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The Effect of Transcranial Magnetic Stimulation on
the Functional Connectivity of the Brain

S. de Haan

Abstract—A pipeline for the analysis of the effect of trans-
cranial magnetic stimulation (TMS) on the functional connec-
tivity (FC) was created. The results of the pipeline for a single
subject are presented. A subject with major depressive disorder
underwent four consecutive days of intermittent theta burst
stimulation (iTBS) at the left dorsolateral prefrontal cortex
(DLPFC), at 100% motor threshold. Magnetic resonance imaging
(MRI) was performed before and after the stimulation protocol.
Derived from resting state functional MRI the FC was deter-
mined for the whole brain, the default mode network (DMN)
and the central executive network (CEN). The characteristic
path length and clustering coefficient were extracted from the
derived binary and weighted graphs. Seed-to-voxel analysis was
performed to determine the FC between the seed, the DLPFC,
and the voxels of the DMN and CEN. After TMS the average
connectivity was decreased and the connectivity change per
node indicated a spread of the effect over the whole brain.
The weighted graph parameters for the whole brain and the
DMN showed increased path lengths and decreased clustering
coefficients. The other parameters did not indicate an effect.
Seed-to-voxel analysis indicated a decreased connectivity between
the DLPFC and the CEN. The analysis of more subjects and
further research is needed before conclusions can be drawn.

Index Terms—fMRI, functional connectivity, transcranial mag-
netic stimulation.

I. INTRODUCTION

TRANSCRANIAL magnetic stimulation (TMS) is a non-
invasive and almost pain free neuromodulation technique

that is used to modulate neural networks of the brain. During
TMS, an alternating current is sent through a coil placed at the
scalp which induces a current in the brain by electromagnetic
induction. TMS is increasingly used for stimulation of the
human brain to study brainbehavior relations, the pathophys-
iology of diseases and the potential of neuromodulation for
rehabilitation and therapy [22]. Research on the therapeutic
benefits, in multiple neurological conditions, is ongoing. It has
shown positive effects in persons with e.g. depression and is
being investigated for use with epilepsy [10], [11].

High frequency TMS of 10 Hz applied at the left dorso-
lateral prefrontal cortex (DLPFC) has shown positive effects
on patients with depression [11], [23]. Low frequency TMS
applied at the right DLPFC showed similar positive effects
[15]. However the mechanism of action of TMS remains
unclear. The effect of treatment is hard to predict and com-
parison between studies is difficult due to the variety in
stimulation parameters such as frequency, stimulation protocol
and stimulation site. It is important to gain more insight in
the mechanisms of TMS to be able to optimize stimulation
parameters and increase therapeutic efficacy.

The general goal is a complete understanding of the ef-
fect of electromagnetic fields on the brain. To gain a better

understanding on how TMS affects the brain, the current
research aims at determining the effect of TMS on functional
connectivity (FC).

Studies by Liston et al. [12] and Salomons et al. [17]
investigated the effect of TMS on the FC derived from
functional magnetic resonance imaging (MRI) in patients with
major depressive disorder (MDD). Liston et al. showed the
elevated connectivity within the default mode network (DMN)
was normalized after TMS. The diminished connectivity in the
central executive network (CEN) did not change. Salomons
et al. found that localized connectivity was associated with
successful treatment response. Shafi et al. investigated the
effect on FC derived from electroencephalography (EEG)
using graph theory [18]. Their research showed the FC after
stimulation was modulated which was also indicated by the
adjusted graph parameters.

The goal of this project was to develop an analysis pipeline
to process resting state fMRI data and calculate graph pa-
rameters for FC derived from this data. The analysis pipeline
was tested using a dataset of a single subject with MDD that
underwent intermittent theta burst stimulation (iTBS) applied
at the DLPFC. The iTBS protocol has shown to facilitate
the motor evoked potential when applied at the motor cortex
[7]. When applied at the DLPFC this might be used to
compensate the diminished activity in the DLPFC in patients
with MDD [13]. The hypothesis was that FC is affected after
TMS. The direct effect was expected close to the stimulation
area, together with an indirect effect which spreads along
the networks comprising this area. To test the hypothesis
FC analysis were performed and using graph theory network
parameters were extracted. This was done for the entire brain
and two specific networks: the DMN and CEN, which have
shown abnormal FC in depression [12].

