Number of loose tip cells as a function of ECM rigidity, for systems with MMPs and

with constant mobility.

We see that the number of loose cells decreases as we use stiffer matrices, eventually

going to zero, meaning the network maintains its integrity throughout the simulation.

Also in the same graph, we compare the same measurements for a system where both

the ECM and vessel have the same mobility with a system where there is an underlying

MMP field. The results do not present noticeable differences, especially when considering

the error bars that go along with the data.

One place where we can look for differences between the two systems is in the average

migration radius of the loose tip cells for matrices with low rigidity. If we look at Figure
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4.6a and Figure 4.6b we see that the "disk" of loose tip cells has a smaller radius for

systems where there is matrix degradation and larger when the mobility is the same

for both ECM and endothelial tissue. The way we measure this distance and also the

number of cells in Figure 4.7 is by first applying a clustering algorithm to the image and

remove larger clusters that do not represent tip cells.

(a) (b)

(c) (d)

Figure 4.8: Clustering algorithm applied to a vessel network. (a) Grid to be analyzed. (b) Result

of a clustering algorithm. Different clusters are marked with different colors. (c) Loose tip cells.

(d) Bigger clusters.

In Figure 4.8a we have the grid we want to analyze and the first thing we do is apply
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a clustering algorithm that assigns a number to each separate domain (Figure 4.8b).

Then we separate the clusters by size

• Size ≤ Smax → Loose tip (Figure 4.8c)

• Size > Smax → Cluster (Figure 4.8d)

where Smax is the maximum size we consider a tip cell to have. Finally we have to

calculate the radial density of the order parameter, which now takes on discrete values, 1

in the vessel and 0 elsewhere. This density is calculated by generating points belonging

to a circle centered at the point where the original spheroid was also centered and then

calculating the value of φ in each of them using the bilinear interpolation algorithm.

An example of a density plot is in Figure 4.9.

Figure 4.9: Radial density of tip cells.

We are interested in the position of the centroid of the farthest peak, which indicates

that we are reaching the tip cells that have migrated further. For a more accurate

determination of the position of the peak we can fit a Gaussian function using, for

instance, the fitting capabilities of Gnuplot. Due to the width of the curve there will be

some error associated with the determined x value of the maximum.
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We can apply this method to grids corresponding to different ECM rigidities and see

how the average migration distance varies. The results of this study are in Figure 4.10

and we see that the position of the peak does not present significant changes as we vary

the stiffness of the matrix. However we clearly see that the tip cells migrate less when

in the presence of MMPs and the difference in radius is ≈ 30 µm. These results were

obtained only for low values of EECM for that is when most of the tip cells come loose.

Figure 4.10: Average migration distance for different ECM rigidities, with and without ECM

remodeling

For higher values of stiffness we do not have tip cells traveling alone but we have well

structured vessels, as we can see in the results shown when studying the morphology

of the networks. Instead of calculating the tip cell migration distance, it makes sense

to measure the length of these tubular structure, and we do that also by analyzing the

density of order parameter.
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Figure 4.11: Average vessel length as a function of ECM rigidity with and without MMPs.

Analyzing the graph on Figure 4.11 we see that the average length of the sprouts gets

shorter as the rigidity of the underlying matrix is higher. When comparing these results

to the ones obtained for the tip cell migration distance we see that they are related.

Higher stiffness, lower migration distance and shorter vessels. We also see that when

matrix degradation is considered, the vessel length is also smaller than when the motility

is the same everywhere on the system.

(a) (b)

Figure 4.12: Sprout number and their average length for different collagen concentrations of the

ECM. By varying the concentration of collagen we can alter the matrix’s rigidity [44].
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Comparing the results obtained from the simulation and the experimental results in

4.12 wee see that qualitatively they are in agreement.

4.5.3 Variable compressibility

In this section we run the exact same simulations as in last section but now we

introduce a small difference in compressibility between the ECM and the endothelial

tissue, meaning that now K1 6= 0. In Figure 4.13, we vary the stiffness of the ECM for

systems with different mobility and where KECM > KEC. The results are presented in

the next figure.
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(a) EECM = 0.1 and MECM = MEC = 1. (b) EECM = 0.1 with MMP.

(c) EECM = 1.3 and MECM = MEC = 1. (d) EECM = 1.3 with MMP.

(e) EECM = 2.5 and MECM = MEC = 1. (f) EECM = 2.5 with MMP.

