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SUMMARY

In this paper we describe an approach for establishing control limits and sampling times which derives
from economic performance criteria and a model for random shifts. The total cost related to
both production and control is calculated, based on cost estimates for false alarms, for not identifying
a true out of control situation, and for obtaining a data record through sampling. We describe the
complete process for applying the method and compare with conventional procedures to real data from a
Portuguese pulp and paper industrial plant. It turns out that substantial cost-reductions may be obtained.
Copyright © 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Control charts are one of the most widely used tools in industrial practice for achieving process
control and improvement. Montgomery [1] provides a good review, where economic aspects are
mentioned. Does et al. [2] describe possible pitfalls in real-life applications of statistical process
control—with one of the critical issues—associated with the correct implementation of such a
tool being the proper definition of control limits and sampling frequencies. Very often these
decisions are not supported by sound statistical or economic decision-making criteria, leading to
a suboptimal use and results derived from such applications.

In this paper we describe an approach for establishing control limits and sampling times
which derives from economic performance criteria that do consider the total cost related to both
production and control, based upon cost estimates for false alarms, for not identifying a true out
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of control situation, and for obtaining a data record through sampling. Similar approaches can
be found in the works of Duncan [3], with only the simplest case of fixed shift size and the X-
chart treated, and a slightly different cost function used. A recent review of statistical tools in
quality control is Arnold and G6b [4], where economic evaluations are also considered. We give
optimal control charts for a general problem characterized by random (upward) shift
occurrences in the monitored variable. The approach is applied to X-charts with upward shift
occurrences, but problems with downward shifts (like the real-life example in Section 4) are
easily handled through the same methodology.

Previous historical data are used to estimate the intensity and mean of process mean shifts. A
similar approach was used for the case of acceptance sampling in Véber and Zempléni [5] and in
Klaassen [6]. For the one-sided problem under consideration, maximum-likelihood methods are
applied to estimate the variance components (i.c. the process’ inherent variation and the
variation induced by the shift). Markov chain models are used in order to find the optimal
values for control limits and sampling frequencies. It turns out that CUSUM charts
have favourable properties for the simpler case of constant shift sizes, but due to the
heavy computational burden related to them, in the general framework that we propose
for dealing with random shift size disturbances, a simple X-control chart is proposed
and optimized.

As the paper describes the complete process for applying the suggested method, we
were able to compare the new results obtained from its application to the conventional
procedures to real sets of data gathered from a Portuguese pulp and paper industrial plant
and it turned out that a substantial cost-reduction is associated with the optimal procedure
found.

The detection of process shifts in retrospective discrete time data series can be treated
as a classical change-point problem [7-9]. The basic goal underpinning this paradigm is to
find the point(s) in time where a certain statistic did suffer pronounced behaviour
changes through enumerative procedures. Some of the most commonly used statistics
in parametric detection are the Geometrical Mean Average [10], CUSUM [11], or the
Generalized Likelihood Ratio [12], while Mann-Whitney [9] and CUSUM [13] values have
been employed for non-parametric change detections. However, our approach is different
from the classical change-point approach by the used cost functions and the opti-
mization methods.

The remaining parts of this article are organized as follows: in Section 2 the model and
solution for fixed shift sizes is developed for X and CUSUM charts. It turns out that CUSUM
charts are slightly favourable, but due to the much more complicated optimization algorithm
that is needed, it is beyond the scope of this paper to find the optimal CUSUM chart to the
general case of random shift sizes. In Section 3 we extend the results to randomly exponentially
distributed shift sizes (an exponential distribution was chosen due to its simplicity, but the
method can be easily extended to other non-negative probability distributions). Section 4
comprises the presentation of a motivating industrial example and a maximum likelihood
estimation procedure to find the parameters required by the optimization algorithm.
Its application is preferred to heuristic calculations, especially for random shift size cases.
We also investigate the robustness of the procedure with respect to process constraints.
We conclude our paper with an analysis of the strength and implementation difficulties of
such an approach to typical industrial process monitoring problems. Technical details are given
in the Appendix.
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2. SIMPLEST MODEL

2.1. Definitions and notation

Let us consider a normally distributed process with mean u and standard deviation ¢ under
statistical control, which is sampled at a certain frequency. We assume the presence of a random
effect (occurring at random and unknown time points), which leads to upward shifts in the
process mean. Our aim is to detect the occurrence of such shifts, through an economically
designed control chart.