In Section II the theory of FC and graph theory is described.
In Section III the analysis pipeline is presented, consisting
of the preprocessing steps and the calculated parameters. The
results are presented in Section IV. Section V contains the
discussion, Section VI contains the conclusion and recommen-
dations.

II. THEORY

A. Functional Connectivity

In this research the FC was investigated. FC is the con-
nectivity between brain areas that share functional properties.
This implies that functionally connected brain areas are simul-
taneously activated and therefore related time series can be
measured in those regions. The FC is measured with resting
state fMRI using the blood-oxygen-level dependent (BOLD)
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contrast. In resting state fMRI no specific task is performed,
the subject lies still in the scanner and spontaneous brain
activity is measured. The BOLD contrast is based on the
different magnetization between oxygen-rich and oxygen-poor
blood. Activated neurons require an increase in oxygen flow
which results in a change in local magnetization. This local
magnetization change can be measured by fMRI and is a
measure for the ratio of oxygen-rich and oxygen-poor blood
and therefore a measure of local brain activity. The fMRI scans
are used to analyze which areas of the brain are active at the
same time and therefore assumed to be connected.

The connection strength is determined by calculating the
pairwise correlations between all regions using Pearson’s
correlation coefficient (1), followed by Fisher’s z-transform
(2) to normalize the distribution.

r = corr(X,Y) =

∑n
i=1(Xi − X̄)(Yi − Ȳ)√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ)2
(1)

z =
1

2
ln

(
1 + r

1 − r

)
= arctanh(r) (2)

Here X and Y are time series of length n, X̄ and Ȳ are
the mean values of X and Y .

The analysis of FC can indicate disorders and might im-
prove diagnosis, e.g. of epilepsy [5] and depression [28].
It is shown the FC differs in people with MDD and the
abnormalities are found both in the DMN and the CEN [12].
The FC of the subgenual cingulate and thalamus with the
DMN has shown to be significantly increased [6]. The FC
in the DMN has shown to be increased and the FC in the
CEN is decreased. TMS has shown to modulate the FC in the
DMN and between the DMN and CEN in depressed people
[12].

B. Graph Theory

Graph theory is the study of graphs, the mathematical
structures consisting of nodes and edges. Graph theory is used
to characterize FC networks based on their topology [21],
[25]. Graph theory of resting state fMRI can be used to assist
diagnosis for Alzheimer’s disease [9].

In this research the graphs are used to represent the FC in
the brain. The anatomical regions are represented by nodes
in the graph and the edges show the functional connections
between the nodes. A graph is described by the nodes, its edges
and possibly the weight of the edges. When no weighting is
applied and the edges have uniform strength, it is called a
binary graph. When weighting is applied to the edges it is a
weighted graph. Both types of graphs are used in this research.
The used graphs are undirected as there is no direction in the
connectivity.

The graphs are derived from the functional connection
strengths. The binary graphs are constructed by applying a
threshold which removes all connections below the threshold.
The strongest connections above the threshold result in edges
with uniform weight in the graph. This enhances the contrast
between strong and week connections. This in contrast to the
weighted graphs, where the connection strengths are used as
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Fig. 1. Overview of the stimulation protocol. The first day the subject is
scanned, followed by four days of stimulation of 5 sessions a day. On the
eight day the subject is rescanned.

weights for the edges and only the negative connections are
removed.

The properties of these graphs are expressed by certain
parameters [16]. The calculated parameters are the character-
istic path length (L) and the clustering coefficient (C). The
characteristic path length is the average shortest path length,
the clustering coefficient is a measure for the overall clustering
in the graph. The path length L is calculated for both binary
and weighted graphs. The binary clustering coefficient Cb

differs from the the weighted clustering coefficient Cw. The
parameters are calculated as follows:

L =
1

n(n− 1)

∑
i,j∈G,i 6=j

di,j (3)

Cb =
1

n

∑
i∈G

∑
j,h∈G(ai,jaj,hah,i)

ki(ki − 1)
(4)

Cw =
1

n

∑
i∈G

∑
j,m∈G(wi,jwj,hwh,i)

1/3

ki(ki − 1)
(5)

Here di,j is the shortest distance between node i and j,
n is the total number of nodes in the graph. ai,j is the
binary connection strength so either 0 or 1, wi,j the weighted
connection strength and ki is the sum of connection strengths
originating from node i.