Figure 4.13: Various morphologies for different values of ECM rigidity and with (left column) or

without (right column) matrix remodeling, this time with K1 > 0

Comparing these results with those in Figure 4.6, we see some differences in migration,

but mostly in vessel structure. Since K1 > 0, the compressibility of the endothelial tissue

is lower than the ECM’s so the material around the area where the tip cell force is applied
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tends to accumulate in that area, leading to an higher amount of φ. Because in these

runs there is no proliferation and, consequently, the total amount of order parameter is

conserved, the vessels will be thinner and the network will have more "holes".

4.5.4 Notch mechanism

To illustrate the importance of the Notch signaling pathway in the formation of new,

functional, vessel networks we can simulate a system where this control mechanism is

switched off. We can then compare the resulting morphology with one resulting from a

normal system i.e. one where there is lateral inhibition.

The way we simulate this is simply by turning off the algorithms that regulate the

addition of new tip cells to the system, and that revert the tip cell phenotype back to

stalk cell when two connected tip cells are close to eachother.

In Figure 4.14 we can see the different in morphology between a system where the

Notch signaling pathway is not working (in (a)) and one where it is fully working ((b)).

We see that when the Notch mechanism is absent there is an abnormal high quantity of

active tip cells. Also, the traction force field generated by them is superimposed, creating

an excessive strain on the vessels (noticeable by the high value of φ in the tip cell region),

which does not lead to the formation of the desired tubular structures.
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Figure 4.14: Vessel network with (b) and without (a) a functional Notch mechanism.

If, however, we reinstate the Notch pathway we see the formation of regular sprouts

as expected. This leads us to conclude that the existence of this control of tip cell

activation is paramount to the formation of functional, healthy new blood vessels.

4.5.5 Networks

Previously, all of our simulations have focused on the sprouting activity of a single

spheroid of a certain radius located at the center of the grid. Now we can see what

happens when we arrange more spheroids on the grid, in order to try to obtain more

complex networks, and possibly longer and thicker vessels.

The initial state of the system was the one presented in Figure 4.15a and we ran the

simulation for different values of ECM rigidity. We also included ECM degradation and

difference of compressibility between the matrix and the blood vessel phase, thus using

the possibilities of the model to the maximum extent.

Analyzing the results in Figure 4.15 obtained for a system with multiple spheroids,

we reinforce the conclusions we came to before. For ECMs with very low rigidity, we see

that all of the tip cells come loose and no functional sprout capable of carrying blood is

formed. For matrices with an intermediate stiffness we see that there are still some tip
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cells traveling alone with no connection to the original spheroids but we already have some

structure in the network. Finally, for systems where the ECM is rigid, we have barely

any loose cells and the vessels organize a complex and potentially functional network

with many ramifications. The organization we can see in (d) presupposes the occurrence

of anastomosis, meaning many vessels merge, creating complete vessel networks.

(a) (b) EECM = 0.1

(c) EECM = 1.3 (d) EECM = 2.5

Figure 4.15: Vessel networks forming from a system with multiple spheroids. (a) Initial state for

all simulations. (b,c,d) Structure of the network after some time, and for different ECM rigidities.

These runs include ECM remodeling by MMPs.

´
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Chapter 5

Conclusions and future work

By looking at the various images presented in the results we can conclude that the

model described in this thesis is able to simulate and gives rise to very complex vessel

networks that closely resemble the ones we see in experimental results. Also it shows

that mechanical factors are indeed fundamental to the formation of these networks, in

combination with the chemical signaling component.

The results obtained for various properties of the final network as a function of the

ECM mechanical properties, namely its rigidity, are indicators that softer matrices with

low stiffness are not ideal environments for vessel growth for they lead to the tip cells

breaking away from the parent vessel. On the other hand, matrices with higher collagen

concentration i.e high rigidity, lead to the possibility of sprouts elongating without

breaking and even connect to one another by anastomosis.

Introducing the possibility of ECM remodeling in the system brings the description

of sprouting angiogenesis made in the model closer to the real situation. It is also

clear that making the ECM an obstacle to the movement of endothelial cells and then

introducing the action of metalloproteases, changes the migratory potential of the tip

cells, not allowing them to go as far away from their starting point.

