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The main purpose of this work is to introduce the class of the monadic dynamic algebras (dynamic algebras
with one quantifier). Similarly to a theorem of Kozen we establish that every separable monadic dynamic
algebra is isomorphic to a monadic (possibly non-standard) Kripke structure. We also classify the simple
(monadic) dynamic algebras. Moreover, in the dynamic duality theory, we analyze the conditions under which
a hemimorphism of a dynamic algebra into itself defines a quantifier.
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Monadic Boolean algebras [1] and dynamic algebras [10, 11] are both recognizable as modal algebras [2, 3].
The fact that a monadic Boolean algebra is a very particular case of a dynamic algebra with only one action (the
quantifier) led us to the study of a class of dynamic algebras, which we will call monadic dynamic algebras,
where there exists an action behaving as a quantifier.

1 Functional monadic Boolean algebras

Functional monadic Boolean algebras were introduced by Halmos in [1]. The set BX of all functions from X (a
non-empty set) to B, where B = (B,∨,∼, 0) is a Boolean algebra, is itself a Boolean algebra BX with respect
to the pointwise operations, namely, if p and q are elements of BX , then the supremum p ∨ q and the comple-
ment ∼p are defined by

(p ∨ q)(x) = p(x) ∨ q(x) and (∼p)(x) =∼(p(x)),

for every x ∈ X , and where the zero and the unit of BX are, respectively, functions that are constantly equal to 0
and 1. Let us denote by R(p) the range of the function p of BX . A Boolean subalgebra A of BX such that

(i) for every p in A the supremum
∨
R(p) and the infimum

∧
R(p) exist in B and

(ii) the (constant) functions ∃p and ∀p, defined by

∃p(x) =
∨
R(p) and ∀p(x) =

∧
R(p),

belong to A,
is called a functional monadic Boolean algebra or a B-valued functional monadic Boolean algebra with do-
mainX . In this definition it is not necessary to impose that, for every p inA, both ∃p and ∀p exist and belong toA,
since ∀p can be interpreted as ∼(∃(∼p)) and ∃p as ∼(∀(∼p)). By the mutual duality of these operators we shall
study ∃ alone. In particular, in the functional monadic Boolean algebra 2X , where 2 = {0, 1}, if p is a non-zero
element of 2X , there exists an element x0 in X such that p(x0) = 1. Then 1 ∈ R(p) and ∃p(x) =

∨
R(p) = 1,

for every x ∈ X . If p = 0 in 2X , then p(x) = 0, for every x ∈ X , and ∃p(x) =
∨
R(p) = 0. Therefore 2X is a

functional monadic Boolean algebra, where ∃p = 1, for p �= 0, and ∃0 = 0.
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If, for any set Y , we take B = P(Y ), the (complete) Boolean algebra of all the subsets of Y , then an arbitrary
element p in BX is a function of X in P(Y ),

p : X −→ P(Y ), x �−→ Px.

Immediately, for any p ∈ BX , ∃p is defined (since B is complete) by

∃p : X −→ P(Y ), x �−→ ∃p(x) =
∨
{p(x1) : x1 ∈ X} =

⋃
x1∈X Px1

and, similarly, ∀p is defined by

∀p : X −→ P(Y ), x �−→ ∀p(x) =
∧
{p(x1) : x1 ∈ X} =

⋂
x1∈X Px1 .

Consequently, if y is a point in Y , the value p(x) of a function p in BX corresponds in a natural way to the
proposition “y belongs to p(x)”. Since supremum is a set-theoretic union, it follows that each value of ∃p
corresponds to “there exists x such that y belongs to p(x)” and, dually, that each value of ∀p corresponds to “for
every x, y belongs to p(x)”. For this reason, Halmos calls this operator ∃ (on a functional monadic Boolean
algebra) a functional existential quantifier, and the operator ∀ a functional universal quantifier.

The functional existential quantifier ∃ on a functional monadic Boolean algebra A is normalized, increasing
and quasi-multiplicative, i. e. satisfies

(∃)1 ∃0 = 0,

(∃)2 p ≤ ∃p,

(∃)3 ∃(p ∧ ∃q) = ∃p ∧ ∃q,

whenever p and q are in A.

2 Monadic Boolean algebras

A general concept of quantification is obtained by abstraction from the functional case. A quantifier (an existen-
tial quantifier) on a Boolean algebra B is a mapping ∃ of the Boolean algebra B into itself satisfying (∃)1, (∃)2
and (∃)3, for every p, q in B.

The concept of a universal quantifier is defined by dualization, via the equation ∀p =∼ (∃(∼ p)). Since we
will only refer to universal quantifiers briefly, the adjective “existential” will usually be omitted.

It is worthwhile to look at some other examples of quantifiers (other than the functional one), namely the
simple quantifier ∃s, and the discrete quantifier ∃d. The identity mapping of a Boolean algebra into itself is a
quantifier, the discrete quantifier. The mapping defined by ∃s0 = 0 and ∃sp = 1, for every p �= 0, is a quantifier,
called the simple quantifier.

A quantifier ∃ on a Boolean algebra B satisfies the following algebraic properties (cf. [1]) for every p, q in B:

(P1) ∃1 = 1;

(P2) ∃∃ = ∃;

(P3) p ∈ ∃(B) if and only if ∃p = p, where ∃(B) is the range of ∃;

(P4) if p ≤ ∃q, then ∃p ≤ ∃q;

(P5) if p ≤ q, then ∃p ≤ ∃q (the quantifier is monotone);

(P6) ∃(∼(∃p)) =∼(∃p);
(P7) the range ∃(B) of a quantifier ∃ is a Boolean subalgebra of B;

(P8) ∃(p ∨ q) = ∃p ∨ ∃q.

A monadic Boolean algebra is a Boolean algebraB together with a quantifier ∃ onB. The elementary algebraic
theory of monadic Boolean algebras is defined similarly to that of every other algebraic system.
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3 Dynamic algebras

Dynamic algebras were introduced by Kozen [6] and Pratt [10] to provide models for propositional dynamic
logic (PDL). Following Pratt a dynamic algebra is a two-sorted algebra (B,R, 〈〉) verifying a certain set of
equations. The Boolean universe B = (B,∨,∼, 0) is a Boolean algebra (an algebra with a binary operation ∨,
one unary operation ∼ and a nullary operation 0, satisfying the usual set of axioms); the regular uni-
verse R = (R,∪, ; ,∗ ) (or universe of actions or universe of programs) is an algebra with two binary opera-
tions, ∪ and ;, and one unary operation ∗. The heterogeneous operator (diamond) 〈〉 : R×B −→ B relates both
algebras.

Definition 3.1 A dynamic algebra D = (B,R, 〈〉), where B = (B,∨,∼, 0), R = (R,∪, ; ,∗ ), is an algebra
satisfying, for p, q ∈ B and a, b ∈ R,

(1) B is a Boolean algebra;

(2) 〈a, 0〉 = 0, 〈a, p ∨ q〉 = 〈a, p〉 ∨ 〈a, q〉;
(3) 〈a ∪ b, p〉 = 〈a, p〉 ∨ 〈b, p〉;
(4) 〈a; b, p〉 = 〈a, 〈b, p〉〉;
(5) p ∨ 〈a; a∗, p〉 ≤ 〈a∗, p〉;
(6) 〈a∗, p〉 ≤ p ∨ 〈a∗,∼p ∧ 〈a, p〉〉.
Remark 3.2
1. For p and q elements of the Boolean algebra B, we used (p ≤ q) as an abbreviation of (p ∨ q = q).
2. Pratt [10] showed that conditions (5) and (6) can be replaced by 〈a∗, p〉 = min a!p, where

a!p = {q ∈ B : p ∨ aq ≤ q}.
Notation 3.3 For a, b ∈ R and p ∈ B we write ap instead of 〈a, p〉, ab instead of a; b, and we write a ≤ b

whenever ap ≤ bp for every p ∈ B.

