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Abstract 

 

Human behaviour presents high moment-to-moment variability. In fact, 

when repeatedly performing the same sensorimotor task, subjects’ response times 

vary from one moment to the next. This high within-subject variability in human 

behavioural response timing has long encouraged researchers to uncover the 

underlying mechanisms of cognition and sensory stimulus neural processing. 

Current reaction time (RT) models attribute the source of this variability to 

variability in the evidence accumulation process, before making a response. Yet, 

recent findings suggest that the phase of alpha oscillations in the brain modulates 

the timing of neuronal population activity, opening the possibility that, in 

alternative to current models, reaction time variability arises from variability in 

the timing of information transmission in the brain. We propose a computational 

model focusing on this very aspect, by simulating the neural mechanisms behind 

information transmission during sensory processing in the brain, while focusing 

on an alpha oscillatory phase-dependent neuronal population activation. Notably, 

our model was able to predict important associations between alpha oscillations 

and response times. Furthermore, we were able to successfully fit our simulated 

data to empirical RT data from two auditory tasks (simple RT and go/no-go), with 

subjects from two different age groups (young and older adults), and obtained 

differences in the model’s parameters that appear to align with what is known 

from the literature. 
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Resumo 

 

O comportamento humano varia de um momento para o outro. Na realidade, 

quando uma tarefa sensório-motora é repetida várias vezes, os tempos de reacção 

de um sujeito variam ao longo da tarefa. Esta alta variabilidade, para cada sujeito, 

que existe no tempo de resposta comportamental humana, tem motivado 

investigadores a estudar os mecanismos que estão por trás da cognição e 

processamento de estímulos sensoriais. Os modelos de tempo de reacção actuais 

atribuem como causa desta variabilidade a variabilidade no processo de 

acumulação de evidência, antes da formulação de uma resposta. No entanto, 

descobertas recentes sugerem que a fase de oscilação das ondas alfa no cérebro 

modulam o tempo de activação das populações neuronais, abrindo a possibilidade 

de esta variabilidade nos tempos de reacção surgir da variabilidade nos tempos de 

transmissão de informação no cérebro. Aqui propomos um modelo computacional 

focado neste mesmo aspecto, simulando os mecanismos neurais por trás da 

transmissão de informação durante o processamento sensorial no cérebro, e 

assumindo uma activação de populações neuronais dependente da fase das ondas 

alfa. Notavelmente, o nosso modelo conseguiu prever associações importantes 

entre a frequência das ondas alfa e os tempos de reacção. Para além disso, 

conseguimos fazer o ajuste, com sucesso,  de dados de tempo de reacção simulados 

a dados de tempo de reacção empíricos obtidos usando duas tarefas experimentais 

(“simple RT” e “go/no-go”), com sujeitos de dois grupos etários (jovens adultos e 

adultos seniores). Nesta análise, obtivemos diferenças nos parâmetros do modelo 

que aparentam estar de acordo com o que se sabe da literatura sobre as diferenças 

de processamento neuronal nestes dois tipos de tarefas experimentais. 
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1  Introduction 

1.1  Motivation & goals 

 

The high within-subject variability in human behavioural response timing, 

when performing the same task repeatedly, has long motivated scientists to study 

the underlying mechanisms of cognition. The analysis of how different 

experimental conditions affect reaction times (RTs) has proven useful for testing 

models and hypotheses about the underlying processes and structures of mental 

architecture (Ratcliff R. , 2006) (Ratcliff, Thapar, & McKoon, 2001) (Smith, 1995). 

One of the main types of RT data comes from one-choice tasks, namely “simple 

RT” tasks, where a subject must detect the onset of a sensory stimulus and 

respond, as quickly as possible, to indicate its detection. In a typical reaction time 

experiment, each subject repeats the trials several times producing a different RT 

each time. The distribution of RTs from the same subject reveals several 

characteristics of RT data. This within-subject variability inherent to this type of 

data makes for very characteristic RT distributions, which suggest several 

hypotheses regarding the neural mechanisms underlying these types of cognitive 

processes. Computational RT models can help test hypotheses regarding the 

components of the cognitive processing underlying performance on these tasks by 

fitting RT distributions to its simulated data. Models can then be tested for their 

ability to predict the observed shape of RT distributions from empirical data (Van 

Zandt, 2000). RT distributions are characterized by their positive skewness 

(Ratcliff R. , 1979), i.e. their ex-Gaussian form, which plays an important role in 

RT model fitting. In order to be successful, a model must correctly reproduce the 

shape of the distribution and, specifically, must capture the behaviour of the 

distribution’s right tail (Ratcliff & Van Dongen, 2011). Many models have arisen 

for choice RT data, such as the diffusion decision model (DDM) (Ratcliff & McKoon, 

2008) or the linear ballistic accumulator (LBA) (Brown & Heathcote, The Simplest 

Complete Model of Choice Response Time: Linear Ballistic Accumulation, 2008), 
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with focus on the evidence accumulation needed for a subject to make a choice and, 

then, respond.  

Although a few models have successfully been applied to simple detection 

(one-choice) RT tasks (Ratcliff & Van Dongen, 2011) (Fisher, Walsh, Blaha, & 

Gunzelmann, 2015), these also focus on the accumulation of evidence until a 

threshold is reached to produce a response. However, neurophysiological 

measurements of brain activity during task processing suggest an alternative 

mechanism where reaction time variability arises from variability in the timing of 

information transfer across cortical areas. To our knowledge, no computational 

model has arisen that can both produce successful RT distributions and 

satisfyingly explain how the successive processing of a stimulus along the cortex 

works, what components of processing are involved, or how these vary under 

different conditions, such as task difficulty.  

When it comes to stimulus processing, as is for auditory or visual stimuli, 

much is known about the cortical regions involved in the process, but not about 

the timing of this processing, specifically about what modulates the timing of 

communication between the involved brain processing areas. Coon et al. (2016) 

showed that the phase of alpha oscillations modulates the timing of neuronal 

activity. Specifically, they showed that the variability in latency incurred in 

communication between neuronal populations is a function of alpha oscillatory 

phase, and that reaction time variability can be totally accounted for by this 

intrinsic variability. We saw this as a possible foundation for explaining 

variability found in response timing for very simple, straight-forward, tasks, such 

as the simple detection tasks where decision processes are minimized. 

 

 In order to test this hypothesis that reaction time variability can be 

accounted for by the variability in latency incurred in communication between 

neuronal populations as a function of alpha oscillatory phase, we developed a new 

computational reaction time model that computes the mathematics underlying 

sensory stimulus processing by assuming a phase-dependent transmission of 

activity between neuronal populations responsible for processing the said 
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stimulus. This model is designed for one-choice RT tasks, focusing on the neural 

aspects of processing a stimulus in the brain, instead of on the intuitive evidence 

accumulation aspect required for making a decision when comparing two or more 

different responses.  

Our model produced reaction time distributions that were similar to 

empirical data, suggesting that this mechanism could indeed account for the 

reaction time variability observed in simple reaction time tasks. Furthermore, our 

model was tested against different experimental conditions and with data from 

different groups of subjects, a group of young and a group of older adults, and was 

able to successfully provide insights on how ageing and task differences might 

produce different reaction time distributions. 

 

1.2  Theoretical background 

 

1.2.1  Within-subject trial-by-trial reaction time variability 

 

When we perform multiple trials of a simple reaction-time task, where in 

each trial a subject must execute a motor response as soon as he/she detects a 

presented stimulus, we obtain highly variable values for the resulting reaction 

times of each subject. This variability is what we refer to when we mention high 

variability in the timing of human behavioural responses. Great efforts have been 

put into discovering the origin of this variability. Since the task remains the same 

between trials, something in the neural processing of the task must explain these 

variations in the timing of reactions. Considering the example of a simple 

auditory-motor task, where a subject presses a button to indicate the detection of 

an auditory stimulus, information needs to be processed over a trajectory of 

cortical areas, namely the auditory and motor cortices. Although research over the 

past decades has shown evidence towards brain plasticity (i.e. the ability of the 

brain to change its structure throughout life) in processes such as learning (Moser, 
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Moser, & Andersen, 1994) (Piccioli & Littleton, 2014) and neurorehabilitation 

(Kelly, Foxe, & Garavan, 2006), such plastic changes in anatomy cannot explain 

these alterations in brain processes on the time scale of seconds. This leads to the 

assumption that these changes are caused by trial-by-trial variations in function.  

 

1.2.1.1  RT distributions 

 

In a typical RT experiment, each subject repeats the trials several times, 

and in each trial the RT obtained is slightly different. This within-subject 

variability inherent to RT data makes for very characteristic distributions. RT 

distributions are characterized by their positive skewness (Ratcliff R. , 1979), i.e. 

their ex-Gaussian form. Several models have been proposed testing the neural 

mechanisms underlying the RT variability that results in this characteristic shape 

of RT distribution. Ratcliff (1979) suggested characterizing the shape of empirical 

distributions by fitting an explicit density function (probability density function, 

PDF), and the ex-Gaussian density has been largely adopted (Andrews & 

Heathcote, 2001). Researchers have shown increased interest in characterizing 

the shape of RT distributions instead of focusing only on a measure of the 

distribution’s central tendency (e.g. the mean). Fitting a model to the mean RT 

only can mask important details of the data that can be revealed by examining the 

entire distribution, such as the behaviour of fast and slow responses across 

experimental conditions (Heathcote, Popiel, & Mewhort, 1991). Furthermore, the 

RT distribution can provide an important interface between theory and data, since 

the ability of a model to predict the observed shape of a RT distribution is 

considered a critical test of that model (Luce, 1986).  

 To provide further insight into what defines an ex-Gaussian distribution, a 

visual representation is displayed in Figure 1. Ex-Gaussian distributions are 

mainly characterized by three parameters: μ [represents the mean of the normal 

(Gaussian) portion of the distribution] – reflects average performance –, σ [the 

standard deviation of the normal portion of the distribution] – reflects variability 
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in performance –, and τ [the mean and standard deviation of the exponential part 

of the distribution – which characterizes the behaviour of the tail, resulting in a 

positive skew, for RT distributions] – reflects extremes in performance, more 

specifically, extremely slow responses. (Heathcote, Popiel, & Mewhort, 1991). The 

main interest of RT studies lies in how RT changes with experimental 

manipulations. Therefore, when comparing RT distributions obtained from 

different experimental conditions, the ex-Gaussian approach (i.e. fitting the ex-

Gaussian to data) allows us to determine whether the effects of those conditions 

are attributable to shift (μ), spread (σ), or skew (τ) in RT distributions, which sets 

the ex-Gaussian approach as one with great interpretative power (McAuley, Yap, 

Christ, & White, 2006). 

 

 

Figure 1. Schematic representation of a RT distribution (histogram of RT values 

obtained from the same subject performing an RT task repeatedly) and its ex-

Gaussian fit. The ex-Gaussian distribution (displayed through its density function 

by the black line) can be fit to RT data (characterized by the histogram). Ex-

Gaussian parameters (μ, σ, τ), and their contribution to the final curve are also 

displayed. μ is the mean of the Gaussian portion of the distribution, σ the standard 

deviation of that same portion, and τ the mean and standard deviation of the 

exponential part of the distribution (thus, characterizes the behaviour of the 

distribution’s tail). 
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1.2.1.2  How RT distributions change with experimental conditions 

 

There are many experimental paradigms to obtain RT data (see Sternberg’s 

(2004) discussion on reaction-time experimentation for an explanation on different 

approaches and considerations in obtaining RT data), namely the “simple RT” 

task, where only one stimulus is presented to the subject, and only one response 

(which is known in advance) is required, the “choice RT: 1-1 mapping” task, where 

there is more than one type of stimulus, and each stimulus demands a unique 

response, the “choice RT: Go/No-go” task, where two different stimuli exist, but 

only one response is demanded for one of the stimulus types (i.e. one of the stimuli, 

the “no-go” component, requires no response from the subject), and the “choice RT: 

many-one mapping” task, also known as the RT categorizing task, where multiple 

stimuli exist for only one type of response, and all stimuli are categorized as either 

“critical” or “non-critical”, requiring a response from the subject indicating those 

who are “critical”.  

 

The main interest in studying reaction times is mostly in studying how 

experimental variables (factors) change RT, i.e. the effects of the factors and how 

these effects combine. An increasing number of studies has arisen reporting the 

effects of aging on reaction tasks (Ratcliff, Thapar, & McKoon, 2001) (Ben-David, 

Eidels, & Donkin, 2014) (McAuley, Yap, Christ, & White, 2006) (Gottsdanker, 

1982) (Dykiert, Der, Starr, & Deary, 2012). Ratcliff et al. (2001) reported slower 

responses and wider distributions of RTs for older subjects, compared to younger 

subjects, across conditions, and were able to attribute this difference to older 

subjects having longer motor execution times and more conservative response 

criteria than their younger counterparts. In a study performed by Ben-David et al. 

(2014), to study the effects of aging and distractors on the detection of redundant 

visual targets, they reported overall slower RTs for older subjects, compared to 

young subjects, but attributed those differences to the older subjects’ incapacity of 

filtering out the distractors. A study on the effect of age on the efficiency of 

inhibitory control using the ex-Gaussian approach (i.e. fitting the ex-Gaussian to 
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data) also revealed significant changes in RT distributions (reflected by the ex-

Gaussian parameters, μ, σ and τ) between young adults and older adults. 

Specifically, they found that the performance of older adults was slower (higher 

μ), more variable (higher σ), and more extreme (higher τ) than that of young adults 

(McAuley, Yap, Christ, & White, 2006). It has also been reported that RT increases 

(i.e. slows) with increasing number of alternatives for a single choice (Hyman, 

1953), i.e. with more alternatives to process for a decision, and with increasing 

difficulty of a decision (Ratcliff & McKoon, 2008).  

 

 RT distributions are a common focus in RT analysis, and it is them that 

provide the data for modelling. Computational RT models are useful for testing 

different mechanisms of the cognitive processing underlying performance on RT 

tasks by fitting distributions to its simulated data. Models can then be tested for 

their ability to predict the observed shape of RT distributions from empirical data 

(Van Zandt, 2000). In order to be successful, a model must correctly reproduce the 

shape of the distribution and, specifically, must capture the behaviour of the 

distribution’s right tail (Ratcliff & Van Dongen, 2011). We will briefly review 

existing reaction time models below. 

 

1.2.2  Reaction time models 

 

A great number of models have arisen for choice RT data, such as the 

diffusion decision model (DDM) (Ratcliff & McKoon, 2008), the leaky competing 

accumulator (Usher & McClelland, 2001), or the linear ballistic accumulator 

(LBA) (Brown & Heathcote, The Simplest Complete Model of Choice Response 

Time: Linear Ballistic Accumulation, 2008), all with focus on the evidence 

accumulation needed for a subject to make a choice and, then, respond. These 

models focus on choice RT, dealing not only with the mean RTs and their 

distributions, but also with the accuracy (correct/incorrect) of the responses. 
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Diffusion models for simple, two-choice decision processes have received 

increasing attention over the last years, for their ability to account for several 

behavioural data (and for several experimental paradigms), for their successful 

application to practical domains (such as aging), allowing new interpretations for 

well-known empirical phenomena, and for their shown potential in linking 

neurophysiological and behavioural data, when applied to neurophysiological data 

(Ratcliff & McKoon, 2008). Diffusion models divide decision processes into a 

number of components: the quality of the information from a stimulus that drives 

the decision process, the variability in the quality of information, the criteria that 

set boundaries on the amount of information (or evidence) that must be 

accumulated in order for a response to be made, and the non-decisional (encoding 

and response execution) parts of response time (Ratcliff, Thapar, & McKoon, 

2001). These components are largely adopted by several other models. 

The complicated effects observed in the shape of RT distributions, the 

relative speed of correct and incorrect responses, and the interaction of all these 

with error rates has led to increasingly complicated models of choice RT. In an 

attempt to simplify the leading models in the field, Brown & Heathcote (2008) 

proposed a new theory of choice RT – the linear ballistic accumulator (LBA). The 

LBA is a greatly simplified instance of sequential sampling, which is the dominant 

theoretical framework of choice RT models, that assumes a decision is made by the 

accumulation of “evidence” that varies randomly from moment to moment 

(considering this stochastic accumulation the main reason behind within-subject 

variability in choice RT) (Brown & Heathcote, The Simplest Complete Model of 

Choice Response Time: Linear Ballistic Accumulation, 2008). Figure 2 presents a 

schematic representation of three different versions of models proposed from the 

stochastic leaky competing accumulator to the LBA. All three models assume 

accumulators of evidence for each possible response, and a threshold of minimum 

evidence required to formulate, or choose, a response. The first evidence 

accumulator to reach this threshold leads to the execution of its associated 

response. Usher & McClelland’s (2001) leaky competing accumulator assumes 

stochastic accumulation of evidence, i.e. evidence accumulation that varies 

randomly from moment to moment (Figure 2, left panel). Brown & Heathcote 
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(2005) proposed a simplification of the leaky competitor accumulator by omitting 

the within-trial randomness from the evidence accumulation process – the ballistic 

accumulator (Figure 2, centre panel). The linear ballistic accumulator model 

further simplified the evidence accumulation process by omitting the 

nonlinearities from the ballistic accumulator (Figure 2, right panel), assuming a 

linear evidence accumulation (Brown & Heathcote, 2008). The LBA is explained 

in detail below. 

 

Figure 2. Schematic illustration of Usher & McClelland’s (2001, left panel) stochastic accumulator 

panel. Brown and Heathcote’s (2005, centre panel) ballistic accumulator was simplified by omitting 

within-trial stochastic variation. The linear ballistic accumulator was further simplified by 

assuming a linear evidence accumulation. From Brown & Heathcote (2008). 

  

The LBA’s mathematical simplicity, which still allows for complete analytic 

solutions (Brown & Heathcote, The Simplest Complete Model of Choice Response 

Time: Linear Ballistic Accumulation, 2008), highly motivated its choice from our 

behalf (details explained further ahead, in Chapter 2 – Methods) as a possible 

means of comparison with our proposed model. As a model of choice RT, it assumes 

that, for any decision to be made, evidence must accumulate until it reaches a 

“decision” threshold. Figure 3 displays a schematic representation of a typical LBA 

decision between two choices. The LBA assumes a linear accumulation of evidence 

in separate, independent, evidence accumulators for each possible response.  

These accumulators gather evidence until a threshold (b) is reached for one 

response. The choice corresponding to that accumulator is then produced, and the 
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decision time is equal to the time it took for the accumulator to reach the response 

threshold. An additional, constant, time t0 is added to the final response time to 

represent non-decision processes, such as stimulus arrival at the cortex and motor 

response execution. The speed at which evidence accumulates in each separate 

accumulator is given by its drift-rate, different for each accumulator, represented 

by the slopes of the lines in Figure 3. The LBA assumes drift rates to vary 

randomly and independently between accumulators from trial-to-trial according 

to a normal distribution with mean ν and standard deviation s. The decision 

process is assumed to begin with each accumulator at its own starting point of 

evidence accumulation. This starting evidence also varies between trials, and has 

a randomly assigned value between zero and A. A cannot be higher than b to 

ensure that evidence needs to be accumulated for a response to be triggered.  

 

Figure 3. Schematic representation of a typical LBA decision for a two-choice RT task. In the task 

here considered, subjects must decide whether a cloud of dots appears to be moving to the left or 

to the right. In the illustrated trial, a left-moving stimulus has been presented. Each choice is 

represented by a different accumulator (continuous line arrow for “left”, dashed arrow for “right”), 

and the drift rates for the left and right accumulators have been sampled normal distributions 

with means ν and 1 – ν, respectively, and a common standard deviation, s. The usage of 1 – ν for 

incorrect responses has become a common practice in LBA application (Donkin, Brown, & 

Heathcote, 2011). From Donkin, Brown & Heathcote (2011). 
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Although the above-mentioned models are choice RT models, i.e. designed 

for choice paradigms, between two or more possible responses, a few models using 

the same rationale have successfully been applied to simple detection (one-choice) 

RT tasks (Ratcliff & Van Dongen, 2011) (Fisher, Walsh, Blaha, & Gunzelmann, 

2015). However, recent neurophysiological measurements of human brain activity 

during task processing suggest an alternative mechanism. Namely Coon et al.’s 

(2016) findings suggest that the phase of alpha oscillations in the brain modulates 

the timing of neural population activity, opening a possibility that RT variability 

arises from variability in the timing of information transmission in the brain, 

instead of variability in the time it takes for evidence to accumulate in the brain. 