With the inclusion of the Notch mechanism into the simulation, we have also shown

that the controlled activation of new tip cells is a must if we want to be able to generate

well defined and functional blood vessel networks. Otherwise, every cell will be able to
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apply a traction force and the morphology of the resulting system will be abnormal.

Also, when considering differences of compressibility between the ECM and the

endothelial tissue, we have seen that the resulting blood vessels are thinner than the ones

we obtain by setting that difference to zero and that the amount of material accumulated

in the tip cell region is higher.

On a closing note, both the model and the software where it is implemented can still

be further improved, simply by taking into account more information that we can find

in experimental works on angiogenesis or other studies involving the endothelial tissue

and the extracellular matrix. For instance, in this work the traction force exerted by the

tip cell was constant and had a fixed amplitude. This can be changed to make the force

dependent on the mechanical properties of the ECM and the surrounding tissue. In this

model, nothing happened inside the endothelial cells, which we know is not true. Many

complex signaling pathways and reactions are occurring at the same time as the process

of angiogenesis takes place and they can influence how it unfolds. These can include

redox reactions involving the VEGF receptors [45], dynamics of keratin concentration

near the nucleus, and other important phenomena.

Some of the fundamental factors that the presented model fails to address is the

role of the blood flow in the shaping of the network. Also, in this work the VEGF

concentrations on the grid where somewhat artificial, meaning they were completely

controlled by the user. In reality, we know that VEGF is released by cells in need of

oxygen, and these can also be included in the simulation. A model that addresses these

phenomena without the mechanical interactions was developed by my colleague Maurício

Moreira [46].

But perhaps the first improvement that may come to mind is upgrading this 2D

model to three dimensions. This is probably not an easy task, for it will bring a much

higher computational demand to the user, slowing down simulation time considerably.

Some preliminary work on three dimensions was made by my colleague Hugo Ferreira

in his own master’s thesis [47]. A way to ease this difficulty is by rewriting the software

using parallel computing techniques to profit from the full number of processors in a
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laptop and especially on a cluster such as the University’s own Navigator.

Regarding the software used to obtain the results, it is open to many improvements

and optimizations when it comes to speed, memory management, and eventual bugs that

have gone unnoticed so far.
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Appendix A

Derivation of the model

The point of this first appendix is to show all the calculations involved in the derivation

of the equations that are the backbone of this computational model.

A.1 Mechanical free energy functional

Picking up on equation 3.4 and using the definition

Fela =
∫ 1

2εijσij

=
∫ 1

2εij
[
Kδijεkk + 2µ

(
εij −

δij
d
εkk

)]
d3r

=
∫ 1

2

[
Kεjjεkk + 2µ

(
ε2
ij −

1
d
εjjεkk

)]
d3r

=
∫ 1

2

[(
K − 2µ

d

)
εjjεkk + 2µε2

ij

]
d3r

=
∫ 1

2

[(
K − 2µ

d

)
∂juj∂kuk + µ

2 (∂jui + ∂iuj)2
]

d3r

=
∫ 1

2

{(
K − 2µ

d

)
∂juj∂kuk + µ

[
(∂jui)2 + ∂iuj∂jui

]}
d3r

Adding the free energy associated with the tip cell, given by 3.5, we finally get 3.6

Fmech =
∫ 1

2

[(
K − 2µ

d

)
∂iui∂juj + µ

[
(∂iuj)2 + ∂iuj∂jui

]
− χ∂iui

]
d~r
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A.2 Calculating δFmech
δui

Here we want to impose the mechanical equilibrium condition to the system, meaning

δF

δui
= δFmech

δui
= 0

Let us calculate the functional derivative of the mechanical free energy

Fmec[u+ δu] =
∫ {1

2

(
K − 2µ

d

)
∂j(uj + δuj)∂k(uk + δuk)+

+ µ

2
[
(∂iuj + ∂iδuj)2 + (∂iuj + ∂iδuj) (∂jui + ∂jδui)

]
−

− χ (∂iui + ∂iδui)
}

d3r

= Fmec[u] +
∫ {(

K − 2µ
d

)
∂juj∂kδuk + µ [∂iuj∂iδuj + ∂iuj∂jδui]− χ∂iδui

}
d3r

If we perform integration by parts so that all terms are multiplied by δuj

δFmech =
∫ {
−
(
K − 2µ

d

)
∂ijui − µ (∂iiuj + ∂jiui) + ∂jχ

}
δujd3r

and according to the definition of functional derivative

δFmech
δui

= −
(
K − 2µ

d

)
∂ijui − µ (∂iiuj + ∂jiui) + ∂jχ

Afterwards we write K, µ and ui as perturbation series and arrive at equation 3.11.