Dynamic algebras, as defined by Kozen [7], have one more operation, called reversion. A dynamic algebra
with reversion is a dynamic algebra D = (B,R, 〈〉) equipped with a unary operation − on R such that a−− = a,
(a ∪ b)− = a− ∪ b−, (ab)− = b−a− and

(1) p ≤∼a(∼a−p), for a, b ∈ R, p ∈ B.

A dynamic algebra (B,R, 〈〉) is ∗-continuous if, for every a ∈ R and p ∈ B, a∗p = ∨{aip : i ≥ 0}.
Kripke structures, traditional models for PDL, were presented in [10] as examples of dynamic algebras. They

are defined as follows. The full Kripke structure on a given non-empty set S is a triple (S,P(S),P(S × S)),
where P(S) is the Boolean algebra of all subsets of S (with the usual set theoretical operations) and P(S × S)
is the set of all binary relations on S endowed with the operations ;, ∪, and ∗ as, respectively, the composi-
tion, the union and the reflexive-transitive closure of binary relations, and where the diamond operation 〈a, p〉
(for a ∈ P(S × S) and p ∈ P(S)) is the pre-image of p under a, i. e.

〈a, p〉 = {s ∈ S : (s, s′) ∈ a, for some s′ ∈ p}.
Kripke structures (or standard Kripke structures) are defined as the dynamic subalgebras of full Kripke structures.
A dynamic algebra defined as a Kripke structure for all operations but, possibly, the operation ∗ (defined as any
unary operation of binary relations satisfying the axioms (5) and (6)) is called non-standard Kripke structure.
Every standard Kripke structure is a ∗-continuous dynamic algebra. In a Kripke structure the reversion of a
binary relation a is interpreted as its inverse relation, a− = {(s, t) : (t, s) ∈ a}.

Let D be a dynamic algebra. Two actions a, b are inseparable, and we denote that fact by a ∼= b, if ap = bp,
for every proposition p in B. The pair (=,∼=) defines a congruence relation (cf. Definition 3.8 below) in the
dynamic algebra D. A dynamic algebra is separable if the inseparable relation is the identity relation, i. e. for any
actions a and b in R, if ap = bp, for any proposition p ∈ B, then a = b.

The mixed operator diamond 〈〉 : R ×B −→ B can be seen as

〈〉 : R −→ F (B;B), a �−→ (p �−→ 〈a〉p = 〈a, p〉),
where F (B;B) = {f : f : B −→ B is a mapping}. However, unless D is separable, 〈〉 does not define a repre-
sentation of R since 〈〉 is not one-to-one. We may have equal mappings 〈a〉 and 〈b〉 in F (B;B) with a �= b and,
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consequently, for D an arbitrary dynamic algebra, {〈a〉 : a ∈ R} is a family of mappings in B indexed by R
(where the extensionality axiom is not satisfied). In a separable dynamic algebra, R may be identified with a set
of mappings in B, that we will use whenever appropriate.

The relation ≤ in R, a ≤ b whenever ap ≤ bp, for every p ∈ B, is reflexive and transitive, but it is not anti-
symmetric (since the conditions ap ≤ bp and bp ≤ ap give rise to ap = bp, for every p ∈ B and not necessarily
to a = b) and, therefore, defines a quasi-order in R. Clearly, in separable dynamic algebras ≤ defines a partial
order since the antisymmetry is satisfied.

Example 3.4 Every monadic Boolean algebra defines a dynamic algebra. In fact, let B be a Boolean algebra
with a quantifier ∃1, R = ({∃1},∪, ; ,∗ ), where ∪, ; and ∗ are defined trivially, and 〈〉 : {∃1} ×B −→ B is
the application defined by 〈∃1, p〉 := ∃1(p), for every p ∈ B. Since ∃10 = 0, ∃1(p ∨ q) = ∃1p ∨ ∃1q, for ev-
ery p, q ∈ B, ∃1∃1 = ∃1 and ∃∗1 = ∃1, (B,R, 〈〉) is a dynamic algebra.

Conversely, we may ask if every dynamic algebra with a unique element in the regular part defines a monadic
Boolean algebra. The next example shows that the answer to this question is negative.

Example 3.5 Let D = (B,R, 〈〉) be the Kripke structure on S = {1, 2, 3}, where

B = {∅, {3}, {1, 2}, {1, 2, 3}}

and R = {a} with a = {(1, 1), (1, 2), (2, 2), (3, 2), (3, 3)}. Notice that a = a ∪ a = aa = a∗ and ap ∈ B, for
every p ∈ B. Therefore D is a dynamic algebra. The regular element a does not define a quantifier on B.
For, let A : B −→ B be the operator defined by a, i. e. A(p) := 〈a〉p, for every p ∈ B. Since ∼A{3} = {1, 2}
and A(∼A{3}) = {1, 2, 3}, the property of quantifiers, (P6), is not satisfied.

Although, for dynamic algebras with reversion the answer is positive, as we will see in the next proposition.

Proposition 3.6 Every dynamic algebra with reversion D = (B, {a}, 〈〉) defines a monadic Boolean algebra.

P r o o f. Let D = (B, {a}, 〈〉) be a dynamic algebra with reversion. We prove that the application A on B
defined by A(p) := ap, for every p ∈ B, is a quantifier on B. For that, it is enough to prove that A is a closure
operator and that A(∼(Ap)) =∼(Ap), for any p ∈ B (cf. [1, Theorem 3]).

(i) A0 = 0, AA(p) = A(p) and A(p ∨ q) = Ap ∨ Aq, for every p, q ∈ B, is a consequence, respectively, of
the fact that a is normal (a0 = 0), idempotent and additive.

(ii) Since a = a∗ and p ≤ a∗p, for every p ∈ B, we have p ≤ ap and so, p ≤ Ap, for every p ∈ B. ThereforeA
is a closure operator on B.

(iii) By (ii) we have ∼(Ap) ≤ A(∼(Ap)), for every p ∈ B. By (1) we know that, for every p ∈ B, we
have p ≤∼a(∼a−p). Then a(∼a−p) ≤∼p, and since a = a−, we have a(∼ap) ≤∼p. Changing p to ap,
we get a(∼a(ap)) ≤∼(ap) and, since a = aa, a(∼(ap)) ≤∼(ap). Therefore A(∼(Ap)) ≤∼(Ap), for ev-
ery p ∈ B.

The elementary algebraic theory of dynamic algebras is defined similarly to that of every other algebraic
system [13, 14]. We will specify some concepts for later use.

Definition 3.7 Let D = (B,R, 〈〉) and D′ = (B′,R′, 〈〉′) be dynamic algebras, where B = (B,∨,∼, 0),
R = (R,∪, ; ,∗ ), B′ = (B′,∨′,∼′, 0′), and R′ = (R′,∪′, ;′ ,∗′), and let h1 : B −→ B′ and h2 : R −→ R′ be
mappings. The pair h = (h1, h2) is a dynamic homomorphism between the dynamic algebras D and D′ if h1

and h2 preserve the mentioned one-sorted operations and h preserves the mixed operation, i. e. for p ∈ B
and a, b ∈ R we have

1. h1 is a Boolean homomorphism;

2. h2(a ∪ b) = h2(a) ∪′ h2(b);
3. h2(a; b) = h2(a);′ h2(b);

4. h2(a∗) = (h2(a))∗′;
5. h1(〈a〉p) = 〈h2(a)〉′h1(p).
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Definition 3.8 Let D = (B,R, 〈〉) be a dynamic algebra. The pair θ = (θ1, θ2) is a (dynamic) congruence
relation in D if θ1 is a congruence relation in B, θ2 is a congruence relation in R and, moreover, if p θ1q and a θ2b,
then ap θ1bq, for every p, q ∈ B and a, b ∈ R.