The graph parameters depend highly on the number of
edges in the graph [21]. Hence to be able to compare the
parameters derived from the binary graphs, the number of
edges in the compared graphs is chosen to be equal. For the
weighted graphs the number of edges is directly dependent
of the connection strengths and therefore the total connection
strength can differ between the two graphs.

For the parameters to be meaningful, it is important that all
nodes are connected such that every node can reach every other
node via a certain, not necessarily direct, path. Unconnected
nodes would result in an infinite characteristic path length,
independent of the rest of the network.

III. ANALYSIS PIPELINE

A single subject with MDD underwent four consecutive
days of iTBS applied at the left dorsolateral prefrontal cortex
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(DLPFC). A day before the first stimulation session the subject
was scanned using a Siemens MRI of 3T, where the used
parameters were a 2000ms repetition time, an echo time of
29 ms and a flip angle of 90 degrees. The next four days
after the scanning protocol the stimulation was applied. The
iTBS was applied with a Magstim Rapid2 Plus1 magnetic
stimulator (Magstim Company Limited, Wales, UK) with a
figure-of-eight coil. The resting motor threshold (MT) was
determined on the right abductor pollicis brevis muscle. Each
day of stimulation consisted of 5 sessions where each session
contained 54 bursts of 10 pulse trains of 3 at 100% MT. This
resulted in 1620 pulses per session. Exactly one week after
the first scan the subject was rescanned. An overview of the
protocol is shown in Figure 1.

The data were processed using MATLAB R2014b (The
MathWorks Inc., Natick, MA, US) with the conn toolbox
[26] and SPM12 (Wellcome Trust Centre for Neuroimaging,
London, UK).

A. Preprocessing fMRI data

The fMRI data were preprocessed to increase the signal to
noise ratio by correcting for movement, scanner artifacts and
other uncontrollable variance. A schematic overview of the
applied preprocessing steps in SPM is shown in Figure 2.

At the beginning of a scan start-up effects can appear. The
tissue is adjusting to the large signal change which results in
higher contrast in the first scans due to magnetic saturation
effects. Dummy scans are used to allow magnetization equi-
librium to be reached before data is acquired. As it was unsure
if dummy lead-in scans were used, start-up effects might affect
the measurements in the first scans and therefore the first 10
measurements were discarded. The remaining fMRI images
were realigned, slice time corrected, coregistered, segmented,
spatially normalized and smoothed using SPM:

1) Slice Timing Correction: Slice timing correction corrects
for the time differences as a function of acquisition order
between different slices of the same scan. The slices were ac-
quired in an interleaved order which creates a timing difference
of half the repetition time between two adjacent slices. Using
interpolation the signals were corrected for not acquiring every
slice in a volume at the same time.

2) Realignment: In this step the functional images were
individually realigned to correct for movement of the subject
which would result in errors in the time series. Rigid body
transformations, translations and rotations in three directions,
were used to minimize movement effects. A mean image was
created for coregistering.

3) Coregistering: Coregistering matches the structural MRI
scan to the functional MRI scans by maximizing the mutual
information between the structural image and the mean func-
tional image. As the functional scans were already realigned,
the structural and functional scans are all in the same space
after coregistering. Only rigid body transformations were used
in this step.

4) Segmentation: Segmentation uses the structural scan to
derive images for each of the three different tissue types:
gray matter (GM), white matter (WM) and cerebrospinal fluid

Fig. 2. The preprocessing pipeline created for SPM. The white blocks
represent the processing steps, the blue blocks are the in- and outputs.

(CSF). Segmentation also creates a deformation field that is
used for normalization. The structural image was matched
to tissue probability maps. These maps are in a standard
coordinate system, the MNI space, which is a standardized
brain template from the Montreal Neurological Institute and
Hospital. The tissue probability maps were used together with
the information in the structural image to create the segmented
images. To match the structural image to the tissue probability
maps, the structural image was transformed to the same space
as the probability maps. The used transformation was stored
in the deformation field.