To allow for a more comprehensive analysis of Coon et al.’s results (which 

motivated our proposed model), described further ahead, we now focus on the 

sensory information processing mechanisms in the human brain. 



12 

 

1.2.3  The brain 

1.2.3.1  General organization of the nervous system 

 

Figure 4. The Nervous System, by James Follet. 

The nervous system can be divided in two parts: the central nervous system 

(CNS), composed by the encephalon and spinal cord, and the peripheral nervous 

system (PNS), encompassing the cranial and spinal nerves and their associated 

ganglia (see Figure 4 for a schematic representation of the organization of the 

nervous system). Neuronal circuits, composed by interconnected neurons that 

mutually influence each other, are the functional entity of the nervous system 

(Purves, et al., 2001).  Nervous cells, or neurons, are excitable cells specialized in 

the reception of stimuli and in the conduction of nervous impulses (through their 

capability of producing action potentials), and are the basic components of 

neuronal circuits (Snell, 2010). Groups of neuronal circuits with similar function 

are called neuronal systems, and can be divided in sensorial systems (e.g. visual 
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and auditory systems), motor systems, that control behavioural responses, and 

association systems, which are intermediary systems between sensorial and motor 

systems. The sensory division of the nervous system can, therefore, be considered 

as the afferent division (information entering the CNS), and the motor division as 

the efferent division (information is sent from the CNS to the rest of the body). 

The CNS can be subdivided into the spinal cord and the encephalon, where the 

latter can be further subdivided into many other structures, such as the 

cerebellum, the brainstem, the diencephalon (thalamus and hypothalamus), and 

the telencephalon (cerebral hemispheres). The cerebral cortex is divided in two 

cerebral hemispheres, which, in turn, are divided into four lobes: frontal, parietal, 

temporal and occipital (Purves, et al., 2001). Within each lobe there are several 

cortical areas, and some are, currently, largely associated with certain cortical 

functions, e.g. the auditory cortex in the temporal lobe and the visual cortex in the 

occipital lobe (Snell, 2010). Figure 5 displays a representation of the organization 

of the human brain, including the cortical division into functional lobes. Within 

the aim of our project, we will focus mainly on the areas in the nervous system 

involved in stimulus processing, namely auditory stimuli, and in the execution of 

a motor response.  

 

 

Figure 5. Division of the cortical hemisphere into lobes, and some of their functional areas. 

Copyright © 2008 Pearson Education, Inc. 
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1.2.3.2  Hierarchical organization of cortical sensory systems 

 

There is a general hierarchical organization when it comes to sensory 

processing in the nervous system. Stimuli are detected and transmitted to the 

peripheral nervous system, which sends the sensory information to the central 

nervous system for processing. It has become generally understood that, within 

the CNS, there is also a hierarchy for sensory information processing, such as in 

the visual system (Hochstein & Ahissar, 2002), auditory system (Okada, et al., 

2010), or olfactory system (Savic, Gulyas, Larsson, & Roland, 2000). This means 

that, within the sensory pathway, there is somewhat of an order of information 

transmission between cortical areas and neuronal populations. A well-studied 

example of this is the visual system (Hochstein & Ahissar, 2002) (Rousselet, 

Thorpe, & Fabre-Thorpe, 2004) (Silvanto, 2015). The visual pathway has a well-

defined hierarchical structure for stimulus processing, including the pathway from 

the retinal cells, which are sensitive to light and fire electrical impulses according 

with the received input, to the lateral geniculate nucleus (LGN) in the thalamus 

(the area in the thalamus responsible for relaying visual information to the 

cortex), which then transmits information to the occipital lobe, namely to the 

primary visual cortex (V1) (Snell, 2010). Within the visual cortex, it is now 

generally understood that visual input is processed in a hierarchical fashion, 

giving rise to conscious perception (Silvanto, 2015). Without getting into too much 

detail, it is known that V1 has a very well-defined map of the spatial information 

in vision, and sends much of its input to the next visual cortical region, area V2 

(visual area 2), which, in turn, projects to at least three occipital regions: medio-

temporal region (MT), visual area 3 (V3), and visual area 4 (V4), and so it goes, 

with each area projecting forward to several other areas (Rousselet, Thorpe, & 

Fabre-Thorpe, 2004) (Silvanto, 2015). V1 and V2 are generally considered as “low-

level” areas (Hochstein & Ahissar, 2002), receiving visual input and representing 

simple features of vision, such as lines, or edges, or specific orientation and 

location. Their outputs are integrated by their successive cortical levels (MT, V3, 

V4), which gradually generalize over spatial parameters and specialize to 

represent global features. Finally, further levels integrate their outputs to 



15 

 

represent more abstract forms, objects, and categories. In summary, higher-level 

cortical areas represent increasingly complex characteristics of images, objects, 

and categories (Hochstein & Ahissar, 2002). A simple example would be the 

processing of an image of a chair. The lower-level visual areas would mainly 

process the overall lines and spatial orientation of the visual input, and as their 

output would be processed by higher-level areas, it would gradually process the 

visual input as the overall shape of the chair, finally leading to our 

acknowledgement that the image we just saw was, indeed, a representation of our 

concept of “chair”. It has been proposed that, aside from this forward hierarchy, 

which acts implicitly, there is also a reverse hierarchy, which acts explicitly, 

returning to lower-level areas for higher detailed information, within the general 

idea perceived by the higher-level areas (Hochstein & Ahissar, 2002). In our 

example, it would allow the subject to perceive the type of wood of the chair, the 

details of its edges, etc. Figure 6 provides a schematic diagram of these two types 

of hierarchy in the visual system.  

 

Figure 6. Schematic diagram of classical (forward) hierarchy and reverse hierarchy theory. From 

Hochstein & Ahissar (2002). With feedforward hierarchy, higher-level cortical areas represent 

increasingly complex characteristics of the images, objects, and categories. 
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It is worth noting that, within the frame of this project, for the simple 

detection of a visual input, simple forward hierarchy would be the main pathway 

needed for generating a motor response indicating stimulus detection. 

The hierarchical organization of the auditory cortex has also been the 

subject of various studies, and is now generally understood that core regions of the 

auditory cortex respond to simple auditory stimuli (e.g. tones) whereas 

downstream regions are selectively responsive to more complex stimuli (e.g. 

speech). We get into further detail regarding the processing of auditory stimuli, 

due to the fact that our empirically obtained RT data were a result of an auditory-

motor task. 

 

1.2.3.3  Auditory stimulus processing 

 

The auditory cortex (AC), located in the temporal lobe (see Figure 5), is the 

main area responsible for processing auditory information. When an auditory 

stimulus is presented, it is detected by the ear where its vibrations are converted 

into electrical impulses by the cochlea (in the inner ear) (Purves, et al., 2001). 

These impulses are sent through the brainstem into the cortex. Specifically, this 

ascending auditory pathway is composed by the spiral ganglion, auditory nerve, 

cochlear nucleus, olivary nucleus, lateral lemniscus, inferior colliculus, medial 

geniculate body (in the thalamus), and, finally, the auditory cortex. The auditory 

cortex is divided into primary auditory cortex (A1) and secondary auditory cortex 

(or auditory association area, A2). A1 is associated with the primary processing of 

the auditory information, and sounds are processed in different locations (within 

A1) according to their frequency (Ehret, 1997). It is believed that A1 performs 

sound analysis by combining spatially distributed coincident or by time-

coordinated neuronal responses (Ehret, 1997). Furthermore, there is now 

reasonable evidence for the existence of hierarchical processing within the AC – 

where the A1, receiving direct input from the thalamus, provides input to 

surrounding areas (Wessinger, et al., 2001). A2 is thought to be essential to the 
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interpretation of sounds and to its association with other sensory information 

(Snell, 2010). 

 When we consider a task such as detecting a sound and pressing a button 

to indicate its detection, much like the task used in this study (which is further 

described in Chapter 2 – Methods), we must consider not only the processing of 

the auditory stimulus by the AC, but also how the information of the stimulus is 

processed by cortical areas regarding conscious decision upon receiving sensory 

input (the decision to press the button) and motor response (the button press), both 

in different areas of the frontal lobe (Snell, 2010). This implicates some level of 

communication between cortical areas, sending information from one to another, 

in order to process the information and formulate a response. We discuss 

considerations on how neuronal populations communicate below.  

 Although much is known regarding the processing of auditory information 

in the brain, there are still many unanswered questions, namely regarding the 

modulation of timing within information processing. 

 

1.2.3.4  Brain oscillations – alpha rhythm 

 

The understanding of how neuronal populations communicate with each 

other has long been a subject of interest for neuroscientists. Hans Berger (1929) 

discovered that cortical activity can be captured by electroencephalography in the 

form of electrical activity. This technique led to the discovery of brain oscillations, 

and since then electroencephalograms (EEGs) have been used to further 

understand the different rhythms behind brain function. There are several 

frequency bands, or ranges, that have been identified throughout the years, and 

here we will focus on the alpha frequency band (for reasons explained below), also 

first described by Berger (1929).  The alpha rhythm stands for frequencies within 

the 8 – 13 Hz range, shows the highest amplitude in the human brain and is known 

for its high prevalence in the posterior regions of the head (mainly occipital, 

parietal and posterior temporal regions), despite not being limited to those areas 
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(Niedermeyer & Lopes da Silva, 1982). As an example, studies have shown that 

voluntary movement tends to be timed in relation to the phase of the alpha rhythm 

(Bates, 1951). It reaches a mean of about 10 Hz in childhood, which stands as, 

essentially, the mean alpha frequency of adulthood. The frequency of alpha 

rhythm tends to decline in the elderly (Niedermeyer & Lopes da Silva, 1982) 

(Klimesch, 1999), although this decrease was shown to reflect some degree of 

cerebral pathology, and healthy elderly individuals appear to show little to no 

decline in alpha frequency (Niedermeyer & Lopes da Silva, 1982) (Grandy, et al., 

2013). Since this project focuses on brain waves within the alpha frequency range, 

and on sensory-motor tasks, it might interest the reader that rhythmic activity in 

the alpha frequency range has been found strongly related to functions of the 

motor cortex (the mu rhythm), of the visual cortex in the occipital lobe, and of the 

auditory cortex in the temporal lobe (the tau rhythm) (Niedermeyer & Lopes da 

Silva, 1982) (Klimesch, 1999). These were found to be independent from each 

other. The interest this represents to our project relies on the fact that, not only 

do all of these independent rhythms have activity related to the cortical areas that 

would be affected in an auditory-motor task, but they also exhibit frequencies 

within a similar range, and, as will become apparent in the description of our 

model (Chapter 2 – Methods), frequency is the main factor contributing to wave 

distinguishability between tests of our presented model. 

Over the last decades an increasing interest has arisen into discovering 

which components of these oscillatory activities influence neural activity and how. 

Recent findings suggest that synchronous neural activity, induced by oscillatory 

activity, modulates sensory and cognitive processes (Herrmann, Munk, & Engel, 

2004) (Kahana, 2006) (Klimesch, EEG alpha and theta oscillations reflect 

cognitive and memory performance: a review and analysis, 1999) (Klimesch, 

Sauseng, Hanslmayr, Gruber, & Freunberger, 2007). Klimesch et al. (2007) stated 

in their review a phase-dependent timing of neuronal activity, stating that a 

neuron is very likely to fire during the phase of high excitability, as opposed to the 

phase of low excitability, where neurons are unlikely to fire. They stated a crucial 

principle that, during oscillatory activity, neurons fire synchronously in the 

excitatory phase, leading to synchronized neural activity being received by 
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common target cells, which leads to a spread of neural firing through a cell 

assembly. They further stated their assumption that the functional interaction 

between units of the same assembly or between units of different assemblies is the 

result of coordinated timing, which is enabled by oscillations. 

There are currently several hypotheses that attempt to explain not only how 

active neuronal groups interact with each other, but also how this communication 

is flexibly modulated to originate our cognitive dynamics, such as Fries’ (2005) 

communication through coherence (CTC), which suggests that the oscillation of 

activated neuronal populations produce temporal windows for communication, 

where only coherently oscillating neuronal groups are able to interact effectively, 

or Schalk’s (2015) function-through-biased-oscillations (FBO), which hypothesizes 

that oscillatory voltage amplitude is the main measurement that directly reflects 

cortical excitability, namely variations in its asymmetric nature.  More recently, 

Coon et al. (2016) showed an important role for the phase of alpha oscillations in 

modulating the timing of the neural trajectory of task-related population-level 

activity. Specifically, they showed that the onset of neuronal population activity 

tends to occur in the trough of alpha oscillations, and that deviations from this 

relationship were related to changes in the timing of the behavioural response. We 

agree with their proposal that these findings may provide the basis for a model of 

variability in the effective speed of information transmission across the brain and 

for variability in the timing of human behaviour. Further insights are provided 

below on Coon et al.’s (2016) discoveries and how they inspired our proposed 

model. 
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1.2.4  Modulation of the timing of neuronal activations and 

resulting behaviour by alpha oscillatory phase: a 

description of Coon et al. (2016)’s study 

 

Although an increasing number of reports showed evidence of a role of 

oscillatory activity in the gating of  neural signal transmission (Fries, 2005) 

(Hanslmayr, Volberg, Wimber, Dalal, & Greenlee, 2013) (Klimesch, Sauseng, & 

Hanslmayr, 2007) (Schalk, 2015), and that oscillatory phase in primary motor and 

visual areas may alter the timing of behaviour (Bates, 1951) (Haegens, Nácher, 

Luna, Romo, & Jensen, 2011) (Hanslmayr, Volberg, Wimber, Dalal, & Greenlee, 

2013) (van Dijk, Schoffelen, Osstenveld, & Jensen, 2008), it remained unknown 

whether the phase of alpha oscillations modulates the timing of signal propagation 

across widely distributed neuronal populations that connect a sensory stimulus to 

a behaviour, thus possibly being responsible for the timing of the observed 

behavioural responses. In an attempt to answer this question, Coon et al. (2016) 

used recordings from the cortical surface (electrocorticography, ECoG) to chart the 

trajectory of task-related neuronal population activity across the cortex in single 

trials. Following this, they proceeded to examine whether the timing of that 

population activity, and the timing of the consequent behaviour, was modulated 

by the phase of low-frequency oscillations, discovering that such was true for 

oscillations in the alpha band in all subjects and across all task-related cortical 

areas.  

 The task used in the experimental trials was a modified Posner cueing task, 

where subjects maintained a fixed gaze on a central fixation cross throughout the 

entire experimental run, until presented with a visual cue and, after a random 

interval (3.5 to 4.5 s), a visual stimulus prompted them to respond with a button 

press as soon as possible.  

 They were able to successfully identify the trajectory of neuronal activity 

across the cortex in single trials (see Figure 7 for exemplary time courses of 

broadband gamma activity – which has been shown to correspond closely to the 
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average firing rate of neuronal populations – at five different locations in occipital, 

temporal, parietal and frontal locations). In fact, they were able to see a clear 

temporal progression of neuronal activity from occipital, to temporal, to frontal 

and finally parietal cortices, as would be expected in such a task. This temporal 

progression can be seen in Figure 7, where clearly different (and progressive) 

timings of population activity for each location can be observed.  

 To further validate the physiological relevance of the onset times identified, 

they established their relationship at individual locations with the phase of 

oscillatory activity. They found task-related modulation in and around the alpha 

band, but not in other frequency bands, to be a common feature across all task-

related locations. Additionally, they confirmed that the onset of population activity 

occurred preferentially in the trough of alpha oscillations (see Figures 7b and 8 for 

a visual representation), preferentially during the falling slope of the trough. 

 

Figure 7. Exemplary spatiotemporal trajectory of task-related neuronal population activity in one 

single trial. A. Task-related cortical locations from one subject (left), and the time course of 

neuronal population activity in exemplary locations (right). B. Population-level activity occurs 

during the trough of alpha oscillations. From Coon et al. (2016). 
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Figure 8. The onset time of neuronal population activity tends to occur during the falling phase of 

the trough of alpha oscillations. A. Traces show normalized time courses of the amplitude of 

neuronal population activity (blue) and the amplitude of the activity in the alpha band (orange), 

averaged across all trials, all task-related locations and across all subjects, and time-locked to the 

onset of population activity in each corresponding trial (traces show mean ± standard error). B. 

Polar histogram of alpha phases at the time of detected activity onset from all trials, all locations 

and all subjects. From Coon et al. (2016). 

 

 Supported by the refined relationship between oscillatory phase and the 

onset of population-level activity, they were able to formulate a hypothesis to 

explain how oscillatory phase can explain variability in the timing of information 

transfer between brain areas and, thus, variability in the resulting behaviour. 

Supported by evidence that information about visual stimuli is propagated across 

neuronal populations through series of population-level spike volleys (Thorpe, 

Delorme, & Van Rullen, 2001), that communication between neuronal populations 

depends on the excitability of the receiving population, and that such cortical 

excitability is modulated by low-frequency oscillations (Schalk, 2015), they 

differentiated two distinct possibilities of neuronal communication (Figure 9). 
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Figure 9. Communication between neuronal populations may be modulated by alpha oscillatory 

activity. As alpha amplitude (orange lines) decreases past a threshold voltage (dotted grey lines), 

a neuronal population may process and transmit information (permissive window represented by 

the green boxes) to the following population. In this attempt to signal the receiving neuronal 

population, the time it takes for a series of spike volleys (black dotted arrows) to excite population 

activity (blue boxes) depends on the phase of the receiving population’s oscillatory activity. In A, 

the first spike immediately results in excitation of the receiving population. In B, most spikes do 

not arrive during a permissive window, delaying excitation by t lag milliseconds. From Coon, et al. 

(2016). 

 

 In the first case (Figure 9a), the phase relationship of oscillatory activity 

between the sending and receiving locations is such that the first of a series of 

spike volleys to reach neuronal populations at the receiving location immediately 

excites them. This means the total amount of time between the start of the 

neuronal excitation at the sending site and the information being received in the 

receiving site (ttotal) is the amount of time it takes to transmit a spike volley from 

the sending to the receiving site (ttransit). In contrast, in the second case (Figure 

9b), the phase relationship of oscillatory activity at the sending and receiving sites 

is such that not the first but only a subsequent volley in a series of spike volleys 

results in cortical excitation at the receiving location. In this scenario, the time 

between the start of the neuronal excitation at the sending site and the 

information being received in the receiving site may incur a variable lag (tlag) of 

up to several tens of milliseconds, after the arrival of the first spike volley. 

Assuming that the neural trajectory connecting a stimulus to a behaviour is 
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composed of successive activation of neuronal populations, all in communication 

with each other, these variable lags at individual locations would accumulate, thus 

contributing to the observed variability in the behavioural response latency.  

 These findings lead to the possibility that within-subject variability in 

response timing in a sensorimotor task can be explained by alpha-band oscillatory 

activity, namely by having alpha phase-dependent permissive windows for 

neuronal population activity onset (excitation) in each cortical location of the 

neural trajectory associated with sensorimotor function.  

In order to test the hypothesis proposed by Coon et al, that their findings 

may provide the basis for a general model of variability in the effective speed of 

information transmission in the brain, and for variability in the timing of human 

behaviour, we propose here a computational model that models reaction time 

variability arising from alpha phase dependent variability in the timing of 

information transfer in the brain. We proceed by providing a general introduction 

to our model’s proposal, which is thoroughly described in Chapter 2 – Methods. 

 

1.2.4.1  Computational model proposal 

 

As mentioned above, there are a few models that have been successfully 

applied to simple detection (one-choice) RT tasks (Ratcliff & Van Dongen, 2011) 

(Fisher, Walsh, Blaha, & Gunzelmann, 2015). However, all of these focus on 

evidence accumulation processes of cognition.  Having been presented with the 

possibility of an alternative mechanism, based on neurophysiological 

measurements of human brain activity, and since, to our knowledge, no 

computational model has arisen that can both successfully reproduce RT 

distributions and satisfyingly explain how the successive processing of a stimulus 

along the cortex works, what components of processing are involved, or how these 

vary under different conditions, such as task difficulty, we were inspired to 

propose a new model that accommodated these neurophysiological findings.  
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To test the hypothesis that reaction time variability can be accounted for by 

the variability in latency incurred in communication between neuronal 

populations as a function of alpha oscillatory phase, we developed a new 

computational reaction time model that computes the mathematics underlying the 

timing of sensorimotor processing by assuming a phase-dependent transmission 

of activity between neuronal populations responsible for processing the 

sensorimotor task.  