A.3 Mechanical energy expansion

The complete mechanical energy of the system is written as

Fmech =
∫ { 1

2

(
K − 2µ

d

)
∂juj∂kuk︸ ︷︷ ︸

Term A

+ µ

2
[
(∂jui)2 + ∂iuj∂jui

]
︸ ︷︷ ︸

Term B

− χ∂iui︸ ︷︷ ︸
Term C

}
d3r

In order to organize the calculations and to make them clearer, the terms in Fmech where

labeled so we can deal with them separately. What we will do is apply the perturbation

series and split the integrals into zeroth and first order terms
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Term A

∫ 1
2

(
K − 2µ

d

)
∂juj∂kuk =

∫ 1
2

[(
K0 −K1φ−

2µ0
d

+ 2µ1
d
φ

)] [
∂j
(
u0
j + u1

j

)
∂k
(
u0
k + u1

k

)]
d3r

=
∫ 1

2

[(
K0 −

2µ0
d

)
−
(
K1 −

2µ1
d

)
φ

] [
∂ju

0
j∂ku

0
k + 2∂ju0

j∂ku
1
k

]
d3r

=
∫ [1

2

(
K0 −

2µ0
d

)
∂ju

0
j∂ku

0
k

]
d3r +

}
0th order

+
∫ [(

K0 −
2µ0
d

)
∂ju

0
j∂ku

1
k −

φ

2

(
K1 −

2µ1
d

)
∂ju

0
j∂ku

0
k

]
d3r

}
1st order

0th order term

∫ 1
2

(
K0 −

2µ0
d

)
∂iu

0
i ∂ju

0
jd3r =

∫ 1
2

(
K0 −

2µ0
d

)
∂iiω∂jjω d3r

1st order term

∫ (
K0 −

2µ0
d

)
∂iu

0
i ∂ju

1
jd3r −

∫
φ

2

(
K1 −

2µ1
d

)
∂iu

0
i ∂ju

0
jd3r =

=
∫ (

K0 −
2µ0
d

)
∂iiω∂ju

1
jd3r −

∫
φ

2

(
K1 −

2µ1
d

)
∂iiω∂jjωd3r =

=−
∫ (

K0 −
2µ0
d

)
∂iijω u1

jd3r −
∫
φ

2

(
K1 −

2µ1
d

)
∂iiω∂jjωd3r

Term B

∫
µ

2
[
(∂iuj)2 + ∂iuj∂jui

]
d3r =

∫ (
µ0 − µ1φ

2

)[(
∂iu

0
j + ∂iu

1
j

)2
+
(
∂iu

0
j + ∂iu

1
j

) (
∂ju

0
i + ∂ju

1
i

)]
d3r

=
∫ (

µ0 − µ1φ

2

) [
(∂iu0

j )2 + ∂iu
0
j∂ju

0
i + 2∂iu0

j∂iu
1
j + 2∂iu0

j∂ju
1
i

]
d3r

=
∫
µ0
2
[
(∂iu0

j )2 + ∂iu
0
j∂ju

0
i

]
d3r︸ ︷︷ ︸

0th order

+

+
∫
µ0
(
∂iu

0
j∂iu

1
j + ∂iu

0
j∂ju

1
i

)
d3r −

∫
µ1φ

2
[
(∂iu0

j )2 + ∂iu
0
j∂ju

0
i

]
d3r︸ ︷︷ ︸

1st order
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0th order term

∫
µ0
2
[
(∂iu0

j )2 + ∂iu
0
j∂ju

0
i

]
d3r =

∫
µ0
2
[
(∂ijω)2 + ∂ijω∂jiω

]
d3r

=
∫
µ0(∂ijω)2 d3r

= −
∫
µ0∂ijjω∂iω d3r

=
∫
µ0∂iiω∂jjω d3r

1st order term

∫
µ0
(
∂iu

0
j∂iu

1
j + ∂iu

0
j∂ju

1
i

)
d3r −

∫
µ1φ

2
[
(∂iu0

j )2 + ∂iu
0
j∂ju

0
i

]
d3r =

=
∫

2µ0∂ijω∂iu
1
jd3r −

∫
µ1φ(∂ijω)2d3r =

=−
∫

2µ0∂iijωu
1
j d3r −

∫
µ1φ(∂ijω)2d3r

Term C

−
∫
χ∂iui = −

∫
χ∂iu

0
i d3r︸ ︷︷ ︸

0th order

−
∫
χ∂iu

1
i d3r︸ ︷︷ ︸

1st order

0th order term

−
∫
χ∂iu

0
i d3r = −

∫
χ∂iiωd3r

1st order term

−
∫
χ∂iu

1
i d3r = −

∫
∂iχu

1
i d3r
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Now that we have worked on the three terms of the mechanical energy and have separated