5) Normalization: Normalization transformed the scans
into the standardized MNI space. This was done by applying
the transformations stored in the deformation field to all
the required scans. Normalization is required to be able to
compare scans of different subjects. Translations, rotations,
zooms and nonlinear deformations were used.

6) Smoothing: The scans were spatially smoothed using
a Gaussian kernel with a full width half maximum of 6
mm, twice the voxel size, to correct for slight remaining
functional/anatomical differences and decrease spatial noise.

After preprocessing in SPM, the signals were denoised using
the Matlab toolbox conn. The realignment parameters and
signals derived from the WM and CSF voxels were used as
regressors in the general linear model to clean up the data.
Even though realignment was applied, it can not be assumed
that all movement effects were removed from the signal. In the
WM and CSF there are no cell bodies and the signals measured
there are not directly caused by brain activity. Therefore they
were considered noise and were used to model the noise in
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the entire scan. The noise was modeled with the aCompCor
algorithm [3]. For both CSF and WM the 5 strongest time serie
components, derived using principal component analysis, were
used as regressors. The global signal was not used as regressor.
Finally, a bandpass filter ranging from 0.1 to 0.01 Hz was
applied to filter out cardiac and respiratory cycle disturbances
and low frequency scanner drift.

B. Calculated Parameters

1) Functional connectivity matrices: The brain was split
into 84 regions by the Brodmann atlas [4]. The atlas is based
on the cellular composition of the brain and the individual
areas can be linked to certain brain functions. The stimulation
region consisted of the two Brodmann Areas (BA) 9 and 46
in the left hemisphere that together form the left DLPFC.
These two regions were combined and further referred to as
the seed region. The time-series were calculated for all the 83
individual regions (as listed in Appendix A). This was done
by averaging over all individual voxel signals in the region.
Here the unsmoothed voxel time-series were used to prevent
potential loss of the BOLD signal by contamination of nearby
areas.

The FC was calculated between all 83 regions and the
calculated correlation values were ordered in the 83 by 83 FC
matrices for pre and post TMS. The difference between the
matrices was visualized and calculated as difference = post FC
- pre FC. To determine an overall connectivity change a one-
tailed paired t-test with p < 0.05 was done over all undoubled
elements of the matrix to compare the average FC before and
after stimulation.

To determine local effects in the connectivity change, the
connectivity change per node was calculated by comparing
the rows of the connectivity matrices individually. Every row
consists of the connection strengths from a single area with all
other areas. A one-tailed paired t-test (with p < 0.05, corrected
for multiple comparisons using Bonferroni correction) was
performed over the two corresponding rows from before and
after TMS. A schematic overview of this measure is shown in
Figure 3.

2) Graph parameters: Graph theory was first applied to
analyze the whole brain. The graphs were derived from the
83 by 83 FC matrices.

The parameters were calculated for the binary and weighted
graphs. The binary graphs were constructed using a sparsity
of 0.3 such that 70 percent of all possible connections were
present. This value was determined by calculating the mini-
mum number of connections necessary to achieve connected
graphs. This gave a value just below 70 percent, which was
rounded upwards and set for the two graphs, pre and post,
such that both graphs have an equal amount of edges. The
30 percent weakest connections were removed by setting the
connection strengths to 0. Then using formulas 3 and 4 the
binary L and Cb were calculated.

The weighted graphs were determined by using all the
positive connection strengths. The interpretation of negative
correlation strengths is not straightforward and therefore the
negative connections were set to 0 [16]. The positive connec-

Fig. 3. Schematic overview of the calculation of the local connectivity change.
For a node, shown in red, the correlation values with all other nodes are stored
in an array, ROIcorr. This is done separately for pre and post. Then a t-test
is done over the arrays.

tion strengths were kept unchanged. From the resulted con-
nectivity matrix the weighted Cw is calculated. The distance
between two connected nodes was determined as the inverse
of the connectivity coefficient. The calculated distance matrix
was used to calculate L. The parameter calculations were
derived from the Brain Connectivity Toolbox [16].