Figure 10 provides a simple schematic representation of the model’s 

approach on information processing throughout the cortex. Our proposed model 

assumes the presentation of a sensory stimulus, which takes t0 milliseconds to 

reach the cortex. Having found reports using auditory event-related potentials 

reporting latency for the first peak (in the auditory cortex) approximate to 40 ms 

in adults (Mahajan & McArthur, 2012), although smaller values have been 

reported (Jain, Bansal, Kumar, & Singh, 2015), we define t0 as a constant time 

interval throughout all trials and all model tests, set equal to 30 ms. We assume 

a hierarchical sensory stimulus processing, by modelling unidirectional 

communications only, i.e. by having a successive, orderly transmission of 

information throughout all modelled cortical regions. The total number of cortical 

regions modelled is dependent on the characteristics of the sensorimotor task 

being modelled and is given by parameter N, whose value is selected by the user 

in each run. For each cortical area, an alpha-band sinusoidal oscillation is 

generated with random phase offset, ɸ (randomly attributed by the model at the 

beginning of each trial), and alpha-band (8 – 13 Hz) frequency, which is also 

selected by the user, and attributed to parameter f. All waves are generated with 

the same amplitude value (= 1), due to our interest in focusing on frequency and 

phase as the characteristic wave parameters, as suggested by Coon et al.’s 

discoveries. With focus on Coon et al.’s (2016) findings, we assume a phase-

dependent permissive window for neuronal population activity by establishing a 

threshold under which the onset of population activity can occur at the receiving 

population (i.e. the neuronal population receiving the information, in series of 

spike volleys, from the sending neuronal population). Specifically, this threshold  



26 

 

 

Figure 10. Schematic representation of the model’s consideration of the stimulus detection 

process. An auditory stimulus is presented and takes t0 seconds to reach the cortex. It is then 

processed sequentially by several cortical areas. The speed of the information transmission from 

one area to the other is dependent on the phase of the alpha oscillations. In our model, we 

considered the alpha-band neuronal activity, with a specific frequency (f) and oscillation phase (ɸ), 

where only the latter varies across locations. Calculating the instant of time when the onset of 

population activity on a location occurs, a time lag, t lag, can be added to the minimum amount of 

time it takes for the stimulus to reach the receiving population, dt, here considered equal for all 

paths. This lag occurs when the two current oscillations are out of phase with each other and the 

stimulus does not arrive during the trough of oscillatory activity of the receiving population. After 

all N brain locations initiate activity, a time constant (t exe) is added, resulting in the final reaction 

time, RT. 

 

is created for an optimal phase permissive window between 120 – 240º (suggested 

by Figures 8b and 9 retrieved from Coon et al. (2016)). As suggested by Coon et 

al.’s (2016) explanations (Figure 9), there is a minimum amount of time for a 

sending neuronal population to be able to excite the neuronal populations at the 

receiving site, which they name ttransit. This value represents the time it takes for 
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information to be sent between areas, regardless of immediate excitation on the 

receiving site’s population of neurons. In our model, this parameter (dt) is defined 

by the user, thus concluding the three main parameters that are studied in our 

model tests: f, N and dt. When the last of the N cortical areas’ neuronal population 

has initiated cortical activity (which we assume to be immediate, as long as it 

originates within the phase-dependent permissive window), a time constant (texe) 

is added to final time, originating a reaction time. This time constant, texe, reflects 

the effective motor response only. We consider texe = 15 ms, as a rough estimation 

based on the fastest recorded electromyographic responses for humans (Sourakov, 

2009). 

Further detail into how the model computes simulated RT data is provided 

in Chapter 2 – Methods.  

Our model produced reaction time distributions that resembled those from 

empirical data, suggesting that this mechanism could indeed account for the 

reaction time variability observed in simple reaction time tasks. Furthermore, our 

model was tested against different experimental conditions (two types of task: 

simple RT and go/no-go task) and with data from different groups of subjects, a 

group of young and a group of older adults, and was able to successfully provide 

insights on how ageing and task differences might produce different reaction time 

distributions.  
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2  Methods 

 

2.1  Computational model of the effect of alpha 

oscillatory phase on the timing of neuronal 

activations and resulting motor responses 

 

What our model, essentially, aims to do is reproduce what occurs in the 

brain during a simple auditory-motor detection task, i.e. when a person detects an 

auditory stimulus and provides a motor response (such as a button press) to 

indicate its detection. To do this, we need to simulate a mathematical approach to 

how a sensorimotor task is processed in the brain. In particular, we were 

interested in modelling the effect of the phase of alpha oscillations in cortico-

cortical information transmission, as proposed by Coon et al (2016). 

When a stimulus is detected by the brain, sensory information is conveyed 

into the brain through the sensory organs. This information is then sent through 

several brain regions for processing. In the scenario of this task, a command for a 

motor response must then be sent to indicate stimulus detection. 

In real life, as studied with empirical data, a simple detection task like the 

one described, when repeated many times, results in different response times (i.e. 

time that takes from stimulus onset to button press) or, as henceforth mentioned, 

reaction times (RT). These variations in RT, which result in an ex-Gaussian 

distribution (Ratcliff (1979), Heathcote & Brown (2002)) (see Figures 1 or 14 for 

an example and explanation of an ex-Gaussian distribution), imply some level of 

variability in the neural processes. Since brain anatomy can be considered to 

remain unchanged in a time interval of seconds (Coon, et al., 2016), we consider 

this variation to originate in the actual stimulus and motor processing, occurring 

between all the neuronal populations it crosses. Specifically, we consider Coon et 
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al.’s proposal on how alpha-band activity modulates the onset of neuronal 

population activity (Coon, et al., 2016).   

For a matter of simplicity, and as a first approach, we represent alpha-band 

oscillations as sinusoidal waves, since the general focus of our model is on the 

wave’s frequency and phase offset, both crucial definers of a sinusoidal wave. 

Specifically, our model generates cosine waves, due to Coon et al.’s graphic 

representation of brain alpha oscillations, on which we based our alpha 

modulation research (Coon, et al., 2016). A sinusoidal wave is defined by its 

frequency, phase offset and amplitude. We fixed the amplitude value for all waves, 

in the interest of focusing on frequency and phase offset for our study. In each 

stimulus detection simulation, we consider the frequency of alpha oscillations to 

be equal in all neuronal populations that process and propagate the stimulus 

information. The total number of cortical regions that process the stimulus is 

defined by the user. Phase offset for each brain wave in each brain location is 

randomly attributed by the model at the moment of sensory information’s arrival 

at the cortex.  

We now explain how the model simulates the sensorimotor processing. 

Primarily, when a neural signal coding a certain sensory stimulus enters the 

cortex, it is processed by a specific number of cortical regions, being sent from one 

to another, and, once the final area (motor cortex) is activated, the subject executes 

a motor response, also considered by our model.  
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Figure 11. Schematic representation of the model’s consideration of the stimulus detection 

process. An auditory stimulus is presented and takes t0 seconds to reach the cortex. It is then 

processed sequentially by several cortical areas. The speed of the information transmission from 

one area to the other is dependent on the phase of the alpha oscillations. In our model we 

considered the alpha-band neuronal activity, with a specific frequency (f) and oscillation phase (ɸ), 

where only the latter varies across locations. Calculating the instant of time when the onset of 

population activity on a location occurs, a time lag, t lag, can be added to the minimum amount of 

time it takes for the stimulus to reach the receiving population, dt, here considered equal for all 

paths. This lag occurs when the two current oscillations are out of phase with each other and the 

stimulus does not arrive during the trough of oscillatory activity of the receiving population. After 

all N brain locations initiate activity, a time constant (t exe) is added, resulting in the final reaction 

time, RT. 

 

 Figure 11 displays a schematic representation of how the model obtains a 

reaction time value. An auditory stimulus is presented to the subject at time  

t = 0 s. We consider a constant amount of time, t0, from the stimulus onset until it 

reaches the cortex equal to 30 ms. By this time, t = t0, the stimulus begins to travel 

from one cortical location to the next, in a total of N brain locations. The 
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excitability of each location’s neuronal population is modulated by oscillatory 

activity in the alpha-band frequency (8-13 Hz). Here we simplify the model by 

assuming that the alpha frequency is the same in all brain areas and across all 

trials. This frequency value, f, within the alpha band, is defined by the user each 

time the model is tested. The model also assumes a constant time interval, dt, for 

neuronal activity to reach the subsequent brain location. This parameter 

represents the minimum amount of time it takes for information to travel from 

the sending area to the receiving cortical location. In reality, it depends on the 

distance between brain areas. However, here, we assumed that this value was the 

same across all pairs of areas modelled. In fact, the chosen value can be considered 

as the average time of information transfer between areas. Further delays that 

accumulate as neural activity advances from one population to the next originate 

in the alpha phase of the receiving location at the time the information arrives at 

that location (see Figures 11 and 12 for better detail).  

 

Figure 12. Schematic representation of the timing of stimulus processing. Information reaches 

the cortex at time t0. It reaches the following area after dt ms (this interval of time is always the 

same between areas). The time it takes from the stimulus being processed to the onset of the 

receiving neuronal population activity is represented by t lag, which is different in each area and 

dependent on the alpha phase. The total stimulus processing time results from the accumulation 

of all these lags (t lag1, …, t lagN) summed to the minimum time needed for sending information 

between all N areas (dt × N). After all areas have processed the stimulus, texe is added for motor 

execution purposes. 
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Based on Coon et al.’s (2016) findings, our model assumes that information 

can only be received or sent when the phase of the modelled alpha oscillations is 

between 120º and 240º – at the trough of alpha oscillations (represented by the 

green boxes in Figure 13).  

 

Figure 13. Communication between neuronal populations may be modulated by alpha 

oscillatory activity. As alpha activity (orange lines) decreases past a threshold voltage (dotted grey 

lines), a neuronal population may process and transmit information (permissive window 

represented by the green boxes) to the following population. In this attempt to signal the receiving 

neuronal population, the time it takes for a series of spike volleys (black dotted arrows) to excite 

population activity (blue boxes) depends on the phase of the receiving population’s oscillatory 

activity. In A, the first spike immediately results in excitation of the receiving population. In B, 

most spikes do not arrive during a permissive window, delaying excitation by t lag milliseconds. 

From Coon, et al. (2016). 

 

Mathematically the model was developed as follows (see Figure 14). A cosine 

wave is generated for each brain location, all of which have equal amplitude A (= 

1) and frequency and a randomly assigned phase offset (ɸ). These waves represent 

the alpha oscillations at each brain area modelled. All waves are generated across 

the same time interval of one second (1000 ms – this interval of time is enough for 

information to travel across all areas) with a frequency of discretization of 1000 

Hz, generating a time vector, t, composed of one thousand 1 ms time intervals.  
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Figure 14. Schematic representation of the model’s computational process, considering a two-area 

stimulus processing. 

 

When an area sends information to the next area, the signal takes dt seconds to 

reach the following neuronal population. At this point, the model checks if the 

phase of the receiving location’s alpha-band oscillatory activity at that time 

instant is at its trough, i.e. between 120º and 240º. Specifically, since cos (120º) = 

cos (240º) = -0.5, the model verifies whether the inverse cosine of the local phase is 

below -0.5, as represented by the yellow bolder portion of the alpha oscillations in 

Figure 11, and the green boxes (and threshold – dotted grey lines) in Figure 13. If 

the phase of the alpha oscillations of the receiving location is not within the 

specified interval, the model iterates through time instants until the alpha phase 

reaches 120º, at which point it returns the time instant where information can be 

received, processed and sent to the next area. These three processes are assumed 

by the model to occur instantly. When all N brain locations have been excited by 

their precedents, a time constant, texe, of 15 ms for motor response execution 

purposes is added to the final time, resulting in the final reaction time (RT).  
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Figure 15. Schematic representation of the model output. For each set of model parameters, the 

model was run 1000 times, producing 1000 values of reaction time. The graph represents the 

histogram of these output values. An ex-Gaussian was then fit to the histogram, thereby producing 

for each histogram the ex-Gaussian parameters, µ, σ, and τ. This procedure was repeated 100 times 

to produce 100 ex-Gaussian parameters per set of model parameters.  

  

 

For each set of parameters (frequency, dt, and number of areas), the model 

was run 1000 times. This originates 1000 RT values that are then plotted in a 

histogram and fitted for the ex-Gaussian distribution (Figure 15). The ex-

Gaussian fitting was done with Bram Zandbelt’s MATLAB toolbox Exgauss 

(https://github.com/bramzandbelt/exgauss). This toolbox returns the three ex-

Gaussian parameters μ, σ and τ, where μ stands for the mean of the normal 

(Gaussian) portion of the distribution, σ for the standard deviation of the normal 

portion of the distribution and τ for the mean and standard deviation of the 

exponential component of the distribution (Heathcote, Popiel, & Mewhort, 1991) 

(Parris, Dienes, & Hodgson, 2013). This means for every run we obtain 1000 RT 

values and one of each ex-Gaussian parameters. Moreover, in order to have an 

estimate of the results consistency, for each set of parameters the model is run 100 

https://github.com/bramzandbelt/exgauss
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times. This originates 100 combinations of ex-Gaussian parameters, that were 

then used for statistical analyses. 

 

2.1.1  Parameter value variation 

 

Table 1 provides a general description of how each parameter was studied, 

by providing the minimum and maximum values that were used for each 

parameter, the increments considered between model runs that studied one 

parameter’s variation and the type of input necessary for each parameter. The 

“fixed” type is defined and fixed across all model variations, the “random” type is 

randomly generated by the model and the “chosen by user” type is defined in each 

model by the user, meaning those are the parameters that vary across different 

runs. In summary, we studied the effect of varying the frequency of alpha 

oscillations (f) – that varies from person to person and with parameters such as 

age or gender –, the total number of brain areas involved in stimulus processing 

(N) – that will depend on the task – and the amount of time information being sent 

from a particular brain location takes to reach the following one (dt) – that depends 

on the average distance between cortical areas involved in the task. 

Table 1. Value range of each model parameter, defined by its minimum value (Min), maximum 

value (Max), increment of the value between different runs and the type of value input the model 

considers. 

Parameter Min Max Increment Type of value input 

f (Hz) 8 13 0.2 Chosen by user 

N 10 30 5 Chosen by user 

dt (ms) 5 20 5 Chosen by user 

ɸ (degrees) 0º 360º - Random 

A 1 - - Fixed 

texe (ms) 15 - - Fixed 

t0 (ms) 30 - - Fixed 
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2.1.2  MATLAB computation 

 

MATLAB (2014a, The MathWorks, Natick, Massachusetts, United States 

of America, 2014) was used to compute the model. Each variation of the model 

(parameter-wise) was saved to a different MATLAB® script, using custom made 

MATLAB® functions. All custom scripts can be found on Appendix A.II. 

 For each brain location, MATLAB® runs generate_random_phase(), a 

function that generates a random phase offset between 0º and 360º, i.e. between 0 

and 2  radians, using MATLAB®’s rand() function, for each run, for each brain 

node a different random phase is assigned at the beginning t = t0. Having all model 

parameters defined, MATLAB® then generates N alpha-band frequency waves, for 

all N brain locations and across the entire length of the time vector, and places 

them within a matrix. This is done by running generate_wave() in an iteration 

loop with N iterations. The in_trough_at() function calculates whether, at a 

particular instant of the time vector, the phase of the introduced wave is between 

120º and 240º. Specifically, it creates a threshold under which excitation can occur. 

This threshold is the result of the multiplication of the wave’s amplitude (A) and 

the cosine of 120º (which is equal to the cosine of 240º), equal to -0.5. If the wave 

is not under that threshold, the function iterates through time intervals until this 

is accomplished, at which time it returns the instant of time at which excitation 

can occur.  

 Between each brain location the model runs the in_trough_at() function 

and adds dt into the instant of time returned by the function. This is done in an 

iteration loop of N iterations. When the final brain location is excited, i.e. when 

the final iteration of this loop is concluded and the last instant of time is returned, 

the model adds texe to the total time of response, generating the final reaction time.  

For each set of parameters chosen, the temp_run.m script creates a folder 

and generates 100 runs. Each run calls MATLAB® function get_1000rt(), which 

runs 1000 trials of that model version.  
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Because MATLAB® resets the random (used by rand()) state at start-up, 

the get_1000rt() function begins by changing the value of the state input, 

ensuring true random values each time a model is run. Then it runs the specified 

model version one thousand times, saving the 1000 RT values and the frequency 

and phase of alpha oscillations at each brain location, for each trial, into a 

MATLAB® structure result, which is then returned.   

The RT data is then used by the Exgauss toolbox described above, resulting 

in one ex-Gaussian parameter combination (μ, σ, τ) for each 1000 RT values. Bram 

Zandbelt’s Exgauss toolbox also provides three figures (using the best fitting 

parameters): a histogram of the data with a line plot of the ex-Gaussian probability 

density function (PDF), a plot of quantiles (0.1, 0.3, 0.5, 0.7, and 0.9) of the data 

with a line plot of the ex-Gaussian cumulative distribution function (CDF), and a 

figure of these two plots side by side. These figures are saved into separate folders, 

generated automatically, for each run of the specific model. MATLAB® structures 

containing the resulting ex-Gaussian parameters, RT’s, phase offsets and 

frequencies are also saved into these folders. A total of 238 model variations were 

created, a summary of which’s specific parameters can be found in Appendix A.III. 

 

A script model2csv.m converts the selected models’ .mat data files into .csv 

(comma separated values) files, that can then be imported into SPSS Statistics or 

Microsoft Excel. Initially, an all_data_into_csv.m script was also created to 

generate a .csv file containing all the data relative to the models for dt = 10 ms. 
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2.2  Empirical reaction time data 

 

2.2.1  Task 

 

Empirical reaction time data was previously collected by other researchers 

in the lab, and involved data from two types of tasks: a simple detection task and 

a go/no-go task. Both sensorimotor tasks, these were of an auditory type. The 

simple detection task involved the plain detection of an auditory stimulus (see 

Figure 16a). This stimulus onset would occur at a random period of time (between 

1.5 – 2.2 s) after a cue. For validation, 83% of the trials had an auditory stimulus, 

and 17% were catch (blank) trials, with the cue presentation only, and no target 

present. Upon the detection of the auditory stimulus, the subject was required to 

press a button, so as to communicate that detection, providing a resulting reaction 

time (time from stimulus onset until button press). The go/no-go task was, 

essentially, a choice task between two different types of auditory stimuli (see 

Figure 16b). One for which the subjects were instructed to press the button, 

indicating detection, and another where no button press should occur. 67% of trials 

had the first stimulus and 17% had the latter. Again, 17% of trials were catch 

trials, with the cue presentation only. Both “go” and “no-go” stimuli were preceded 

by an auditory cue. Both tasks were executed by all subjects, and the order by 

which these tasks were performed (i.e. which was executed first) was not the same 

for all subjects. 
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Figure 16. Schematic representations of both experimental tasks. A. Simple detection task where, 

following an auditory cue, an auditory stimulus is presented (S1) after a random interval of time, 

and the subject responds by pressing a button, resulting in a reaction time (RT). B. Go/No-go task 

where two different auditory stimuli exist (S1 and S2), but only for one (S1) is a response required. 

 

A 

1.5 – 2.2 s 4 – 8 s 

B 

1.5 – 2.2 s 4 – 8 s 
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Behavioural data from 65 subjects were included in our analyses. 

Participants belonged to two different age groups. The younger age group 

comprised ages between 19 and 30 years old, and the older group between 52 and 

70 years old.  Subjects from both male and female genders performed the 

experiment.  

Each subject performed a total of 120 trials per task. Trials with wrong 

responses (namely false positives in the go/no-go task) were removed from the 

data. Outliers were also removed from the data, resulting in different numbers of 

trials for each subject, in each task, i.e. the resulting RT matrices did not have the 

same length. The resulting data had two columns: one with the reaction times, 

and another with the cue-target interval of time. Since in previous studies it had 

been observed that, for cue-target time intervals longer than 1.9 s, RTs became 

slower (i.e. higher), these were then excluded from the original data, in order to 

have data where the RT variability did not depend on the cue-target interval. 

