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Aos meus pais. 



 

 



 

 

 

 

 

 

 

 

 

 

“Recomeça... 
 

Se puderes, 
Sem angústia e sem pressa. 

E os passos que deres, 
Nesse caminho duro do futuro, 

Dá-os em liberdade. 
Enquanto não alcances 

Não descanses. 
De nenhum fruto queiras só metade. 

 

E, nunca saciado, 
Vai colhendo 

Ilusões sucessivas no pomar 
Sempre a sonhar 

E vendo, 
Acordado, 

O logro da aventura. 
És homem, não te esqueças! 

Só é tua loucura 
Onde, com lucidez, te reconheças.” 

 
 
 

Miguel Torga  

 



 

 



 

 

 
 
 
 
 
 
 
O presente trabalho foi realizado no Centro de Neurociências e Biologia Celular da Uni-

versidade de Coimbra, Coimbra, Portugal, sob a orientação científica da Prof. Dra. Maria 

Carmen Alpoim. Trata-se de um trabalho de equipa que resultou num manuscrito subme-

tido para publicação na revista Proceedings of the National Academy of Sciences. 

 

 

O projeto no qual este trabalho se encontra inserido foi suportado por uma bolsa de inves-

tigação atribuída pela Fundação para a Ciência e Tecnologia a Maria Carmen Alpoim 

(PTDC/BBB-BQB/2450/2012), outra bolsa de investigação, atribuída pela mesma institui-

ção, a Rui Pinto Pedrosa (PTDC/MAR-BIO/6149/2014) e ainda por uma bolsa de projeto 

financiada pelo Centro de Investigação em Meio Ambiente, Genética e Oncobiologia (CI-

MAGO) da FMUC (Projeto 16/06), também atribuída a Maria Carmen Alpoim. 
 



 

 



 

i 

Abstract 
Cancer stem cells (CSCs) are a small population of extremely resistant cells inhabit-

ing the tumors. Although comprising only as much as 3 % of the total tumor mass, these 

cellular population was demonstrated to orchestrate tumorigenesis and differentiation, un-

derlying tumors’ heterogeneity and mediating chemo- and radiotherapy resistance, and tu-

mor relapse. Some authors even propose these cells as the drivers of the metastatic disease. 

Here we show that, as previous literature suggested, CSCs may actually be formed by de-

differentiation of terminally differentiated tumor cells, under stress conditions. In our sys-

tem, nutrients and oxygen deprivation when tumor cells were injected in the subcutaneous 

space of immunocompromised mice was enough to activate non-malignant mice stromal 

fibroblasts, which established with tumor cells a paracrine loop mediated by Interleukine-

6 (IL-6), Activin-A and Granulocyte colony-stimulating factor (G-CSF), thus regulating 

subsequent tumor formation and cellular differentiation. Moreover, we were able to dissect 

that cytokines were being released inside exosomes and that by scavenging the cytokines 

from the media and/or blocking exosomes’ release, the dedifferentiation process was abro-

gated. Hence, it is the first time the exosomes are implicated in the dedifferentiation of 

CSCs, which opens new avenues of research regarding their potential use in targeted cancer 

therapies. 
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Significance 
Understanding the process of cancer formation has long been a major and very active 

focus of research. The relatively recent discovery of cancer stem cells and the dissection of 

their biological traits lead to the hypothesis that through the targeting of this particular 

cellular population, the carcinogenic process may be abrogated, as may tumor progression 

to metastatic disease. Our report shows that cancer stem cells can be formed by stoma-

orchestrated dedifferentiation of tumor cells through a paracrine communication mediated 

by exosomes. Altogether, the attained results identified IL-6 and Activin-A as the drivers 

of dedifferentiation and suggested their direct blockage and/or the blockage of exosomes’ 

release as potential therapeutic strategies against cancer progression, with potential impact 

on clinical practice. 
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Resumo 
As células estaminais tumorais (CETs) são uma fração extremamente resistente de 

células tumorais. Embora representem apenas cerca de 3 % da massa celular tumoral, esta 

população celular mostrou-se responsável pelo processo tumorigénico e pela diferenciação 

tumoral, sendo-lhe deste modo imputadas a heterogeneidade tumoral, a resistência à qui-

mio- e radioterapias e as recidivas tumorais. Alguns autores chegam mesmo a propor que 

são estas as células responsáveis pela doença metastática.  

O presente trabalho mostra que, como previamente sugerido na literatura, as CETs 

podem ser formadas por dediferenciação de células tumorais diferenciadas, sob condições 

de stresse. No sistema celular que implementamos, a privação de oxigénio e nutrientes 

quando as células tumorais foram injetadas no compartimento subcutâneo de ratinhos imu-

nocomprometidos, foi suficiente para activar fibroblastos não malignos do estroma le-

vando-os a estabelecer com as células tumorais uma comunicação parácrina mediada pela 

Interleucina-6 (IL-6), a Activina-A e o Fator Estimulador de Colónias de Granulócitos (G-

CSF), a qual regulou a formação subsequente do tumor e a sua diferenciação celular. Mais 

ainda, o mesmo sistema permitiu perceber que as citocinas em causa foram libertadas no 

interior de exosomas e deste modo, que o bloqueio da libertação de exosomas e/ou a remo-

ção das citocinas do meio, impedem a dediferenciação celular.  