After the whole brain analysis, the graph analysis was
repeated for selected brain networks on a voxel-to-voxel level.
Analyzing over the full brain might average out the effects
of TMS. Therefore the individual networks were analyzed to
investigate the spatial distribution of the effect. The analysis
was performed on the regions of the DMN and the CEN.

To determine the areas involved in these networks, resting
state network masks from a study by Smith et al. [19]
were used. In this study independent component analysis was
performed on temporally concatenated resting state data of 36
subjects. These resting state networks were matched with the
networks from the BrainMap database consisting of 29,671
subjects. A threshold of Z = 3 was applied to create binary
masks. The resulting Smith masks are shown in Figure 4.

The correlation matrices on a voxel-to-voxel level were cal-
culated and the binary graphs were constructed with a sparsity
of 0.8, the maximum value which resulted in a connected
graph, resulting in 20 percent of all possible connections.
The binary parameters were extracted. Also the weighted
parameters were determined from the correlation matrices
where all negative connections were set to 0.

3) Seed-to-voxel analysis: To determine the connectivity
between the TMS seed and the networks, the seed-to-voxel
analysis from the DLPFC to the DMN and the CEN was cal-
culated. The average time serie of the DLPFC was correlated
with all voxels in the DMN and the CEN. The binary Smith
masks for the CEN and DMN were used. The connectivity
change was determined by calculating the difference between
pre and post analysis. As the DLPFC is part of the CEN, the
seed-to-voxel analysis between the DLPFC and the CEN gave
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Fig. 4. Masks for the Default Mode Network and the Central Executive
Network. The masks were derived from a study of Smith et al [ref],which
resulted in 10 resting state networks well-matched to components of the
29,671-subject BrainMap activation database. The masks were thresholded
at Z = 3.

Fig. 5. The difference of the functional connectivity matrices, calculated as
post TMS minus pre TMS, in Fisher z-transformed correlation coefficient. The
indices along the axes correspond to the 83 brain areas listed in Appendix A.
Some areas show an increased connectivity, most areas show a connectivity
decrease.

a measure for the within-network connectivity of the CEN. The
analysis between the DLPFC and the DMN gave a measure
of connectivity between the TMS seed and the DMN.

IV. RESULTS

A. Functional connectivity matrices

The FC matrices showed the overall FC was significantly
decreased after stimulation (p = 3 · 10−34). The difference
matrix is shown in Figure 5.

The connectivity change per node is shown in Figure 6.
In line with the overall FC change most nodes showed a
decreased connectivity. 33 nodes showed a significant de-
creased connectivity after stimulation, 9 nodes an increased
connectivity. The other 41 nodes showed no significant change.
The TMS seed showed a decreased connectivity. The affected
nodes were almost equally distributed over left and right
hemispheres (4 left versus 5 right increased, 22 versus 19
decreased).

Fig. 6. Connectivity change per node. The left view, top view and frontal
view are shown. The larger node represents the TMS seed, the dorsolateral
prefrontal cortex. The 33 blue nodes represent a significant decreased con-
nectivity, the 9 red nodes an increased connectivity. 41 green nodes showed
no significant connectivity change (t-test with p < 0.05, FWE corrected).
Visualized using BrainNet [27].

Path Length (L) Clustering
Coefficient (C)

Binary Pre Post Pre Post

Whole Brain 1.3147 1.3021 0.8223 0.8231
DMN 2.1670 2.0118 0.7092 0.6621
CEN 1.8636 1.9017 0.5770 0.5928

Weighted Pre Post Pre Post

Whole Brain 3.0238 3.2967 0.3323 0.2810
DMN 2.6761 2.9988 0.3385 0.2673
CEN 3.8524 3.9476 0.1593 0.1593

TABLE I
GRAPH PARAMETERS.

B. Graph parameters

The calculated graph parameters for the whole brain, the
DMN and the CEN are shown in Table I.

The binary path length L of the DMN showed a decrease,
the clustering coefficient C showed a small decrease. The L
and the C of the CEN showed a small increase. The whole
brain parameters did not indicate an effect. The weighted L
showed for all three cases an increase. The two weighted C’s
for the whole brain and the DMN showed a small decrease.
The C of the CEN was not affected.

