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Abstract: The potential energy surface for the C20–He interaction is extrapolated for three representative cuts to the
complete basis set limit using second-order Møller–Plesset perturbation calculations with correlation consistent basis
sets up to the doubly augmented variety. The results both with and without counterpoise correction show consistency
with each other, supporting that extrapolation without such a correction provides a reliable scheme to elude the basis-set-
superposition error. Converged attributes are obtained for the C20–He interaction, which are used to predict the fullerene
dimer ones. Time requirements show that the method can be drastically more economical than the counterpoise procedure
and even competitive with Kohn-Sham density functional theory for the title system.
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Introduction

Van der Waals (vdW) interactions are well known in nature. In par-
ticular, the simplest fullerene-helium interaction (exohedral HeC20)
can be representative of elusive systems with primary interest in gas
and condensed phases of nanoscopic systems while presenting a par-
ticularly severe test both to molecular orbital1 (MO) methods and
density functional theory2, 3 (DFT). Although the latter dominates
at present much of electronic structure calculations in condensed
physics and quantum chemistry due to its rapid speed and surpris-
ing accuracy, it has also notable failures some of which will be
pointed out later. In this work, we study the He · · · C20 interaction
using an ab initio MO scheme that has been used thus far only for
small systems.

With V = 20 vertices, E = 30 edges, and F = 12 faces
(all pentagonal), dodecahedral C20 forms a closed 3D carbon cage
obeying the rule C = V − E + F where C = 2 is Euler’s char-
acteristic number for simple polyhedra. This dodecahedral-cage
cluster has been synthesized,4–7 and its existence in gas phase
confirmed,4 being the smallest possible fullerene cage.8 Many the-
oretical articles have appeared in the literature on C20 over the past
decade or so (refs. 9, 10, and references therein) with correlated
ab initio calculations predicting the above structure for the ground
state conformer. Of them, all electron calculations11 using coupled-
cluster singles and doubles theory with a perturbational estimate
of connected triple excitations [CCSD(T)] and a double-zeta cor-
relation consistent basis set of Dunning’s12 cc-pVXZ variety (X =
D : 2, T : 3, Q : 4, . . . is the cardinal number) favor the above
fullerene cage over the bowl or ring isomers. In turn, second-order

Møller–Plesset perturbation theory (MP2) calculations using a large
polarized valence triple-zeta basis set suggest that the cage and bowl
are almost isoenergetic,13 a conclusion similar to the one reached
by more recent DFT and MP2 calculations.10, 14, 15 However, the
bowl-cage-ring energy ordering seems to be preferred when going
to higher levels of MP perturbation theory (MP4) or CCSD(T) cal-
culations using different basis sets.10 Additionally, quantum Monte
Carlo suggests a bowl-ring-cage ordering.16 Although the relative
stability issue is still an open one, it will not be pursued here. Because
the cage form is common to the larger members of the fullerene fam-
ily that we envisage to study, dodecahedral C20 stands as the simplest
representative on which our approach can be tested.

Computational studies to assist the characterization of C20 are
also numerous (refs. 7, 9, 14 and references therein), covering from
chemical reactivity17 to molecular dynamics simulations of C20 and
its chemisorption on surfaces,18 just to mention a few. Notably,
dodecahedral C20 seems to retain its shape in collisions,18, 19 sug-
gesting a memory effect analogous to that observed when forming
films.20 Thus, despite its fleeting existence in condensed states,
this may also support our choice of dodecahedral C20 as the
smallest fullerene (structure taken from Ref. 21) and investigate its
interaction with the smallest inert gas atom. Although the calculated
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energies may be used for studying the scattering of dodecahedral
C20 with helium, they will be used here to predict a potential for
the weak interaction involving two such orientationally disordered
fullerenes, which may be of help on investigations of the correspond-
ing fullerite and its equilibrium with the gaseous phase. Jahn–Teller
distortions of dodecahedral C20 will be ignored,15, 22 but the number
of electrons and size disparity ensure enough challenge.

Theoretically, vdW interactions must be calculated with elec-
tronic structure methods that warrant size consistency.23 This is
satisfied by both the Hartree–Fock (HF) and MP2 methods used
in this work. In turn, DFT is the popular route for calculations
on large molecular systems, because it includes correlation and
involves an effort similar to that required for an HF calculation,
particularly when using hybrid methods.24 In fact, with an expan-
sion of the orbitals in basis functions, the number of integrals for
solving the Kohn–Sham2, 3 equations scale as the fourth power of
the number of such functions (M4), thus in a way formally similar
to HF theory. However, weak interactions due to dispersion (vdW
type) are known to be poorly described by current functionals.25

Although the local density approximation method seems to predict
an attraction between, for example, rare gas atoms, essentially all
gradient corrected methods predict a purely repulsive interaction.24

Recent developments appear to be successful but still require empir-
ical dispersion corrections.26–28 Also successful in overcoming the
drawbacks of DFT in the study of weak interactions seem to be meth-
ods that consider its linear response extension in the time domain to
excited states, so-called TDDFT.29 In this work, we make no attempt
to pick a functional from the plethora of existing ones as any choice
would not be free from arbitrariness. Indeed, DFT will only be
invoked to assess computational costs. Regarding MP2 theory, it is
known24 to account typically for 80–90% of the correlation energy,
with the first-order correction being the HF energy. Although MP2
is formally a M5 method, it is the most economical MO approach
for including electron correlation, an asset for selection in this work.
Of course, for cost reasons that will become obvious later, we leave
aside the problem of convergence of the perturbation expansion.
Suffice it to say that convergence is often assumed to depend on the
dominance of the single configuration reference, although the nature
of convergence seems to be more complicated and even change
(leading typically to a slower convergence) by basis set extension
to include diffuse functions.30