As usual, we define B/θ1 = {[p]θ1 : p ∈ B} and R/θ2 = {[a]θ2 : a ∈ R}. The structure

D/θ = (B/θ1,R/θ2, 〈〉)

is a dynamic algebra (the quotient dynamic algebra) with operations defined by

[p]θ1 ∨ [q]θ1 := [p ∨ q]θ1 , [a]θ2 ∪ [b]θ2 := [a ∪ b]θ2 , ∼ [p]θ1 := [∼p]θ1 ,

[a]θ2 ; [b]θ2 := [a; b]θ2, [a]θ2 [p]θ1 := [ap]θ1 , [a]∗θ2
:= [a∗]θ2 .

(B/θ1,R/θ2, 〈〉) is the homomorphic image of (B,R, 〈〉) under the natural homomorphism ν = (ν1, ν2) defined
by ν1 : p �−→ [p]θ1 , ν2 : a �−→ [a]θ2 for p ∈ B, a ∈ R.

Also, associated with each homomorphism, there exists a natural congruence. If h : D −→ D′ is a dynamic
algebra homomorphism, the kernel relation kerh = (K1,K2) given by

pK1q if and only if h1(p) = h1(q), aK2b if and only if h2(a) = h2(b)

for every p, q ∈ B and a, b ∈ R, defines a congruence in D.
The homomorphism theorem enables us to assert that every homomorphic image of a dynamic algebra D is,

up to an isomorphism, a quotient algebra [14].

4 Quantified propositional dynamic logic

Propositional dynamic logic PDL is being used in the literature to describe different logic systems [4, 5, 8].
Depending on the problem we have to solve, we use different connectors,− (reversion) [6, 7] and ? (test) [10, 12].
Similarly, in this work, we devote ourselves to the study of a new connector, the existential quantifier, ∃. We use
quantified propositional dynamic logic, QPDL, to denote the version of PDL with quantifier(s).

4.1 Syntax

The expressions of QPDL are of two sorts: propositional sort (propositions or formulae) and regular sort (ac-
tions or programs). All these expressions are built by recursion from a numerable set of propositional variables
(atomic propositions), a numerable set of regular variables (atomic programs), constants 0, 1 of propositional
sort, constant ∃0 of regular sort, propositional connectors ∨,∼, ∃1, program connectors ∪ (non-deterministic
choice), ; (composition), ∗ (iteration), ∃2, a mixed connector 〈〉 (diamond) and (, ) (parenthesis).

The formation of propositions and programs is subject to the following rules:

1. Constants 0, 1 are propositions and constant ∃0 is a program.

2. Each atomic proposition is a proposition and each atomic program is a program.

3. If p and q are propositions, then (p ∨ q), (∼p) and (∃1p) are propositions.

4. If a and b are programs, then (a ∪ b), (a; b), (a∗) and (∃2a) are programs.

5. If p is a proposition and a is a program, then 〈a〉p is a proposition.

4.2 Semantics

The semantic structures of QPDL are pairs S = (P(S),P(S × S)) associated with interpretation maps I,
where S is a non-empty finite set, called the set of states, P(S) is the family of all the subsets of S and P(S×S)
is the family of all the binary relations defined on S. Therefore, QPDL expressions are interpreted in seman-
tic structures corresponding each atomic proposition p to a subset Ip of S and each atomic program a to
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a binary relation Ia ⊆ S × S. The interpretation of non-atomic expressions results from the interpretation of
atomic expressions by using induction on their syntactic structure. More precisely, an interpretation I of QPDL
expressions in a semantic structure S = (P(S),P(S × S)) is defined by:

1. I0 = ∅, I1 = S, I∃0 is an equivalence relation on S.

2. Each atomic proposition p is interpreted as a subset Ip of S.

3. Each atomic program a is interpreted as a binary relation Ia on S.

4. I〈a〉p = {s ∈ S : (s, s1) ∈ Ia, for some s1 ∈ Ip} (is the pre-image of Ip under Ia).

5. Ip∨q = Ip ∪ Iq , I∼p = Ic
p, I∃1p = I〈∃0〉p.

6. Ia∪b = Ia ∪ Ib,

Ia;b = Ia ◦ Ib = {(s1, s2) : (s1, s3) ∈ Ia and (s3, s2) ∈ Ib, for some s3 ∈ S},

Ia∗ =
⋃

n∈N0
In

a with I0
a = ∆S = {(s, s) : s ∈ S} and In

a = Ia ◦ In−1
a , n ∈ N, I∃2a = I∃0;a.

Remark 4.1 The symbols ∪, c used on the right-hand side of the identities denote the set operations of union
and complementation, respectively, and the symbol ◦ denotes composition of binary relations.

We may see the set S as the set of possible states of a computer, the propositions as subsets of states and the
actions as computer programs. Therefore, s ∈ Ip means that “the state s satisfies proposition p”, (s1, s2) ∈ Ia

means that “the program a may begin at state s1 and finish at s2”. The propositional operations are interpreted in
a natural form. To have s ∈ Ip∨q means that “s satisfies proposition p or proposition q”, s ∈ I∼p means that “the
state s does not satisfy proposition p” and ∃1p means that “there exists a state satisfying p, where is possible to
execute ∃0”. The program a ∪ b means “choose a or b non-deterministically and execute it”, a; b means “execute
program a and then b”, a∗ means “choose n ∈ N0, and execute n times program a” and ∃2a means “to execute
program ∃0 and then a”. Finally, s ∈ I〈a〉p means that “it is possible to execute a beginning at s and finish at a
state satisfying proposition p”.

4.3 Monadic Kripke structures

We are going to use the QPDL to introduce a structure called monadic Kripke structure.

Proposition 4.2 If S is a non-empty set and ∃0 ⊆ S × S is an equivalence relation on S, then ∃1 defined by

∃1P := ∃−1
0 (P ) = {s1 ∈ S : (s1, s2) ∈ ∃0, for some s2 ∈ P}

is a quantifier on any Boolean subalgebra, B, of P(S) whenever it satisfies ∃1B ⊆ B.

P r o o f. To prove that ∃1 is a quantifier on B it is enough (cf. [1, Theorem 3]) to verify that ∃1 is a closure
operator and that ∃1(∃1P )c = (∃1P )c, for any P ∈ B.

(i) The condition ∃1∅ = ∅ is verified trivially.

(ii) P ⊆ ∃1P , for every P ∈ B, since ∃0 is reflexive on S.

(iii) ∃1(∃1P ) = ∃1P , for every P ∈ B. In fact, by (ii) we have ∃1P ⊆ ∃1(∃1P ). Now, let s1 ∈ ∃1(∃1P ).
Then (s1, s2) ∈ ∃0, for some s2 ∈ ∃1P , and so (s2, s3) ∈ ∃0, for some s3 ∈ P . Since ∃0 is transitive,
then (s1, s3) ∈ ∃0. Hence, we have s1 ∈ ∃1P .

(iv) ∃1(P ∪ Q) = ∃1P ∪ ∃1Q since ∃1U is defined as the pre-image of U under the (equivalent) relation ∃0,
for any subset U of S.

Using (i), (ii), (iii) and (iv) we may conclude that ∃1 is a closure operator. It remains to prove
(v) ∃1(∃1P )c = (∃1P )c. By (ii) we have (∃1P )c ⊆ ∃1(∃1P )c. Let s ∈ ∃1(∃1P )c. Then (s, s2) ∈ ∃0, for

some s2 ∈ (∃1P )c. So, if (s2, z) ∈ ∃0, then z �∈ P . Consider (s, z1) ∈ ∃0. Since (s, s2) ∈ ∃0, then (s2, s) ∈ ∃0.
But since ∃0 is transitive we have (s2, z1) ∈ ∃0 and hence z1 �∈ P . We conclude that if (s, z1) ∈ ∃0, then z1 �∈ P ,
i. e. s �∈ ∃1P , and thus, s ∈ (∃1P )c.