Trata-se da primeira vez que exosomas são implicados na dediferenciação de CETs, 

o que representa uma nova e promissora área de investigação, bem como um potencial 

novo foco para o desenvolvimento de terapias anticancerígenas dirigidas. 
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Introduction 

Tumors are dynamic and heterogeneous entities that act like organs in a perfect trad-

ing with the entire body. They are comprised of distinct cell populations that can either be 

the direct product of cells with different cellular or embryonic origins, or a byproduct of 

the asymmetric division of stem-like cells. In agreement, cancer-committed stem-like cells, 

often termed CSCs, have been identified virtually in all solid and hematological tumors 

(1). 

 CSCs share several similarities with normal adult stem cells (SCs), including self-

renewal capacity, expression of pluripotency surface markers and multilineage differenti-

ation properties (2), but unlike them, CSCs have sustained cellular proliferation (3). Their 

tremendously variable frequency among the different tumor types, and within tumors of 

the same origin, makes them difficult to ascertain (4). They were initially thought to de-

velop from the pre-existing normal tissue SCs following exposure to molecules secreted 

by the tumor (5), but there is now consensus that CSCs may arise either directly following 

transformation of normal tissue SCs or by dedifferentiation of non-SCs (6), for instance 

following epithelial to mesenchymal transition (EMT) (7, 8), or radiochemotherapy, as re-

cently reviewed by Chen and collaborators (9).   
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Exploiting the recently evoked involvement of cytokines and soluble molecules in 

keeping and inducing CSCs’ phenotype may constitute a new molecule-focused therapeu-

tic opportunity. In this line, using an elegant cell culture model previously developed in the 

laboratory we were able to show that IL-6, Granulocyte colony-stimulating factor (G-CSF) 

and Activin-A released by stroma fibroblasts drive lung carcinoma cells’ dedifferentiation 

and CSCs formation. Moreover, it was possible to ascertain a specific role to each cytokine 

as well as to establish the dynamics of the cytokines’ release. The attained results present 

a new avenue for therapeutic intervention aiming CSCs ablation and metastasis abrogation. 
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Material & Methods 

1.1 Cells and Cell Culture 

RenG2 cells are a malignant cellular system previously produced in our laboratory 

(10), maintained in LHC-9 medium (Gibco) at the initial cellular density of 0.1x106 

cells/cm2, unless otherwise stated. The derivative (DRenG2 and DDRenG2) and the stem 

(SC-DRenG2, SC-DDRenG2 and iRenG2) systems were attained as abovementioned and 

kept in DMEM:F12 (1:1) medium (Gibco) supplemented with 5 % penicillin (5000 U/mL)-

streptomycin (5000 μg/mL) (Gibco), 5 % Insulin-Transferrin-Selenium pyruvate (ITS) so-

lution (Gibco), 0.1 % amphotericin (Gibco), 0.6 g of sodium bicarbonate (Sigma-Aldrich) 

and 0.08 g of putrescine (Sigma-Aldrich). 

A mouse fibroblats primary cell line, FR, was attained using a protocol adapted in 

our laboratory by surgically removing cells from the thoracolumbar aponeurosis of 

BALB/c-nu/nu mice (Charles-River). Isolated tissue was fragmented, and the attained 

small pieces distributed throughout the basis of a cell culture flask (SPL-Biosciences). A 

drop of fetal bovine serum (FBS) was added to each of the fragments to help them adhering 

and to provide them with nutrients. Finally, the flask was turned upside-down and DMEM 

medium (Gibco) supplemented with 10 % FBS (Gibco) was added to the top surface of the 

flask. Fragments were allowed to attach upside-down for 24 h and then the flask was gently 
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turned to the up right. After monolayer formation the cells were disaggregated, sub-culture 

and amplified, yielding the FR cellular system. The human bronchial fibriblasts (HBF) cell 

line was developed using the same protocol but from non-malignant human lung tissue 

attained from a patient at the CHUC, through appropriate informed consents and after the 

approval by the hospitals’ ethics committee.  

For co-culture experiments a fibroblasts feeder layer of either FR or HBFs cells were 

cultured in a 6 well plate (SPL-Biosciences) equipped with 4.5 cm2 Transwell insert (Corn-

ing) containing RenG2 cells.   

1.2 Tumorigenic Assays 

In vivo tumorigenic assays were performed in NOD scid gamma mice (Charles River) 

by subcutaneously injecting 5x106 cells into the flank region of the animals. Mice were 

housed under standard conditions at the CNC animal facility and screened twice a week 

for tumor formation. All animal procedures were conducted according to the EU Directive 

2010/63/EU for animal experiments and reviewed and approved by DGAV, ORBEA and 

the animal facility ethics committee. 