Next, we introduce the main cost parameters used throughout this paper.

¢s: cost of sampling (per unit sample element), which involves the cost of labour,
transportation, investigation, material and data processing.

cr: cost of a false alarm, including the cost of labour required and possible time delays.

cw: cost (per unit time interval) of a non-recognized shift including its effects on product
waste, reliability reduction and possible contractual consequences.

The above cost elements have to be estimated by previous experience-based knowledge,
gathered from process operators and managers at different levels. We believe that these
considerations are important not only as part of the process investigated in this paper, but to the
everyday planning of statistical process control, since they help one to properly assign the levels
of risk to the relevant factors and thus lead to a more convenient and economic operation mode.

The following are the parameters needed for statistical investigations:

d: expected number of shifts in a unit time interval, assumed to be constant over time. Thus
the probability of a shift occurring is (approximately) given by the product of d and the interval
length for small time intervals. This amounts to assuming the time interval between shifts is
exponentially distributed with expectation 1/d.

s: shift size (considered as fixed in this section, but modelled by an exponential distribution in
Section 3).

t: time period between consecutive observations.

¢: UCL (Upper Control Limit).

2.2. Markov-model for fixed shifts

To derive a Markov model for fixed shifts we consider the simplest case of alarm detection based
on a single sample element and extend it to allow for the option of using the last n observations
to signal an alarm if all of them are higher than the threshold previously set. In our current work
we investigate situations with n<35.

The process states and actions are presented in Table I, where states 1 and 2 correspond to a
process in its normal state (with a false alarm or not), and states 3 and 4 correspond to a process
with a shift occurrence (either detected or not).

Table I. States of the process and possible decisions.

States 1 2 3 4
Process No shift No shift Shifted Shifted
Action No alarm Alarm No alarm Alarm

Copyright © 2004 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind., 2004; 20:185-200



188 A. ZEMPLENI ET AL.

The process behaviour at consecutive instants (captured through sampling) is characterized
by the above states. The assumptions regarding a shift occurrence imply that the probabilities of
future transitions are only dependent on the current state. This is the so-called Markov
property, and the model under consideration is called a Markov chain. Mathematical theory
(see Karlin and Taylor [14], for example) ensure that there exist a stationary distribution of this
chain, which may be interpreted as the long run frequency of being in each of the states.

The states of the chain are described by pairs comprising the process mean (which may
represent the in-control or shifted process) and the number m of consecutive observations
beyond the UCL (0<m<n).

The probabilities of transitions from one state to another (i.e. the transition matrix) can be
calculated casily. For example, if the process now is in its normal state and there are no out-of-
control observations, the probability of remaining in such a state is (1 — F(¢))®(c), where we
denote the monitored process variable distribution by ®(.) and the probability that during a time
interval of length ¢ no shift occurs by 1 — F(¢), with F(.) standing for the exponential distribution
with expectation 1/d.

For the case n =1 the complete transition matrix 4 is given in Equation (1). The rows
correspond to the states above, with transition probabilities to state j in the jth column. Rows 1,
2 and 4 are the same, since we model the process as immediately turning back to its original
controlled mean, with the same transition probabilities as before for an immediate shift to
happen after an alarm situation.

state 1 [ (1 = F())@(c) (1 —F@®))1 —D(c)) F@)D(c—s) F@)Nl—D(c—s))
state 2 [ (1 — F())@(c) (1 —F@®)(1 —D(c)) F@)P(c—s) F@)(1l—D(c—s))
state 3 0 0 D(c — ) 1 —®(c—5)

state 4 [ (1 — F())D(c) (1 —F(@®)1 —D(c)) F@O)Pc—s) F@)(1—D(c—s))

(1

However, states 1 and 2 play a completely different role in the cost calculation, since the total
process control cost C, based on the stationary distribution is given as

C= (CS + Psz)%‘F P3Cw + P4Cwﬁ (2)

where p; is the stationary probability of state i and f the fraction of time between consecutive
observations where the shift occurred and remained undetected. Similar transition matrices can
be calculated for cases where n > 1, with the resulting Markov chain having 2(n + 1) different
states.