 

2.2.2  Ex-Gaussian fitting to empirical data 

 

In order to fit the ex-Gaussian distribution to our empirical RT data and 

obtain the respective ex-Gaussian parameters, data from each subject were 

submitted to the Exgauss MATLAB® toolbox. After obtaining the ex-Gaussian 

parameters and graphic fitting for both the probability density function (PDF) 

superimposed on the histogram of the data and the cumulative distributive 

function (CDF) superimposed on a quantile plot of the observed data, results were 

inspected for deviations from the typical ex-Gaussian distribution curve and 

outlier values in the parameters. This initially lead to three subsets of data being 

created for further analysis: one excluding subjects whom visual inspection 

identified as having poor ex-Gaussian fitting, another where subjects with 

calculated absolute z-scores (for each parameter) above 3 were excluded, and a 

subset where all the above subjects were excluded (either by one criterion or 

another, or both).  
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Z-score outlier exclusion 

The standard score, or z-score, is the number of standard deviations by 

which the value of an observation is above or below the sample mean. Z-scores 

were calculated in MS Excel using the formula: 

𝑧 =  
𝑥 − �̅� 

𝑆𝐷
 

, where 𝑧 is the z-score, 𝑥 the observation data point, �̅� the sample mean and 𝑆𝐷 

the sample standard deviation. The absolute value of the z-score provides a 

measure of how many standard deviations the observed value is from the mean. 

We considered subjects whose absolute z-scores were above 3 to be possible 

outliers, and excluded these from this data subset. For this exclusion, 3 subjects 

were eliminated. 

 

Poor ex-Gaussian fitting exclusion 

Figure 17 gives examples of what a poor ex-Gaussian fitting looks like 

compared to a good fit. For this exclusion, a total of 7 subjects were eliminated. 

 

Figure 17. Ex-Gaussian fitting provided by the Exgauss MATLAB toolbox. A. Example of a good 

ex-Gaussian fitting with parameters μ = 245.47, σ = 12.27 and τ = 69.44. B. An example of poor ex-

Gaussian fitting, with parameters μ = 454.19, σ = 104.26 and τ = 15.69. 

 

 

A B 
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Poor ex-Gaussian fitting and high z-score outlier exclusion 

 When adding the high z-score outlier subjects to the ones with poor ex-

Gaussian fitting, since two of those subjects met both criterions for exclusion, only 

one extra subject was removed from the poor ex-Gaussian fitting data subset, 

leaving a total of 8 subjects eliminated for this subset of data. 

 

Data subsets 

 When a subject was excluded for either criterion on one task, he was also 

excluded for the other task. This means all data was rearranged so that only 

subjects with data in both tasks of the experiment (i.e., simple detection task 

(D_RT) and “go/no-go” task (G_RT)) remained. After removing outlier values as 

described above, the number of subjects remaining for each comparison are 

displayed in Table 2. 

 

Table 2. Resulting total and per age group number of subjects in each data subset analysed. We 

note that the row with “Both” exclusion criterions applied denotes the reunion of both subsets, i.e. 

subjects with either one criterion met, or both. 

Exclusion criterion 
Total # of 

subjects 

# subjects 

old 

# subjects 

young 

High z-score 62 32 30 

Poor ex-Gaussian fitting 58 29 29 

Both 57 28 29 

 

 We decided to utilize the data subset with the exclusion of both types of 

outliers for further analyses, with a total of 57 subjects. 
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2.2.3  Empirical RT data analysis 

 

The aim of this analysis was to study, on the empirical data, how task 

condition affected the ex-Gaussian parameters of the reaction time distributions. 

To study the effect each condition has on the resulting ex-Gaussian parameters (a 

visual representation of which can be found on Figure 15), we performed a 

repeated measures ANOVA for each ex-Gaussian parameter. For all repeated 

measures ANOVA tests, the age group of the subjects was included as a between-

subjects factor, and the type of task performed by all subjects was defined as a 

within-subjects factor.  

 This provided descriptive statistics (mean and standard deviation) for each 

factor combination (D_RTyoung, D_RTold, G_RTyoung, G_RTold), the resulting 

significance of effect for both within-subject and between-subject factors on the ex-

Gaussian parameters, and figure plots were then created to provide a visual 

representation of these dynamics. 

 

2.3  Linear ballistic accumulator 

 

In order to be able to compare our proposed model to previously established 

response time models, we attempted to fit our empirical reaction time data using 

the linear ballistic accumulator model. A MATLAB® toolbox, LBA 

(https://github.com/smfleming/LBA), was used for fitting the LBA model. This 

toolbox’s code is adapted from Scott Brown’s R code for fitting the LBA, provided 

in Brown & Heathcote (2008).  

 As previously stated, the LBA is a choice RT model, meaning it was designed 

for at least two choices, i.e. two possible responses, two independent evidence 

accumulators. Our empirical reaction time data, described above, is a collection of 

reaction times associated with two different task conditions:  a simple reaction 

time task, requiring the detection of an auditory stimulus, and a go/no-go task 

https://github.com/smfleming/LBA
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requiring the discrimination between two different auditory stimuli and an overt 

response only to one (the “go”) stimulus. Given the nature of these two task 

conditions, and the small number of errors committed by the participants, no 

reaction time for “wrong” responses could be fit in the model: errors in the simple 

reaction time were misses (failures to respond); and errors in the go/no-go task, 

were misses to the “go” stimulus or responses to the “no-go” stimulus, and in this 

second case the errors were too infrequent to be modelled successfully. Therefore, 

changes had to be considered in the LBA model in order to apply it. The main 

change we needed to apply was that only one evidence accumulator would exist 

for our data, since all our responses were deemed as “correct” (when you simply 

detect a stimulus and produce a reaction time value, there is no wrong response; 

when you only respond for one of the two presented stimuli – as in a go/no-go task 

– you only obtain the RTs for the detection of the “go” stimulus). The LBA also 

considers the option for different conditions, as for different task difficulty levels 

that can differ from trial to trial. In our case, there was only one “condition” per 

task, hence its value was set to 1 in our LBA toolbox adapted scripts.  

 To estimate LBA parameters from data, the LBA toolbox uses the maximum 

likelihood estimation objective function, which is used to quantify the resemblance 

between data and model, therefore allowing a search for the best-fitting set of LBA 

parameters. To begin the search for the best-fitting set of parameters, the LBA 

requires an initial set of parameters, referred to as the starting point. A computer-

driven search is then performed, changing parameters until a set is identified as 

providing the best value for the objective function. The choice of initial parameters 

has been shown to be of importance, sometimes referred to as “something of an 

art”, requiring experience and experimentation (Donkin, Averell, Brown, & 

Heathcote, 2009). For this reason, it was attempted both by sequential manual 

choice of the user and by randomly defined (within certain constraints) in 

MATLAB® and computed for optimization (i.e. run several times only to return the 

set of initial parameters that provided the best fit). 
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 Our adapted toolbox scripts, in likeness to the original, returned, as a result, 

the best-fitting set of LBA parameters and a plot figure combining LBA model 

predictions (in a line plot) and the histogram of the data. 

 

2.4  Fitting the model to empirical results 

 

Having real, experimental data to compare our model results to, we wanted 

to find our best-fitting model parameter sets for each combination of experimental 

conditions. An initial manual search for a set of model parameters that lead to 

results that resembled those found on empirical ex-Gaussian parameters showed 

that some of our results didn’t seem to be too far off from this achievement, which 

motivated us to perform an automated search. 

 

2.4.1  Automate search for best-fitting parameters 

 

Our aim was to find the best-fitting model parameters for each task 

condition and each subject’s group. To accomplish this, we decided to find the set 

of model parameters that minimized the sum of squared errors of prediction for 

all ex-Gaussian parameters. The sum of squared errors (SSE) is the sum of the 

squares of deviations of predicted data from actual empirical values, and can be 

used as a measure of discrepancy between empirical data and an estimation 

model. The lower the SSE, the better a model fits the data. To calculate the sum 

of the squared errors we used the formula below: 

𝑆𝑆𝐸 = (𝜇𝑒𝑥𝑝 − 𝜇𝑚𝑜𝑑𝑒𝑙)
2

+ (𝜎𝑒𝑥𝑝 − 𝜎𝑚𝑜𝑑𝑒𝑙)
2

+ (𝜏𝑒𝑥𝑝 − 𝜏𝑚𝑜𝑑𝑒𝑙)
2
 

, where 𝑆𝑆𝐸 is the sum of squared errors, 𝜇𝑒𝑥𝑝, 𝜎𝑒𝑥𝑝 and 𝜏𝑒𝑥𝑝 are the mean ex-

Gaussian parameters obtained from empirical data, and 𝜇𝑚𝑜𝑑𝑒𝑙, 𝜎𝑚𝑜𝑑𝑒𝑙 and 𝜏𝑚𝑜𝑑𝑒𝑙 

are the resulting ex-Gaussian parameters from the model.  
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 A custom script, find_best_parameters.m, was created using MATLAB® 

to automate this process and allow iteration through all model tests, each with 

their set of parameters. This script begins by allowing the user to define the means 

for each ex-Gaussian parameter in each of the four combinations of experimental 

conditions (DRTyoung, DRTold, GRTyoung, GRTold), which were previously obtained. 

It creates three matrices (one for each ex-Gaussian parameter) with 100 rows and 

number of columns equal to the total number of models to be imported. It then 

iterates through the selected models and imports each of the 100 resulting scripts 

(from the 100 runs described above), in each iteration. The 100 resulting ex-

Gaussian parameter sets per model are then averaged, and the sums of squared 

errors can be calculated. Four SSEs are calculated per iteration, one for each 

combination of experimental conditions in the empirical data. These SSEs are 

added to their respective matrices, which also save the number of the model test 

they belong to, and are, at last, sorted by crescent order of the sum of squared 

errors. Therefore, running this script allows us to obtain four matrices, one for 

each combination of experimental conditions, all sorted by crescent order of SSE 

value. Selecting the first row gives us the model parameters with the minimum 

SSE value. 

 Upon running the script each time, model tests were run with values of 

parameters between those that best fit a particular condition, searching for 

changes in the best-fitting parameter sets. This allowed a more precise tuning of 

the model parameters that best represented the empirical data. Since our 

MATLAB® script provided an ordered list of the model tests whose parameter sets 

lead to the smallest SSEs, we were able to attempt a manual optimization of these 

best-fitting parameter sets. By comparing differences in parameter values 

between the model tests on top of each list (one list per experimental task 

condition), it allowed us to run the model for parameter values close to them, run 

the find_best_parameters.m script including those model tests, and search for 

differences in the resulting model tests list. In these extra model tests, each 

parameter (f, N and dt) was varied at specific intervals (i.e. with specific increment 

values). Differences in f were done with 0.2 Hz increments, N with increments of 

1, and dt with increments of 1 ms. 
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 To provide an example, Table 3 displays the resulting best-fitting sets of 

parameters, for each experimental task condition, after the first attempted search.  

 

Table 3. Sets of parameters that minimized the sum of squared errors (SSE) for each experimental 

condition combination (DRT young, DRT old, GRT young, GRT old) in the first run of this automate search.  

Condition 
Best-fitting model parameters 

SSE 
f (Hz) N dt (ms) 

DRT young 10 10 20 153.607 

DRT old 13 10 20 61.915 

GRT young 13 25 10 386.080 

GRT old 12.2 25 10 519.466 

 

 

2.5  Statistical analysis 

 

Descriptive data statistics and repeated measures ANOVA were performed 

using IBM SPSS Statistics 24.0. Graphs were obtained using both SPSS and 

Microsoft Excel (2016).  

 

2.5.1  Repeated measures ANOVA – considerations 

 

For results to be able to reflect reality, the repeated measures ANOVA test 

requires some assumptions to be met. This is true for all but one, the condition of 

sphericity, who needs to be tested. Sphericity means that the population variances 

of all possible different scores are equal, and is tested with Mauchly’s test, which 

is included in SPSS’ repeated measures ANOVA output. For all repeated measures 

ANOVA tests performed, whenever the condition of sphericity could not be 



49 

 

assumed, corrections to the degrees of freedom were applied. For Greenhouse-

Geisser sphericity estimates (ξ) above 0.75, the Huynh-Feldt correction was used. 

For those under this value, the Greenhouse-Geisser correction was applied (Field, 

2013).  
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3  Results 

 

3.1  Simulation of reaction time distributions 

 

Here, we will describe how our computational model outputs depend on the 

model’s input parameters.  

After running the computational model, we obtained a distribution of 

reaction times for each set of parameters. Next, we used the Exgauss MATLAB® 

toolbox to fit an ex-Gaussian distribution to these data. The toolbox provided 

successful ex-Gaussian fittings to the data for most of the parameters studied (see 

Figure 18 for an example). These results indicate that, by modelling progressive 

neuronal onset activity dependent on the phase of alpha oscillations, we can obtain 

simulated RT data with a distribution shape that resembles those obtained for 

experimental data – an ex-Gaussian distribution (Ratcliff R. , 1979). 

 

Figure 18. Example of histogram and probability density function (PDF) line plots for the model 

run with f = 8.4 Hz, N = 15 and dt = 10 ms. Resulting ex-Gaussian parameters can be seen in the 

title, with μ = 243.56, σ = 19.09 and τ = 107.14. 
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Nevertheless, for some parameter combinations the fitting with the ex-

Gaussian distribution was poor, as demonstrated by Figure 19’s example plot. 

Specifically, for dt = 5 ms and N = 10 brain areas, the resulting RT distribution 

was not an ex-Gaussian distribution, and, therefore, the resulting fitting was of 

poor quality. This was true for all 100 subject runs of the model with these 

specifications. For dt = 5 ms and other N values, there were some sporadic cases 

where the ex-Gaussian fitting was also poor, as in the particular case shown in 

Figure 20. This lead to the discarding of further studies with model parameter dt 

set at 5 ms. 

 

Figure 19. Histogram and PDF line plots for the model run with f = 8 Hz, N = 10 and dt = 5 ms. 

Resulting ex-Gaussian parameters can be seen in the title, with μ = 90.00, σ = 0.00 and τ = 103.81. 

 

Figure 20. Histogram and PDF line plots for the model run with f = 8 Hz, N = 30 and dt = 5 ms. 

Resulting ex-Gaussian parameters can be seen in the title, with μ = 90.00, σ = 0.00 and τ = 240.93. 
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3.1.1  Model parameters’ effect on ex-Gaussian parameters 

 

To study how the tested model parameters, alpha frequency (f), number of 

cortical areas (N) and stimulus travelling time between areas (dt), influence the 

resulting ex-Gaussian parameters, a repeated measures ANOVA was performed 

for each ex-Gaussian parameter, with these model parameters as within-subject 

factors, using a subset of data with the parameter specifications indicated on  

Table 4. This subset of data used results from a total of 54 sets of model 

parameters, all with 100 repetitions (subjects). 

  

Table 4. Parameter value specifications in the subset of data used to perform a repeated measures 

ANOVA to test the effect of all parameters and their interactions on the ex-Gaussian parameters. 

Parameter Minimum Maximum Increment 

f (Hz) 8 13 1 

N 10 20 5 

dt (ms) 10 20 5 

  

Tables with the resulting descriptive statistics (mean and standard 

deviation) for μ, σ, and τ values for each parameter combination can be found in 

Appendix A.I. 

 

3.1.1.1  Effect of frequency (f) on μ values 

 

When studying the effect of frequency on μ values, degrees of freedom were 

corrected using Huynh-Feldt estimates of sphericity (ξ = 0.907). Results showed a 

significant main effect of frequency on μ (i.e. the mean of the normal distribution 

portion of the ex-Gaussian distribution), F (4.533, 448.755) = 6666.904, p < 0.001. 
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 Using MS Excel, plots were generated for a visual representation of the 

effect each model parameter has on each ex-Gaussian parameter. 

 Plots of μ vs. frequency were generated for models with dt = 10 ms and N 

between 10 and 30, with 5 area increments. Figure 21 displays the resulting plot 

for a model run with dt = 10 ms and N = 20 brain areas. Mu (μ) values were shown 

to decrease with increasing alpha-band frequency, as can be seen in the plot.  

 

Figure 21. Mean μ values vs. frequency (Hz) for N = 20 and dt = 10 ms. Standard deviation (SD) 

error bars are also represented in the plot. 

 

3.1.1.2  Effect of the number of brain areas (N) on μ values 

 

For this study, degrees of freedom were corrected using Huynh-Feldt 

estimates of sphericity (ξ = 0.809). Results showed a significant main  

effect of the total number of brain areas to process the stimulus on μ values,  

F (1.618, 160.144) = 1677948.167, p < 0.001. 

 As an example, plots for μ vs. N were created for models with dt = 10 ms 

and frequency values ranging from 8 to 13 Hz, with 1 Hz increments. Figure 22 

displays the resulting plot for the model run with dt = 10 ms and f = 8 Hz. Results 

show that, with an increasing number of brain areas to process the stimulus, μ 

values also increase. 
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Figure 22. Mean μ values vs. number of areas for f = 8 Hz and dt = 10 ms. Standard deviation 

(SD) error bars are also represented in the plot (albeit too small to be visible). 

 

3.1.1.3  Effect of the time between brain areas (dt) on μ values 

 

In this study, Greenhouse-Geisser estimates of sphericity (ξ = 0.737) were 

used to correct the degrees of freedom. Results showed a significant main effect of 

the time needed for a stimulus to be sent between brain areas on μ values,  

F (1.474, 145.953) = 2094369.211, p < 0.001. 

 Figure 23 displays the μ vs. dt plot for the model run with f = 10 Hz and  

N = 15 brain areas, as an example. The plot displays a positive relationship 

between μ and dt, being that an increase in the time distance between brain areas 

results in an increase in the mean of the normal portion of the resulting ex-

Gaussian distribution of RT’s. 
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Figure 23. Mean μ values vs. time needed for the stimulus to be sent between brain areas (dt) for 

f = 8 Hz and N = 10 brain areas. Standard deviation (SD) error bars are also represented in the 

plot (albeit too small to be visible). 

 

3.1.1.4  Effect of parameter interactions on μ values  

 

The interaction between frequency and the number of brain areas on μ was 

found to be significant, F (7.250, 717.772) = 101.581, p < 0.001, although from simple 

plot analysis no clear interaction appears to be visible (plot lines appear to be 

parallel to each other). Greenhouse-Geisser estimates of sphericity (ξ = 0.725) were 

used for this study. 

 Figure 24 displays how μ vs. frequency varies across different N parameter 

values. μ decreases with increasing alpha frequency, and this change in μ is the 

same for all values of the total number of brain locations. 
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Figure 24. Mean μ values vs. frequency (Hz) over different numbers of brain areas (N). dt equal 

to 10 ms in these model variations. Standard deviation (SD) error bars are represented for each 

line plot (albeit too small to be visible).  

 

The effect of the interaction between parameter f and dt on μ values was 

also shown to be significant, F (6.414, 635.005) = 1580.622, p < 0.001. Once more, 

Greenhouse-Geisser estimates of sphericity (ξ = 0.641) were used to correct the 

degrees of freedom. 

Figure 25 displays how μ vs. frequency varies across different dt parameter 

values. This variation appears to be relatively consistent across the different dt 

values, although, for dt = 20 ms, it appears to be slightly larger for lower 

frequencies. 
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Figure 25. Mean μ values vs. frequency (Hz) over different between-areas time intervals (dt). N 

equal to 10 brain areas in these model variations. Standard deviation (SD) error bars are 

represented for each line plot (albeit some too small to be visible). 

 

The interaction between the total number of brain areas and the time 

needed to send a stimulus between them was, likewise, shown to have a significant 

effect on μ values, F (2.133, 211.198) = 95303.303, p < 0.001. Greenhouse-Geisser 

estimates of sphericity (ξ = 0.533) were used to correct the degrees of freedom. 

Figure 26 shows how μ vs. number of areas varies across different values of 

dt. This variation appears to be relatively consistent across the different dt values. 

100

150

200

250

300

350

8 9 10 11 12 13

M
iu

 (
μ

)

Frequency (Hz)

Mean μ

dt=10 dt=15 dt=20



59 

 

 

Figure 26. Mean μ values vs. total number of brain areas over different between-areas time 

intervals (dt). Frequency is set at 8 Hz in these model variations. Standard deviation (SD) error 

bars are represented for each line plot (albeit too small to be visible). 