It is well established that a major difficulty in the calculation
of weakly bound interactions arises due to the use of finite sets of
basis functions. This makes the description of the complex and the
fragments unbalanced leading to a spurious attraction known as the
basis set superposition error1, 31–36 (BSSE). The popular remedy to
this error is the counterpoise (CP) method of Boys and Bernardi,37

where the monomer energies are calculated with the full dimer basis.
Recently, we suggested38 that the BSSE may be eluded by extrapo-
lating the raw energies without CP (NCP) to the complete basis set
(CBS) limit; for a similar conclusion on thermochemistry calcula-
tions that has recently come to our attention, see ref. 39. The success
should, however, be viewed with care as HF interaction energies
(CP and NCP) have been found32 to converge unsystematically for
weakly interacting systems studied using correlated consistent basis
sets12 of the VXZ type, with a similar trend being observed for the
NCP correlation contribution. Halkier et al.32 attributed this result
to the presence of both BSSE and the error due to an incomplete

description of the electronic Coulomb cusp. They gathered that once
the former effect is removed by CP, the cusp dominates and con-
vergence of the CP correlation contribution follows a X−3 form
similar to the correlation energy. If both CP and CBS turn out to be
mandatory, then an accurate description of weak interactions32, 34

will require a huge effort as six molecular calculations per geom-
etry will at least be required. On the other hand, Schwenke and
Truhlar40 noted that inclusion of the CP correction may not war-
rant by itself an improved potential. Because our previous work on
the helium dimer38 has shown that CBS extrapolation may be all
that is required, it will be worth investigating on a larger system
whether a similar conclusion applies. This will also be studied here
for the C20 . . . He interaction, with the results being found to cor-
roborate that CBS extrapolation without CP suffices to obtain an
accurate PES for weakly bound systems. Of course, this work will
simultaneously provide a test of our scheme to CBS extrapolate
the correlation energy, which had been used thus far only for small
molecular systems. The calculated energies will be given in hartree
and the binding energies in electronvolts (1 Eh = 27.211385 eV).

The structure of the work is as follows. Theory and Computa-
tional Methodology describes the basic theory and computational
methodology, whereas the results are reported in Results and Dis-
cussion. Some conclusions regarding the potential of the method are
explained in the final section.

Theory and Computational Methodology

As usual, the total energy is split into its HF and correlation
(cor) parts: EAB

X (R) = EAB,HF
X (R) + EAB,cor

X (R), where X has the
meaning previously assigned. Traditionally, for the AB system, the
interaction energy assumes the form

�EAB
X (R) =

∑

κ

�EAB,κ
X (R) (1)

where

�EAB,κ
X (R) = EAB,κ

X (R) − EA,κ
X − EB,κ

X (2)

and the summation in eq. (1) runs over the κ = HF and cor compo-
nents. The fragment energies are therefore calculated in their own
basis and the energy of the complex in the combined basis of the
fragments.

An approximate way to overcome BSSE is by using the CP-
corrected31, 37 interaction energy

�EAB
CP,X(R) =

∑

κ

�EAB,κ
CP,X (R) (3)

where

�EAB,κ
CP,X (R) = EAB,κ

X (R) − EAQ,κ
X (R) − EBQ,κ

X (R) (4)
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and Q is the ghost of species A or B. The energies to CBS extrapolate
are then EAB,κ

X (R) at NCP level and also EAQ,κ
X (R) and EBQ,κ

X (R) at
CP.

CBS extrapolations have been inferred from the dependence
of the correlation energy on the partial wave quantum number
for two-electron atomic systems and second-order pair energies
in many-electron atoms,41, 42 with a popular rule (a more exten-
sive list of references can be found elsewhere43, 44) being45 Ecor

X =
Ecor∞ +A3/(X +α)3, where Ecor

X is the correlation energy for basis set
of cardinal number X, and Ecor∞ and A3 are parameters determined
from calculations for the two highest affordable values of X; α is
an offset parameter fixed from an auxiliary condition.43 A major
difficulty in using this rule lies on the fact that the number of basis
functions scales with X3, and extrapolations usually require a cardi-
nal number pair as high as (5, 6) for the extrapolation. This places
severe constraints on the systems that can be treated as well on the
used methodologies. For example, it may be argued that enlarging a
V5Z wave function may justify the introduction of core-correlation
effects as the expected changes are of similar magnitude46 and so
on for higher angular momenta. Such a difficulty is largely over-
come by our recently proposed uniform singlet-pair and triplet-pair
extrapolation (USTE43) method. This assumes the form

Ecor
X = Ecor

∞ + A3(X + α)−3 + A5(X + α)−5 (5)

with the constant A5 related to A3 via the auxiliary relation A5 =
A◦

5 + cAm
3 , where A◦

5, c, and m are “universal” like parameters for a
chosen level of theory. For MP2 energies, they are A◦