Let S be a non-empty set (of states) and I an interpretation of QPDL in S. Then the set of all Ip, with p
running over all propositions of QPDL, is a monadic Boolean algebra (with quantifier corresponding to I∃0 , by
Proposition 4.2) under union and complementation of subsets of S. We denote such an algebra by B(I).
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The set of all the Ia, with a running over all the programs in QPDL, is a Kleene algebra (i. e. is a set of
binary relations closed under union, composition and reflexive-transitive closure of binary relations) containing
an equivalence relation of domain S. We denote it by R(I). Moreover, for each Ip ∈ B(I) and Ia ∈ R(I),

〈Ia〉Ip = I〈a〉p = {s ∈ S : (s, s1) ∈ Ia, for some s1 ∈ Ip}

is in B(I), i. e. B(I) is closed under images of elements of B(I) by relations in R(I).
We define a monadic Kripke structure (S,B,R, ∃) as a Kripke structure (S,B,R) with an operator

∃ = (∃0, ∃1, ∃2),

where ∃0 is an equivalence relation on S belonging to R, ∃1 is an application on B defined, for P ∈ B, by

∃1P := 〈∃0〉P = {s1 ∈ S : (s1, s2) ∈ ∃0, for some s2 ∈ P},

and ∃2 is an application on R defined by ∃2a = ∃0; a, for every a ∈ R.
Immediately, every interpretation of QPDL defines a monadic Kripke structure.

5 Monadic dynamic algebra

By abstracting the notion of a monadic Kripke structure, we are led to the definition of a monadic dynamic
algebra.

Definition 5.1 A monadic dynamic algebra is a quadruple (B,R, 〈〉, ∃), where (B,R, 〈〉) is a dynamic algebra
and ∃ is a triple (∃0, ∃1, ∃2) such that

1. ∃0 ∈ R;

2. ∃1 : B −→ B, where ∃1(p) := 〈∃0〉p, for every p ∈ B, is a quantifier on B;

3. ∃2 : R −→ R is defined by ∃2(a) := ∃0; a, for every a ∈ R.
The operator ∃ is called a dynamic quantifier.

In the following, given a monadic dynamic algebraDM = (B,R, 〈〉, ∃) we denote by D = (B,R, 〈〉) its reduct
which is a dynamic algebra.

A monadic dynamic algebra DM = (B,R, 〈〉, ∃) is called separable if it is separable as dynamic algebra,
i. e. if D is separable.

Remark 5.2 In Definition 5.1, if the monadic dynamic algebra (B,R, 〈〉, ∃) is separable, then there exists
only the element ∃0 in R such that ∃1(p) = 〈∃0〉p, for every p ∈ B. Thus, for these algebras we will write ∃1 to
represent either the regular element ∃0 or the Boolean operator ∃1.

Hence, we can say that a separable monadic dynamic algebra is a quadruple (B,R, 〈〉, ∃), where (B,R, 〈〉) is
a dynamic algebra and ∃ is a pair (∃1, ∃2) such that

1. ∃1 ∈ R;

2. ∃1 : B −→ B, where ∃1(p) := 〈∃1〉p, for every p ∈ B, is a quantifier on B;

3. ∃2 : R −→ R is defined by ∃2(a) := ∃1; a, for every a ∈ R.

Example 5.3 Let X be a non empty set and B = (B,∨,∼, 0) a complete Boolean algebra. Then the set of
all the functions of X into B, BX , is itself a complete Boolean algebra. The functional quantifier ∃1 enables us
to qualify B = (B,∨,∼, 0, ∃1) as a (functional) monadic Boolean algebra (cf. Section 1). For R = (R,∪, ; ,∗ ),
where R is the set of all the normal and completely additive functions on BX , ∪, ;, ∗ are, respectively, the
pointwise disjunction, composition and reflexive-transitive closure of elements of R, and 〈〉 : R × BX −→ BX

is the map defined by

〈a, p〉 := a(p), for every a ∈ R, p ∈ B,

we know that (BX ,R, 〈〉) is a separable dynamic algebra (the completely full dynamic algebra on BX), see [10].
Therefore (BX , R, 〈〉, ∃) with ∃ = (∃1, ∃2) given by

∃1p(x) =
∨
{p(x1) : x1 ∈ X} and ∃2(a) = ∃1; a, for a ∈ R, p ∈ B,

is a monadic dynamic algebra.
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Example 5.4 By Proposition 3.6 we can easily see that every dynamic algebra DM = (B, {a}, 〈〉) with re-
version defines a monadic dynamic algebra D = (B, {a}, 〈〉, ∃) with ∃ = (∃1, ∃2) given by ∃1(p) := ap, for
every p ∈ B, and ∃2(a) := a.

We can derive a list of elementary consequences of the definition of monadic dynamic algebra.

Proposition 5.5 In any monadic dynamic algebra DM = (B,R, 〈〉, ∃), the following assertions are satisfied:

1. ∃∗0p = ∃0p, for every p ∈ B, i. e. ∃0 is an asterate.

2. (∃2(∃0))p = ∃0p, for every p ∈ B.

3. a ≤ ∃2(a), for every a ∈ R.

4. If D is separable and 0R ∈ R, then ∃2(0R) = 0R.

5. If D is separable and 1R ∈ R, then ∃2(1R) = 1R.

6. (∃2(∃2(a)))p = (∃2(a))p, for every p ∈ B.

7. If D is separable, a ∈ ∃2(R) if and only if a = ∃2(a).
8. If a ≤ ∃2(b), then ∃2(a) ≤ ∃2(b).
9. If a ≤ b, then ∃2(a) ≤ ∃2(b).

10. (∃2(a ∪ b))p = (∃2(a) ∪ ∃2(b))p, for every p ∈ B.

11. (∃2(a; ∃2(b)))p = ((∃2(a)); (∃2(b)))p, for every p ∈ B.

(Here 0R and 1R denote constant maps of B into B equal to, respectively, 0 and 1.)

Remark 5.6 Since a∗0 = 0, p ≤ a∗p and a∗a∗p = a∗p, for every p ∈ B and a ∈ R in a dynamic alge-
bra D = (B,R, 〈〉), one could question if, for each a ∈ R, a∗ defines a quantifier on B, i. e. if ∃1 : B −→ B
given by ∃1p = a∗p is a quantifier on B. The answer to this question is negative. In fact, let B = {0, 1, p,∼p}
and

R = {a : a : B −→ B is a map, a(0) = 0 and a is finitely additive},

where a(q) = q for every q �=∼p and a(∼p) = 1. We have

a∗p = min{q ∈ B : p ∨ aq ≤ q} = min{p, 1} = p.

Therefore a∗(∼a∗p) = a∗(∼p) = min{q ∈ B : ∼p ∨ aq ≤ q} = 1. But ∼a∗p =∼p. So a∗(∼a∗p) �=∼a∗p,
contradicting (P6), property satisfied by any quantifier.

Definition 5.7 Let DM = (B,R, 〈〉, ∃) be a monadic dynamic algebra. Then D1
M = (B1,R1, 〈〉, ∃1), with

∃1 = (∃0, ∃1|B1 , ∃2|R1),

is a monadic dynamic subalgebra of DM if D1 is a dynamic subalgebra of D and ∃0 ∈ R1.

Lemma 5.8 If DM = (B,R, 〈〉, ∃) is a separable monadic dynamic algebra, where ∃2(R) is closed under
the operation ∗, the range ∃(D) = (∃1(B), ∃2(R), 〈〉, ∃) is a monadic dynamic subalgebra of DM .

P r o o f. By property (P7), ∃1(B) is a Boolean subalgebra of B.
We have to prove that:

(i) If p ∈ ∃1(B) and a ∈ ∃2(R), then ap ∈ ∃1(B).
(ii) If a, b ∈ ∃2(R), then a ∪ b, ab ∈ ∃2(R).
(iii) ∃1 ∈ ∃2(R).

The proof of conditions (i) and (ii) is straightforward.
Condition (iii) is satisfied, since condition (∃2(∃1))p = ∃1p, for every p ∈ B implies ∃1 = ∃2(∃1) in the sep-

arable monadic dynamic algebra DM .