1.3 Duplication Times Calculation 

Duplication times (DTs) were attained using previously established 3-[4, 5-dimethyl-

thiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay protocols (11) and calcula-

tions were performed in the Doubling Time software at Doubling Time webpage (12). 
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1.4  [18F]-fluoro-2-deoxyglucose uptake 

1.5 mL of single-cell suspensions containing 2x106 cells/mL were attained from ei-

ther adherent-growing cell lines or tridimensional spheres. The suspensions were placed in 

10 mL centrifuge tubes (SPL-Biosciences) and left for recovery for 1 h at 37 ºC. Subse-

quently, a calculated volume of 37 ºC-heated [18F]-fluoro-2-deoxyglucose (18FDG) was 

added to reach a final concentration of 0.75 MBq/m, tubes were homogenized and con-

served at 37 ºC. After 1 h incubation, samples of 200 μL were collected to 1.5 mL micro-

centrifuge tubes (SPL-Biosciences) containing 500 μL of ice-cold phosphate-buffered sa-

line (PBS) (Sigma-Aldrich). Tubes were then centrifuged 1 minute at 10 000 rpm and the 

supernatants were collected into glass tubes. 500 μL of ice-cold PBS (Sigma-Aldrich) were 

added to the pellets to wash any remaining radioactive medium and tubes were again cen-

trifuged. Supernatants were collected to the same glass tube as previous and cell pellets 

were preserved. Finally, both the supernatants and the pellets were assayed for radioactivity 

using a Radioisotope Calibrator Well Counter (CRC-15W Capintec) narrowed to the 18F 

sensitivity energy window (400-600 keV). All cell populations were studied in triplicate in 

at least three sets of independent experiments. The attained results represent the percentage 

of cells’ radioactivity relatively to the total radioactivity added, normalized per million of 

cells. 
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1.5 Clonogenic Assays 

13 cells/cm2 cells were plated onto 100 mm Petri dishes (SPL-Biosciences), allowed 

to grow for 15 days and then fixed and stained with crystal violet (Sigma-Aldrich) accord-

ing to the protocol established by the group of van Bree (13). Surviving colonies containing 

more than 10 cells were scored to assess cloning efficiency and the complete protocol was 

repeated at least three times. Plating efficiency (PE) was calculated dividing the number of 

colonies formed by the number of cells seeded and the results were presented as a mean r 

SEM of three independent assays. 

1.6 Scratch Migration Assay 

4x103 cells/cm2 were added to 60 mm cell culture dishes (SPL-Biosciences) and al-

lowed to reach confluence. After a linear scratch was performed using a p200 pipet tip, the 

cultures were washed and an experimental site was defined in each dish. Cells were allowed 

to grow, and photographs were taken at 0 h, 12 h, 19 h, 24 h, 27 h, 37 h, 49 h, 60 h, 73 h, 

82 h, 93 h, 176 h and 200 h using a Moticam 2300 3.0 M Pixel USB 2.0 camera (Motic) 

coupled to a AE31 microscope (Motic). 

1.7 Drug-resistance Assays 

Single-cell suspensions of all the five cell lines proliferating or attained from the 

dissociations of spherical clones were plated into a 24-well plates at an optimized initial 

cellular density of 8x103 cells/cm2. 24 h after cells’ seeding, 10 μL of each drug solution 

[cisplatin (Cis, CG6413, Generis), methotrexate (MTX, Teva Pharmaceutical Industries) 
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and gemcitabine (Gem, Gemzar, Lilly) were administered to attain the desired final con-

centration (0.0 μM, 0.1 μM, 10 μM and 50 μM). For each condition, including the controls, 

three independent assays were carried in triplicate. Cells’ viability was assessed every 24 

h, during 3 days using the MTT reduction assay. 

1.8 CSCs’ isolation – Sphere Formation Assay 

CSCs’ isolation was performed using the sphere formation assay (SFA). To that end 

low adherence 6-well plates (SPL-Biosciences) were prepared by coating the plates’ sur-

face with a 2 % poli-(2-hydroxyethyl methacrylate) (poli-HEMA). The isolation medium 

consisted of a 1:1 mixture of the CSCs maintaining medium with a 2 % methylcellulose 

(Sigma-Aldrich) solution. For the isolation, 2 mL of a cellular suspension containing 3x104 

cells/mL were added to each well and the isolation medium was supplemented with 10 

ng/mL of both human epidermal growth factor (EGF) (Sigma-Aldrich) and basic fibro-

blasts growth factor (bFGF) (PeproTech). Cells were allowed to grow and supplements’ 

concentration was replaced every two days. Spheres formation was accompanied and pho-

tographed along time, and 15 days after platting they were collected, washed with PBS, 

and plated in T25 cell culture flasks (SPL-Biosciences) provided with 5 mL fresh maintain-

ing medium. Cells were allowed to attach and expand, and the protocol of isolation was 

repeated twice when they reached nearly 80 % confluence.  
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1.9 Immunocytochemistry 

4x103 cells/cm2 were seeded on the top of microscope slides (VWR) placed inside a 

100 mm cell culture dish (SPL-Biosciences) and cells were allowed to grow until approx-

imately 80 % confluence. Following medium aspiration the slides were rinsed twice with 

PBS (Sigma-Aldrich), collected into centrifuge tubes (SPL-Biosciences) containing 50 mL 

of 95 % ethanol (Sigma-Aldrich) and kept overnight at 4 ºC. To quench the endogenous 

peroxidase activity 15 minutes incubation was performed in a 3 % hydrogen peroxide 

(H2O2) solution. Subsequently preparation steps were performed using the Ultra Vision Kit 

(Thermo Scientific), according to manufacturers’ instructions. After dehydration, slides 

were mounted using the Tissue-Tek Glas Mounting Medium (1408, Sakura).  

Vimentin was stained using the Vim3B4 primary antibody (Dako Corporation), α-

smooth muscle actin (α-SMA) the αSM-1 (Leica Biosystems), octamer-binding protein ¾ 

(OCT3/4) with the N1NK (Leica Biosystems) and β-catenin with CAT-5H10 (Ther-

moFisher Scientific). 4',6-Diamidino-2-phenylindole (DAPI) staining was used to mark the 

nuclei. Cells’ were observed in a Nikon Eclipse 80i microscope and photographs were 

taken using a Nikon Digital DXM1200F coupled camera. 