Now we are in a position to find the control chart with the minimal total cost C defined by an
optimal choice of ¢ and ¢. The first step in our optimization approach is to determine the
stationary distribution © = (71, 72, . .., Ta41)) of the chain, which can be obtained by solving
the system of linear equations 4 = =. In the simplest case of » = 1 this can easily be done,
resulting in the following solution: 7y = (1 — ®(c))m;/P(c), 73 =1 — 7 /[(1 — F())D(c)],
ng = F(O)m /[(1 — F(¢))®(c)] and m; can be determined from the constraint 7; + 7y + 3 + 74 = 1.
The total cost C can be computed by using Equation (2) and therefore the combination (c,t)
leading to the smallest cost can be obtained through the use of standard optimization
procedures available within the scope of the R statistical package. This was carried out
separately for n = 1,2, 3,4 with the results for the case d = 0.2 (i.e. expected time to shift equal
to 5) summarized in Figure 1.
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Figure 1. Optimal parameter values as a function of shift size, for d = 0.2. Top: (cf, cw) = (150, 50);
bottom: (cf, cw) = (150, 150); solid line: n = 1, broken: n = 2, dotted: n = 3, dots-and-lines: n = 4.

The procedure presented is based on the assumption that the process variable under statistical
control is normally distributed, which can be transformed to the standard normal distribution
we used throughout this and the next section. It can be observed that the parameters fulfil the
most obvious properties, with the optimal sampling frequency being higher for higher non-
detection costs and critical values increasing with shift size. When the decision rule for alarm
signal is based on n (n > 1) consecutive observations higher than a threshold, to obtain a similar
performance such a value is lower than the value used for n = 1.

Figure 2 shows the results for the case d = 0.05 (i.e. expected time to shift here equals 20). The
critical values are not given, since they behave very much like in the case d = 0.2. It is worth
noting that the sampling frequencies shown in Figure 2 are much lower than those for d = 0.2
case, with the lower risk of shift needing not as many checks. The average cost obtained with the
optimal approach shows a significant downward trend for increasing shift sizes, which agrees
with the dependence of statistical control cost with respect to shift size. The reason for such a
trend has to do with the increasing difficulty in detecting smaller shifts, which leads one to
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Figure 2. Sampling frequency and average cost as a function of shift size, for d = 0.05. Top: (¢f,cw) =
(150, 50); bottom: (cf, cw) = (150, 150); solid line: n = 1, broken: n = 2, dotted: n = 3, dots-and-lines: n = 4.

expect more incorrect decisions. Furthermore, the cost is weakly dependent upon n. In the next
section we focus our attention on the detection based upon single samples (n = 1).

2.3. CUSUM charts

CUSUM charts are based on cumulative discrepancies from the target value [1,15]. The
cumulative measurement of deviations across time provides the main reason for the robustness
of this method in detecting shifts. In our case on the chart the points (m,> ", X; are shown
(emphasizing also the dependence on the sampling interval, where 7 is the index of the current
observation and Y ;| X; is the cumulative sum of deviations for samples 1 to n). The control
limits are drawn projecting horizontally the last observation at distance a ahead. Next, a line at
an angle o to the horizontal axis and with the origin located at the point resulting from
previous projection (vertex) is marked. An alarm is signaled when this slanted line intersects
one or more earlier observations. The procedure can be demonstrated graphically (see

Copyright © 2004 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind., 2004; 20:185-200



CONTROL CHARTS 191

&

CUSUM values

T T T T
5 10 15 20
Sample elements
Figure 3. CUSUM chart with half-masks, # = 1. Larger circles represent CUSUM values based on out-of-

control sample elements. Those slanted lines, where an alarm is signaled, are also shown, together with the
parameter values. Broken vertical lines correspond to time points, where a shift occurred.

Figure 3). Each time the alarm is signaled, the CUSUM operator is updated and it restarts
from the beginning.

The cost function is similar to Equation (2), with the optimal parameters involved in the
procedure being the angle of the mask («), the distance of the vertex from the last point on the
chart (@), and time interval between consecutive observations (¢).

This optimization was also based on the Markov-chain methodology, where states represent
the distance of the nearest point from the line, which, coupled with the new observation,
provides enough information to determine the distance for the next step. Such a formulation
leads to a continuous-state chain, whose stationary distribution was computed through a
discretization scheme with the distances represented by m classes of values (details can be found
in the Appendix).