C. Seed-to-voxel analysis in DMN and CEN

The difference in seed-to-voxel analysis between the
DLPFC and the DMN is shown in Figure 7, the DLPFC
to CEN is shown in Figure 8. The FC change between the
DLPFC and the DMN showed a mixed effect. Some areas
showed an increase in FC, others a decrease. On average
the connectivity was increased. The FC change between the
DLPFC and the CEN showed an increase close to the DLPFC
but a decrease in the rest of the network. This indicated a
decreased connectivity between the separate areas of the CEN.
The average connectivity however showed an increase.

V. DISCUSSION

A. Results

An analysis pipeline was generated and tested based on
one dataset. The single subject study showed a decreased
connectivity after TMS. The connectivity change per node
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Fig. 7. The difference in correlation for masked seed-to-voxel analysis, shown
in Fisher’s z-transformed correlation coefficient as post TMS minus pre TMS.
The difference in calculation between the TMS seed, the left dorsolateral
prefrontal cortex, and all voxels in the Default Mode Network.

Fig. 8. The difference in correlation for masked seed-to-voxel analysis, shown
in Fisher’s z-transformed correlation coefficient as post TMS minus pre TMS.
The difference in calculation between the TMS seed, the left dorsolateral
prefrontal cortex, and all voxels in the Central Executive Network.

showed a change in connectivity which spread across the brain.
This was in line with the whole brain weighted parameters
where L showed an increase and the C a decrease, which could
indicate a decreased connectivity. However, the study did not
indicate an effect on the binary C and L for the entire brain. For
the DMN the weighted parameters showed an increased L and
decreased C. The binary L was decreased. The weighted L for

the CEN showed a small increase. This might have indicated
that the effect of TMS mainly affects the DMN network and
that there is no effect present on the CEN. Also it indicated
that weighted graph parameters might be a better measure for
connectivity change then binary parameters. To verify this the
analysis of more subjects is required.

Seed-to-voxel analysis indicated a decreased connectivity
within the CEN except for the region close to the DLPFC
after TMS and an average increased connectivity. A study by
Liston et al. with a similar analyis showed no changes in the
CEN [12]. This is more in line with our graph parameters of
the CEN which showed a minor increase in L. The average
connectivity between the DLPFC and the DMN was decreased
in our study, but local increases and decreases were visible.
Liston et al. found a less elevated connectivity after TMS [12].
This seems in contrast with the decrease in L for the binary
graph. It is more in line with the weighted graph parameters:
our DMN parameters showed less connectivity with increased
L and decreased C. But the parameter differences are very
small so further research of more subjects is needed.

It could be possible that the effect was no longer visible in
the scan since the subject was not scanned immediately after
the stimulation and the duration of the effect of TMS is not
exactly known. However in a study by Pascual-Leone et al. it
was shown that the effect on depressive symptoms tapered off
over 14 days [14]. Therefore we expected the effect to still be
visible.

B. Methodology

The FC over the whole brain was investigated by use of the
Brodmann atlas. The correlation between neighboring voxels
was high, but this decreased very fast when the distance be-
tween the voxels increased. The variance in time series within
a BA was high and this could indicate that the Brodmann atlas
did not properly represent the functional areas. Use of smaller
regions might give a better insight in the FC. Areas derived
from the data by using clusters of voxels that have similar
time series for example. However, too small areas such as full
brain voxel-to-voxel analysis would be difficult to interpret.

The seed signal, which was defined as the average of the
time series in two BA’s, is also affected by the variance in
time series in the BA’s. The two BA’s of the seed formed an
elongated area that stretches over a third of the outline of the
left hemisphere. The seed signal could be improved by having
a more accurate location of the stimulation position and using
a smaller area to determine the average time series. Using
neuronavigation the stimulation position could be determined
within centimeter accuracy such that a smaller area for the
seed area could be selected.

As a connectivity measure Pearson’s correlation coefficient
was used. There are other measures that might be used, such
as partial correlation or coherence. Correlation and coherence
methods perform better for fMRI than methods based on
higher order statistics and partial correlation shows good
results [20]. Partial correlation can be used as a method to
separate the direct connections from the indirect connections
by correcting for the effect of all other signals. For comparing
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Fig. 9. The central executive network mask from Smith is shown in red, the
CSF is shown in blue. The mask contains voxels in the CSF where no signal
of interest is expected and therefore these voxels should not be used in the
analysis.

the connectivity it is unnecessary to determine only direct
connections. By using the WM and CSF signals as regressors,
a large part of the background signal was already removed and
there is less need for partial correlation, but the use of other
measures could be investigated.