In the last lemma the condition on ∗ is essential, as the next example shows.
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Example 5.9 Let DM = (S,P(S),P(S×S), 〈〉, ∃s) be the full monadic Kripke structure, where S = {1, 2},
∃s = (∃s1, ∃s2) and ∃s1 is the simple Boolean quantifier. Since ∃s2(P(S × S)) is not closed under the oper-
ation ∗, ∃s2(D) is not a dynamic subalgebra of D. In fact, let a = {(1, 2), (2, 2)}. We have a = ∃s2(a) and
so a ∈ ∃s2(P (S × S)). But, a∗p = min{q : p ∨ aq ≤ q} and so a∗{1} = {1}. Since

(∃s2(a
∗)){1} = ∃s1{1} = {1, 2},

we may conclude that ∃s2(a∗) �= a∗. This yields a∗ /∈ ∃s2(P (S × S)) by Proposition 5.5, 7.

The notion of a homomorphism between monadic dynamic algebras is described as expected.

Definition 5.10 Let DM = (B,R, 〈〉, ∃) and D′
M = (B′,R′, 〈〉′, ∃′) be monadic dynamic algebras and

let h1 : B −→ B′ and h2 : R −→ R′ be functions. The pair h = (h1, h2) is a homomorphism between the mo-
nadic dynamic algebras DM and D′

M (monadic dynamic homomorphism) if it satisfies the following conditions:
1. h is a dynamic homomorphism between D and D′.
2. h2(∃0) = ∃′0.

Proposition 5.11 Each homomorphism h = (h1, h2) between the monadic dynamic algebras DM and D′
M

satisfies

h1(∃1(p)) = ∃′1(h1(p)), for every p ∈ B,

and

h2(∃2(a)) = ∃′2(h2(a)), for every a ∈ R.

Definition 5.12 Let DM = (B,R, 〈〉, ∃) be a monadic dynamic algebra. A congruence θ = (θ1, θ2) on DM

(monadic dynamic congruence) is a (dynamic) congruence on D.

Remark 5.13 It is obvious that, for any congruence θ, in any monadic dynamic algebra DM = (B,R, 〈〉, ∃)
we have:

(i) Whenever p θ1q, then ∃1(p) θ1∃1(q), for p, q ∈ B.

(ii) Whenever a θ2b, then ∃2(a) θ2∃2(b), for a, b ∈ R.

The homomorphism theorem and the consequent definition of monadic quotient algebra is stated and proved as
usual. If DM = (B,R, 〈〉, ∃) is a monadic dynamic algebra and θ = (θ1, θ2) is a (monadic dynamic) congruence
on DM , we form the quotient algebra

QM = (B/θ1,R/θ2, 〈〉, ∃′),

where B/θ1 = {[p]θ1 : p ∈ B}, R/θ2 = {[a]θ2 : a ∈ R}, ∃′0 := [∃0]θ2 , ∃′1 is an operator of B/θ1 into B/θ1
defined by ∃′1([p]θ1) := [∃1p]θ1 and ∃′2 is an operator of R/θ2 into R/θ2 defined by ∃′2([a]θ2) := [∃2(a)]θ2 . The
remaining operations for quotient algebras are defined as usual.

To ascertain that QM is a monadic quotient dynamic algebra we only have to confirm that ∃′ is a quantifier
on QM . That follows immediately by the fact that ∃′ is the image under a homomorphism of the quantifier ∃
of DM .

In a dynamic algebra D = (B,R, 〈〉) we define the congruences ∆B and ∇B on B and ∆R and ∇R on R as
expected:

∆B = {(p, p) : p ∈ B}, ∇B = {(p, q) : p, q ∈ B},
∆R = {(a, a) : a ∈ R}, ∇R = {(a, b) : a, b ∈ R}.

One can easily show that the pairs (∆B,∆R), (∇B ,∇R) and (∇B,∆R) are congruences on D, but, usually,
(∆B ,∇R) is not a congruence on D.

Remark 5.14 We consider the dynamic algebra ({0}, {0}, 〈〉) to be the degenerated dynamic algebra.

Definition 5.15 A non-degenerated dynamic algebra is simple if it has exactly two congruences.

Theorem 5.16 The algebras (B, {a}, 〈〉) with B arbitrary and a = ∃s1 (the simple Boolean quantifier) are
the unique simple separable dynamic algebras.
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P r o o f. Let D = (B,R, 〈〉) be a separable dynamic algebra.

(i) If B = {0}, then R = {0}, and so D is the degenerated dynamic algebra (it admits only one congruence).

(ii) If B = {0, 1}, then R = {idR(= ∃s1)} or R = {0, idR}.
In the case R = {idR}, (∆B,∆R) and (∇B ,∇R) are the unique congruences on D, and therefore, D is

simple.
In the case R = {0, idR}, since ∆R �= ∇R, (∆B ,∆R), (∇B ,∇R) and (∇B ,∆R) are different congruences

on D, D is not simple.

(iii) For B �∈ {{0}, {0, 1}} we have:

1. If the cardinality of the set R is greater than 1, then R admits ∇R and ∆R as distinct congruences.
Immediately (∆B,∆R), (∇B,∇R) and (∇B ,∆R) are different congruences on D and, therefore, D is not a
simple dynamic algebra.

2. In the case R = {a} we have only one congruence ∆R (= ∇R) on R.

(a) Let a = ∃s1 and θB be a congruence on B with θB �= ∆B and θB �= ∇B . Since θB �= ∇B we
have [0]θB �= [1]θB and, from θB �= ∆B , we know that there exists p �= 0 such that 0 θBp. Since a0 = 0
and ap = 1 are in different congruence classes, (θB,∆R) is not a dynamic congruence. Therefore, D is a
simple dynamic algebra.

(b) Now, let a �= ∃s1. Since a = a ∪ a = a; a = a∗ and a∗p ≥ p, we have ap ≥ p, for every p ∈ B.
Therefore, there exists an element p �∈ {0, 1} with ap = p′ and p ≤ p′ < 1. But

ap′ = a(ap) = (aa)p = ap = p′.

Let Ip′ be the principal Boolean ideal generated by p′ in B, i. e.

Ip′ = {q ∈ B : q ≤ p′}.

For every i ∈ Ip′ we have i ≤ p′, and so ai ≤ ap′ = p′, that is ai ∈ Ip′ . Let θp′ denote the Boolean con-
gruence defined by sθp′t if and only if s∨ i = t∨ i, for some i ∈ Ip′ . From sθp′t we get as∨ai = at∨ai
with ai ∈ Ip′ , yielding as θp′at. Therefore, (θp′ ,∆R) is a congruence on D different from (∆B ,∆R)
and (∇B ,∆R) and so D is not simple.

Corollary 5.17 The unique simple separable monadic dynamic algebras are (B, {∃s1}, 〈〉, ∃s), for arbitrary
Boolean algebras B, ∃s = (∃s1, ∃s2) and ∃s1 the simple Boolean quantifier.

6 Duality

From now on we will assume that all dynamic algebras are endowed with a reversion operator.

6.1 Stone space of a separable dynamic algebra with reversion

By Stone’s Representation Theorem, there exists a bijective correspondence between Boolean algebras B and
Boolean spaces X in such a way that B is isomorphic to the algebra of all the clopen subsets of the corresponding
space X . The precise statement of the facts is as follows: If S is the set of all the ultrafilters of B, Stone’s Rep-
resentation Theorem endows S with a topology T such that the Boolean algebra B becomes isomorphic to the
Boolean algebra S of all clopen subsets of X = (S, T ) by means of the mapping

h : B −→ S, p �−→ h(p) = p′ = {F ∈ S : p ∈ F}.