5 = 0.0960668,
c = −1.582009 Eh, and m = 1, with α = −3/8. Thus, for m = 1
(e.g., MP2, and CCSD) and two basis sets X1 and X2, one obtains:

Ecor
∞ = Ecor

X2
− A◦

5(X2 + α)−5

+ Ecor
X1

− Ecor
X2

+ A◦
5[(X2 + α)−5 − (X1 + α)−5]

c[(X2 + α)−5 − (X1 + α)−5] + (X2 + α)−3 − (X1 + α)−3

× [(X2 + α)−3 + c(X2 + α)−5]. (6)

The above effective two-parameter (Ecor∞ , A3) model has been
shown47 to yield accurate CBS extrapolations of the MP2 correla-
tion energy for a variety of systems, with equally successful results
also obtained in CBS extrapolations of raw energies from other the-
oretical approaches.43, 47–49 We emphasize that the method contains
no parameters alien to the theory for which they have been defined,
with the coefficients being expected to show only a minor depen-
dence for methods and basis sets that belong to related families. In
fact, their “universality” has been explored by showing that accurate
results are obtained even for systems that are outside the calibrating
set.38, 47, 49

Most recently, we suggested a generalized USTE (GUSTE44)
scheme. It assumes the form in eq. (5) but with the new auxiliary
relation

A5 = ηA◦
5 + cAm

3 (7)

where η is chosen to impose the calculated τ53 = A5/A3 ratio. Thus,
ηDTQ = A3(τ

DTQ
53 − cAm−1

3 )/A◦
5, with the label DTQ implying that

calculations for X = D − Q are used (for generalizations, see Ref.
44). The improvement in the performance originated by GUSTE
method relative to other schemes has been documented for more than
20 small systems.44 Its major advantage lies in the ability to produce
accurate CBS extrapolations from raw energies of double zeta (DZ)
and TZ quality, a long standing goal.50 This is important because
ab initio calculations with larger basis sets that are increasingly
more time consuming can be avoided, an essential requirement for
this study. Of course, a calculation using a QZ basis set is needed
to fix η, but this is done once at a single geometry.44 Thus, as it
will be shown here, the major impact of GUSTE is expected to be
in studies of full PESs. Indeed, the GUSTE method should provide
high-accuracy CBS extrapolations of PESs calculated with a specific
correlated approach at the lowest computational cost possible, while
containing enough flexibility to be valid for both ground and excited
electronic states.

For the HF energy, a popular CBS extrapolation form is12

EHF
X = EHF∞ + A exp(−bX), where EHF∞ , A, and b are parameters

determined from energies for the three largest affordable basis sets.
We will use the (T , Q) protocol of Karton and Martin51 (KM),
EHF

X = EHF∞ + B/X5.34. Note that the extrapolations of EHF
X and

Ecor
X are both geometry-dependent and hence must be performed

pointwise. To avoid the huge cost of the QZ calculations using MP2
theory, we could think of combining GUSTE43 and correlation scal-
ing,48, 52 because this has been shown48, 49 to keep a high accuracy at
a lower cost. Unfortunately, MP2 calculations with AVXZ or larger
basis sets are unaffordable in low symmetry, thus preventing the use
of such a hybrid scheme.

Results and Discussion

Before describing the calculations, a comment on the electronic state
is appropriate. Similarly to find the isomer with lowest energy,16

the spin state that leads to the lowest energy depends on the level of
theory and basis set used and requires in principle relaxation of the
molecule. Such a treatment can be a heavy computational burden
and has not been attempted here. In fact, there is also the issue of
chemical unsaturation of C20, which can make the electronic state
of the title system change even with the geometrical arrangement of
the helium atom host at the fullerene. If this is viewed as an open-
shell molecule, one could follow Feyereisen et al.53 and perform
open-shell calculations for the state with highest possible spin mul-
tiplicity as dictated by Hund’s rule. This would imply considering
C20 in a triplet electronic state. Such an approach would perhaps
also be justified for the configurations of HeC20 here studied in C2v

symmetry, because the fourfold degenerate orbital occupied by the
two electrons in C20 splits into a1, a2, b1, b2 orbitals that would
possibly remain basically degenerate. However, many of the cal-
culations reported below are for geometries of C1 symmetry, and
such a lowering of symmetry for C20 is known to lead to a closed
shell ground state.11 For convenience (no integral-direct implemen-
tation of restricted MP2 is available54), we have chosen to do all
calculations for the singlet state.

All calculations here performed for HeC20 have used the Molpro
suite of electronic structure programs.54 They have primarily been
carried out for three representative orientations of the He atom rel-
ative to the center of the C20 structure,21 which has D5d symmetry.

Journal of Computational Chemistry DOI 10.1002/jcc
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Figure 1. C20–He: (a) structure, with a face of C20 in gray, and coordinate system; (b) C20 as viewed by the
helium atom when attacking the middle of a C–C bond - cut I; (c) as in (b) but attacking a carbon atom—cut
II; (d) as in (b) but attacking perpendicularly the center of a pentagonal face—cut III.