them into zeroth and first order terms we can collect them and see what we obtain.

0th order equation

F 0
mech =

∫ [1
2

(
K0 −

2µ0
d

)
∂iiω∂jjω + µ0∂iiω∂jjω − χ∂iiω

]
d3r =

=
∫ [1

2

(
K0 −

2µ0
d

+ 2µ0

)
(∇2ω)2 − χ∇2ω

]
d3r

Remembering the equilibrium condition

∇2ω = χ

L0

we end up with

F 0
mech = −

∫
χ2

2L0
d3r

1st order equation

F 1
mech = −

∫ [(
K0 −

2µ0
d

)
∂iijωu

1
j + φ

2

(
K1 −

2µ1
d

)
(∇2ω)2 + 2µ0∂iijω + µ1φ(∂ijω)2 − ∂iχu1

i

]
d3r

= −
∫

(L0∂iijω − ∂jχ)u1
j d3r −

∫ [
φ

2

(
K1 −

2µ1
d

)
(∇2ω)2 + µ1φ(∂ijω)2

]
d3r

= −
∫
φ

[1
2

(
K1 −

2µ1
d

)
(∇2ω)2 + µ1(∂ijω)2

]
d3r

We see that the final result is independent of any component u1
i because their coefficients

obey the equilibrium equation.

Finally we have the functional that gives us the mechanical energy of the full system

Fmech = −
∫ {

χ2

2L0
+ φ

[1
2

(
K1 −

2µ1
d

)
(∇2ω)2 + µ1(∂ijω)2

]}
d3r
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Complete functional

If we add up the mechanical energy functional to the pure Cahn–Hilliard term

described above, we get

F [φ] =
∫ {

ρφ

[
−a2φ

2 + 1
4φ

4 + ε2

2 (∇φ)2
]

︸ ︷︷ ︸
FCH

− χ2

2L0︸ ︷︷ ︸
F 0
mech

−φ
[1

2

(
K1 −

2µ1
d

)
(∇2ω)2 + µ1(∂ijω)2

]
︸ ︷︷ ︸

F 1
mech

}
d3r

A.4 Functional derivative of the total free energy

For the Cahn-Hilliard equation we need the functional derivative of the free energy

of the system with respect to a small variation of the order parameter φ.

FCH

FCH[φ+ δφ] =
∫
ρφ

{
− a

2(φ+ δφ)2 + 1
4(φ+ δφ)4 + ε2

2 [∇(φ+ δφ)]2
}

d3r

Since we are assuming that the variation δφ is small, we will ignore every quadratic term

of δφ or ∇δφ, as well as higher order terms. With that in mind we are left with

FCH[φ+ δφ] =
∫
ρφ

{
− a

2(φ2 + 2φδφ) + 1
4(φ4 + 4φ3δφ) + ε2

2 [(∇φ)2 + 2∇φ · ∇δφ]
}

d3r

= FCH[φ] +
∫
ρφ
[
−aφδφ+ φ3δφ+ ε2(∇φ · ∇δφ)

]
d3r

⇔ δFCH =
∫
ρφ
[
−aφ+ φ3

]
δφ d3r + ρφε

2
∫
∇φ · ∇δφ d3r

To get to the final result we have to perform integration by parts:∫
∇φ · ∇δφ d3r =

∫
∇φ δφ d3r −

∫
∇2φ δφ d3r

Assuming that we are dealing our system is described using periodic boundary conditions

the term containing ∇φ will vanish when integrating over the whole volume. We therefore

have that

δFCH =
∫
ρφ
[
−aφ+ φ3 − ε2∇2φ

]
δφ d3r
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According to the definition of functional derivative given above, we thus have