There exists a natural isomorphism between the dual algebra S of a Boolean space X and the set of all continuous
functions from X into 2 = {0, 1}. In order to interpret this assertion we have to endow 2 with a topology. The
topology introduced in 2 is the discrete one, i. e. all the four subsets of 2 are open (therefore closed). Thus, 2 be-
comes a (discrete) Boolean space. The mentioned isomorphism maps each clopen subset of X to its characteristic
function.
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Therefore, if B is a Boolean algebra, S the set of the ultrafilters of B and S the algebra of the clopen subsets
of (S, T ) (where T is the topology induced by Stone’s Representation Theorem), we have the isomorphisms

B −→ S −→ 2S , p �−→ {F ∈ S : p ∈ F} �−→ fp : S −→ 2,

G �−→ fp(G) =

{
1 if p ∈ G,

0 if p �∈ G.

In the following, we are going to identify each Boolean algebra B with the algebra of all the continuous
functions of its dual space into 2.

Our next aim is to determine the entity corresponding to a quantifier ∃ on the dual space of a given mo-
nadic Boolean algebra B. We begin by recalling the notion of hemimorphism. A Boolean hemimorphism is
a mapping from a Boolean algebra B into a Boolean algebra C such that f is normal (f0 = 0) and addi-
tive (f(p ∨ q) = fp ∨ fq, for every p, q in B). Obviously, every quantifier is a hemimorphism from a Boolean
algebra B into itself. A Boolean relation is a relation ϕ from a Boolean space Y to a Boolean space X such that
the direct image of each point of Y is a closed set in X and the inverse image of each clopen set in X is a clopen
set in Y .

Let B and C be Boolean algebras having, respectively, X = (SB, TB) and Y = (SC , TC) as dual spaces. If f
is a hemimorphism from B into C, then its dual, denoted by f δ, is the relation from Y in X defined by

f δ =
⋂

p∈B{(F,G) ∈ SC × SB : p(G) ≤ fp(F )},

i. e. Ff δG if and only if p(G) ≤ fp(F ), for every p ∈ B. It can be proved that f δ is a Boolean relation from Y
in X , see [1].

Every quantifier is a hemimorphism. Moreover, Halmos [1] proved that the dual of a quantifier ∃ on B is the
equivalence relation on SB

∃δ =
⋂

p∈B{(F1, F2) ∈ SB × SB : ∃p(F2) = ∃p(F1)}.

We recall the following notions, cf. [7].

Definition 6.1 A topological Kripke structure is a Kripke structure (S,B,R) endowed with the topology S
in S generated by B.

Definition 6.2 A dynamic space is a topological Kripke structure A = (S,B,R) such that
1. (S,S) is Hausdorff and compact;

2. every element of R is closed in the product topology S × S.

Let DM = (B,R, 〈〉, ∃) be a separable monadic dynamic algebra and S the set of all the ultrafilters of B.
Each a ∈ R is a hemimorphism in B satisfying certain additional properties, and its corresponding entity in the
dual dynamic space is

aδ =
⋂

p∈B{(F,G) ∈ S × S : p(G) ≤ ap(F )}
= {(F,G) ∈ S × S : p(G) ≤ ap(F ), for every p ∈ B}.

Since p(G) ≤ ap(F ) is false only if p(G) = 1 and ap(F ) = 0, the condition

p(G) ≤ ap(F ), for every p ∈ B

is equivalent to

p(G) = 1 ⇒ ap(F ) = 1, for every p ∈ B,

i. e.

p ∈ G⇒ ap ∈ F, for every p ∈ B.

Therefore,

aδ = {(F,G) : p ∈ G⇒ ap ∈ F}.

c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org



Math. Log. Quart. 52, No. 2 (2006) 145

Similarly, we conclude that the dual of ∃1 is

∃δ
1 =

⋂
p∈B{(F,G) ∈ S × S : ∃1p(G) = ∃1p(F )}

= {(F,G) : ∃1p ∈ F if and only if ∃1p ∈ G, for every p ∈ B}.

Now we are led to extend the isomorphism defined by Kozen [6] between the class of the separable monadic
dynamic algebras and the class of the (possibly non-standard) monadic Kripke structures by letting

1. p′ = {F ∈ S : p ∈ F}, for p ∈ B;

2. a′ = {(F,G) ∈ S × S : p ∈ G⇒ ap ∈ F}, for a ∈ R;

3. B′ = {p′ : p ∈ B};

4. R′ = {a′ : a ∈ R};

5. ∃′1 = {(F,G) ∈ S × S : ∃1p ∈ F if and only if ∃1p ∈ G, for every p ∈ B};

6. ∃′2(a) = ∃′1; a′.
The structure S(D) = (S,B′,R′) is a dynamic space called the Stone space of D (the dual space of D),

see [7], and D is isomorphic to the characteristic algebra of S(D), C(S(D)) = (B′,R′, 〈〉) (cf. [6, 7, 9]). Since ∃′1
is the image under the homomorphism ′ of a quantifier ∃1, then ∃′1 is a quantifier on B′. By the definition of ∃′2
and by the fact that ∃′1 ∈ R′ (since ∃1 ∈ R) we conclude that ∃′ is a quantifier on C(S(D)) and therefore DM is
isomorphic to C(S(DM )).

We have just asserted, for separable monadic dynamic algebras (with or without reversion):

Theorem 6.3 Every separable monadic dynamic algebra is isomorphic to a (possibly) non-standard monadic
Kripke structure.

6.2 Dynamic hemimorphisms and dynamic relations

We have previously referred the isomorphism between the class of separable dynamic algebras D = (B,R, 〈〉)
and that of Kripke structures, identifying each Boolean element p with the set p′ = {U ∈ S : p ∈ U} and each
regular element a with the set a′ = {(U, V ) ∈ S × S : p ∈ V ⇒ ap ∈ U}, where S represents the set of all the
ultrafilters of B. Moreover, Kozen [7] proved that if A = (S,B,R) is a dynamic space, then the corresponding
characteristic algebra, C(A) = (B,R, 〈〉) is a separable dynamic algebra and S(C(A)) is homeomorphic to A.

Now we are going to introduce the notions of hemimorphism in dynamic algebras, of dynamic relation in
dynamic spaces and verify that these two entities are dually related in the class of the separable dynamic algebras.

Definition 6.4 A dynamic hemimorphism is a pair of functions f = (f1, f2) mapping of a dynamic alge-
bra D = (B,R, 〈〉) into a dynamic algebra D1 = (B1,R1, 〈〉) such that

(i) f1 is a Boolean hemimorphism;

(ii) f20 = 0 whenever 0 ∈ R;

(iii) f2(a ∪ b) = f2a ∪ f2b, for every a, b ∈ R.

Definition 6.5 If D = (B,R, 〈〉) is a dynamic algebra and S is the set of all the ultrafilters of B, we say that
every set of the form

a′ = {(U, V ) ∈ S × S : p ∈ V ⇒ ap ∈ U}

for some a ∈ R is a closed action of the dual space of D.

Definition 6.6 A dynamic relation between dynamic spaces (S0,B0,R0) and (S,B,R) is a pair ϕ = (ϕ1, ϕ2)
such that

1. ϕ1 is a Boolean relation of S0 in S;

2. ϕ2 is a relation of S0 × S0 in S × S such that

(a) the inverse image under ϕ2 of a closed action of S × S is a closed action of S0 × S0;

(b) for each (U, V ) �∈ ϕ2(U0, V0), there exists b ∈ R such that (U, V ) ∈ b′ and b′ ∩ ϕ2(U0, V0) = ∅, for
every (U0, V0).
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Let D = (B,R, 〈〉) and D0 = (B0,R0, 〈〉) be separable dynamic algebras and

S(D) = (S,B′,R′), S(D0) = (S0,B′
0,R′

0)

their corresponding Stone spaces.
If f = (f1, f2) is a hemimorphism of D into D0, its dual, denoted by f δ, is the pair (f δ

1 , f
δ
2 ), where f δ

1 is the
relation of S0 in S defined by

f δ
1 = {(U0, U) ∈ S0 × S : p ∈ U ⇒ f1p ∈ U0, for every p ∈ B}

and f δ
2 is the relation of S0 × S0 in S × S defined by

f δ
2 = {((U0, V0), (U, V )) ∈ (S0 × S0) × (S × S) : (U, V ) ∈ a′ ⇒ (U0, V0) ∈ (f2a)′, a ∈ R}.