The first set of calculations is for He attacking along the z axis (this
as well as x and y are C2 axes of C20) that passes through the center of
C20 and bisects a C–C bond (cut I). In turn, cut II is for He approach-
ing a carbon-atom site keeping x = y = z, whereas, in cut III, it
approaches orthogonally to a pentagonal face of the dodecahedron.
Panel (a) of Figure 1 shows the adopted coordinate system, whereas
panels (b) to (d) illustrate the different cross sections offered by
the fullerene to the approaching helium atom. Having set the coor-
dinates in this way, the calculations for cut I may be done in C2v

symmetry, whereas the symmetries for cuts II and III have been auto-
matically chosen by Molpro as C1 and Cs, respectively. Although
one might think for numerical consistency of performing all calcu-
lations in C1 symmetry, this would drastically increase its cost. We
have then chosen to perform most calculations in the highest allowed
symmetry. For example, the calculations for cut I in C2v symmetry
allow up to MP2/VQZ calculations to be performed, and hence they
have primarily been utilized to calibrate the GUSTE method (i.e.,
to determine ηDTQ). In turn, the calculations in C1 (or Cs) symmetry

aimed at obtaining an as consistent as possible quantitative picture
of the anisotropy of the title interaction. Since the calculations done
in Cs symmetry lead essentially to the same result (within a few
micro-hartree, < 0.1 meV) at the asymptote∗ as the ones carried
out in C1, the former symmetry has been utilized whenever viable.
Even so, only HF/VQZ or HF/AVQZ calculations could be done in
Cs symmetry as the corresponding MP2 ones are too demanding.†

In fact, this is all that is required, which is clearly an asset of the
GUSTE method. Regarding cut II, we have performed calculations

∗Raw VXZ (AVXZ) energies in Eh at R = 250 Å for X = D, T , and Q.
HF: −759.4196257 (−759.4460812), −759.5743563 (−759.5815216), and
−759.6192244 (−759.6218652); MP2: −762.1900688 (−762.2995388),
and −762.8594461 (−762.9180337). For the dHe −AVXZ basis set, the HF
(MP2) energies for X = D, T at R = 100 Å are in Eh : −759.4460860
(−762.2995859), −759.5815219 (−762.9180452), and −759.6218660.
†Times refer to an Intel Quad core 2.4 MHz processor. At the AVQZ (dHe −
AVXZ) level, a single SCF cycle costs typically over 15 h (16.5 h).
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Figure 2. Raw NCP energies (open and solid circles) for the C20–He
interaction: HF (open black circles, except for the ones corresponding
to the largest dHe–AVXZ basis set that are shown as gray dots); MP2 (all
denoted by black solid dots, with a given line type specifying the basis
set). The solid diamond and pentagon with xyerrorbar symbol are the
empirical and our estimated spherically averaged estimates; see text.
Also shown by the dashed and solid (gray and black) thick lines are
the CBS extrapolated curves. The insert highlights the HF curves and
their relatively shallow minima (mostly spurious due to BSSE), with
the calculated points removed for clarity. Also shown in it are the CBS
extrapolated HF curves (note that the CBS extrapolated HF curves are
the nearly indistinguishable top curves). The key applies both to the
main plot and insert.

in C1 symmetry as shown in Figure 3. Unfortunately, such calcula-
tions are rather expensive even for X = Q at HF level. Thus, they
have been performed for all X-tuple zeta basis sets only at HF/VXZ
level and for the two smallest basis sets at MP2 level. For DZ and
TZ, typically 30 or more geometries have been calculated for cuts
I and III (II) over the range 3.5(4.8) ≤ R/Å ≤ 250, whereas for
the QZ basis set, only a subset that includes the asymptote has been
considered.

To have the capability of describing adequately the vdW well,
the wave functions should be able to describe well electric response
properties such as the polarizabilities of the interacting fragments.
One then expects diffuse functions to play a role. Because these
functions are largely missing in VXZ, a set of calculations has been
performed whenever affordable with the diffusely augmented aug–
cc–pVXZ (or AVXZ) basis set. In addition, calculations using hybrid
doubly diffusely augmented correlation consistent basis sets (d-aug-
cc-pVXZ for the helium atom and aug-cc-pVXZ ones for the carbon
atoms) have also been done. They will be referred heretofore as dHe-
AVXZ. For brevity, only the NCP interaction energies are shown in
Figures 2 and 3, whereas a sample of the raw calculations for cut III
is presented in Table 1.

As already noted, the calculations for cut I in C2v symmetry are
more economical and have been used with a major twofold purpose:
(i) calibrate the GUSTE model; (ii) investigate whether BSSE can be
efficiently overcome via CBS extrapolation without CP. Regarding
item (ii), the raw data has been first used to obtain Ecor∞ , A3, and A5 at a
reference geometry (arbitrary) here taken as R = 4.375 Å. The ratio

τ53 = A5/A3 has then been calculated and taken44 as an invariant
over the whole PES. Thus, the value so obtained (τ53 = −1.35981)

has been kept unaltered in all subsequent extrapolations, including
those for cut III with basis sets AVXZ and dHe–AVXZ. Using such
a ratio to define ηDTQ, the GUSTE dual-level scheme has then been
used to obtain (D, T) correlation energies. These lie typically within
a few µEh of the values based on the rather more expensive (T , Q)

extrapolation. In fact, the (D, T) and (T , Q) extrapolated correlation
energies are indistinguishable over the whole range of R values here
considered. Parenthetically, we observe that a CBS extrapolation
with the traditional X−3 rule and α = −3/8 using (D, T) raw ener-
gies underestimate GUSTE for cut I at R = 5.5 Å by 173 mEh, with
the underestimation reducing to 24 mEh if the (T , Q) pair is used.
Similar underestimations occur for other cuts and values of R.