δFCH
δφ

= ρφ
[
−aφ+ φ3 − ε2∇2φ

]

F 0
mech

F 0
mech[φ+ δφ] = −

∫ 1
2L0

[−α(φ+ δφ) + χt]2 d3r

= F 0
mech[φ]−

∫ 1
2L0

[
2α2φ− 2αχt

]
δφ d3r

δF 0
mech =

∫
− α

L0
(αφ− χt) δφ d3r

By the definition of functional derivative, we arrive at:

δF 0
mech
δφ

= − α

L0
(αφ− χt)

F 1
mech

F 1
mec [φ+ δφ] = −

∫
(φ+ δφ)

[1
2

(
K1 −

2µ1
d

)(
∇2ω +∇2δω

)2
+ µ1 (∂ijω + ∂ijδω)2

]
= −

∫
φ

{1
2

(
K1 −

2µ1
d

) [
(∇2ω)2 + 2∇2ω∇2δω

]
+ µ1

[
(∂ijω)2 + 2∂ijω∂ijδω

]}
d3r −

−
∫
δφ

[1
2

(
K1 −

2µ1
d

)
(∇2ω)2 + µ1(∂ijω)2

]
d3r

= F 1
mec[φ]−

∫
φ

[(
K1 −

2µ1
d

)
∇2ω∇2δω + 2µ1∂ijω∂ijδω

]
d3r −

−
∫
δφ

[1
2

(
K1 −

2µ1
d

)
(∇2ω)2 + µ1(∂ijω)2

]
d3r

δF 1
mec = −

∫
φ

(
K1 −

2µ1
d

)
∇2ω∇2δω d3r−

−
∫ 1

2

(
K1 −

2µ1
d

)(
∇2ω

)2
δφ d3r−

−
∫

2µ1φ∂ijω∂ijδω d3r−

−
∫
µ1 (∂ijω)2 δφ d3r
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Recall that ω obeys the equation

∇2ω = 1
L0

(−αφ+ χt)

and since χt is independent of the order parameter, then:

∇2δω = − α

L0
δφ

Also, if we define an inverse laplacian operator, ∇−2, such that:

∇−2
(
∇2f

)
= f

we have that

δω = − α

L0
∇−2δφ

Using these results in the calculations above we obtain

δF 1
mech =

∫
αφ

L0

(
K1 −

2µ1
d

)
∇2ωδφ d3r−

−
∫ 1

2

(
K1 −

2µ1
d

)(
∇2ω

)2
δφ d3r−

−
∫
µ1 (∂ijω)2 δφ d3r−

−
∫

2µ1φ∂ijω∂ijδω d3r

Integrating by parts multiple times we find that the last term above, can be written

as:

−
∫

2µ1φ∂ijω∂ijδω d3r =
∫ 2µ1α

L0
∇−2 [∂ij (φ∂ijω)] δφd3r

Now, using the definition of functional derivative we arrive at:
δF 1

mech
δφ

= 1
2

(
K1 −

2µ1
d

)[2αφ
L0
∇2ω − (∇2ω)2

]
− µ1

[
(∂ijω)2 − 2α

L0
∇−2 [∂ij (φ∂ijω)]

]
All we have to do now to get the full functional derivative of the free energy is sum

the three different terms
δF

δφ
= ρφ

[
−aφ+ φ3 − ε2∇2φ

]
− α

L0
(αφ− χt) +

+ 1
2

(
K1 −

2µ1
d

)[2αφ
L0
∇2ω − (∇2ω)2

]
−

− µ1

[
(∂ijω)2 − 2α

L0
∇−2 [∂ij (φ∂ijω)]

]
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Appendix B

Solving PDEs via Fourier Transform

While studying any problem in Physics it is almost inevitable that we come across

a partial differential equation or PDE, for short. There are many methods available

to find their solutions such as separation of variables, series solutions, perturbation

methods, etc. Another way to solve them, either analytically or numerically is by using

Fourier transforms. Let us look at the Poisson equation, one of the most recurring PDEs,

specially in electrodynamics

∇2V (~r) = ρ(~r)

Now we can write the solution written in an infinite basis of plane waves

V (~r) =
∫ +∞

∞
Ṽ (~k)ei~k·~rd~k

and do the same to the function ρ(~r). Plugging them both into the equation we are

trying to solve, we get

−
∣∣∣~k∣∣∣2Ṽ (~k) = ρ̃(~k)

which is an algebraic equation. Solving for Ṽ (~k) we get

Ṽ (~k) = − ρ̃(~k)∣∣∣~k∣∣∣2
Now all we have to do is apply the inverse Fourier transform and we have the answer to

our problem back in real space.
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Appendix C