If ϕ = (ϕ1, ϕ2) is a relation of the dynamic space S(D0) into the dynamic space S(D), its dual, denoted
by ϕδ , is the pair (ϕδ

1, ϕ
δ
2), where ϕδ

1 is the map from B in B0 given by

(ϕδ
1p)

′ = ϕ−1
1 p′

and ϕδ
2 is the map from R into R0 given by

(ϕδ
2a)

′ = ϕ−1
2 a′.

The next theorem is a fundamental result in the dynamic duality theory.

Theorem 6.7 If f is a dynamic hemimorphism between the separable dynamic algebras D = (B,R, 〈〉)
and D0 = (B0,R0, 〈〉) with R and R0 finite, then f δ is a dynamic relation, and (f δ)δ = f . If ϕ is a dynamic
relation, then ϕδ is a dynamic hemimorphism and (ϕδ)δ = ϕ. If f and ϕ are mutually dual, then

(∗) ϕ−1
1 p′ = (f1p)′

and ϕ−1
2 a′ = (f2a)′ for every p ∈ B and a ∈ R.

P r o o f. We follow [1] in the proof for the Boolean part (using the dual space S instead of 2S).
(i) We begin by showing that, if f is a dynamic hemimorphism, then f δ is a dynamic relation. Let f be a

dynamic hemimorphism of D = (B,R, 〈〉) into D0 = (B0,R0, 〈〉). Then

f δ
1 = {(U0, U) ∈ S0 × S : p ∈ U ⇒ f1p ∈ U0, for every p ∈ B}

=
⋂

p∈B{(U0, U) ∈ S0 × S : p ∈ U ⇒ f1p ∈ U0}.

Let U0 ∈ S0 (U0 is a point in S0). Since

f δ
1U0 =

⋂
p∈B{U ∈ S : p ∈ U ⇒ f1p ∈ U0},

to prove that this set is closed it is sufficient to prove that each one of the sets {U ∈ S : p ∈ U ⇒ f1p ∈ U0},
denoted by Fp, is closed. In fact, if f1p ∈ U0, then

p ∈ U ⇒ f1p ∈ U0

is true for every U ∈ S, therefore Fp = S, a closed set. If f1p �∈ U0, then

p ∈ U ⇒ f1p ∈ U0

is only true if we have p �∈ U . Consequently,

Fp = {U ∈ S : p �∈ U} = {U ∈ S : p ∈ U}c = p′c

which is closed (since p′ is a clopen set).
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We have confirmed that the image under f δ
1 of a point is closed. Now we will verify that the inverse image

under f δ
1 of a clopen set is a clopen set. Let P be a clopen subset of S. Then P = p′ for some p ∈ B. We must

prove that (f δ
1 )−1p′ is a clopen set of S0. If we establish that (∗) is valid for f δ

1 in the role of ϕ1, i. e.

(f δ
1 )−1p′ = (f1p)′,

we have the required, since (f1p)′ is a clopen set. If p = 0, then p′ = ∅, and therefore, (f δ
1 )−10′ = ∅. Since f1

is normal, f10 = 0 and so, (f10)′ = ∅. Then (f δ
1 )−10′ = (f10)′. If p �= 0, then p′ �= ∅ since there always exists

an ultrafilter containing the element p (the ultrafilter containing the filter generated by p). If U0 ∈ (f δ
1 )−1p′,

then there exists U ∈ p′ such that (U0, U) ∈ f δ
1 , i. e. q ∈ U implies f1q ∈ U0, for every q ∈ B. Since p ∈ U ,

then f1p ∈ U0. Therefore U0 ∈ (f1p)′. We have just proved that (f δ
1 )−1p′ ⊆ (f1p)′, for every p �= 0 in B. To

prove that (f1p)′ ⊆ (f δ
1 )−1p′ we are going to show that, if an element does not belong to (f δ

1 )−1p′, then it does
not belong to (f1p)′, also. Equivalently,

if U0 �∈ (f δ
1 )−1p′, then f1p �∈ U0.

If U0 �∈ (f δ
1 )−1p′, then (U0, U) �∈ f δ

1 , for everyU ∈ p′. Then, for every U ∈ p′, there exists pU such that pU ∈ U
and f1pU �∈ U0. Thus

p′ ⊆
⋃

U∈p′{Z ∈ S : pU ∈ Z} =
⋃

U∈p′ p′U .

This is an open cover of p′. Since p′ is compact (because it is closed) there exists a finite subset {U1, U2, . . . , Un}
of p′ such that

p′ ⊆
⋃n

j=1{Z ∈ S : pUj ∈ Z} =
⋃n

j=1 p
′
Uj
.

By hypothesis p′ is not empty and so n �= 0, i. e. the finite set is not empty. Let

p̃ =
∨n

j=1 pUj .

Therefore, we have

p ≤ p̃

and since f1 is monotone,

f1p ≤ f1p̃.

Then, for every U0 ∈ S0,

(2) f1p ∈ U0 ⇒ f1p̃ ∈ U0.

The additivity of f1 allows us to write

f1p̃ = f1(
∨n

j=1 pUj ) =
∨n

j=1 f1pUj .

Since, for every U ∈ p′, we have f1pU �∈ U0, then ∼(f1pU ) ∈ U0. Consequently,∧n
j=1(∼(f1pUj )) ∈ U0.

Therefore, f1p̃ �∈ U0.
Since f1p̃ �∈ U0, then, by (2), we have f1p �∈ U0, as required.
Now we are going to analyze f δ

2 . If we prove that, for every a ∈ R,

(f δ
2 )−1a′ = (f2a)′,

then we establish that the inverse image under f δ
2 of a closed action is a closed action.
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If a = 0, then a′ = ∅ and therefore, (f δ
2 )−10′ = ∅. But since (f20)′ = 0′ = ∅ we have (f δ

2 )−10′ = (f20)′.
If a �= 0, then a′ �= ∅ (since ′ is an isomorphism). We show that (f δ

2 )−1a′ ⊆ (f2a)′. Let (U0, V0) ∈ (f δ
2 )−1a′.

Then there exists (U, V ) ∈ a′ such that ((U0, V0), (U, V )) ∈ f δ
2 , i. e. (U, V ) ∈ b′ implies (U0, V0) ∈ (f2b)′, for

every b ∈ R. Since (U, V ) ∈ a′, then (U0, V0) ∈ (f2a)′. Now we prove that (f2a)′ ⊆ (f δ
2 )−1a′. Let us assume

that (U0, V0) �∈ (f δ
2 )−1a′. We want to show that (U0, V0) �∈ (f2a)′. Since (U0, V0) �∈ (f δ

2 )−1a′, then for ev-
ery (U, V ) ∈ a′ we have ((U0, V0), (U, V )) �∈ f δ

2 , i. e. for some bUV ∈ R,

(3) (U, V ) ∈ b′UV and (U0, V0) �∈ (f2bUV )′.

Thus

a′ ⊆
⋃

(U,V )∈a′{(Z1, Z2) : p ∈ Z2 ⇒ bUV p ∈ Z1} =
⋃

(U,V )∈a′ b′UV .

Let

(4) b̃ =
⋃

(U,V )∈a′ bUV

(b̃ is defined since R is finite). Therefore, from a′ ⊆ (b̃)′ we get a ≤ b̃. Since f2 is monotone, f2a ≤ f2b̃ and so,

(5) (f2a)′ ⊆ (f2b̃)′.

Now we prove the following: If (U0, V0) �∈ (f2bUV )′, for every (U, V ) ∈ a′, then (U0, V0) �∈ (f2b̃)′.
By (4) we have (f2b̃)′ =

⋃
(U,V )∈a′(f2bUV )′, i. e. (f2b̃)′c =

⋂
(U,V )∈a′(f2bUV )′c.