 

 Furthermore, the interaction between all model parameters studied (f, N 

and dt) was also studied for effects on μ values. Results showed there was indeed 

a significant effect resulting from the interaction of all model parameters studied 

on μ values, F (9.393, 929.876) = 88.666, p < 0.001. For this study, Greenhouse-Geisser 

estimates of sphericity (ξ = 0.470) were once again used to correct the degrees of 

freedom. 

To further study these effects of model parameters on μ values, separate 

repeated measures ANOVA tests were also performed, all confirming the 

presented results. 

 

3.1.1.5  Effect of frequency on σ values 

 

After performing a repeated measures ANOVA to study the effect of the 

model parameters on σ values, results showed a significant main effect of 
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frequency on σ values, F (4.432, 438.804) = 2029.586, p < 0.001. Degrees of freedom were 

corrected using Huynh-Feldt estimates of sphericity (ξ = 0.886). 

Plots of σ vs. frequency were generated for models with dt = 10 ms and N 

between 10 and 30, with 5 area increments. Figure 27 displays the resulting plot 

for a model run with dt = 10 ms and N = 20 brain areas, as an example. Sigma (σ) 

values were shown to decrease with increasing frequency of the simulated alpha-

band oscillations, as can be seen in the plot. 

 

Figure 27. Mean σ values vs. frequency (Hz) for N = 20 and dt = 10 ms. Standard deviation (SD) 

error bars are also represented in the plot.  

 

3.1.1.6  Effect of the number of brain areas (N) on σ values 

 

Studying the effect of parameter N on σ values, degrees of freedom were 

corrected using Huynh-Feldt estimates of sphericity (ξ = 0.941). Results showed a 

significant main effect of the total number of brain areas on the standard deviation 

of the normal portion of the ex-Gaussian distribution (σ), F (1.881, 186.250) = 5390.018, 

p < 0.001.  
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Figure 28. Mean σ values vs. number of areas for f = 8 Hz and dt = 10 ms. Standard deviation 

(SD) error bars are also represented in the plot.  

 

Plots for σ vs. N were created for models with dt = 10 ms and frequency 

values ranging from 8 to 13 Hz, with 1 Hz increments. Figure 28 displays the 

resulting plot for the model run with dt = 10 ms and f = 8 Hz. Results show that, 

with an increasing number of brain areas to process the stimulus, σ values appear 

to decrease exponentially. 

 

3.1.1.7  Effect of the time between brain areas (dt) on σ values 

 

For this study, Greenhouse-Geisser estimates of sphericity (ξ = 0.725) were 

used to correct the degrees of freedom. Results showed a significant main effect of 

dt on σ values, F (1.450, 143.561) = 42331.111, p < 0.001. 

Figure 29 displays the σ vs. dt plot for the model run with f = 10 Hz and  

N = 15 brain areas. The plot displays a slight decrease between the first two dt 

values (10 and 15 ms) and a significant increase for the last dt value, equal to 20 

ms. 
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Figure 29. Mean σ values vs. time needed for the stimulus to be sent between brain areas (dt) for 

f = 8 Hz and N = 10 brain areas. Standard deviation (SD) error bars are also represented in the 

plot. 

 

3.1.1.8  Effect of parameter interactions on σ values 

 

Each combination of parameter interactions was studied for possible effects 

on σ values. The interaction between frequency and the number of brain areas was 

shown to have a significant effect on σ values, F (6.867, 679.876) = 330.962, p < 0.001. 

Degrees of freedom were corrected using Greenhouse-Geisser estimates of 

sphericity (ξ = 0.687). 

Figure 30 displays how σ vs. frequency varies across different N parameter 

values. σ variation across frequency appears to be substantially different for  

N = 10. 
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Figure 30. Mean σ values vs. frequency (Hz) over different numbers of brain areas (N). dt equal 

to 10 ms in these model variations. SD error bars are represented for each line plot. 

 

A significant effect on σ values was found for the interaction between 

frequency and the time between brain areas, F (6.227, 616.442) = 848.470, p < 0.001. 

Degrees of freedom were corrected using Greenhouse-Geisser estimates of 

sphericity (ξ = 0.623). 

Figure 31 displays how σ vs. frequency varies across different dt parameter 

values. As seen in Figure 29, from dt = 10 ms to dt = 15 ms, σ values appear to 

decrease consistently, but the same cannot be said for dt = 20 ms, were σ values 

are higher and with a different type of variation across frequency values. 
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Figure 31. Mean σ values vs. frequency (Hz) over different between-areas time intervals (dt). N 

equal to 10 brain areas in these model variations. Standard deviation (SD) error bars are 

represented for each line plot. 

 

 The interaction between the total number of brain areas and the time it 

takes for a stimulus to be sent between them was also found to have a significant 

effect on σ values, F (2.239, 221.689) = 2012.916, p < 0.001. Degrees of freedom were 

corrected using Greenhouse-Geisser estimates of sphericity (ξ = 0.560). 

Figure 32 shows how σ vs. number of areas varies across different values of 

dt. This variation appears to be quite substantial across different dt values, 

although, for high number of areas, the difference between dt = 10 ms and dt = 20 

ms appears to be very small. 
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Figure 32. Mean σ values vs. total number of brain areas over different between-areas time 

intervals (dt). Frequency is set at 8 Hz in these model variations. Standard deviation (SD) error 

bars are represented for each line plot (albeit some too small to be visible). 

 

 Moreover, the interaction between all model varying parameters was also 

shown to have a significant effect on σ values, i.e. on the standard deviation of the 

normal portion of the ex-Gaussian distribution, F (10.049, 994.860) = 255.656, p < 0.001. 

 

3.1.1.9  Effect of frequency (f) on τ values 

 

After performing a repeated measures ANOVA to study the effect of the 

model parameters on τ values, results showed a significant main effect of 

frequency on τ values, F (4.755, 470.705) = 21383.716, p < 0.001. Degrees of freedom 

were correct using Huynh-Feldt estimates of sphericity (ξ = 0.951).  

Plots of τ vs. frequency were generated for models with dt = 10 ms and N 

between 10 and 30, with 5 area increments. Figure 33 displays the resulting plot 

for a model run with dt = 10 ms and N = 20 brain areas. The mean and standard 

deviation of the exponential portion of the distribution, tau (τ), was likewise shown 

to decrease with increasing frequency. 
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Figure 33. Mean τ values vs. frequency (Hz) for N = 20 and dt = 10 ms. SD error bars are also 

represented in the plot. 

 

3.1.1.10  Effect of the number of brain areas (N) on τ values 

 

Results showed a significant main effect of the total number of brain areas 

on τ values, F (2, 198) = 25138.861, p < 0.001. 

Plots for τ vs. N were created for models with dt = 10 ms and frequency 

values ranging from 8 to 13 Hz, with 1 Hz increments. Figure 34 displays the 

resulting plot for the model run with dt = 10 ms and f = 8 Hz. Results show that, 

with an increasing number of brain areas to process the stimulus, τ values appear 

to increase logarithmically. 
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Figure 34. Mean τ values vs. number of areas for f = 8 Hz and dt = 10 ms. Standard deviation (SD) 

error bars are also represented in the plot. 

 

3.1.1.11  Effect of the time between brain areas (dt) on τ values 

 

Results showed a significant main effect of parameter dt on τ values,  

F (2, 198) = 12133.848, p < 0.001.  

Figure 35 displays the τ vs. dt plot for the model run with f = 10 Hz and  

N = 15 brain areas. The plot displays a slight increase between the first two dt 

values (10 and 15 ms) and a significant decrease for the last dt value (of 20 ms). 
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Figure 35. Mean τ values vs. time needed for the stimulus to be sent between brain areas (dt) for  

f = 8 Hz and N = 10 brain areas. Standard deviation (SD) error bars are also represented in the 

plot. 

 

3.1.1.12  Effect of parameter interactions on τ values  

 

Each combination of parameter interactions was studied for possible effects 

on τ values. The interaction between frequency and the number of brain areas was 

shown to have a significant effect on τ values, F (9.067, 897.677) = 404.646, p < 0.001. 

Degrees of freedom were corrected using Huynh-Feldt estimates of sphericity  

(ξ = 0.907). 

Figure 36 displays how τ vs. frequency varies across different N parameter 

values. Mean τ values appeared to decrease consistently with increasing frequency 

across all tested N values, although for higher numbers of areas mean τ values 

appear to be more proximate. This is consistent with the logarithmic growth τ 

values display on Figure 34. 

Studying the effect of the interaction between frequency and the time 

between brain areas on τ values, degrees of freedom were corrected using Huynh-

Feldt estimates of sphericity (ξ = 0.904). Results showed a significant effect of the 

interaction between f and dt on τ values, F (9.041, 895.053) = 632.145, p < 0.001. 
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Figure 36. Mean τ values vs. frequency (Hz) over different numbers of brain locations (N). dt equal 

to 10 ms in these model variations. SD error bars are represented for each line plot. 

Figure 37 displays how τ vs. frequency varies across different dt parameter 

values. As seen in Figure 35, from dt = 10 ms to dt = 15 ms, τ values appear to 

decrease consistently, but the same cannot be said for dt = 20 ms, were τ values 

dependency on frequency is different. 

 

Figure 37. Mean τ values vs. frequency (Hz) over different between-areas time intervals (dt). N 

equal to 10 brain areas in these model variations. Standard deviation (SD) error bars are 

represented for each line plot. 
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The interaction between the number of brain areas that process the 

stimulus and the time needed to send the stimulus between brain areas was also 

found to have a significant effect on τ values, F (3.740, 370.281) = 2688.919, p < 0.001. 

Degrees of freedom were also corrected using Huynh-Feldt estimates of sphericity 

(ξ = 0.935). 

Figure 38 shows how τ vs. number of areas varies across different values of 

dt. This variation appears to relatively consistent for dt values between dt = 10 ms 

and dt = 20 ms, but not for dt = 15 ms. 

 

Figure 38. Mean τ values vs. total number of brain areas over different between-areas time 

intervals (dt). Frequency is set at 8 Hz in these model variations. Standard deviation (SD) error 

bars are represented for each line plot. 

 

Finally, we studied the effect of the interaction between all varying 

parameters (f, N and dt) on τ values. Results showed a significant effect of this 

interaction on the mean and standard deviation of the exponential portion of the 

ex-Gaussian distribution (τ), F (14.108, 1396.688) = 85.967, p < 0.001. Degrees of freedom 

were corrected using Greenhouse-Geisser estimates of sphericity  

(ξ = 0.705). 
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3.1.2  Interim summary 

 

Our analyses showed that increasing alpha frequency leads to a decrease in 

μ (that represents the average reaction time value for the Gaussian component of 

the distribution), a decrease in σ (the variability) and a decrease in τ (the 

exponential part or tail of the distribution). To provide a visual example of these 

differences, histogram plots of RT data obtained for different frequency values can 

be seen in Figure 39. With increasing frequency (from A – B), we can see a decrease 

in the mean RT, in the variability of responses (A plot has a wider distribution 

than plot B) and in the exponential tail of the distribution (B plot has a smaller 

number of abnormally long reaction times).  These observations suggest that 

increasing alpha frequency leads to faster and less variable reaction times. 

 

   

Figure 39. Histogram plots for simulated RT data obtained for the model run with N = 10, dt = 10 

ms and different frequencies. A. Results obtained for frequency equal to 8 Hz, with a mean RT of 

420.59 ms and standard deviation of 136.155 ms. B. Results obtained for frequency equal to 13 Hz, 

with mean RT equal to 349.77 ms and standard deviation equal to 73.45 ms. 
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Furthermore, increasing the number of areas involved in the signal 

processing increased μ and τ but decreased σ, suggesting that increasing the 

number of areas increased the mean reaction time, as expected, decreased the 

variability of the Gaussian part of the distribution but increased the exponential 

part of the distribution, suggesting that it increased the number of particularly 

slow reactions. A visual example of these differences can be observed in the plot 

histograms of Figure 40. With increasing number of areas, there is a clear increase 

in the mean reaction time, and increase in the number of extreme (long) responses, 

and a narrower distribution for the normal part of the distribution. 

 
 
Figure 40. Histogram plots for simulated RT data obtained for the model run with f = 10 Hz, dt = 

10 ms and different N values. A. Results obtained for N = 10, with a mean RT of 245.59 ms and 

standard deviation of 65.114 ms. B. Results obtained for N = 30, with mean RT equal to 497.19 ms 

and standard deviation equal to 135.219 ms. 

 

Finally, changing the time it takes for information to travel between brain 

nodes (dt) had a more complex effect on reaction time distributions. Increasing dt 

appears to increase μ and σ, decrease τ, suggesting longer reaction times with 

increasing number of areas involved, as expected, increased variability on the 

Gaussian part of the curve but a decrease on the number of particularly long 

reaction times. Figure 41 displays histogram plots that provide a visual example 

for these differences. With increasing dt, there is a clear decrease in the number 
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of extreme (long) responses, and a clear increase in the mean RT. No clear visual 

differences can be spotted in terms of variability of the RTs. 

Figure 41. Histogram plots for simulated RT data obtained for the model run with f = 10 Hz, N = 

10 ms and different dt values. A. Results obtained for dt = 10 ms, with a mean RT of 245.59 ms 

and standard deviation of 65.114 ms. B. Results obtained for dt = 20 ms, with mean RT equal to 

344.71 ms and standard deviation equal to 66.956 ms. 

 

3.2  Analysis of empirical reaction time data 

 

3.2.1  Effect of group and task type on empirical ex-Gaussian 

parameters 

 

3.2.1.1  Expected results 

 

Based on current literature, one could expect significant differences in the 

RT data distributions for tasks of different levels of complexity. Studies have 

shown that, when processing more complex stimuli (Hochstein & Ahissar, 2002) 

(Okada, et al., 2010), or when faced with indecision (Kaufman, Churchland, Ryu, 

& Shenoy, 2015) (Ratcliff & McKoon, 2008), subjects take more time to respond, 
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due to the need of more processing in these cases than when simply responding to 

detect the presence of a simple sensory stimulus. This suggests we should expect 

a significant increase in mean RT for the more complex task (go/no-go), when 

compared to the simple detection RT task, in the variability of RTs and, possibly, 

in the number of abnormally long reaction times. This would mean an increase in 

μ, σ and τ for the go/no-go task RT data (when compared to the simple RT task). 

How RTs vary with age has also been an interest point for many researchers, and 

studies show RTs tend to slow with age, although this slowing has been mainly 

attributed to pathological alterations in the brain and slower motor responses. 

Nonetheless, studies with healthy young and older adults have shown significant 

differences in RT distributions, namely that the performance of older adults was 

slower (higher μ), more variable (higher σ), and more extreme (higher τ) (McAuley, 

Yap, Christ, & White, 2006), so the same differences should be expected in our 

results. 

 

3.2.1.2  Effect of group and task type on μ values 

 

Table 5 provides a résumé of the descriptive statistics resulting from SPSS’s 

repeated measures ANOVA, namely mean and standard deviation. We can 

observe that the average μ values were higher for younger subjects compared to 

the older subjects, in both detection and go/no-go tasks. This tells us that the 

younger subjects took, on average, more time to complete each task than their 

older counterparts. This result was unexpected as it is reported that older adults 

take longer to respond in sensorimotor tasks.  

Furthermore, for all subject groups, the average amount of time each 

subject took to respond (related to μ) was larger for the go/no-go task than for the 

simple detection task. This was expected, since the latter involved a simple 

stimulus detection while the former involved stimulus discrimination before 

response decision. Figure 42 shows a bar plot for average μ values with standard 
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deviation error bars. It is clear that for both age groups, mean μ was higher for 

the go/no-go task.  

 

Table 5. Descriptive statistics for μ values separated by factor combinations. DRT and GRT 

represent the simple detection and go/no-go types of task, respectively. N stands for the sample 

size. 

Task Age group Mean Std. Deviation N 

DRT 

 
Young 285.791 49.154 29 

Old 260.296 42.306 28 

Total 273.267 47.290 57 

GRT 

 

Young 325.784 51.323 29 

Old 320.980 58.507 28 

Total 323.424 54.528 57 
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Figure 42. Bar plot for average μ values resulting from empirical data. Error bars represent ± 1 

standard deviation (SD). For both age groups, mean μ (“miu”) values are higher for the go/no-go 

(GRT) task than for the simple detection (DRT).  

 

Statistical results showed that the type of task had a significant effect on μ 

values, F (1, 55) = 94.494, p < 0.001, which can be justified by the larger average μ 

values we see for the go/no-go task, when compared to the simple detection task. 

A marginally significant effect was found for the interaction between the type of 

task and the age group of the subjects, F (1, 55) = 3.991, p = 0.051. This is reflected 

on the larger difference between task type in the older group in relation to the 

younger group. As a between-subjects factor, results showed no significant effect 

of age group on μ, F (1, 55) = 1.498, p = 0.226. 

 

3.2.1.3  Effect of group and task type on σ values 

 

Table 6 provides a résumé of the descriptive statistics resulting for σ values, 

namely mean and standard deviation. For the simple detection task, mean σ 
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values were higher for younger individuals than for their older counterparts. 

However, the same cannot be said for the go/no-go task, where subjects from the 

older group obtained the biggest mean σ values. Overall, mean σ values were 

larger for the go/no-go task, suggesting a bigger variability of the normal part of 

the distribution for the more complex task. 

 

Table 6. Descriptive statistics for σ values separated by factor combinations. DRT and GRT 

represent the simple detection and go/no-go types of task, respectively. N stands for the sample 

size. 

 
Age group Mean Std. Deviation N 

DRT 

 
Young 28.233 13.791 29 

Old 20.899 11.221 28 

Total 24.630 13.019 57 

GRT 

 

Young 33.829 16.199 29 

Old 36.226 28.788 28 

Total 35.006 23.070 57 

  

Figure 43 displays a bar plot for average σ values with standard deviation 

error bars. For both age groups, mean σ was higher for the go/no-go task. It is also 

noticeable a larger standard deviation of the mean for σ values of an older age 

performing the go/no-go task. 
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Figure 43. Bar plot for average σ values resulting from empirical data. Error bars represent ± 1 

standard deviation (SD). For both age groups, mean σ (“sigma”) values are higher for the go/no-go 

(GRT) task than for the simple detection (DRT).  

 

Statistical results showed the type of task performed had a significant effect 

on σ values, F (1, 55) = 13.099, p = 0.001, but no significant effect was found for the 

interaction between the type of task and the age group, F (1, 55) = 2.834, p = 0.098. 

As a between-subjects factor, results showed no significant effect of age group on 

σ values, F (1, 55) = 0.377, p = 0.542, which is justified by the variability in sigma 

values within each group for each task condition. 

 

3.2.1.4  Effect of group and task type on τ values 

 

Table 7 provides a résumé of the descriptive statistics resulting for τ values, 

namely mean and standard deviation. For the simple detection task, τ values for 

the younger subjects were, on average, larger than for the older subjects. On the 

other hand, the opposite occurred for the go/no-go task, where the older subject 
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group’s mean τ values were bigger than those of their younger counterparts. For 

both age groups, mean τ values were larger for the go/no-go task than for the 

simple detection. This suggests an overall increase in the number of particularly 

slow reactions when going from the simple detection task to the, more complex, 

go/no-go task. Figure 44 shows a bar plot for average τ values with standard 

deviation error bars.  

 

Table 7. Descriptive statistics for τ values separated by factor combinations. DRT and GRT 

represent the simple detection and go/no-go types of task, respectively. N stands for the sample 

size. 

Task Age group Mean Std. Deviation N 

DRT 

 
Young 64.931 24.705 29 

Old 54.980 20.648 28 

Total 60.043 23.150 57 

GRT 

 

Young 75.202 22.653 29 

Old 86.200 30.383 28 

Total 80.604 27.064 57 

 

  

 



80 

 

 

Figure 44. Bar plot for average τ values resulting from empirical data. Error bars represent ± 1 

standard deviation (SD). For both age groups, mean τ (“tau”) values are higher for the go/no-go 

(GRT) task than for the simple detection (DRT).  