Numerical methods

C.1 Finite differences

Finite differences are the simplest way we can calculate a functions derivatives on a

discrete grid and it is based on the mathematical definition of derivative as a limit

f ′(a) = lim
h→0

f(a+ h)− f(a)
h

Less rigorous is the notion of derivative as a slope

m = ∆y
∆x

Since in numerical simulation we are dealing with discrete representations of functions

in a grid of a certain spacing, we can’t use the rigorous definition and must settle for an

approximation. Let us then suppose we have a function discretized in a 1D grid and the

value at coordinate i is represented by fi.

There are several ways we can calculate the first derivative

• Forward difference: f ′i = fi+1−fi
h

• Backward difference: f ′i = fi−fi−1
h

• Central difference: f ′i = fi+1−fi−1
2h
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In this work we mostly use the central difference scheme and from it we can derive formulas

to calculate other quantities in 1D like second derivatives, and in higher dimensions we

can obtain laplacians, gradients, etc, as shown in Table C.1.

Table C.1: Examples of finite difference formulas in 2D when the grid spacing is hx = hy = 1.

Quantity Formula(
∂f
∂x

)
i,j

fi+1,j−fi−1,j
2(

∂f
∂x

)
i,j

fi,j+1−fi,j−1
2(

∂2f
∂x2

)
i,j

fi+1,j + fi−1,j − 2fi,j(
∂2f
∂y2

)
i,j

fi,j+1 + fi,j−1 − 2fi,j(
∂2f
∂x∂y

)
i,j

fi+1,j+1+fi−1,j−1−fi+1,j−1−fi−1,j+1
4

(∇2f)i,j fi+1,j + fi−1,j + fi,j+1 + fi,j−1 − 4fi,j

C.2 FTCS method

The Forward Time Centered Space method is a numerical integration method to

solve parabolic partial differential equations, notably the heat/diffusion equation

∂u

∂t
= D∇2u (C.1)

The name of the method comes from the way we discretize the time derivative and

the laplacian term. We approximate the time derivative using a forward time scheme

∂u

∂t
≈ ui,j,t+1 − ui,j,t

∆t

and the laplacian (in 2D and when ∆x = ∆y) by employing centered differences

∇2u ≈ 1
(∆x)2 (ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 2ui,j)

Plugging both approximations into the original equation C.1 we get

ui,j,t+1 − ui,j,t
∆t = 1

(∆x)2 (ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 2ui,j)
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and finally, rearranging the expression we arrive at

ui,j,t+1 = ui,j,t + D∆t
(∆x)2 (ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 2ui,j) (C.2)

which tells us the value of the solution to the equation at time t + 1 only by knowing

its value at time t. This very simple idea is based on Euler’s method, one of the first

algorithms designed for integrating differential equations. It is a very crude method and

the accuracy of the final result is dependent on the usage of a small integration step,

which is accompanied by a higher computational cost. However, for the equations we

need to solve in the model, it is sufficiently accurate for the chosen time step and the

integration is fast compared to higher order methods like Runge–Kutta or adaptative

algorithms.

However, the stability of the algorithm is dependent on the choice of ∆t, ∆x and the

diffusion coefficient D. In one dimension they must obey the inequality

D∆t
(∆x)2 <

1
2

In the case of our system, ∆x = 1 so the stability of the integration process is solely

dependent on the other two parameters

∆t < 1
2D

C.3 Bilinear interpolation

When we have some quantity discretized in a grid, we only know its values in the

nodal points belonging to that same grid. However, in some situation we may need

to know an approximate value of that quantity somewhere in the middle of the grid,

where we do not know it exactly. In order to do so, some kind of interpolation algorithm

must be employed in order to find what that value can be, based on the behavior of the

neighboring grid points.

Let us suppose we want to know the value of a function φ at a point, with coordinates

(x, y), that does not belong to the grid. The four closest neighbors that are nodes are

located at coordinates (xleft, ydown), (xright, ydown), (xright, yup) and (xleft, yup).
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A possible approximation for the value of the function at (x, y) is by averaging the

values of the four closest nodes, weighted by the inverse of the distance to those nodes

i.e.