To extrapolate the HF energy, we have used both the (T , Q) KM
rule and the traditional (D−Q) three-parameter exponential law. For
cut I in C2v symmetry, the former yields an unsigned curve nearly
parallel to the latter but with an absolute energy lower by 6.02 mEh,
thus predicting interaction energies that differ typically by < 0.3
meV. Compared to the extrapolated HF energy of −759637.13 mEh

at R = 5 Å, the error is only ∼8×10−4%. Alternatively, the HF/VQZ
interaction energies may be judged as converged and used as extrap-
olated ones. In fact, the energies obtained from the KM rule yield
interaction HF curves close to the raw QZ ones, and hence our CP
curves have been obtained by adding the latter to the GUSTE CP
correlation. The CBS extrapolated NCP and CP curves for the VXZ
basis set are compared in Figure 4 for cuts I and III, while the NCP
ones for cut III obtained with VXZ, AVXZ and dHe − AVXZ basis
sets are shown in Figure 2. The agreement between the NCP and
CP curves shown in Figure 4 is a clear indication that the BSSE
has been largely overcome by CBS extrapolation. The attributes of
all extrapolated curves as well as the values of the first two leading
dispersion coefficients (dipole–dipole and dipole–quadrupole dis-
persion interactions) obtained from a least squares fit to the GUSTE
correlation energies for intermediate and large distances (R ≥ 6 Å)
using appropriate damping functions55 are gathered in Table 2. Note

Figure 3. Raw NCP energies and CBS curves for cut II of C20–He
interaction PES calculated in C1 symmetry with VXZ (X = D, T) basis
sets.

Journal of Computational Chemistry DOI 10.1002/jcc
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Table 1. Sample Raw AVXZ and dHe–AVXZ energiesa for Cut III of C20–He Potential Energy Surface in Hartree.

HFb MP2c

Basis set Rd X = D X = T X = Q X = D X = T

AVXZe 4.25 −0.4436471 −0.5789184 −0.6192215 −0.2995564 −0.9178359
4.5 −0.4449963 −0.5803312 −0.6206431 −0.3001402 −0.9184581
4.7 −0.4455394 −0.5808979 −0.6212140 −0.3002537 −0.9185942
5.0 −0.4459197 −0.5812938 −0.6216185 −0.3002131 −0.9185649
5.25 −0.4460404 −0.5814290 −0.6217585 −0.3001207 −0.9184756
5.5 −0.4460859 −0.5814884 −0.6218208 −0.3000246 −0.9183830
6.0 −0.4461097 −0.5815214 −0.6218608 −0.2998638 −0.9182403
7.0 −0.4461038 −0.5815242 −0.6218668 −0.2996685 −0.9181119

dHe − AVXZe 4.25 −0.4437521 −0.5789388 −0.6192264 −0.3000064 −0.9179955
4.5 −0.4451113 −0.5803527 −0.6206477 −0.3005612 −0.9186039
4.7 −0.4456602 −0.5809203 −0.6212186 −0.3006636 −0.9187347
5.0 −0.4460434 −0.5813168 −0.6216234 −0.3006218 −0.9187048
5.25 −0.4461612 −0.5814512 −0.6217638 −0.3005269 −0.9186164
5.5 −0.4461998 −0.5815099 −0.6218267 −0.3004198 −0.9185245
6.0 −0.4462031 −0.5815436 −0.6218656 −0.3002048 −0.9183748
7.0 −0.4461572 −0.5815364 −0.6218717 −0.2998865 −0.9182017

aCalculated in Cs symmetry.
bCalculated energies once added a value of 759.
cCalculated energies once added a value of 762.
dIn angstrom.
eThe energies at the asymptote are given elsewhere.

that C8 has often large uncertainties, and hence only the leading
C6 coefficient may have quantitative physical meaning. Similarly,
the reported (least-squares) error margins should be viewed with
caution.

As seen from Figures 2–4, cut III corresponds to the profile
with the largest well depth, with similar but shallower curves being
predicted for cuts I and II. Figures 2 and 3 (see also Table 1) fur-
ther show that the HF results saturate fast for basis sets beyond
X = 3. Because of this and the smaller influence of polarization

Figure 4. NCP and CP CBS curves for the C20–He interaction (cuts I
and III) as extrapolated from raw VXZ energies. Shown as impulses in
the insert are the (CP–NCP) differences. The CP curves are in dashed.

functions on the HF energy, the extrapolated NCP HF curves are
not surprisingly predicted to be rather similar for VQZ and AVQZ,
differing from the CP ones only in a tiny well of ε = (0.08 ± 0.04)

meV at Rm = (6.7 ± 0.2) Å (the ± sign is chosen such as to
encompass the predictions from both basis sets), which is washed
out using CP. Although such a feature is generally absent in HF
curves for atomic closed shell interactions, C20 has permanent elec-
tric (quadrupole and higher) moments, and hence the occurrence
of a tiny attraction due to induction forces cannot be unexpected.
Thus, despite having not done HF calculations with CP for both
QZ basis sets due to being highly expensive, we estimate possi-
ble inaccuracies in the extrapolated HF curves to be of a fraction
of milli electron volt size. A corresponding argument could have
been used to estimate the CBS/dHe − AVXZ total energy by adding
GUSTE/dHe − AVXZ to CBS HF/AVXZ. Although Table 1 shows
that the differences between the HF/dHe − AVXZ and HF/AVXZ
curves amount typically to a small fraction of a meV (e.g., 0.1 meV
at 5 Å), we have used the extrapolated HF/dHe − AVXZ energies.
Otherwise, if the HF/AVXZ ones had been used, the value of ε for
cut III in the seventh entry of Table 1 would be only 0.03 meV
shallower.