1.10 Flow Cytometry-based Cellular Characterization 

Four different cytometry tubes containing 300 μL of 1x105 cells single-cell suspen-

sions were prepared per cellular system, two tubes for the blank controls and the other to 

be incubated with the selected panel of fluorescence-labeled monoclonal antibodies 

(mABs) as schematized in Table I. The mABs used were cluster of differentiation 31 
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(CD31) (WM59, BD Biosciences), nerve growth factor receptor (NGFR) (C40-1457, BD 

Biosciences), CD14 (M5E2, BD Biosciences), CD13 (Immu103.44, Beckman Coulter), 

CD133 (293C3, Miltenyi Biotec), CD11b (ICRF44, BD Biosciences), CD45 (HI30, Invi-

trogen), CD106 (51-10C9, BD Biosciences), CD105 (1G2, Beckman Coulter) and human 

leukocyte antigen (HLA) A, B, C (G46-2.6, BD Biosciences). The volumes of each mAB 

were selected according to manufacturer’s recommendations and are listed in Table I. 

 

Table I - Markers and fluorophores used in the flow cy-
tometry-based cellular characterization studies. 

 Tube 1 Tube 2 

FITC CD31 10 µL CD106 10 µL 
PE NGFR 10 µL CD30 10 µL 

PerCP5.5 CD14 2.5 µL - - 
PeCy7 CD13 2.5 µL CD13 2.5 µL 
APC CD133 10 µL HLA-

A,B,C 
10 µL 

PB CD11b 2.5 µL CD11 2.5 µL 
PO CD45 2.5 µL CD45 2.5 µL 

FITC - Fluorescein isothiocyanate; PE - Phycoerythrin; PerCP - Peridinin-cholophyll-pro-

tein complex; PeCy7 - Phycoerythrin Cy7-conjugated; APC - Allophycocyanin; PB - Pa-

cific blue; PO - Pacific orange. 

 

Cells were incubated 15 minutes with the mABs in the dark at room temperature 

(RT), rinsed with 2 mL of PBS (Sigma-Aldrich) and centrifuged for 5 minutes at 1500 rpm. 

Pellets were ressuspended in circa 200 μL of the supernatant and sample readings were 

carried out in a FACS Canto II Flow Cytometer (BD Biosciences). The attained results 

were analyzed using the CellQuest software (BD Biosciences). 
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1.11 Enzyme-linked Immunosorbent Assay  

Enzyme-linked Immunosorbent Assays (ELISA) were performed following manu-

facturers’ instructions using the Human/Mouse/Rat Activin-A Quantikine ELISA Kit 

(#DAC00B, R&D Systems), the Human IL-6 Quantikine ELISA Kit (#D6050, R&D Sys-

tems) and the Human G-CSF Quantikine ELISA Kit (#DCS50, R&D Systems). 

1.12 Multiplex Analysis 

FR cells-derived cytokines were searched for performed in the conditioned media of 

the co-cultured cells using the Bio-Plex ProTM Mouse Cytokine 23-plex Assay Kit (#M60-

009RDPD, BioRad), according to manufacturers’ instructions. Samples were studied in 

triplicate in a Bio-Plex 200 System (BioRad), and the attained results were analyzed using 

the Bio-Plex ManagerTM Software, Standard Edition (BioRad).  

1.13 Exosomes’ Isolation, Permeabilization and Uptake 
Blockage 

Exosomes’ isolation was performed using the protocol established by Raposo and 

collaborators (14). Briefly, successive centrifugations at increasing speed were used to 

eliminate large cellular debris and the final supernatant is ultra centrifuged at 100 000 G 

for 70 minutes to pellet the exosomes. The pellet was then washed abundantly with PBS 

(Sigma-Aldrich) to eliminate contaminating proteins, and centrifuged one last time at the 

same high speed (15).  
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Permeabilization followed the protocol designed by Subra and colleagues (16), ac-

cording to which 50 μg of exosomal protein were incubated with 5 μL protease inhibitor 

cocktail (Sigma-Aldrich) in 1 mL of PBS (Sigma-Aldrich) for 10 minutes at RT, and then 

sonicated 2x 10 seconds (VWR Ultrasonic Cleaner). 

Exosomes’ uptake blockage was attained by adding a 50 mg/mL xyloside alcoholic 

solution to the cell culture medium. The solution was attained by dissolving 0.1 g of xylo-

side (Sigma-Aldrich) in 2 mL of methanol (Sigma-Aldrich). 