φ(x, y) =
∑
i

φi
(xi − x)2 + (yi − y)2

where the sum covers the four closest nodes. However, this proved to be an insufficiently

good interpolation method and a better one had to be found.

The algorithm that finally guaranteed a good result is called bilinear interpolation

and the idea behind is also a weighted average, but this time the weights are the areas

of smaller rectangles. These can be constructed using the coordinates of the grid points

and of the point where we want to calculate the value of the function as shown in Figure

C.1

Figure C.1: Bilinear interpolation algorithm [48].

The resulting formula obtained from this method is (using the notation in the figure)

φ(x, y) = φ(x1, y2)
(x2 − x)(y2 − y) + φ(x2, y2)

(x− x1)(y − y1)

+ φ(x1, y1)
(x2 − x)(y2 − y) + φ(x2, y1)

(x− x1)(y2 − y)
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C.4 Fast Fourier Transform

The first numerical algorithm devised to perform numerical Fourier Transforms was

called Discrete Fourier Transform and it consisted on taking a set of data and calculate

ỹ(kn) =
N−1∑
m=0

yme
−iknxm

where kn = n2π
L . This calculation can be written as a

ỹ(kn) =
N−1∑
m=0

yme
− 2πinm

N =
N−1∑
m=0

ym(Wnm)nm

with

W = e−
2πi
N

which in turn turns into a matrix–vector multiplication.

ỹ0

ỹ1
...

ỹN


=



W 0·0
N W 0·1

N . . . W
0·(N−1)
N

W 1·0
N W 1·1

N . . . W
1·(N−1)
N

...
... . . . ...

W
(N−1)·0
N W

(N−1)·1
N . . . W

(N−1)·(N−1)
N





y0

y1
...

yN


As usual with this kind of matricial operation, performing DFT to a set of data with

N it scales as O
(
N2). The algorithm is not very efficient and for large datasets the

computation can take a very long time.

Around 1960, two IBM researchers, James Cooley and John Tukey devised a new

technique that speeds up the computation of numerical Fourier Transforms, reducing the

complexity of the algorithm to O(N logN). For this reason they called it Fast Fourier

Transform, usually referred to by the acronym, FFT. In Table C.2, we can compare the

computation time of both algorithms.
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Table C.2: Comparison of the two algorithms’ performance.

N DFT FFT Speedup

1024 1 s 0.01 s 100×

8192 67 s 0.1 s 670×

65536 71 min 1 s 4260×

1048576 305 hr 20.9 s 53000×

Despite the gigantic difference in efficiency, the FFT algorithm is nothing more than

a smarter way to rewrite the expression for the DFT. Let us pick up from the definition

of the DFT
N f̃(k) =

N−1∑
m=0

e−
2πikm
N fm

If we split the sum into even and odd terms we get

N f̃(k) =
N/2−1∑
m=0

e−
2πik(2m)

N f2m +
N/2−1∑
m=0

e−
2πik(2m+1)

N f2m+1

=
N/2−1∑
m=0

e
− 2πikm

N/2 f2m +Wn

N/2−1∑
m=0

e
− 2πikm

N/2 f2m+1

If we look at both sums we see that each of them represent another DFT with only half

the points i.e.
N f̃(k) =N/2 f̃e(k) + (Wn)×N/2 f̃o(k)

where the upper index "e" or "o" are a tag that tells us if the corresponding points were in

the even part of the original sum or in the odd one. This decomposition can be repeated

until we are left with only a single value

N/N f̃eeoeo...oek = fm

This algorithm is called the Danielson–Lanczos dizimation and from the many algorithms

that exist to calculate the FFT it is the simplest one.

All that we have to do now is make the correspondence between the sequence of even

and odd divisions to the original index of the data. This is performed using an algorithm

called binary inversion.
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Binary inversion algorithm

1. Invert the sequence of letters, front to back.

eeoeo→ oeoee

2. Do the following correspondence

e→ 0

o→ 1

3. The resulting numeric sequence is the binary representation of m.

10100→ m = 24 + 22 = 20

Implementing an FFT algorithm is fairly simple, but there are many available libraries

that include routines that do the job in a very efficient way, for a single processor but

also using distributed computing taking advantage of the many core CPU’s. In this work

we used the library FFTW, considered one of the best scientific software library still in

active development [49].
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