As expected, the extrapolated VXZ and AVXZ energies yield
different interaction curves due to the improved description of polar-
ization effects for the latter. Strikingly though, the well depths of
the CBS vdW minima for cut III differ by <3 meV, a small value
given the system complexity and quality of basis sets used. To our
knowledge, no data are available for comparison with their attributes
in Table 2. Because standard calculations with larger basis sets are
prohibitive, one should turn for validation to methodologies such as
explicitly correlated methods56 using density fitting.54, 57 This will
not be done here. Instead, we will rely on the good results obtained
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Table 2. Attributesa of CBS Extrapolated C20 · · · He van der Waals Minima and Fitted Parameters to
Long-Range Dispersion.

Cut basis set Rm (Å) ε (meV) 10−3 × Cb
6 (meV Å−6) 10−3 × Cb

8 (meV Å−8)

Ic VXZ 5.30 6.32 60 ± 2 3338 ± 73
VXZd 5.30 6.06 82 ± 2 1608 ± 87

IIe VXZ 5.56 4.21 42 ± 4 4602 ± 189
IIIf VXZ 4.80 10.62 49 ± 1 3414 ± 38

VXZd 4.81 10.36 105 ± 1 364 ± 20
AVXZ 4.80 13.35 162 ± 10 763 ± 406

dHe–AVXZ 4.80 13.76 263 ± 8 229 ± 391

aObtained from a fit of the CBS extrapolated energies to a realistic functional form.55

bObtained from a fit of the GUSTE correlation energy to − ∑
n=6,8 Cnχn(R)R−n, where χn are dispersion damping

functions55 (with scaling parameter55 fixed at ρ = 2.91 Å).
cCBS extrapolation with raw energies calculated in C2v symmetry.
dCalculated using CP. Unless indicated otherwise, all entries are NCP.
eRaw energies calculated in C1 symmetry.
f Raw energies calculated in Cs or C1 symmetries.

for small molecules in previous publications38, 43, 44, 48, 49 and com-
pare the predictions here obtained with empirical data. For this, we
consider the dependence of the depth of the potential well on the
number of carbon atoms, which has been studied for the interac-
tion between two fullerenes.58 The approach uses a generalization
of the method due to Girifalco59 where the spherically symmetric
potential is obtained by treating each fullerene as if it were a sphere
with a surface consisting of a uniform density of smeared-out car-
bon atoms (the C–C intermolecular interactions are represented via
a Lennard-Jones (12,6) empirical potential function58). Because the
radii of both fullerenes are required, the following effective formula
is commonly used58

an = a60(n/60)1/2 (8)

where n denotes the number of carbon atoms and a60 = 3.55 Å
is the effective radius of C60. For the C20 dimer, the predicted
potential function shows a well depth of ε = 110.3 meV at an
equilibrium distance of Rm = 7.0 Å. In turn, for the much-studied
helium dimer,38, 60 one has ε = 0.949 meV at Rm = 2.99 Å. Use of
the popular geometric mean combination rule for ε, and arithmetic
mean rule for Rm, then yields ε = 10.2 meV at Rm = 5.00 Å for
the C20 . . . He spherically averaged interaction. As Figure 2 shows,
this empirical value agrees well with the averaged well depth of
the NCP results for cuts I–III at AVXZ level, 〈ε〉 = 9.8 meV, if
the energy difference (AVXZ−VXZ) in cut III is assumed to be
valid also for cuts I and II, which is a fair assumption. Moreover,
if the location of the minimum in cut II is associated to the cir-
cumradius of the dodecahedron and that of cut III to its inradius,
it seems justified to assign a mean value of 〈Rm〉 = 5.18 Å to the
corresponding “spherically averaged” vdW equilibrium geometry, a
result only 3.6% larger than the above empirical estimate. However,
if the midradius (from cut I) and inradius are used instead, the result
is 5.05 Å. We resume by suggesting 〈Rm〉 = 5.11 ± 0.7 Å, thus
embracing both estimates. Of course, if corresponding arguments
are used for the CBS/dHe − AVXZ results, the well depth for the
C20 . . . He spherically averaged curve will be 〈ε〉 = 10.2 meV at the

same equilibrium distance. From the results for the two largest basis
sets, the recommended estimate will then be 〈ε〉 = 10.0 ± 0.2 meV
at Rm = 5.11 ± 0.07 Å. The agreement with the empirical value is
now excellent, although an accurate estimate of 〈ε〉 will require the
availability of the full PES, which is outside the scope of this work.