1.14 Statistical Analysis 

Unless stated otherwise, results derive from at least three independent experiments 

carried out in triplicate, and their statistical analysis was carried out using the Graph Pad 

Prism software version 7 (GraphPad Inc.). Error bars indicate ± SEM between biological 

replicates. Statistical significance of multiple-group comparisons was attained using one-

way ANOVA with Bonferroni post hoc analysis. A p value < 0.05 was defined as the 

threshold of significance and the P value was categorized according to their interval of 

confidence. 
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Results & Discussion 

in vivo cellular derivation increased cells’ malignant po-
tential 

The malignant RenG2 cell line was established by culturing the non-malignant im-

mortalized human bronchial epithelial cells BEAS-2B at extremely low density in the pres-

ence of 1.0 μM hexavalent chromium [Cr(VI)]. As a control, Cont1 cell line was attained 

from low-density Cr(VI)-free cultures (10). Although malignant, RenG2 cells needed about 

two months to induce tumor formation in immunocompromised mice, so their malignant 

potential was increased by in vivo derivation using serial rounds of injection in immuno-

compromised mice. As a consequence, DRenG2 cells were attained from primary cultures 

of the RenG2-induced tumor and the DDRenG2 cells from primary cultures of the 

DRenG2-induced tumor (Figure 1A). Relative tumorigenic ability comparison confirmed 

the progressively increased malignancy of the derived systems (Figure 1B).  

Supporting the in vivo studies, DTs calculation showed that the malignant cell lines 

replicate faster than non-malignant ones, particularly DRenG2 cells which showed a DT of 

roughly 18.5 h (Figure 1C). No statistically significant differences were observed between 

DDRenG2 and either RenG2 or DRenG2 cells, and the results attained for BEAS-2B cells 

corroborated prior studies of Costa and colleagues by documenting a DT of approximately 
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23 h (17). Cont1 cells showed no statistically significant differences in their DTs when 

compared to BEAS-2B, thus presenting them as a good experimental control.  

Consistent with previous observations showing that malignization is accompanied by 

an increase in glucose uptake and a stimulation of aerobic glycolysis (18-20), the compar-

ative study of 18FDG-uptake showed that the malignant cell lines had a considerably higher 

glucose demand than the non-malignant ones (Figure 1D). However, as malignancy in-

creased the glucose uptake decreased. Moreover, malignant systems displayed a progres-

sively higher clonogenic capacity (Figure 1E), higher migration ability (Figure S1) and an 

increased cell survival following treatment with conventional lung carcinoma-directed 

drugs, namely cisplatin, methotrexate and gemcitabine (Figure 1F). In fact, both derivative 

systems distinctively succeed in surviving the entire repertoire of employed drugs, partic-

ularly DDRenG2. Altogether the attained results confirmed the malignant nature of both 

RenG2 and their progeny by identifying features consensually ascertained to malignant 

cells. 
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Figure 1 – RenG2 cells’ in vivo derivation increased their malignant potential. (A) Der-

ivation experimental protocol. (B) Comparative tumorigenic potential of the derivative cellular systems. Tu-

mors induced by the same number of cells in the same experimental period, clearly depicting DDRenG2’ 

higher malignant potential. (C) Cellular duplication times. Malignant cells replicated significantly faster than 

their non-malignant progenitors. RenG2 DT was significantly different from that of DRenG2 cells, while no 
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significance was observed when comparing DDRenG2 to its malignant counterparts. (D) 18FDG uptake. Ma-

lignant cells showed a considerably higher glucose uptake. Unexpectedly, however, as malignancy increased 

the glucose uptake decreased. (E) Plating efficiency. Malignant cells exhibited a considerably higher plating 

efficiency. (F) Drug-resistance assays. The higher the degree of malignancy, the higher the resistance to the 

different drugs, at all tested concentrations. Derivative cell lines, in particular, were shown to be more sensi-

tive to MTX than their non-malignant progenitor cells. MTX, methotrexate; Cis, cisplatin; Gem, Gemcitabine. Data rep-

resents mean ±SEM. Differences between the means were evaluated by one-way ANOVA followed by a Bonferroni post test. n.s., no 

significant; *, P≤0.05; **, P≤0.01; ***, P≤0.001. For PE a Bonferroni post test was used. 

 

Malignant potentiation was underlined by CSCs for-
mation 

Medema’s laboratory proposed that only CSCs are endowed with tumorigenic capac-

ity and the ability to resist chemotherapy (21). By interpreting the previous results in light 

of Medema’s theory, it became plausible to hypothesize that CSCs mediated BEAS-2B 

cells’ malignization and were liable for the malignant features of RenG2, DRenG2 and 

DDRenG2 cell lines. To test this hypothesis the SFA along with immunocytochemistry 

was performed. SFA constitutes a reliable method to specifically isolate CSCs from inside 

a heterogeneous mixture of cells while preserving the key characteristics of the original 

patient tumors (4). Immunocytochemistry, instead, allows monitoring EMT, a proposed 

source of CSCs (22), as the lost of epithelial features towards a mesenchymal phenotype 

triggers the expression of α-SMA and increases that of Vimentin (23).  

Basal levels of Vimentin staining were found in BEAS-2B and Cont1, illustrating the 

ubiquitousness of this protein (Figure 2A). The malignant systems, however, showed an 

increased expression of Vimentin, thus revealing their mesenchymal phenotype and ex-

plaining their increased motility, which according to Mendez and collaborators, is the result 
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of the assembly of Vimentin intermediate filaments (24). Not surprisingly, α-SMA was 

only expressed in the malignant cell lines, not only corroborating the epithelial nature of 

both BEAS-2B and Cont1, but also suggesting the stem potential of the malignant systems 

(Figure 2A). SFA, however, only yielded spheres when either DRenG2 or DDRenG2 cell 

lines were cultured at restraining conditions (Figure 2B and 2C), and the spheres attained 

with DDRenG2 cells were not only bigger but also more numerous than those formed by 

DRenG2 (Figure 2D).  This observation imprinted a higher stem potential to the DDRenG2 

cellular system and further suggested that the CSCs isolated from DRenG2 cultures were 

obtained through dedifferentiation of RenG2 cells and not by transformation of endogenous 

stem-like cells. The resulting DRenG2 and DDRenG2 spheres were purified after 3 gener-

ations of isolation and CSC lines were established out of each of the derivative systems 

and respectively named SC-DRenG2 and SC-DDRenG2. 