1) Masks: Another point of discussion are the used masks
for the DMN and the CEN. When simply overlying the Smith
masks on the normalized fMRI brain, these masks contain
voxels in the CSF, as shown in Figure 9. In the CSF no
cell bodies are present and the signals measured there are
not directly caused by brain activity. Therefore the signals
originating there are not of interest for this analysis and these
voxels should not be present in the masks. To determine the
effect of the CSF voxels, a mask was created from the Smith
mask, without patient specific information, where the voxels
that are present in the patient specific binary segmented CSF
mask were left out. The patient specific segmented CSF image
was transformed into a binary mask where all the voxels in
the CSF image with a higher value then 80 percent of the
maximum were excluded. When the graph parameters were
calculated over the adjusted Smith masks from which the CSF
voxels were excluded, this had a small effect on the parameters
as it increases the differences between pre and post by 0.01
to 0.02.

The Smith masks are average masks and were not matched
to individual differences in the anatomy. To adjust the maps for
an individual subject, dual regression was applied to the masks
[1]. The spatial masks were used to generate subject specific
spatial maps and associated time series. This was done by
solving equation (6) and (7). First all 10 3-dimensional masks
of the resting state networks from Smith [19] were used as
spatial regressors to extract from the 4-dimensional fMRI data

(a) DMN Smith (b) CEN Smith

(c) DMN Dual Regression (d) CEN Dual Regression

(e) DMN ICA (f) CEN ICA

Fig. 10. For both the Default Mode Network and the Central Executive
Network three masks are shown. The first row shows the masks from Smith
[19]. The second row shows the same networks after dual regression is applied.
The last row shows the components determined using Independent Component
Analysis that best match the reference networks. The shown slices are (34,
32, 44) and (34, 54, 44) for the DMN and CEN respectively. All masks are
thresholded at Z=1.

of the subject the time series corresponding to these masks
(6). Then these time series were used as temporal regressors,
together with the realigment parameters and the average WM
and CSF signals, to extract from the same 4D subject dataset
the subject specific spatial maps (7). These maps could be
thresholded and used as masks.

[fMRI data] = [Smith masks] · [time series] (6)

[fMRI data] = [time series] · [spatial maps] (7)

Another way to determine patient specific masks is by using
independent component analysis (ICA) [2]. ICA was applied
to the fMRI data using FSL’s Melodic which decomposes the
data into independent spatial and temporal components (8) [8].
The ICA maps were optimized to be statistically independent
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and combined with the corresponding time series the original
data is decomposed.

[fMRI data] = [time series] · [ICA maps] (8)

The data acquired pre TMS is used to extract 20 network
components. The components with highest spatial correlation
with the Smith DMN and CEN networks can be used as
masks [19]. In Figure 10 the three determined masks for the
DMN and the CEN are shown. The top row shows the masks
from Smith [19]. The second row shows the masks after dual
regression is applied. The last row shows the ICA components
that had the highest spatial correlation with the Smith DMN
and CEN masks.

After dual regression was applied the DMN mask looked
similar to the Smith mask. However the activation region in
the frontal area was moved to the outside where it overlaps
with the CSF. This was also the case for the ICA component
matching the DMN. The ICA component matching the CEN
had some voxels in the skull. Using a higher threshold could
solve this.

Another possibility is to use a mask derived from a seed
region.This requires the localization of the seed, from which
functionally connected regions are determined by using a gen-
eralized linear model. The determined functionally connected
regions could be used as a mask.

Besides determining graph parameters in the masks derived
from FC, it would be interesting to create a mask derived from
structural connectivity using diffusion tensor imaging (DTI)
analysis. If the effect of TMS spreads by the structural con-
nections, it could effect the graph parameters in the structurally
connected regions. To investigate this a mask could be created
that contains the areas that are structurally connected to the
seed and determine the graph parameters from that mask.