An alternative scheme to estimate the vdW attributes of the
spherically averaged C20 . . . He interaction consists of using the
symmetry properties of dodecahedral fullerene. Because the z → x
(at φ = 0◦) and x → y (at θ = 90◦) paths of He are equivalent, one
may think of approximating the isotropic interaction simply by the
average over the latitudinal angle θ . For this, we have performed
calculations over a dense grid of (R, θ) values (0 ≤ θ/deg ≤ 90 for
3.5 ≤ R/Å ≤ 6 and R = 250 Å in a total of more than 360 points)
using the affordable VDZ basis set. The results are displayed as a
contour plot in Figure 5, which shows also a smoothed minimum
energy path obtained by picking the optimum energy at each value
of θ . If one then averages the optimal radii for all θ values, the
result is RD

m = 5.25 Å, where the superscript specifies that it has
been obtained at the DZ level. Assuming that a contraction of 0.15
Å in the equilibrium bond distance (similar to the one observed for
cut III) applies when performing the extrapolation from VDZ to
CBS VXZ, one gets Rm = 5.10 Å, which lies between the empirical
estimate and our own value reported earlier. A further remark to
note that the stationary point at θ ∼30◦ is the minimum for attack
of the helium atom to the fullerene face (there are 12 others related
by symmetry), whereas a very shallow minimum may exist also for
the approach to the middle of a C–C bond (θ = 90◦). However, this
is so tiny (
0.2 meV) that one can hardly be sure of its existence
with the above grid size and accuracy used. Of course, there will
be saddle points connecting those minima as expected from Morse
theory for analyzing the topology of a manifold. All such stationary
points will replicate along other directions as dictated by the sym-
metry of dodecahedral C20. An estimate of the spherically averaged
well depth may also be obtained from Figure 4 but at the expenses
of even more drastic approximations. Following a procedure simi-
lar to that used above for the intermolecular separation, one obtains
〈ε〉 = 4.2 meV. Because the path shown in Figure 4 intersects cuts
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Figure 5. Perspective view of C20–He PES calculated at VDZ level for
latitudinal motion of the helium atom along the meridian corresponding
to the (x, z) plane. Contours are equally spaced by 1 meV. Also shown by
the thick gray line is an approximate minimum energy path: minimum
energy at each latitudinal angle.

I and III at the two extrema, one may conjecture that the above well
depth translates into its CBS VXZ estimate by the addition of the
difference between the CBS and VDZ energies for cut III, that is, by
adding a further ∼4 meV to get 〈ε〉 ∼8.2 meV. Similarly, we may
obtain CBS estimates for the AVXZ and dHe − AVXZ basis sets
by extracting the necessary energy differences for the cut III from
Table 2. This leads in the same order to values of 10.9 and 11.3
meV, which slightly exceed those given above but help on defining
a more conservative estimate of 〈ε〉 = 10.2 ± 1 meV.

We now turn to the fullerene dimer interaction potential, whose
averaged well depth may be predicted by using backward the same
combination rule. One gets 〈ε〉 = 109.6 meV, a value only 1%
smaller than obtained from the Girifalco approach jointly with eq.
(8). A simple way to reconcile our predicted vdW attributes for
the C20 dimer with a Girifalco59 type potential (based on the same
carbon-carbon interaction law) is by using the modified effective
radii formula

an = a0 + β(n/60)1/2 (9)

where a0 = 0.07 Å and β = 3.48 Å are fitting parameters deter-
mined by imposing the commonly accepted radius of C60 fullerene59

(a60 = 3.55 Å) and approximately fitting our predicted vdW
attributes for the C20 dimer (the chosen parameters lead to a well
depth of 110.1 meV at Rm = 7.13 Å for the C20 dimer, thus 10.2
meV at 5.06 Å for C20 . . . He). Although a nonzero radius is pre-
dicted for n = 0, this is neither surprising due to the empirical
nature of eq. (9) nor has practical relevance. Figure 6 compares
the potentials so obtained with those predicted using eq. (8). Also
shown is a potential energy curve61 for the dimer of C60 that has
been obtained by using the local density approximation of DFT and
its time-dependent extension. Suffice it to note that the vdW radius
here predicted for the C20 dimer is considerably larger than the spac-
ing6 of 4.6 Å in the tightly bound crystal form of this fullerene. Its
existence cannot, however, be said to be incompatible with a facile
(without an activation barrier) C20 coalescence14, 17 as it refers to
an orientationally disordered interaction. Of course, multireference

electronic structure calculations could help in elucidating this issue
as a reaction between two closed-shell (partially open13) species is
being considered.