The transitions between shifted and regular operation states are similar to the case of X-charts
presented in Section 2.2. As before, the stationary distribution is found by solving a system of
linear equations. We have chosen m = 100, which turned out to be accurate enough and allowed
for a relatively quick optimization.

The optimal cost-results obtained for CUSUM charts are shown in Figure 4. One may see
that as the magnitude of shifts is reduced, greater becomes the distance a, and lower the angle o,
due to the requirement of detecting smaller changes. The trends of sampling frequency and
average cost are similar to those obtained for the X-chart. The results are encouraging, since
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Figure 4. Parameters for the optimal CUSUM chart; d = 0.05, f = 50. Solid line: s = 0.35, broken:
s = 0.65, dotted: s = 1.25.

CUSUM charts allow one to reduce the total cost by 5-25%, when compared to the best results
obtained in the previous subsection (Figure 5). The decrease was more prominent for small
values of d and higher costs of false alarm.

3. RANDOM SHIFT-SIZE

The main difference of the approach introduced in this section when compared with the
methodologies previously described, arises from considering a more realistic situation, where
random size shifts may occur. The shifts’ distribution is considered to follow an exponential
probability distribution with expected value s, but the strategy can easily be extended to other
probability distributions.

The formulation presented in this paper is focused on the X-chart type with n = 1, i.e. our
decision is based on a single observation, which is compared to a threshold (critical value). A
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Figure 5. Cost-ratio of the optimal CUSUM versus the optimal X-chart. Solid: ¢ = 50, s = 0.35, broken:
cr = 50, s = 0.65, dotted: ¢f = 150, s = 0.35, dots-and-lines: ¢; = 150, s = 0.65.

discretization scheme for continuous-state Markov-chains was used to find the optimal
parameter vector, where the actual state of the chain is given by the current mean value. The
actual states are not observable for the experimenter, thus leading to a hidden structure, and the
expected cost is evaluated based on the stationary distribution of the chain.

The formulation of the transition matrix needs a vector of probabilities to represent the shift
size distribution ¢ during a sampling interval. Our assumptions ensure that the shift-times form
a homogenous Poisson process, while the shift size is exponentially distributed, regardless of any
previous events. Besides the capacity of the exponential distribution in describing real-world
shift-phenomena, its choice was motivated by the advantage it provides regarding tractability of
its convolution powers as a gamma distribution. This leads to time- and location-free evaluation
schemes of this distribution, as follows:

q() =Y _ PN = HPGA<Y,<(i+ 1)A) (3)
k

Equation (3) also holds for the case i = 0 with ¥j set equal to 0, where N is a Poisson distributed
random variable, representing the number of events (shifts) during the sampling interval; ¥ is
modelled by a I'(k, 1/s) distribution (the sum of k& independent exponential variates each with
mean s) and A stands for the length of an interval, taken as one state of the Markov chain (the
derivation of the transition matrix is presented in the Appendix).

The discretization scheme derived for evaluating the continuous Markov chain involves m =
300 classes, which turned out to be accurate enough and yet provided a quick solution to the
optimization problem.

In this random-shift case we used a Taguchi-type loss function (c,x?) for the non-detection
part of the total cost, where x is just the difference of the current mean from the target value,
leading to:

C = (¢s + prer) % + CWE(S2) + Pan[E(S)]2 )

where S is the shift distribution of the process; pr and p, denote the false and correct alarm
probabilities, respectively, and E is the expected value. The last term in (4) is just an
approximation for the non-detection cost for those part-intervals where the shift was not yet
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detected. The use of a smaller coefficient here is required to avoid an overestimation of the
amount of time and cost of the process spent out of control. In Section 4 we investigate the
accurateness of the Markov-chain approach, including the choice of this loss function.

One may adopt any other loss function for non-detection cost by suitable transformation
of the term E(S?) (cf. Section 4). The objective function involves the same parameters
introduced in Section 2. For the chosen value of m the CPU time required to perform the
minimization is about 1-2 min per case, so we have been able to investigate a wide range
of different parameter values. The initial values of the numeric optimization do not seem to
play an important role, since the same optimal values were found regardless of the starting
point of the algorithm.