Using (3), for every (U, V ) ∈ a′ we have (U0, V0) �∈ (f2bUV )′, then (U0, V0) �∈ (f2b̃)′. Using (5) we
have (U0, V0) �∈ (f2a)′.

We proved that (f2a)′ ⊆ (f δ
2 )−1a′.

Now, to finish the proof that f δ is a dynamic relation, we need to show that, for every (U0, V0), when-
ever (U, V ) �∈ f δ

2 (U0, V0), there exists b ∈ R such that (U, V ) ∈ b′ and (U0, V0) �∈ (f δ
2 )−1b′. But this is a conse-

quence of the definition of f δ
2 .

(ii) Let us prove that (f δ)δ = f . We begin by showing that (f δ
1 )δ = f1. It is enough to prove that (f δ

1 )δp = f1p,
for every p ∈ B, or either that ((f δ

1 )δp)′ = (f1p)′, for every p ∈ B. Since ((f δ
1 )δp)′ = (f δ

1 )−1p′ and (∗) is
satisfied with f δ

1 in the role of ϕ1, we have (f δ
1 )−1p′ = (f1p)′ and therefore, ((f δ

1 )δp)′ = (f1p)′.
Similarly we have (f δ

2 )δ = f2, i. e. (f δ
2 )δa = f2a, for every a ∈ R.

(iii) Let us show that if ϕ is a dynamic relation, then ϕδ is a dynamic hemimorphism. We begin by showing that
if ϕ1 is a Boolean relation, then ϕδ

1 is a Boolean hemimorphism. By definition of ϕδ
1 we have

(ϕδ
1p)

′ = ϕ−1
1 p′.

Since the inverse image under ϕ1 of a clopen set is a clopen set, it follows that ϕδ
1 maps B into B0. Now we

prove that ϕδ
1 is a hemimorphism. For every p, q ∈ B we have

(ϕδ
1(p ∨ q))′ = ϕ−1

1 (p ∨ q)′ = ϕ−1
1 (p′ ∪ q′) = ϕ−1

1 p′ ∪ ϕ−1
1 q′ = (ϕδ

1p)
′ ∪ (ϕδ

1q)
′ = (ϕδ

1p ∨ ϕδ
1q)

′

and therefore, ϕδ
1(p ∨ q) = ϕδ

1p ∨ ϕδ
1q.

Since (ϕδ
10)′ = ϕ−1

1 0′ = ϕ−1
1 ∅ = ∅ = 0′, then ϕδ

10 = 0.
Similarly we get ϕδ

2(a ∪ b) = ϕδ
2a ∪ ϕδ

2b, for every a, b ∈ R and ϕδ
20 = 0.

(iv) We show that (ϕδ)δ = ϕ. We begin by proving that (ϕδ
1)

δ = ϕ1. We know that

(ϕδ
1p)

′ = ϕ−1
1 {U ∈ S : p ∈ U} and (ϕδ

1)
δ = {(U0, U) ∈ S0 × S : p ∈ U ⇒ ϕδ

1p ∈ U0}.

(a) If (U0, U) ∈ ϕ1 and p ∈ U , then U0 ∈ (ϕδ
1p)

′, i. e. ϕδ
1p ∈ U0. Therefore (U0, U) ∈ (ϕδ

1)
δ.

(b) Let (U0, U) �∈ ϕ1 (then U �∈ ϕ1U0). Since ϕ1U0 is closed, whenever (U0, Z) ∈ ϕ1 there exists p0 such
that U ∈ p′0 and Z �∈ p′0. Therefore U0 �∈ ϕ−1

1 p′0 = (ϕδ
1p0)′. Thus, there exists p0 ∈ U such that ϕδ

1p0 �∈ U0.
Therefore (U0, U) �∈ (ϕδ

1)
δ .
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It remains to be proved that (ϕδ
2)δ = ϕ2. We have

(ϕδ
2)

δ = {((U0, V0), (U, V )) ∈ (S0 × S0) × (S × S) : (U, V ) ∈ a′ ⇒ (U0, V0) ∈ (ϕδ
2a)

′}.

(a) If ((U0, V0), (U, V )) ∈ ϕ2, whenever (U, V ) ∈ a′, we have (U0, V0) ∈ ϕ−1
2 a′ = (ϕδ

2a)
′. Therefore

((U0, V0), (U, V )) ∈ (ϕδ
2)

δ.

(b) If ((U0, V0), (U, V )) �∈ ϕ2, then (U, V ) �∈ ϕ2(U0, V0). But so, there exists b ∈ R such that (U, V ) ∈ b′

and (U0, V0) �∈ ϕ−1
2 b′ = (ϕδ

2b)
′. Therefore ((U0, V0), (U, V )) �∈ (ϕδ

2)
δ .

6.3 The dual of a quantifier

In this section we will assume that D = (B,R, 〈〉) is a separable dynamic algebra with finite regular part
and that S is the set of the ultrafilters of B. Let f = (f1, f2) be a hemimorphism of D into itself, with
dual ϕ = (ϕ1, ϕ2).

We begin by analyzing the Boolean part of f . We define the relation ψ1 by

ψ1 = {(U, V ) ∈ S × S : f1p ∈ U if and only if f1p ∈ V , for every p ∈ B}.

Lemma 6.8 [1] Under the previous conditions, f1 is a quantifier on B if and only if ψ1 = ϕ1.

Lemma 6.9 [1] Under the previous conditions, ϕ1 is an equivalence relation on S if and only if ψ1 = ϕ1.

Theorem 6.10 Under the previous conditions, the hemimorphism f = (f1, f2) defines a quantifier on the dy-
namic algebra D = (B,R, 〈〉) if and only if the dynamic relation ϕ = (ϕ1, ϕ2) satisfies the following conditions:

(i) ϕ1 is an equivalence relation on S.

(ii) ϕ1 is a closed action.

(iii) ϕ2 is given by ϕ−1
2 a′ := ϕ1; a′, for every a ∈ R.

P r o o f. We begin by assuming that f = (f1, f2) is a quantifier on D.
We prove (i). Since f = (f1, f2) is a quantifier on D, f1 is a quantifier on B, and by Lemmas 6.8 and 6.9,

ϕ1 is an equivalence relation on S.
Now we prove (ii). We know that f1 ∈ R (f is a quantifier), and so f ′

1 is a closed action. But

f ′
1 = {(U, V ) ∈ S × S : p ∈ V ⇒ f1p ∈ U} = f δ

1 = ϕ1.

Then ϕ1 is a closed action.
It remains to prove (iii). We have ϕ−1

2 a′ = (f2a)′ = (f1; a)′ = f ′
1; a′ = ϕ1; a′.

Now we assume that the dynamic relation ϕ satisfies (i), (ii) and (iii).
We want to prove that f is a quantifier on D, i. e. that f1 is a quantifier on B, f1 ∈ R and that f2(a) = f1; a,

for every a ∈ R. Since ϕ1 is an equivalence relation on S, then, by Lemmas 6.8 and 6.9, we assert that f1 is a
quantifier on B.

Let us prove that f1 ∈ R. Sinceϕ1 is a closed action, then there exists b ∈ R such thatϕ1 = b′. Sinceϕ1 = f δ
1 ,

it happens that b′ = f δ
1 . Therefore, b′−1

p′ = (f δ
1 )−1p′, for every p ∈ B. But

b′−1
p′ = {U ∈ S : (U, V ) ∈ b′ for some V ∈ p′} = b′p′

(since we are working in Kripke structures) and (f δ
1 )−1p′ = (f1p)′.

Therefore, b′p′ = (f1p)′, i. e. (bp)′ = (f1p)′, for every p ∈ B. Then bp = f1p, for every p ∈ B. Since D is
separable, f1 = b, and so f1 ∈ R (and moreover ϕ1 = f ′

1).
It remains to be proved that f2(a) = f1; a, for every a ∈ R. Since

(f2a)′ = ϕ−1
2 a′ = ϕ1; a′ = f ′

1; a
′ = (f1; a)′,

then f2(a) = f1; a, for every a ∈ R.
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