 

Statistical results showed a significant main effect of the type of task on τ 

values, F (1, 55) = 30.624, p < 0.001. This reflects the difference seen on average τ 

between task types. The interaction between the type of task performed and the 

age group of the subject was also found to be significant, F (1, 55) = 7.807, p = 0.007, 

reflecting the larger difference between tau values in the go/no-go task in 

comparison to the detection task, in the older group in comparison to the younger 

group. As a between-subjects factor, results showed no significant effect of age 

group on τ values, F (1, 55) = 0.377, p = 0.542, which is justified by the disparities 

seen on how mean τ varies between age groups in each task. 
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3.2.1.5  Interim summary 

 

Overall, our analyses show that there is a significant main effect of the type 

of task performed, and all parameters (μ, σ, τ) were, on average, higher for the 

go/no-go task, which is more complex than the detection task. Although μ values 

were, on average, higher for younger subjects on both tasks, results did not show 

a significant effect of the age group on μ values. In fact, the age group of the 

subjects did not detain a significant effect on any ex-Gaussian parameter. The 

interaction between the type of task and the age group of the subject that performs 

it was marginally significant for mean μ and significant for mean τ values.  

 Together these results suggest that an increasing complexity of the task 

increases mean reaction time, the variability of the Gaussian part of the 

distribution, and the number of particularly slow reactions (provided by the 

exponential portion of the distribution). Although the age group alone does not 

have a significant effect on the ex-Gaussian parameters, its interaction with the 

type of task somehow affects the number of particularly slow reactions, as seen 

through Figures 42 and 44, where the differences in these parameters, between 

tasks, were higher for older subjects than for their younger counterparts. Although 

this difference can also be seen in Figure 43, the high values of standard deviation 

for the mean σ values probably impede the significance of the interaction between 

age group and task type for σ values. 

 Thus, in conclusion, although older people had a better performance in the 

simple RT task, their performance deteriorated more (was slower and more 

variable) in the go/no-go task than the performance of younger people. 
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3.3  Fitting the linear ballistic accumulator 

 

Our adapted LBA model scripts were unable to provide good fitting for most 

of our empirical RT data. Examples of the LBA model output are represented in 

Figure 45, and represent the majority of output results obtained by our adapted 

LBA toolbox scripts.  

 

Figure 45. Two case results for fitting the LBA model to our empirical data. Plots represent 

reaction time data histograms and model predictions (line plots) for two different subjects. A. 

Extreme case of poor LBA model fitting. B. Although a better fit to the data when compared to 

figure A, these LBA model predictions are likewise representative of a poor fitting to the data. 

Plots were generated using the LBA MATLAB® toolbox. 

  

The poor fitting of our empirical data to the LBA model results further 

emphasized the need for a different model to explain reaction time variability in 

tasks requiring a single response output. 

 

 

 

A B 
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3.4  Fitting our model to empirical results 

 

To fit our model to the empirical results, an automate search was run in 

MATLAB® to obtain the sets of model parameters that provided the minimal sum 

of squared errors, for each combination of experimental factors. The resulting best-

fitting sets of model parameters for each experimental task condition are 

displayed in Table 8.  

 

Table 8. Final sets of parameters that best minimized the sum of squared errors (SSE) for each 

experimental factor combination (DRT young, DRT old, GRT young, GRT old). 

Condition 
Best-fitting model parameters 

SSE 
f (Hz) N dt (ms) 

DRT young 10.4 10 20 79.866 

DRT old 12.8 10 19 37.194 

GRT young 12 23 12 202.798 

GRT old 11.8 24 11 271.357 

 

 As can be seen in the SSE column on Table 8, results for the DRT task 

incurred lower values of sum of squared errors, hence higher resemblance between 

the model results and the empirical data, than those for the GRT task. This could 

be because the model was indeed designed to reproduce the mathematics of 

processing a simple stimulus and indicating its detection, instead of considering a 

“choice” factor. With that being said, a choice task would still involve the reception 

of a stimulus, its processing throughout a number of areas, and the decision to 

press the “detection” button. 

 These results suggest that, in a simple detection task, the main difference 

between younger and older subjects lies on the frequency of the alpha oscillations 

that modulate their neuronal activity. For the go/no-go task, no major differences 

were apparent between the sets of parameters that best fit the younger and older 
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groups. A slight difference in frequency (0.2 Hz), a slight difference in the number 

of cortical areas (1 area of difference), and a slight difference in the stimulus 

travelling time between areas (1 ms).  

 Between the types of task, DRT and GRT, results showed major differences 

in the number of areas (N) and stimulus travelling time between areas (dt), where, 

for a the more complex task (GRT), N appears to double its DRT resulting value, 

and dt appears to decrease to half its DRT resulting value. These results suggest 

that, for a more complex task, more areas are required to process the stimulus, 

but with a smaller average stimulus travelling time between them. This could 

indicate a bigger proximity between the cortical areas that process this stimulus 

in a more complex paradigm. 

 Since, with these results, we were able to obtain an ordered list of model 

tests that best fit each experimental task condition, we sought for major 

differences between the best-fitting tests for each condition. No major differences 

were found between these “best-fitting” sets, and hence we considered the first on 

the list to be satisfying. The top sets of model parameters in the final, ordered, list 

are presented in Appendix A.IV.   

 In order to have a better notion of which modelled ex-Gaussian parameters 

were farthest from the empirically found values, for each condition, we also 

analysed the squared errors separately, and saw, for each “winning” set of 

parameters, which parameter(s) had the biggest squared error and, hence, least 

resembled the empirical ex-Gaussian parameters that define the experimental RT 

data distribution. The squared errors for each ex-Gaussian parameter, for each 

condition, are displayed in Table 9. It is noticeable that, for the simple detection 

task, the ex-Gaussian parameter that was most different between simulated and 

empirical data was τ. For the go/no-go task, it was σ that most differed between 

modelled and empirical data. 
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Table 9. Separate squared errors (for μ, σ and τ) for each of the best-fitting sets of model 

parameters within each experimental condition (DRT young, DRT old, GRT young, GRT old). 

 
Squared error 

μ σ τ 

DRT young 

(f = 10.4, N = 10, dt = 20) 
21.887 20.236 37.742 

DRT old 

(f = 12.8, N = 10, dt = 19) 
9.152 2.633 25.409 

GRT young 

(f = 12, N = 23, dt = 12) 
62.768 137.653 2.378 

GRT old 

(f = 11.8, N = 24, dt = 11) 
1.821 269.499 0.038 
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4  Discussion 

 

4.1  Fitting the LBA model to simple RT data 

 

The adaptation of the linear ballistic accumulator to fit our simple detection 

RT data was shown to be unsuccessful. We believe there are several reasons that 

may justify these results. By removing both the “competitive” component of the 

model, by having only one evidence accumulator, and the accuracy component, due 

to the absence of right or wrong responses, we may have changed the model 

sufficiently for it not to work. However, when studying the mathematics of the 

model, we could not find a mathematical justification for this influence, since each 

accumulator is processed independently and the accuracy component served only 

to, independently, calculate a different accumulator of “wrong” responses. 

Nonetheless, this reason gained strength when we ran our adapted scripts with 

the example data from the LBA toolbox (using only RT data for the correct 

responses) and were still unable to generate good model predictions.  

Our data sample size could have also influenced the poor quality of the 

model fittings, since most of our datasets had a sample size below 100 observations 

(average sample size was 69.5 observations). Studies have shown that sample 

sizes of at least 100 observations are necessary for plausible parameter estimation, 

although using much larger samples is highly motivated (Donkin, Averell, Brown, 

& Heathcote, 2009). In an attempt to study if this was affecting our results, we 

joined data from 10 subjects for LBA model fitting, although no improvement was 

seen on the results. It is, however, worth noting that we gathered data from 10 

different subjects, not a sample size 10 times larger for one subject, which could 

also contribute to the poor fitting, due to eventual inter-individual differences in 

the RT data.  

We recognize that a major setback in our LBA fitting was the choice of a 

good starting point (i.e. initial parameters). We addressed several different 
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approaches to select starting points for model fitting, based on the literature 

(Donkin, Brown, & Heathcote, 2011). Among those approaches, we chose 

parameters that had been shown to produce reasonable predictions in choice RT 

data, performed repeated searches, where each new search used the best-fitting 

set of parameters from the last as the starting point, and iterated through 100 

different start points, where the one leading to the best fit (in that search) was 

then used as the start point in the following search. None of these led to reasonable 

model predictions to our data. 

Upon the obtained results, we arrived at the conclusion that using the linear 

ballistic accumulator model to fit our simple RT data was not a good path, and 

abandoned this pursue. These results emphasized the need for a computational 

model capable of explaining reaction time variability in tasks with single response 

output. 

 

4.2  Computational model of the effect of alpha 

oscillatory phase on the timing of motor responses  

 

4.2.1  Phase of alpha oscillations and RT data 

 

By modelling a progressive stimulus processing dependent on the phase of 

alpha-band oscillations, we were able to obtain simulated RT data that resembled 

the overall shape of RT distributions found in observed data (an ex-Gaussian 

distribution), which goes in agreement with the conclusion made by Coon et al. 

(2016) that alpha oscillatory phase modulates the timing of neuronal activity and, 

therefore, resulting behaviour.  

We suggest further studies could be made by changing the phase interval 

in the optimal window for stimulus processing from 120-240º to 90-240º in the 

model design. This suggestion comes from the fact that, although the optimal 

phase window was mainly between 120-240º (our modelled phase value range) in 
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Coon et al.’s study, their results suggested that activity onset might also occur 

between 90º and 240º. Further studies are also encouraged by altering the model’s 

definition of a constant alpha band frequency throughout all task-related cortical 

areas. Although studies show cortical activity with frequency in the alpha band 

can be prominent throughout the cortex, and rhythms with a frequency of 

oscillation within the alpha band are shown to be related to activity in our 

modelled areas (for sensory stimulus processing) (Coon, et al., 2016) (Niedermeyer 

& Lopes da Silva, 1982) (Klimesch, 1999), they also show that different cortical 

regions may have oscillatory activity with different peak alpha frequency values, 

which our model currently does not consider. 

 

4.2.2  Model parameters influence RT data and the shape of 

their ex-Gaussian distributions 

 

All model parameters were shown to have a significant effect on the ex-

Gaussian parameters that define the resulting distributions of our simulated RT 

data. The same was true for every interaction between them. 

 Our analyses showed that increasing alpha frequency leads to a decrease in 

μ (which represents the mean of the Gaussian portion of the distribution), σ (the 

standard deviation of the Gaussian portion of the distribution) and τ (the mean 

and standard deviation of the exponential part of the distribution, i.e. the tail seen 

in ex-Gaussian distributions). These results suggest that increasing alpha 

frequency leads to faster, less variable, and with fewer particularly long reaction 

times. Peak alpha frequency has been shown to decline with age (Niedermeyer & 

Lopes da Silva, 1982) (Klimesch, 1999), particularly when cerebral pathology is 

involved. Response times have been shown to slow (i.e. increase) with old age, with 

their RT distributions also reported to be wider. This suggests that, for elderly 

subjects performing a RT task, their increased average reaction time (that would 

reflect on higher μ values) and wider distribution of RTs (that would reflect on 

higher σ values) could be a consequence of their lower peak alpha frequency. 
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 Moreover, our results suggest that increasing the number of cortical areas 

that process the stimulus increases the mean reaction time, as would be expected, 

decreases the variability of the simulated RTs, but increases the number of 

particularly slow reactions. Increasing N lead to increases in both μ and τ, and a 

decrease in σ. The decrease in σ was exponential, while the increase in τ was of a 

logarithmic nature, suggesting diminished variability in these parameters as N 

increases. It is generally understood that, when processing more complex sensory 

information, the brain not only takes more time to elaborate a response, but also 

requires more cortical areas to process stimuli, as demonstrated by studies that 

clarified the hierarchical organization of various sensory systems (Hochstein & 

Ahissar, 2002) (Okada, et al., 2010) (Savic, Gulyas, Larsson, & Roland, 2000). 

Furthermore, studies have shown that moments of behavioural indecision are 

accompanied by moments of neural indecision, where neural activity changed its 

location between locations related to different choices (Kaufman, Churchland, 

Ryu, & Shenoy, 2015). These results suggest that, for a more complex sensory 

input, or for different levels of indecision, information processing would be 

transmitted by either more cortical areas or “back-and-forth” between choice-

related cortical areas, in moments of indecision (which could, in our model, reflect 

on higher values of N being associated with higher μ and τ values). Our results 

seem to agree with these speculations. 

 Changes in the stimulus travelling time between cortical areas (dt) had 

more complex effects on the ex-Gaussian parameters. Increasing dt resulted in 

increases in the mean RT, as expected, but had more complex effects in σ and τ. 

Overall, increasing dt appears to increase σ and decrease τ, but not in a linear 

manner. With all other parameters fixed, varying dt from 10 ms to 15 ms lead to 

a slight decrease in σ and a slight increase in τ, but values for dt = 20 ms showed 

opposite results, with a large increase for mean σ and a large decrease for τ. 

Further studies, with a wider range of values for dt, would be necessary to have a 

better notion of how this parameter affects the variability and tail of the RT ex-

Gaussian distribution. 
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4.3  Empirical RT data 

 

4.3.1  Task type influences RT data and the shape of their ex-

Gaussian distributions 

 

We showed that the type of task performed has a significant main effect on 

the ex-Gaussian parameters and, hence, on the overall values and shape of the RT 

distributions. Specifically, our analyses demonstrated that all parameters were, 

on average, higher for the go/no-go task than for the simple detection task. This 

suggests that increasing task complexity leads to an increase in all ex-Gaussian 

parameters. An increase in complexity would, therefore, result in longer reactions 

(higher μ), as expected, that could be explained by an increased number of areas 

(N) used for processing or by an increased average time for stimulus travelling 

between areas (dt), as previous results suggest. A need for a higher number of 

cortical areas for processing would be compatible with a more complex task. An 

increase in σ with increased complexity suggests higher variability in the reaction 

times for more complex tasks, which could be, for example, explained by a bigger 

component of indecision from the subject, related with a more complex decision. 

We showed that higher values of σ are associated with dt values either equal to 10 

ms or 20 ms (or in close proximity to these), and with a decrease in f or N. Increased 

task complexity also leads to increases in τ and can, therefore, be associated with 

more abnormally long reaction times. From our previous results, we saw that an 

increase in N leads to higher τ values, which intensifies the argument for higher 

numbers of cortical areas being associated with the stimulus processing in a more 

complex task. Increasing τ values can also be the result of decreases in alpha 

frequency, suggesting the possibility that subjects with lower alpha frequency 

rhythms might have a tendency for presenting more extreme values of reaction 

times.   

 No ex-Gaussian parameter was solely significantly affected by the age group 

of the subjects. However, the interaction between both factors, age group and type 
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of task, was shown to be significant for τ and μ values (although, for the latter, it 

was marginally significant, p = 0.051), where we were able to see that the 

differences in these parameters, between tasks, were higher for older subjects than 

for their younger counterparts. This may suggest that older subjects have a more 

difficult adaptation to the complex task than to the simple one (since average 

reactions increase more with higher task complexity and lead to more abnormally 

long reactions than for younger subjects). Although, by analysing Figure 43, we 

can also notice a higher variation (in mean σ) between tasks for older subjects, the 

interaction between age group and the type of task was not significant. It is also 

apparent the high standard deviation for mean GRT task σ values of older 

subjects, which could justify the non-significance of this interaction. 

 Overall, our results showed that the complexity of the task performed has a 

significant effect on the overall values and shape of the RT ex-Gaussian 

distribution, which suggests significant differences in the model parameters would 

be obtained if we tried to model the stimulus processing for both tasks. 

 

4.4  Fitting our model to empirical reaction time data 

 

We were able to find sets of model parameters that lead to RT distributions 

that best resembled those obtained empirically. It is, however, worth mentioning 

that these sets of parameters were not the result of an automatic search algorithm 

that, by itself, tests the model for different parameters and returns those that 

provide the best results, but of manual model tests, with sets of parameters chosen 

by the user, that are then automatically processed in order to find the best fitting 

results. Searching with an automatic search algorithm might provide a more 

thorough adjustment of our model’s parameters.  

 Our best-fitting sets of parameters were relatively similar within the same 

task (between age groups), and noticeably different between task types, as would 

be expected based on the results for the ex-Gaussian fitting to empirical RT data. 

The quality of the fitting was assessed by the sum of squared errors (SSE) between 
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the parameters, and the lowest (hence best) values for SSE were discovered for the 

model fitting a simple detection task. For this task, the main difference (in the 

model parameters) between age groups was in the frequency of alpha oscillations, 

where for younger subjects this value was much smaller (= 10.4 Hz) than for the 

older subjects (= 12.8 Hz). Alpha peak frequency has been shown to decrease with 

older age (Clark, et al., 2004), which does not reflect on our results. However, this 

decrease has been shown to reflect some degree of cerebral pathology, and healthy 

individuals appear to show little to no decline in alpha frequency (Niedermeyer & 

Lopes da Silva, 1982) (Grandy, et al., 2013). It is also worth noting that the 

subjects in our older age group were between 52 and 70 years old and, hence, not 

representative of an elderly age. However, this would still not explain an increase 

in alpha frequency for this group of subjects. N was equal to 10 cortical areas in 

both age groups, and dt was equal to 20 ms for the younger group and 19 ms to 

their older counterparts. For the go/no-task, no major differences were apparent 

between age groups. 

 When comparing the results between tasks, the main discovery is that our 

computational model was able to fit both tasks with changes in parameters that, 

in our perspective, appear to make sense. When increasing task complexity (i.e. 

comparing GRT task results to those obtained for the DRT task), our results 

suggest that more cortical areas would be needed to process the stimulus (higher 

N – approximately double), and that these areas would be in closer proximity 

(lower dt – approximately half) to each other. Given what we know about the 

cortical processing of auditory sensory data, namely that more areas in the 

auditory cortex are required for discrimination between different stimuli than for 

simple sound detection, and that these are in close cortical proximity to each other, 

these results seem to be in agreement with what would be expected to change in 

the stimulus processing, when comparing the simple detection of an auditory 

stimulus with a more complex auditory discrimination task paradigm. 

 The smaller SSE values for the simple detection compared to the go/no-go 

task could be explained by the fact that our computational model was, indeed, 

designed to reproduce the mathematics behind the processing of a simple auditory 
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stimulus, with no consideration for a “choice” factor. Since the more complex, 

go/no-go, task introduces a component of choice between pressing or not pressing 

a button, depending on the stimulus itself, this could introduce a bigger indecision 

factor on whether to press the button. 

 We were able to detect, for each task, which simulated ex-Gaussian 

parameters (i.e. obtained from simulated RT data) were most different from those 

obtained in the empirical RT data fitting. For the simple detection task, the biggest 

fitting differences appear to be in the tail of the ex-Gaussian distribution, i.e. in 

the number of abnormally long reactions. For the go/no-go task, the biggest fitting 

differences occurred in σ values, hence, in the overall variability of reaction times. 

In here, the difference between empirical and simulated data was highest 

suggesting that the model had difficulty in modelling the Gaussian variability of 

the go/no-go RT data.  

 Overall, we were pleased with the resemblance between our simulated RT 

data and real RT data, as well as with the model’s adaptation to the different 

tasks. Further studies with variations in all model parameters are encouraged, as 

well as for a wider permissive window of phase-modulated neuronal activity (90-

240º), and for application to RT data from sensorimotor tasks using different 

sensory input (e.g. visual). Particularly, we encourage testing different values of 

the constant time parameters, t0 and texe, which are for sensory information arrival 

at the cortex and motor execution purposes, respectively. Different ranges of t0 

values would be encouraged considering the different range of values proposed by 

existing literature (Mahajan & McArthur, 2012) (Jain, Bansal, Kumar, & Singh, 

2015). texe represents the time needed for motor execution only, but, since our 

literature-based chosen value was selected, for lack of a known value, from the 

fastest recorded motor response, this parameter could prove to be higher, in 

reality. Alterations in these values could affect the results, particularly for the 

number of cortical areas involved in the performance of the sensorimotor task (N) 

and in the time it takes for information spike volleys to be sent from one area to 

the next (dt). 
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5  Conclusions & future work 

 

The high within-subject variability in human behavioural response timing, 

when repeatedly performing the same task, has long encouraged researchers to 

uncover the underlying mechanisms of cognition and sensory stimulus processing. 

Current reaction time models attribute the source of this variability to variability 

in the evidence accumulation process, before making a response. Yet, recent 

findings suggest that the phase of alpha oscillations in the brain modulates the 

timing of neuronal population activity, opening the possibility that RT variability 

arises from variability in the timing of information transmission in the brain. We 

computed a model focusing on this very aspect, and are overall pleased with the 

resemblance between our model’s simulated data and real RT data, namely in the 

successful fitting of our RT distributions (which has long been considered a critical 

test for a RT model’s success). 