In summary, Figure 2 and Table 2 show that the NCP CBS/dHe −
AVXZ vdW attributes agree well with the AVXZ ones, suggesting
that the basis set used for the calculation of the raw energies is
approaching saturation. Because higher orders of MP perturbation
theory and/or use of larger basis sets of the doubly diffusely aug-
mented type for the carbon atoms are too demanding (an AVQZ
calculation involves already 2418 primitive atomic orbitals), our
CBS/AVXZ NCP results for cut III of ε = 13.4 meV at Rm = 4.8
Å (ε = 13.8 meV at Rm = 4.8 Å for CBS/dHe − AVXZ) stand
as benchmarks. Indeed, CBS extrapolation based on raw energies
calculated with the dHe −AVXZ basis set predicts a well depth only
marginally larger than AVXZ. It appears therefore that a converged
estimate of the vdW minimum for He interacting orthogonally to a
face center of C20 has been obtained. This is impressive as the raw
HF and MP2/dHe −AVXZ curves show drastic differences from the
AVXZ counterparts (for example, the MP2/dHe − AVTZ curve lies
close to the MP2/AVDZ one and even crosses the latter near R = 5.5
Å). Naturally, long-range forces are likely to be best described at
the dHe − AVXZ level (see, however, ref. 30 for the danger in using
large basis sets with high orders of Møller–Plesset perturbation the-
ory), although at the expenses of an enhanced BSSE, which is partly
responsible for the stronger attraction at intermediate distances (see
the slightly deeper minima in the HF curves shown in Fig. 2). How-
ever, it is clear from Figure 4 that BSSE effects have been to a large
extent efficiently overcome via CBS extrapolation.

A final remark on CPU times. Except for the GUSTE calibration
that requires a single-correlated calculation with the VQZ basis set,
the most time-consuming part of the method refers to the HF/VQZ
and HF/AVQZ calculations. For example, the cost of a NCP extrap-
olated point with HF/VQZ+GUSTE(D, T) is 85.7 h (88.9 h for CP),
while the HF part itself costs 73.0 h. Thus, the method performs as
1.2 (NCP) to 1.3 (CP) times the HF/VQZ or AVQZ calculations,
a performance similar in this context to DFT when using the same
basis sets. Although it is known that for large systems MP2 theory

Figure 6. Effective one-dimensional potential curves for the homonu-
clear dimers of C20 and C60.
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can be more costly than HF theory, it is also true that significant
progress has been made in developing more efficient formulations
such as those complemented by density fitting57 and applying dual
basis sets.62–64 Thus, even if for larger molecular sizes one may
reach a break-even point where MP2 starts to dominate (despite
MP2 being required here with smaller basis sets than HF), it will be
interesting to see in practice how large the system needs to be and
one may profit of the above progress.

Conclusions Regarding the Potential of the Method

As already noted, the CBS extrapolated attributes of the He · · · C20

vdW minimum are consistent with those of He · · · He and
C20 · · · C20. Thus, although the method will be manageable for
studying even larger systems using efficient MP2 methods on mod-
ern computer cluster architectures, the attributes of fullerene-dimer
interactions can be reliably and cost effectively estimated using the
more tractable family of interactions here considered. The results
from this work also corroborate previous findings for the helium
dimer,38 suggesting that CBS extrapolation can elude efficiently
BSSE while yielding a more accurate PES. This may reveal itself
particularly useful in studies involving multiple channels. Although,
as already noted, the subject has motivated divided opinions in the
literature32, 38–40 (including an almost routine neglect of CP, par-
ticularly for open-shell interactions), we have provided (see also
Ref. 38) a numerical demonstration that CBS extrapolation works
in practice. Finally, the cost of the method for the title system is dom-
inated by the highest-X HF calculation, which suggests that it can be
competitive with Kohn-Sham DFT, thus making future comparisons
between the two approaches interesting for large systems. Of course,
such a cost effectiveness of the method applies to its present form
(i.e., using raw MP2 energies), and hence it would be interesting to
explore other levels of theory (e.g., by treating electron correlation
most efficiently using a coupled cluster1, 24 method). Such an issue
is warranted by the performance demonstrated38, 43, 44, 48, 49 thus far
for small molecules.

After submission of this work, preliminary calculations for cuts
I and III using coupled cluster singles and doubles (CCSD) theory
(the gold standard of quantum chemists that scales with basis set size
as M6) have been completed with a VDZ basis set. The calculations
give a T1-diagnostic65 of ∼0.015, suggesting that a CCSD(T) cal-
culation would give results close to the full CI limit. Unfortunately,
because all calculations here reported had to be performed integral
direct to avoid the bottleneck of storing large quantities of data on
disk, no perturbative triple excitations (T) could be included. For the
helium atom hosted at a face of dodecahedral C20 (cut III), the vdW
minimum is found to occur at essentially the same location as in
MP2/VDZ but with a well depth of ε = 4.51 meV. This is 1.6 − 1.8
meV (i.e., nearly within our reported uncertainty) shallower than
the MP2/VDZ well depth, and about 40% of the difference between
the CBS/MP2/VXZ and MP2/VXZ estimates for cut III. An even
smaller difference between the MP2 and CCSD results (with the
latter being ∼1 meV shallower than the former) is observed for the
vdW minimum of cut I. Two further observations can be made. First,
if the difference between our CBS/MP2 extrapolated estimates and
the MP2/VDZ value is added to the raw CCSD/VDZ well depth, one
obtains CBS extrapolated CCSD attributes for cut III in very good

agreement with the predictions here reported (see Fig. 3 and Table
2). Second, if a similar difference is conjectured for cut II, then the
minimum of the CBS extrapolated CCSD result is likely to fall close
to the MP2/VTZ results reported in Figure 3. Of course, adding the
(T) correction may enhance the agreement with the MP2 results
here reported. Hopefully, the joint use of density fitting approxi-
mations with CBS extrapolation may help on providing avenues
to explore such issues. Details of the CCSD calculations will be
reported elsewhere.
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