New relative characterization of the attained CSCs lines showed that the glucose re-

quirements of the CSC systems were comparable to those of non-malignant BEAS-2B and 

Cont1 cells, and thus significantly lower than any of the malignant progenitor cell lines 

(RenG2 cells included) (Figure 2E). However, MTT-based cell DTs’ calculations revealed 

that the modest glucose necessities of CSCs portrayed their quiescent status, as these cell 

populations have a considerably longer cell cycle than their progenitors (Figure 2F). Fur-

thermore, methotrexate-resistance studies showed that, contrarily to what was observed to 

the progenitor malignant systems, drug treatment failed to abrogate CSCs’ cycle progres-

sion, as the cells kept dividing in the presence of the drug (Figure 2G). This higher re-

sistance of CSCs to therapy is in line with previous observations (25-28) and is thought to 

be the main responsible for quiescence (29, 30). In fact, as many chemotherapy agents 
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require cell cycle progression to act, CSCs’ avoid death by entering quiescence and induc-

ing a very efficient activation of the deoxyribonucleic acid (DNA) repair genes, as well as 

an overexpression of drug efflux pumps (6, 28, 31).  

 

Figure 2 – RenG2 cells’ derivation featured CSCs formation by dedifferentiation. (A) 

Immunocytochemistry study of Vimentin and α-SMA. Both BEAS-2B and Cont1 non-malignant systems 

displayed a basal staining for Vimentin. Conversely, α-SMA staining was negative in these cell lines. All the 

malignant systems, however, presented a strong staining for both Vimentin and α-SMA. A magnification of 
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400x was used in all panels. VIM, Vimentin. (B) SFA from the derivative systems. DDRenG2 cell line 

formed more and larger spheres than its progenitor, the DRenG2 cell line. A magnification of 100x was used 

in both photographs. (C) Perimeter analysis of the spheres formed by both derivative systems. 50 spheres 

were measured per analyzed cell line. (D) Comparative analysis of 18FDG uptake. Both SC-DRenG2 and SC-

DDRenG2 cell lines uptake significantly less 18FDG in comparison to the other malignant cell lines. (E) 

Comparative study of cellular duplication times. Both SC-DRenG2 and SC-DDRenG2 had considerably 

higher DTs than their derivative progenitors. Moreover, SC-DDRenG2 needed even more time to replicate 

than SC-DRenG2. (F) CSCs’ survival following MTX treatment. MTX not only failed at eradicating CSCs, 

but also was unable to block their division, as both SC-DRenG2 and SC-DDRenG2 grew in the presence of 

the drug. Data represent means ±SEM. Differences between the cell lines’ means were evaluated by one-way ANOVA followed by a 

Bonferroni post test. n.s., no significant; *, P≤0.05; **, P≤0.01; ***, P≤0.001. 

  

Dedifferentiation as a source of CSCs 

The confirmation of SC-DRenG2 and SC-DDRenG2 stem potential and the observa-

tion that there was a progressive increment in CSCs sub-populations along the derivative 

systems concomitantly suggested that the mouse subcutaneous compartment drove and 

supported RenG2 cells’ dedifferentiation. To further prove this hypothesis mouse cells 

were surgically isolated from the thoracoabdominal aponeurosis of the animals and 

Transwell (Corning) co-cultured with RenG2 cells for 8 weeks (the same period RenG2 

cells needed to induce tumor formation in immunocompromised mice). After co-culture, 

CSCs were searched for and positively isolated from the RenG2 population using the SFA, 

and named iRenG2. The formation of spheres was observed soon after cells’ platting, sim-

ilarly to what was previously seen for both SC-DRenG2 and SC-DDRenG2.  

To compare the isolated iRenG2 cells with their progenitors RenG2 cells and both 

DRenG2 and SC-DRenG2, panels of malignancy-associated genes (Figure 3A) and molec-

ular markers (Figure 3B) were selected. The attained results showed that iRenG2 cells’ 
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molecular signature, unlike their progenitor RenG2, was more similar to that of both 

DRenG2 and SC-DRenG2, thus confirming stromal cells-mediated dedifferentiation of the 

RenG2 cells and establishing the process as paracrinely mediated in nature. Final confir-

mation was attained from cytokine multiplex array (BioRad) and ELISA performed in the 

conditioned media of the co-cultures, which identified consistently increased levels of IL-

6, G-CSF and Activin-A (Figure 3C). A proof of concept experiment was also performed 

to confirm the action of these cytokines over RenG2 cells by mono-culturing these cells in 

their presence, and the acquisition of stem properties was positively documented (Figure 

S2).  Moreover, the attained results were reproduced using HBFs attained out of a fresh 

human lung sample, and the same transformation was observed.  
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Figure 3 – Isolated CSCs’ depicted classical stem properties and were attained by a 

cytokine-mediated paracrine loop established between the tumor cells and the micro-

environment. (A) Flow cytometry scattering plots comparing the iRenG2 cell line to RenG2, DRenG2 
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and SC-DRenG2. In both tubes the yellow-represented iRenG2 cells were more close to both DRenG2 and 