Our results appear to be in agreement with what would be expected in what 

comes to change in RT distributions between tasks of different complexity, namely 

the increasing number of cortical areas that would be involved in sensory stimulus 

processing for more complex tasks and the closer proximity these areas would have 

from each other. Our model parameters seem to have the expected effects on the 

RT distribution (i.e. their ex-Gaussian parameters), such as, by lowering alpha 

frequency, increasing the mean reaction times, which could be expected 

considering the studies relating activity in lower alpha frequency (e.g. in children 

and elderly adults) to longer reaction times. Although no significant main effect 

was found for the age group of the subjects in the empirical RT data, a significant 

interaction was shown between age group and type of task, and higher variability 

was shown for older subjects in both tasks, which goes in agreement with reported 

literature.  

Our results support the hypothesis that variability in the timing of human 

behaviour, at least when considering the cortical processing of a simple sensory 
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stimulus, can be explained by an alpha-band phase-dependent modulation of the 

timing of neuronal population activity. 

Further studies are encouraged for variations in the model parameters, 

such as the constant times considered for sensory input to the cortex and motor 

response execution, as are for changes in some assumptions made by the model, 

namely in attributing the same frequency value for alpha activity in all task-

related cortical areas. Studies altering the permissive window of phase-modulated 

neuronal population activity, to include the entirety of the through’s descending 

slope (90-240º). This computational model was designed to be applied to RT data 

originated from different types of sensory input, such as visual, and testing it for 

RT data originated from tasks involving other types of sensory input could help 

further analyse whether modulation by alpha phase-dependent neuronal 

population activity can explain variability in response times in all sensory 

systems. 
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Appendix 

 

A.I – Descriptive statistics for model runs varying all 

model parameters 

 

Table 1. Descriptive statistics for μ values across variations in all model parameters. Obtained 

through SPSS. 

Model parameters Descriptive statistics (μ) 

dt (ms) N f (Hz) Mean 
Std. 

Deviation 

Sample 

Size 

10 10 8 189.63610 2.315289 100 

10 10 9 186.89680 2.132793 100 

10 10 10 185.12780 2.202879 100 

10 10 11 182.79610 1.689894 100 

10 10 12 180.95240 1.795667 100 

10 10 13 179.40790 2.039473 100 

10 15 8 242.79840 1.744308 100 

10 15 9 240.76500 1.423557 100 

10 15 10 238.56860 1.412056 100 

10 15 11 237.07800 1.345738 100 

10 15 12 235.56950 1.483151 100 

10 15 13 233.90040 1.212888 100 

10 20 8 289.57000 1.782514 100 

10 20 9 287.51110 1.688859 100 

10 20 10 285.61520 1.576044 100 

10 20 11 283.59870 1.351171 100 

10 20 12 282.24440 1.365945 100 

10 20 13 280.61060 1.438376 100 



104 

 

15 10 8 234.31340 1.675351 100 

15 10 9 230.94850 1.423198 100 

15 10 10 228.99610 1.351602 100 

15 10 11 227.10530 1.330084 100 

15 10 12 226.36200 1.420463 100 

15 10 13 225.00990 1.233840 100 

15 15 8 306.51860 1.523549 100 

15 15 9 303.66240 1.313057 100 

15 15 10 301.03370 1.447680 100 

15 15 11 299.20720 1.278345 100 

15 15 12 298.20580 1.257691 100 

15 15 13 296.85160 1.276636 100 

15 20 8 379.99600 1.629438 100 

15 20 9 377.26510 1.326006 100 

15 20 10 374.86960 1.312388 100 

15 20 11 372.97100 1.335341 100 

15 20 12 371.84950 1.200285 100 

15 20 13 370.65800 1.241962 100 

20 10 8 308.50870 5.090547 100 

20 10 9 298.08890 6.062109 100 

20 10 10 287.73230 6.631049 100 

20 10 11 274.56240 5.534237 100 

20 10 12 269.06260 2.441501 100 

20 10 13 267.06140 2.463828 100 

20 15 8 432.63830 2.668756 100 

20 15 9 425.79070 2.555781 100 

20 15 10 419.40040 2.141465 100 

20 15 11 413.43140 1.960281 100 

20 15 12 408.06440 2.267022 100 

20 15 13 404.81400 2.015786 100 

20 20 8 524.79300 2.799343 100 
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20 20 9 518.75590 2.447907 100 

20 20 10 512.91900 2.173786 100 

20 20 11 506.66850 2.128738 100 

20 20 12 502.06840 2.016155 100 

20 20 13 498.58090 1.823896 100 
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Table 2. Descriptive statistics for σ values across variations in all model parameters. Obtained 

through SPSS. 

Model parameters Descriptive statistics (σ) 

dt (ms) N f (Hz) Mean 
Std. 

Deviation 

Sample 

Size 

10 10 8 31.45801 1.280697 100 

10 10 9 30.04559 1.042337 100 

10 10 10 29.30877 1.039892 100 

10 10 11 28.06857 .975106 100 

10 10 12 27.34534 .876952 100 

10 10 13 26.69469 .945196 100 

10 15 8 18.93848 1.403318 100 

10 15 9 18.46393 1.265318 100 

10 15 10 17.92794 1.168897 100 

10 15 11 17.49258 1.064199 100 

10 15 12 17.23819 1.138801 100 

10 15 13 16.94426 1.004121 100 

10 20 8 17.59846 1.350032 100 

10 20 9 17.15746 1.278220 100 

10 20 10 16.92097 1.339663 100 

10 20 11 16.24134 1.178467 100 

10 20 12 16.10614 1.007232 100 

10 20 13 15.61214 .945834 100 

15 10 8 18.23267 1.627867 100 

15 10 9 17.20197 1.500946 100 

15 10 10 16.80834 1.302278 100 

15 10 11 16.10411 1.065097 100 

15 10 12 16.20743 1.014421 100 

15 10 13 16.02392 1.007662 100 
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15 15 8 17.14142 1.428633 100 

15 15 9 16.18785 1.048204 100 

15 15 10 15.72345 1.079785 100 

15 15 11 14.98558 1.031288 100 

15 15 12 14.82136 1.053710 100 

15 15 13 14.61019 1.035690 100 

15 20 8 16.67183 1.336949 100 

15 20 9 15.92841 .919837 100 

15 20 10 15.22492 1.079380 100 

15 20 11 14.41876 1.054786 100 

15 20 12 14.35327 .871443 100 

15 20 13 14.11886 .983296 100 

20 10 8 50.96269 3.056975 100 

20 10 9 44.40967 3.789905 100 

20 10 10 37.67879 5.194406 100 

20 10 11 27.67500 4.422328 100 

20 10 12 23.45763 2.255221 100 

20 10 13 22.23700 1.855786 100 

20 15 8 38.43466 2.136320 100 

20 15 9 36.03205 1.826892 100 

20 15 10 34.38117 1.807530 100 

20 15 11 32.33680 1.650833 100 

20 15 12 30.21733 1.782403 100 

20 15 13 29.63869 1.565117 100 

20 20 8 34.03964 2.226479 100 

20 20 9 31.43001 1.840553 100 

20 20 10 29.83760 1.823685 100 

20 20 11 27.79457 1.635874 100 
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20 20 12 26.16540 1.486150 100 

20 20 13 25.29537 1.243252 100 
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 Table 3. Descriptive statistics for τ values across variations in all model parameters. Obtained 

through SPSS. 

Model parameters Descriptive statistics (τ) 

dt (ms) N f (Hz) Mean 
Std. 

Deviation 

Sample 

Size 

10 10 8 84.01186 3.257428 100 

10 10 9 70.60031 2.677612 100 

10 10 10 59.28388 2.847217 100 

10 10 11 52.34683 2.302820 100 

10 10 12 46.12455 2.190687 100 

10 10 13 40.20196 2.117676 100 

10 15 8 113.41400 3.838885 100 

10 15 9 97.76178 3.553781 100 

10 15 10 83.94637 2.940449 100 

10 15 11 74.03539 2.690827 100 

10 15 12 65.92987 2.588078 100 

10 15 13 58.80279 2.337345 100 

10 20 8 136.36340 4.865765 100 

10 20 9 116.91910 3.721525 100 

10 20 10 100.85031 3.868808 100 

10 20 11 90.54143 3.134152 100 

10 20 12 79.81731 3.176602 100 

10 20 13 72.19407 2.590355 100 

15 10 8 90.98975 2.850158 100 

15 10 9 82.11033 2.460294 100 

15 10 10 73.72875 2.465089 100 

15 10 11 65.54018 2.343847 100 

15 10 12 58.07748 1.891709 100 
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15 10 13 52.19521 1.938657 100 

15 15 8 104.07402 3.469319 100 

15 15 9 94.13160 2.852301 100 

15 15 10 86.14120 2.761443 100 

15 15 11 77.67847 2.630866 100 

15 15 12 69.82034 2.471624 100 

15 15 13 62.65480 2.404148 100 

15 20 8 111.68860 4.479591 100 

15 20 9 100.83898 3.862266 100 

15 20 10 91.99733 3.168848 100 

15 20 11 82.96352 3.132761 100 

15 20 12 75.06675 2.698630 100 

15 20 13 67.05466 2.725383 100 

20 10 8 63.41783 4.835173 100 

20 10 9 58.27813 5.674339 100 

20 10 10 57.14543 6.242201 100 

20 10 11 59.01075 5.164453 100 

20 10 12 56.29033 2.518543 100 

20 10 13 51.19106 2.413889 100 

20 15 8 81.13905 3.493782 100 

20 15 9 69.39704 3.224995 100 

20 15 10 61.35585 3.142113 100 

20 15 11 54.74893 2.498521 100 

20 15 12 50.02420 2.897944 100 

20 15 13 44.48432 2.491262 100 

20 20 8 104.13475 4.395130 100 

20 20 9 90.63122 3.817990 100 

20 20 10 80.73760 3.286608 100 
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20 20 11 73.53054 3.084991 100 

20 20 12 66.70667 2.941405 100 

20 20 13 60.57905 2.542333 100 
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A.II – Custom MATLAB® scripts 

 

Example model script 

Example script for the model run with f = 10.6 Hz, N = 15, and dt = 10 ms. 

% Number of areas (N): 15 
% Amplitude (A): 1  
% Frequency of discretization (f_disc): 1000 (Hz) 
% Time for stimulus to reach the brain (t0): 30 (ms) 
% Time from area to area (dt) = 10 (ms) 
% Frequency of alpha band in ALL areas: 10.6 (Hz) 
% Alpha-wave phase of oscillation: changes each area 
% Time for motor execution purposes (t_exe): 15 (ms)  

  
N = 15; 
A = 1; 
f_disc = 1000; 
t0 = 30/1000; %(s) 
dt = 10/1000; %(s) 
f = 10.6; 
t_exe = 15/1000; %(s) 
% time vector 
t = 0 : (1/f_disc) : 1; %(s) 

  
% generate phases for each area: 
phi = zeros(1,N); 
for i = 1:N 
    phi(i) = generate_random_phase(); 
end 

  
% generate alpha waves for each area: 
y = zeros(N,length(t)); 
for i=1:N 
    y(i,:) = generate_wave(A, f, t, phi(i)); 
end 

  

  
% calculate times at which stimulus can occur 
% function in_trough_at() receives t, ti, y, A as input, with ti being the 
% time at which stimulus reaches this location, and so the first possible 
% instant of stimulus propagation occurrence 
t_response = zeros(1,N); 
for i = 1:N 
    if (i == 1) 
        % if we talk about the first area, ti = t0 
        t_response(i) = in_trough_at(t, t0, y(i,:), A); 
    else 
        ti = t_response(i-1) + dt; % time at which stimulus propagates + 

time of travel between areas 
        t_response(i) = in_trough_at(t, ti, y(i,:), A); 
    end 
end 
% We consider that the stimulus is sent to the subject at t = 0 
rt = t_response(N) + t_exe; 
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generate_random_phase( ) 

Function to generate a random phase offset for an oscillatory wave. 

function [phi] = generate_random_phase() 

    % in degrees 

    phi_d = (360-0).*rand(1) + 0; 

    % change to radians 

    phi = degtorad(phi_d); 

end 

 

generate_wave( ) 

Function to generate an oscillatory wave, given its needed parameters. 

function y = generate_wave(A, f, t, phi) 

    y = A * cos(2 * pi * f * t + phi); 

end 

 

in_trough_at( ) 

Function that returns the time at which excitation can occur at the receiving 

cortical location. 

function [ time_trough] = in_trough_at( t, ti, y, A ) 
%IN_TROUGH_AT(t,ti, y, A) Returns the time at which the oscillation can  
%   provoke excitation at the receiving location.  
%   You INPUT the time vector (t), the initial time(ti) at which you want to 

begin the search at the receiving location, the y vector (the function) and 

the amplitude (A) of that oscillation.   
%   It RETURNS the time when excitation can occur at the receiving site 

  
time = ti; 
initial = find( t == ti ); 
y_threshold = A*cosd(120); 

 
for i = initial : length(t) 
    if(t(i) > t(end)) 
        break; 
    end 

     
    if(y(i) <= y_threshold) 
        time = t(i); 
        break; 
    end 
end 
time_trough = time;  
end 
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get_1000rt( ) 

Function that returns 1000 RT values from the model run with a specific set of 

parameters 

function result = get_1000rt(i) 
    % Get 1000 RT values to be able to produce an histogram. 
    % Input number # of model ( file 'model_rt_#.m' ) 

     
    % Because MATLAB resets the rand state at startup, rand generates 
    % the same sequence of numbers in each session unless you change the 

value 
    % of the state input: 
    rand('twister', sum(1000*clock)); 
    randn('state', sum(1000*clock)); 

     
    RT = zeros(1,1000); 
    freq = cell(1,1000); 
    phase = cell(1,1000); 

  
    script = ''; 
    if (i < 10) 
        script = strcat('model_rt_00', num2str(i)); 
    elseif (i >= 10 && i < 100) 
        script = strcat('model_rt_0', num2str(i)); 
    elseif (i >= 100) 
        script = strcat('model_rt_', num2str(i)); 
    end 

     
    for ii = 1:1000 
        run(script); 
        RT(ii) = rt*1000; % get result in ms 
        freq{ii} = num2cell(f, [1 2]); 
        phase{ii} = num2cell(phi, [1 2]); 
    end 

     
    result = struct('rt', RT, 'freq', {freq}, 'phase', {phase}); 

     
end 
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model2csv.m 

Script that creates a .csv file for each data (.mat) file that has been created. 

function model2csv() 

  
    % I want to go through all the model folders, all runs, and create an 
    % .csv file for all data .mat files that have been created 
    % 
    names = []; 
    first_model = 1; 
    last_model = 199;  

     
    number_models = last_model - first_model + 1; 

     
    excelRT = zeros(100, 1000); 
    excelMiu = zeros(100, number_models); 
    excelSigma = zeros(100,number_models); 
    excelTau = zeros(100, number_models); 

         
    for i = first_model : last_model 
        if (i < 10) 
            foldername = 

strcat('C:\Users\Lea\Documents\University\Biomedical Engineering 

(MSc)\Thesis\Projecto Maria Ribeiro\Test Runs\TEST RUN - RT alpha 

model\Model_00', num2str(i), '\'); 
        elseif (i >= 10 && i < 100) 
            foldername = 

strcat('C:\Users\Lea\Documents\University\Biomedical Engineering 

(MSc)\Thesis\Projecto Maria Ribeiro\Test Runs\TEST RUN - RT alpha 

model\Model_0', num2str(i), '\'); 
        elseif (i > 100) 
            foldername = 

strcat('C:\Users\Lea\Documents\University\Biomedical Engineering 

(MSc)\Thesis\Projecto Maria Ribeiro\Test Runs\TEST RUN - RT alpha 

model\Model_', num2str(i), '\'); 
        end 
        for ii = 1:100 
            filename = foldername; 
            filename = strcat(filename, 'Run_', num2str(ii), '\result_', 

num2str(ii), '.mat'); 
            data = load(filename); 
            excelRT(ii,:) = data.rt; 
            excelMiu(ii,(i-first_model+1)) = data.miu; 
            excelSigma(ii,(i-first_model+1)) = data.sigma; 
            excelTau(ii,(i-first_model+1)) = data.tau; 
        end 

             

     
        if (i < 10) 
            csvFilenameRT = strcat(foldername, 'model_00', num2str(i), 

'_rt.csv'); 
            csvFilenameMiu = strcat(foldername, 'model_00', num2str(i), 

'_miu.csv'); 
            csvFilenameSigma = strcat(foldername, 'model_00', num2str(i), 

'_sigma.csv'); 
            csvFilenameTau = strcat(foldername, 'model_00', num2str(i), 

'_tau.csv'); 
        elseif (i >= 10 && i < 100) 
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            csvFilenameRT = strcat(foldername, 'model_0', num2str(i), 

'_rt.csv');             
            csvFilenameMiu = strcat(foldername, 'model_0', num2str(i), 

'_miu.csv'); 
            csvFilenameSigma = strcat(foldername, 'model_0', num2str(i), 

'_sigma.csv'); 
            csvFilenameTau = strcat(foldername, 'model_0', num2str(i), 

'_tau.csv'); 
        elseif (i > 100) 
            csvFilenameRT = strcat(foldername, 'model_', num2str(i), 

'_rt.csv'); 
            csvFilenameMiu = strcat(foldername, 'model_', num2str(i), 

'_miu.csv'); 
            csvFilenameSigma = strcat(foldername, 'model_', num2str(i), 

'_sigma.csv'); 
            csvFilenameTau = strcat(foldername, 'model_', num2str(i), 

'_tau.csv'); 
        end 

         
        csvwrite(csvFilenameRT, excelRT'); 
        csvwrite(csvFilenameMiu, excelMiu); 
        csvwrite(csvFilenameSigma, excelSigma); 
        csvwrite(csvFilenameTau, excelTau); 

     
    end 

     
end 

 

 

all_data_into_csv.m 

Script that creates a .csv file containing all data, for the model run with fixed dt 

at 10 ms, but varying f and N. 