2) Graph theory: Comparing graphs and graph parameters
is not straightforward [24]. For weighted graphs, the difference
in average weight might influence the derived parameters. Also
the negative connections are not taken into account in the
weighted graphs. This information could possibly be used.

The whole brain graph parameters were calculated for a
sparsity level of 0.3 and the network parameters for a sparsity
of 0.8. The choice of this level could affect the result. To
investigate this effect, the graph parameters over a range of
sparsity levels that result in connected graphs are shown in
Figure 11. It could be seen that the sparsity has a minimal
effect on the difference between the pre and post parameters
for the whole brain and the CEN. However for the DMN, a
higher sparsity resulted in a larger spread in graph parameters.

VI. CONCLUSIONS AND RECOMMENDATIONS

An analysis pipeline was created which preprocesses the
fMRI data and calculates FC parameters.

The results of a single dataset indicate an effect of TMS
on the FC. The data showed a decreased overall connectivity
and the connectivity change per node indicated that the effect
spreads across the brain. The binary graph parameters over the
entire brain showed no effect. The DMN showed a slightly
decreased L after TMS. The other parameter differences were
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Fig. 11. The effect of the sparsity on the graph parameters path length L and
clustering coefficient C is shown. In (a) and (b) the whole brain parameters
show no effect of sparsity. In (c) and (d), L and C calculated for the default
mode network and the central executive network, the graphs show an increased
sparsity results in an increased difference between the parameters.
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small and the analysis of more subjects is needed before
conclusions can be drawn.

The seed-to-voxel analysis showed a decreased connectivity
between the frontal area and the rest of the CEN, which might
indicate a decreased connectivity within the CEN.

Further research is needed and more subjects should be an-
alyzed. Using a better defined seed region would improve the
analysis. Also the effect of TMS on the structural connectivity
could be investigated.

APPENDIX
MATRIX INDICES TO BRODMANN AREA’S

Index BA Index BA

1 BA.1 (L) 43 BA.33 (L)
2 BA.1 (R) 44 BA.33 (R)
3 BA.10 (L) 45 BA.34 (L)
4 BA.10 (R) 46 BA.34 (R)
5 BA.11 (L) 47 BA.35 (L)
6 BA.11 (R) 48 BA.35 (R)
7 BA.13 (L) 49 BA.36 (L)
8 BA.13 (R) 50 BA.36 (R)
9 BA.17 (L) 51 BA.37 (L)
10 BA.17 (R) 52 BA.37 (R)
11 BA.18 (L) 53 BA.38 (L)
12 BA.18 (R) 54 BA.38 (R)
13 BA.19 (L) 55 BA.39 (L)
14 BA.19 (R) 56 BA.39 (R)
15 BA.2 (L) 57 BA.4 (L)
16 BA.2 (R) 58 BA.4 (R)
17 BA.20 (L) 59 BA.40 (L)
18 BA.20 (R) 60 BA.40 (R)
19 BA.21 (L) 61 BA.41 (L)
20 BA.21 (R) 62 BA.41 (R)
21 BA.22 (L) 63 BA.42 (L)
22 BA.22 (R) 64 BA.42 (R)
23 BA.23 (L) 65 BA.43 (L)
24 BA.23 (R) 66 BA.43 (R)
25 BA.24 (L) 67 BA.44 (L)
26 BA.24 (R) 68 BA.44 (R)
27 BA.25 (L) 69 BA.45 (L)
28 BA.25 (R) 70 BA.45 (R)
29 BA.27 (L) 71 Seed (L)
30 BA.27 (R) 72 BA.46 (R)
31 BA.28 (L) 73 BA.47 (L)
32 BA.28 (R) 74 BA.47 (R)
33 BA.29 (L) 75 BA.5 (L)
34 BA.29 (R) 76 BA.5 (R)
35 BA.3 (L) 77 BA.6 (L)
36 BA.3 (R) 78 BA.6 (R)
37 BA.30 (L) 79 BA.7 (L)
38 BA.30 (R) 80 BA.7 (R)
39 BA.31 (L) 81 BA.8 (L)
40 BA.31 (R) 82 BA.8 (R)
41 BA.32 (L) 83 BA.9 (R)
42 BA.32 (R)
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