SC-DRenG2 than to RenG2, illustrating their closer identity. Colored dots represent individual cells. RenG2 

green, DRenG2 light blue, SC-DRenG2 red and iRenG2 yellow. (B) Immunocytochemistry study of Oct 3/4 

and β-Catenin. Both CSCs systems depicted a marked staining of both proteins, with β-Catenin preferentially 

localized to the nuclei. A magnification of 400x was used in all panels. (C) IL-6, G-CSF and Activin-A levels 

in the conditioned media of the RenG2-FR co-culture. The cytokines’ levels were significantly increased in 

the co-cultures relative to the controls. The use of an anti-mouse antibody allowed the detection of FR-pro-

duced cytokines in the upper compartment. Mo, mouse; mFR, monocultured FR cells; cFR, FR cells co-cultured with RenG2 

cells; cRenG2, RenG2 cells co-cultured with FR cells; mRenG2, monocultured RenG2 cells; w/, co-cultured with; n.s., no significant. 

Data represent means ±SEM. Differences between the means were evaluated by one-way ANOVA followed by a Bonferroni post test. 

 

Dedifferentiation-implicated cytokines are transported 
inside exosomes  

Paracrine communication is by definition the activation of cellular signaling path-

ways mediated by soluble factors, which may either be freely released to the media or 

transported as cargos of extracellular vesicles. Among these vesicles, exosomes in partic-

ular are microvesicles of unique characteristics and composition that encapsulate material 

from cells’ cytoplasm, thus protecting it against harsh extracellular environments (32, 33).  

Hypothesizing that exosomes were involved in RenG2 cells’ dedifferentiation, these 

microvesicles were isolated from the conditioned media of the long-term co-cultures of 

HBFs and RenG2 cells, and their content screened. The attained results showed a signifi-

cant amount of all three cytokines’ inside the exosomes isolated from the upper compart-

ment (containing the RenG2 cells), both demonstrating that cytokine-containing exosomes 

were being secreted by the fibroblasts, and that these microvesicles were able to trespass 

the membrane of the inserts. The levels of IL-6, nonetheless, were significantly higher then 

those of the other cytokines, and all of them remained relatively stable along the 8 weeks 
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of culture (Figure 4A). The presence of the cytokines as free molecules in the conditioned 

media was also assessed to evaluate the impact of an eventually non-exosome mediated 

release. Results demonstrated the presence of basal concentrations of both IL-6 and Ac-

tivin-A in both compartments, which yet remained stable along time (Figure 4B). As to G-

CSF, its levels were too low above the lower calibration curve’s value thus suggesting that 

the main release pathway of this cytokine is indeed exosome-mediated. 

Performing the abovementioned co-culture experiments in the presence of the exo-

some-uptake blocker xyloside yielded a definitive proof of the exosome-mediated cyto-

kines’ transport and of their action over RenG2 cells. Xyloside is a small hydrophobic 

compound that inhibits proteoglycans' biosynthesis and whose use as an exosome-uptake 

blocker is quite recent (34). Its presence in the current co-culture system abrogated the 

acquisition of CSCs traits by RenG2 cells, which resulted in a dramatically reduction of 

these cells’ ability to form spheres (Figures 4C and 4D).  
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Figure 4 – Exosomes mediated the communication between tumor and stroma cells. 
(A) Exosomes’ content analysis. All 3 cytokines were significantly increased in the exosomes present in the 

upper compartment, and except for Activin-A whose levels increased along time, the remaining ones were 
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kept stable. (B) IL-6 and Activin-A levels in the co-cultures’ conditioned media. The attained values were 

considerably lower than those find inside exosomes. Again, Activin-A levels were shown to increase in the 

culture media along time in culture. (C) SFA of RenG2 cells after co-culture with HBFs in the presence of 

xyloside. There was a significant reduction in the sphere-formation ability, resulting from the xyloside-me-

diated abrogation of exosome communication. A magnification of 100x was used in all panels. (D) Perimeter 

analysis of the attained spheres. The few attained spheres were smaller then those formed in the absence of 

xyloside. 10 spheres were measured per analyzed cell line. Data represent means ±SEM. Differences between the means 

were evaluated by one-way ANOVA followed by a Bonferroni post test. 

 

IL-6 and Activin-A are directly involved in dedifferenti-
ation, while G-CSF is implicated in keeping the stem phe-
notype. 

To fully understand the dynamics of the dedifferentiation process, the impact of each 

individual cytokine in the overall communication process was ascertained. To this end neu-

tralizing antibodies against IL-6, G-CSF and Activin-A were used to scavenge cytokines 

from the co-cultures’ media, either alone or in combinations.  

Corroborating the previous observations, whenever all the three cytokines were scav-

enged from the media, sphere formation was abrogated (Figures 5A and 5B). Also, the 

independent scavenge of each of the three cytokines failed to block dedifferentiation, thus 

showing that at least one of the three is necessary to trigger the process (Figures 5C and 

5D).  However, the concomitant neutralization of Activin-A and IL-6 resulted in no sphere 

formation, while the simultaneous neutralization of IL-6 and G-CSF yielded smaller and 

fewer spheres than the control co-cultures (Figures 5E and 5F). These observations showed 

that only IL-6 and Activin-A were endued with the ability to trigger dedifferentiation, and 

that IL-6 was the more potent inducer of the process. Nonetheless, they also suggested that 
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despite the fact that Activin-A is able to induce CSCs’ formation, it seems that this cytokine 

may also act as a differentiation inducer of the pre-formed CSCs. In agreement, whenever 

Activin-A was present, the number of spheres was reduced, exception made to the situation 

where only this cytokine was present. Corroborating this hypothesis are several reports in 

the literature indicating Activin-A as a differentiation inducer (35-37). 