 
temp_miu_array = zeros(100,1); 
temp_sigma_array = zeros(100,1); 
temp_tau_array = zeros(100,1); 
% number_of_runs, number_of_N * number_of_f 
MIU = zeros(100, 5*26); 
SIGMA = zeros(100, 5*26); 
TAU = zeros(100, 5*26); 

  
for i = 1:5 % Number of areas  
    for j = 1:26 % Number of different frequencies per area  

         
        if (i==1) % N=10, models start at 1 
            model = j; 
            for run = 1:100 
                if (j < 10) 
                    directory = 

strcat('C:\Users\Lea\Documents\University\Biomedical Engineering 

(MSc)\Thesis\Projecto Maria Ribeiro\Test Runs\TEST RUN - RT alpha 
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model\Model_00', num2str(j), '\Run_', num2str(run), '\result_', 

num2str(run), '.mat'); 
                elseif (j >= 10 && j < 100) 
                    directory = 

strcat('C:\Users\Lea\Documents\University\Biomedical Engineering 

(MSc)\Thesis\Projecto Maria Ribeiro\Test Runs\TEST RUN - RT alpha 

model\Model_0', num2str(j), '\Run_', num2str(run), '\result_', num2str(run), 

'.mat'); 
                end 
                temp = load(directory); 
                temp_miu_array(run) = temp.miu; 
                temp_sigma_array(run) = temp.sigma; 
                temp_tau_array(run) = temp.tau; 
            end 
        elseif (i==2) % N=15, models start at #28 (ID) 
            model = j + 27; 
            for run = 1:100 
                if (model < 100) 
                    directory = 

strcat('C:\Users\Lea\Documents\University\Biomedical Engineering 

(MSc)\Thesis\Projecto Maria Ribeiro\Test Runs\TEST RUN - RT alpha 

model\Model_0', num2str(model), '\Run_', num2str(run), '\result_', 

num2str(run), '.mat'); 
                elseif (model >= 100) 
                    directory = 

strcat('C:\Users\Lea\Documents\University\Biomedical Engineering 

(MSc)\Thesis\Projecto Maria Ribeiro\Test Runs\TEST RUN - RT alpha 

model\Model_', num2str(model), '\Run_', num2str(run), '\result_', 

num2str(run), '.mat'); 
                end 
                temp = load(directory); 
                temp_miu_array(run) = temp.miu; 
                temp_sigma_array(run) = temp.sigma; 
                temp_tau_array(run) = temp.tau;                 
            end 
        elseif (i==3) % N=20, models start at #55 
            model = j + 54; 
            for run = 1:100 
                if (model < 100) 
                    directory = 

strcat('C:\Users\Lea\Documents\University\Biomedical Engineering 

(MSc)\Thesis\Projecto Maria Ribeiro\Test Runs\TEST RUN - RT alpha 

model\Model_0', num2str(model), '\Run_', num2str(run), '\result_', 

num2str(run), '.mat'); 
                elseif (model >= 100) 
                    directory = 

strcat('C:\Users\Lea\Documents\University\Biomedical Engineering 

(MSc)\Thesis\Projecto Maria Ribeiro\Test Runs\TEST RUN - RT alpha 

model\Model_', num2str(model), '\Run_', num2str(run), '\result_', 

num2str(run), '.mat'); 
                end 
                temp = load(directory); 
                temp_miu_array(run) = temp.miu; 
                temp_sigma_array(run) = temp.sigma; 
                temp_tau_array(run) = temp.tau;                 
            end 
        elseif (i==4) % N=25, models start at #82 
            model = j + 81; 
            for run = 1:100 
                if (model < 100) 
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                    directory = 

strcat('C:\Users\Lea\Documents\University\Biomedical Engineering 

(MSc)\Thesis\Projecto Maria Ribeiro\Test Runs\TEST RUN - RT alpha 

model\Model_0', num2str(model), '\Run_', num2str(run), '\result_', 

num2str(run), '.mat'); 
                elseif (model >= 100) 
                    directory = 

strcat('C:\Users\Lea\Documents\University\Biomedical Engineering 

(MSc)\Thesis\Projecto Maria Ribeiro\Test Runs\TEST RUN - RT alpha 

model\Model_', num2str(model), '\Run_', num2str(run), '\result_', 

num2str(run), '.mat'); 
                end 
                temp = load(directory); 
                temp_miu_array(run) = temp.miu; 
                temp_sigma_array(run) = temp.sigma; 
                temp_tau_array(run) = temp.tau;                 
            end 
        elseif (i==5) % N=30, models start at #108 
            model = j + 107; 
            for run = 1:100 
                directory = 

strcat('C:\Users\Lea\Documents\University\Biomedical Engineering 

(MSc)\Thesis\Projecto Maria Ribeiro\Test Runs\TEST RUN - RT alpha 

model\Model_', num2str(model), '\Run_', num2str(run), '\result_', 

num2str(run), '.mat'); 

                 
                temp = load(directory); 
                temp_miu_array(run) = temp.miu; 
                temp_sigma_array(run) = temp.sigma; 
                temp_tau_array(run) = temp.tau;                 
            end 
        end 

         
        % 'temp_X_array' has now all the X's from ONE RUN, for 1 value of 
        % N and 1 value of f 

  
        column = j + (i-1)*26; 

         
        MIU(:, column) = temp_miu_array; 
        SIGMA(:, column) = temp_sigma_array; 
        TAU(:, column) = temp_tau_array; 

  
    end 
end 

  
foldername = 'C:\Users\Lea\Documents\University\Biomedical Engineering 

(MSc)\Thesis\Projecto Maria Ribeiro\Test Runs\TEST RUN - RT alpha model\'; 
miu_filename = strcat(foldername, 'miu_all_data.csv'); 
sigma_filename = strcat(foldername, 'sigma_all_data.csv'); 
tau_filename = strcat(foldername, 'tau_all_data.csv'); 

             
csvwrite(miu_filename, MIU); 
csvwrite(sigma_filename, SIGMA); 
csvwrite(tau_filename, TAU); 
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find_best_parameters.m 

Script used to generate ordered tables (one for each experimental condition) from 

minimum to maximum SSE, returning SSE values and the respective model they 

belong to. 

 
% To find the model parameters that provide the closest empirical fitting  
% (closest resemblance to ex-Gaussian parameters), we calculate the squared 
% error differences between model and empirical parameters and then search 
% for its minimal value. 

  
% We have 4 combinations of empirical values: 
% DRT old 
% DRT young 
% GRT old 
% GRT young 

  
% To do this, MATLAB must load every .m model results file, find the 
% average ex-Gaussian values for the 100 runs per model, calculate the 
% squared error differences for each of the 4 condition combinations and 
% add them to the respective matrix, along with the model number (the 
% iteration number, i). 

  
% After doing this for all models, the matrix must be ordered for crescent 
% squared error values 

  
clear all; 

  
first_model = 1; 
last_model = 241; 
% three models cannot be processed (the ones with random frequency): 27, 54, 

81 
miu = zeros(100, last_model); 
sigma = zeros(100, last_model); 
tau = zeros(100, last_model); 
% NOTE: for simplicity we create the matrices as if all models are imported. 
% Then we eliminate columns 27, 54 and 81 

  
% The same logic as above to create the final squared error matrices 
error_drt_old = zeros(last_model, 2); 
error_drt_young = zeros(last_model, 2); 
error_grt_old = zeros(last_model, 2); 
error_grt_young = zeros(last_model, 2); 

  
% To be able to, then, see which parameter is diverging the most (i.e. 
% causing the biggest error), we create matrices for each parameter error: 
% MIU 
miu_error_drt_old = zeros(last_model,2); 
miu_error_drt_young = zeros(last_model,2); 
miu_error_grt_old = zeros(last_model,2); 
miu_error_grt_young = zeros(last_model,2); 
% SIGMA 
sigma_error_drt_old = zeros(last_model,2); 
sigma_error_drt_young = zeros(last_model,2); 
sigma_error_grt_old = zeros(last_model,2); 
sigma_error_grt_young = zeros(last_model,2); 
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% TAU 
tau_error_drt_old = zeros(last_model,2); 
tau_error_drt_young = zeros(last_model,2); 
tau_error_grt_old = zeros(last_model,2); 
tau_error_grt_young = zeros(last_model,2); 

  
% Define the average empirically obtained ex-Gaussian parameters: 
drt_old_miu = 260.296; 
drt_old_sigma = 20.899; 
drt_old_tau = 54.980; 

  
drt_young_miu = 285.791; 
drt_young_sigma = 28.233; 
drt_young_tau = 64.931; 

  

grt_old_miu = 320.980; 
grt_old_sigma = 36.226; 
grt_old_tau = 86.200; 

  
grt_young_miu = 325.784; 
grt_young_sigma = 33.829; 
grt_young_tau = 75.202; 

  

  
for i = first_model:last_model 
    if (i==27 || i==54 || i==81) 
        % skip 
        continue; 
    end 

     
    if (i < 10) 
        foldername = strcat('C:\Users\Lea\Documents\University\Biomedical 

Engineering (MSc)\Thesis\Projecto Maria Ribeiro\Test Runs\TEST RUN - RT alpha 

model\Model_00', num2str(i), '\'); 
    elseif (i >= 10 && i < 100) 
        foldername = strcat('C:\Users\Lea\Documents\University\Biomedical 

Engineering (MSc)\Thesis\Projecto Maria Ribeiro\Test Runs\TEST RUN - RT alpha 

model\Model_0', num2str(i), '\'); 
    elseif (i >= 100) 
        foldername = strcat('C:\Users\Lea\Documents\University\Biomedical 

Engineering (MSc)\Thesis\Projecto Maria Ribeiro\Test Runs\TEST RUN - RT alpha 

model\Model_', num2str(i), '\'); 
    end 

     

    for ii = 1:100 
        filename = foldername; 
        filename = strcat(filename, 'Run_', num2str(ii), '\result_', 

num2str(ii), '.mat'); 
        data = load(filename); 
        miu(ii, i) = data.miu; 
        sigma(ii, i) = data.sigma; 
        tau(ii, i) = data.tau; 
    end 

     
    % When we get to this point, the column corresponding to the current 
    % model is complete with the data. We can now calculate the 4 different 
    % squared error differences 
    average_miu = mean(miu(:, i)); 
    average_sigma = mean(sigma(:, i)); 
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    average_tau = mean(tau(:, i)); 

     
    current_miu_error_drt_old = (average_miu - drt_old_miu)^2; 
    current_miu_error_drt_young = (average_miu - drt_young_miu)^2; 
    current_miu_error_grt_old = (average_miu - grt_old_miu)^2; 
    current_miu_error_grt_young = (average_miu - grt_young_miu)^2; 

     
    current_sigma_error_drt_old = (average_sigma - drt_old_sigma)^2; 
    current_sigma_error_drt_young = (average_sigma - drt_young_sigma)^2; 
    current_sigma_error_grt_old = (average_sigma - grt_old_sigma)^2; 
    current_sigma_error_grt_young = (average_sigma - grt_young_sigma)^2; 

     
    current_tau_error_drt_old = (average_tau - drt_old_tau)^2; 
    current_tau_error_drt_young = (average_tau - drt_young_tau)^2; 
    current_tau_error_grt_old = (average_tau - grt_old_tau)^2; 
    current_tau_error_grt_young = (average_tau - grt_young_tau)^2; 

         
    % total sum of squares errors (SSE): 
    current_error_drt_old = current_miu_error_drt_old + 

current_sigma_error_drt_old + current_tau_error_drt_old; 
    current_error_drt_young = current_miu_error_drt_young + 

current_sigma_error_drt_young + current_tau_error_drt_young; 
    current_error_grt_old = current_miu_error_grt_old + 

current_sigma_error_grt_old + current_tau_error_grt_old; 
    current_error_grt_young = current_miu_error_grt_young + 

current_sigma_error_grt_young + current_tau_error_grt_young; 

     
    % Put values into final matrices 
    error_drt_old(i, :) = [i, current_error_drt_old]; 
    error_drt_young(i, :) = [i, current_error_drt_young]; 
    error_grt_old(i, :) = [i, current_error_grt_old]; 
    error_grt_young(i, :) = [i, current_error_grt_young]; 

     
    miu_error_drt_old(i, :) = [i, current_miu_error_drt_old]; 
    miu_error_drt_young(i, :) = [i, current_miu_error_drt_young]; 
    miu_error_grt_old(i, :) = [i, current_miu_error_grt_old]; 
    miu_error_grt_young(i, :) = [i, current_miu_error_grt_young]; 

     
    sigma_error_drt_old(i, :) = [i, current_sigma_error_drt_old]; 
    sigma_error_drt_young(i, :) = [i, current_sigma_error_drt_young]; 
    sigma_error_grt_old(i, :) = [i, current_sigma_error_grt_old]; 
    sigma_error_grt_young(i, :) = [i, current_sigma_error_grt_young]; 

     
    tau_error_drt_old(i, :) = [i, current_tau_error_drt_old]; 
    tau_error_drt_young(i, :) = [i, current_tau_error_drt_young]; 
    tau_error_grt_old(i, :) = [i, current_tau_error_grt_old]; 
    tau_error_grt_young(i, :) = [i, current_tau_error_grt_young]; 

     
end 

  
% Now we must eliminate lines/columns that correspond to the eliminated 
% models 
miu(:, 27) = []; 
miu(:, 54-1) = []; 
miu(:, 81-2) = []; 

  
sigma(:, 27) = []; 
sigma(:, 54-1) = []; 
sigma(:, 81-2) = []; 
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tau(:, 27) = []; 
tau(:, 54-1) = []; 
tau(:, 81-2) = []; 

  
error_drt_old(27, :) = []; 
error_drt_old(54-1, :) = []; 
error_drt_old(81-2, :) = []; 

  
error_drt_young(27, :) = []; 
error_drt_young(54-1, :) = []; 
error_drt_young(81-2, :) = []; 

  
error_grt_old(27, :) = []; 
error_grt_old(54-1, :) = []; 
error_grt_old(81-2, :) = []; 

  
error_grt_young(27, :) = []; 
error_grt_young(54-1, :) = []; 
error_grt_young(81-2, :) = []; 

  

  
% Time to sort the rows in the error matrices: 
sorted_error_drt_old = sortrows(error_drt_old, 2); 
sorted_error_drt_young = sortrows(error_drt_young, 2); 
sorted_error_grt_old = sortrows(error_grt_old, 2); 
sorted_error_grt_young = sortrows(error_grt_young, 2); 
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A.III – Sets of parameters for all tested model 

variations  

Table 4. All parameter combinations tested in our computational model. The models were given 

an identification number (ID) for practical purposes. Models with * were eliminated from analysis, 

for having been designed with a different paradigm, which was not pursued. This resulted in 238 

models apt for analysis. 

ID f (Hz) N dt (ms) 

1 8 10 10 

2 8.2 10 10 

3 8.4 10 10 

4 8.6 10 10 

5 8.8 10 10 

6 9 10 10 

7 9.2 10 10 

8 9.4 10 10 

9 9.6 10 10 

10 9.8 10 10 

11 10 10 10 

12 10.2 10 10 

13 10.4 10 10 

14 10.6 10 10 

15 10.8 10 10 

16 11 10 10 

17 11.2 10 10 

18 11.4 10 10 

19 11.6 10 10 

20 11.8 10 10 

21 12 10 10 

22 12.2 10 10 

23 12.4 10 10 

24 12.6 10 10 

25 12.8 10 10 

26 13 10 10 

27* 8 – 13 10 10 

28 8 15 10 
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29 8.2 15 10 

30 8.4 15 10 

31 8.6 15 10 

32 8.8 15 10 

33 9 15 10 

34 9.2 15 10 

35 9.4 15 10 

36 9.6 15 10 

37 9.8 15 10 

38 10 15 10 

39 10.2 15 10 

40 10.4 15 10 

41 10.6 15 10 

42 10.8 15 10 

43 11 15 10 

44 11.2 15 10 

45 11.4 15 10 

46 11.6 15 10 

47 11.8 15 10 

48 12 15 10 

49 12.2 15 10 

50 12.4 15 10 

51 12.6 15 10 

52 12.8 15 10 

53 13 15 10 

54* 8 – 13 15 10 

55 8 20 10 

56 8.2 20 10 

57 8.4 20 10 

58 8.6 20 10 

59 8.8 20 10 

60 9 20 10 

61 9.2 20 10 

62 9.4 20 10 

63 9.6 20 10 

64 9.8 20 10 

65 10 20 10 
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66 10.2 20 10 

67 10.4 20 10 

68 10.6 20 10 

69 10.8 20 10 

70 11 20 10 

71 11.2 20 10 

72 11.4 20 10 

73 11.6 20 10 

74 11.8 20 10 

75 12 20 10 

76 12.2 20 10 

77 12.4 20 10 

78 12.6 20 10 

79 12.8 20 10 

80 13 20 10 

81* 8 – 13 20 10 

82 8 25 10 

83 8.2 25 10 

84 8.4 25 10 

85 8.6 25 10 

86 8.8 25 10 

87 9 25 10 

88 9.2 25 10 

89 9.4 25 10 

90 9.6 25 10 

91 9.8 25 10 

92 10 25 10 

93 10.2 25 10 

94 10.4 25 10 

95 10.6 25 10 

96 10.8 25 10 

97 11 25 10 

98 11.2 25 10 

99 11.4 25 10 

100 11.6 25 10 

101 11.8 25 10 

102 12 25 10 
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103 12.2 25 10 

104 12.4 25 10 

105 12.6 25 10 

106 12.8 25 10 

107 13 25 10 

108 8 30 10 

109 8.2 30 10 

110 8.4 30 10 

111 8.6 30 10 

112 8.8 30 10 

113 9 30 10 

114 9.2 30 10 

115 9.4 30 10 

116 9.6 30 10 

117 9.8 30 10 

118 10 30 10 

119 10.2 30 10 

120 10.4 30 10 

121 10.6 30 10 

122 10.8 30 10 

123 11 30 10 

124 11.2 30 10 

125 11.4 30 10 

126 11.6 30 10 

127 11.8 30 10 

128 12 30 10 

129 12.2 30 10 

130 12.4 30 10 

131 12.6 30 10 

132 12.8 30 10 

133 13 30 10 

134 8 10 15 

135 9 10 15 

136 10 10 15 

137 11 10 15 

138 12 10 15 

139 13 10 15 
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140 8 15 15 

141 9 15 15 

142 10 15 15 

143 11 15 15 

144 12 15 15 

145 13 15 15 

146 8 20 15 

147 9 20 15 

148 10 20 15 

149 11 20 15 

150 12 20 15 

151 13 20 15 

152 8 25 15 

153 9 25 15 

154 10 25 15 

155 11 25 15 

156 12 25 15 

157 13 25 15 

158 8 10 20 

159 9 10 20 

160 10 10 20 

161 11 10 20 

162 12 10 20 

163 13 10 20 

164 8 15 20 

165 9 15 20 

166 10 15 20 

167 11 15 20 

168 12 15 20 

169 13 15 20 

170 8 10 5 

171 8 15 5 

172 8 20 5 

173 8 25 5 

174 8 30 5 

175 8 20 20 

176 9 20 20 



130 

 

177 10 20 20 

178 11 20 20 

179 12 20 20 

180 13 20 20 

181 9.2 10 20 

182 9.4 10 20 

183 9.6 10 20 

184 9.8 10 20 

185 10.2 10 20 

186 10.4 10 20 

187 10.6 10 20 

188 10.8 10 20 

189 11.2 10 20 

190 11.4 10 20 

191 11.6 10 20 

192 11.8 10 20 

193 12.2 10 20 

194 12.4 10 20 

195 12.6 10 20 

196 12.8 10 20 

197 12.2 21 10 

198 12.2 22 10 

199 8 25 20 

200 12.2 23 10 

201 12.2 24 10 

202 12.2 24 11 

203 12.2 24 12 

204 12.2 24 13 

205 13 24 13 

206 13 24 12 

207 13 24 11 

208 12.8 24 11 

209 12.6 24 11 

210 12.4 24 11 

211 12 24 11 

212 11.8 24 11 

213 13 23 11 
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214 12.8 23 11 

215 12.6 23 11 

216 12.4 23 11 

217 12.2 23 11 

218 12 23 11 

219 11.8 23 11 

220 10.4 11 20 

221 10.4 12 20 

222 12.8 11 20 

223 12.8 12 20 

224 10.4 10 19 

225 12.8 10 19 

226 10.4 10 18 

227 12.8 10 18 

228 12.8 10 17 

229 10.4 10 17 

230 12.8 11 17 

231 10.4 11 17 

232 12.8 12 17 

233 12.2 23 12 

234 12.4 23 12 

235 12 23 12 

236 11.8 23 12 

237 10.4 23 12 

238 10.2 23 12 

239 10 23 12 

240 10.6 23 12 

241 10.8 23 12 
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A.IV – Listed top sets of parameters that best 

minimized the SSE 

 

Table 5. Top four sets of parameters that best minimized the sum of squared errors (SSE) for 

experimental factor combination: DRT young. 

Position 

Best-fitting model parameters  

DRT young SSE 

f (Hz) N dt (ms) 

#1 10.4 10 20 79.866 

#2 10.2 10 20 85.222 

#3 10.6 10 20 94.949 

#4 10.8 10 20 117.649 

 

 

Table 6. Top four sets of parameters that best minimized the sum of squared errors (SSE) for 

experimental factor combination: DRT old. 

Condition 

Best-fitting model parameters  

DRT old SSE 

f (Hz) N dt (ms) 

#1 12.8 10 19 37.194 

#2 12.8 11 17 55.115 

#3 12.8 10 20 56.240 

#4 12.6 10 20 60.268 
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Table 7. Top four sets of parameters that best minimized the sum of squared errors (SSE) for 

experimental factor combination: GRT young. 

Condition 

Best-fitting model parameters  

GRT young SSE 

f (Hz) N dt (ms) 

#1 12 23 12 202.798 

#2 12.2 23 12 207.900 

#3 12.4 23 12 208.316 

#4 11.8 23 12 215.845 

 

 

Table 8. Top four sets of parameters that best minimized the sum of squared errors (SSE) for 

experimental factor combination: GRT old. 

Condition 

Best-fitting model parameters  

GRT old SSE 

f (Hz) N dt (ms) 

#1 11.8 24 11 271.357 

#2 12 24 11 279.166 

#3 12.4 24 11 294.058 

#4 12.2 24 11 306.197 

 

 