IL-6 was the strongest inducer of dedifferentiation as more and bigger spheres 

formed when this cytokine was solely present (Figures 5G and 5H). This observation is in 

line with many recent studies performed in different tumor types, namely, gastric (38), 

breast (39) and bone (40), reporting that not only IL-6 is indeed able to induce dedifferen-

tiation, but also that it does so through the activation of signal transducer and activator of 

transcription 3 (STAT3) and consequently, of the Notch signaling pathway (41).  

The presence of G-CSF in the co-culture system, although not necessary for the de-

differentiation process, sustained of CSCs’ proprieties in previously developed CSCs’ 

pools (Figure 5C-F). This result corroborates Agarwal and colleagues’ work that showed 

that G-CSF sustained neuroblastoma CSCs’ pool through a STAT3 mechanism (42). 

Altogether the attained results allow the proposal of a model for the dedifferentiation 

of CSCs: co-option of the stroma cells leads to an increase in IL-6 and Activin-A levels in 

the tumor microenvironment which in turn drive tumor cells’ dedifferentiation, and conse-

quently, CSCs’ formation. Following dedifferentiation, Activin-A maintains CSCs’-pool 

homeostasis, inducing differentiation whenever it overcomes a certain threshold, and G-

CSF provides the CSCs’-niche with the appropriate conditions to sustain the undifferenti-

ated phenotype of its cells, by acting downstream of the previous cytokines (Figure 6). 
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With the accumulating knowledge on the diverse areas of cancer, the stochastic 

model started to be questioned. By assuming the tumor to be a mass of hyperproliferative 

cells equally provided with the ability to drive tumor’s growth, this model justifies cellular 

heterogeneity and malignant progression mainly by the action of adaptive selective pres-

sures acting over new genetic mutations or environmental alterations (Garvalov and Acker, 

2011). However, evidence suggesting that tumor initiation and maintenance may only be 

ascribed to a limited population of cells within the tumor, along with the identification of 

cells with progressive degrees of differentiation shook the foundations of this theory and 

drove the edification of new ones. 
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Figure 5 – IL-6 and Activin-A are the actual drivers of dedifferentiation. (A) SFA of 

RenG2 cells after co-culture with HBFs in the presence of neutralizing antibodies against IL-6, G-CSF and 

Activin-A. No spheres were formed. (B) Perimeter analysis. (C) SFA of RenG2 cells after co-culture with 

HBFs in the presence of neutralizing antibodies against IL-6, G-CSF and Activin-A, individually. Spheres 

were formed in all conditions. (D) Perimeter analysis. Bigger spheres were observed in the condition where 

both IL-6 and G-CSF were present in the culture media. (E) SFA of RenG2 cells after co-culture with HBFs 

in the presence of only either Activin-A or G-CSF. Activin-A was able to induce sphere formation, while G-

CSF alone was unable to do it. (F) Perimeter analysis. Spheres formed by Activin-A were lesser and smaller 

than those formed when IL-6 was present. (G) SFA of RenG2 cells after co-culture with HBFs in the presence 

of only IL-6. (H) Perimeter analysis. IL-6 was the most potent inducer of dedifferentiation. A magnification of 

100x was used in all panels. 10 spheres were measured per perimeter analysis for each cell line. Data represent means ± SEM. Differ-

ences between the means were evaluated by one-way ANOVA followed by a Bonferroni post test. 
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Figure 6 – Explanatory model for microenvironment-driven dedifferentiation. Fibro-

blasts-released exosomes containing IL-6, Activin-A and G-CSF, either combined or separated, interacted 

with the tumor cells inducing alteration in DNA expression, most probably through STAT3, Smad and         β-

Catenin activation. The consequent activation of stemness-associated pathways such as Wnt, Notch and 

Hedgehog drove tumor cells’ dedifferentiation, which was subsequently maintained by the activity of G-CSF. 

Activin-A seemed to act as a sensor of the CSCs’ pool homeostasis, inducing CSCs’ differentiation whenever 

a certain threshold was reached. 
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Figure S1 – Migration ability of the different cellular systems. Both BEAS-2B and Cont-1 

cell lines failed to close the scratch, even after 200 h. RenG2 cells grossly closed it, but DRenG2 and 

DDRenG2 did it faster and better in progressively less time. A magnification of 100x was used in all panels.  
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Figure S2 – Proof-of-concept experiment illustrating cytokines-mediated dedifferen-

tiation. (A) SFA performed in different conditions of cytokines’ abrogation, showing that spheres were 

observed whenever either IL-6 or Activin-A was present. G-CSF was unable to induce sphere formation. (B) 

Perimeter analysis. Corroborating the previous results, bigger spheres were attained when only IL-6 was 

present. A magnification of 100x was used in all panels. 10 spheres were measured in each condition. Data represent means ±SEM. 

Differences between the means were evaluated by one-way ANOVA followed by a Bonferroni post test.
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