The results obtained with our approach are shown in Figure 6. One may observe the weak
dependence of the critical value on ¢y, (cost of non-detection), as well as its strong dependence
on s, similarly to what happened for the deterministic shift case. The sensitivity of sampling
frequency on ¢, now depends on the expected shift size, since higher probabilities of large

Critical value Sampling frequency
< |
N § a
Y - -~
(0] § o _]
3 o g -
P N e it >
T o o ©
O “— -
= [eo) (o)) -7
= > _| 2 o -
o - E‘ T
< 4.--
© | & //
- o
T T T T T T T T T T
60 80 100 120 140 60 80 100 120 140
cost of nondetection cost of nondetection
Critical value Sampling frequency
< |
0 _| =
o = o |
<t >
S o 2 o |
© g -
> @ T
‘8 LS i L o 4 P
T o« 2 ST
O o 5 © I
- % T
o | n T //

T T T T T T T T T T
60 80 100 120 140 60 80 100 120 140

cost of nondetection cost of nondetection

Figure 6. Parameters of the optimal X-chart, for random shift sizes, d = 0.2. Top row: ¢f = 50, bottom
row: ¢ = 150; solid line: s = 1.4, broken: s = 1.3, dotted: s = 2.5.
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shifts increase the potential loss due to the form of Taguchian loss function used. For larger
values of ¢ we may observe a slight increase in the critical values, and correspondingly in
sampling frequency.

Figure 7 shows results for the case d = 0.05, and their comparison with the results in Figure 6
allow us to observe a substantially smaller sample size coupled with slightly higher critical values.

Finally, Figure 8 shows the average costs, related to the optimal X-chart in this random shift-
size set-up. One may see that the higher costs result from the higher average shift (Taguchi-
effect) and non-detection costs have a slightly more prominent effect on the total cost than false
alarms. The substantial cost reduction for the case of d = 0.05 in comparison to d = 0.2 is worth
noting. This is not surprising since the average frequency of the shift has been reduced by a
factor of four, leading to cost reductions of about one half. The relation between 1/d and C is
non-linear since reductions in sampling frequency and shift occurrence give rise to an increase of
the cost for non-detection per unit of time.
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Figure 7. Parameters of the optimal X-chart, for random shift sizes, d = 0.05. Top panels: f = 50, bottom
panels: f = 150; solid line: s = 0.7, broken: s = 1.3, dotted: s = 2.5.
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panels: d = 0.05; solid lines: s = 0.7, broken: s = 1.3, dotted: s = 2.5.

4. REAL LIFE APPLICATIONS

4.1. Formulation of the problem

We have applied the above approach to a set of data collected from a Portuguese pulp plant
(Companhia de Celulose do Caima, S.A.). This paper mill produces pulp, and one of the quality
variables of the final product that needs to be controlled is the pulp brightness. Statistical
control of such a variable leads to a one-sided problem, with the target value being 88.5 °ISO
and LSL = 87.5 °ISO, where LSL stands for the lower specification level. The production below
LSL is re-processed or sold by a small price due to the problems it causes regarding client
contracts.

The first step in the optimal chart tuning was to estimate a priori process parameters. This
resulted in the following estimators:

® ¢ =90
® ¢, = 4500, which represents the maximal loss. At 87.5 °ISO a value ¢y, = 90 was set, thus
leading to a two-parameter quadratic form for loss function.
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Figure 9. Modified Taguchi-type loss function, used for the real-life data analysis.

Taking into account this information, we have modified the Taguchi-type loss function, as
illustrated in Figure 9.

The next step of shift-parameter estimation involves distinguishing between random
deviations of the original process and small shifts which take place as a result of special causes
of variation. This rather complex task was in this case achieved through a maximum likelihood
estimation procedure (explained in the Appendix).

4.2. Data analysis

The process’ estimated parameters were s = 2.5, d = 0.33 and the optimal parameters obtained
after standardization were ¢ = 1.56 and 1/¢ = 3.60. The corresponding minimal value of the cost
function is 56.8 monetary units per hour. The currently applied SPC chart is based on five
element-samples, corresponding to our set-up with five-times higher sampling cost, and expected
shift S\/g. The optimal solution for such a scenario gives ¢ = 1.40, 1/t = 1.43 and the associated
cost function value is 89.9. The current procedure applies the usual 3o-rule as control limit,
which gives rise to a cost of 93.1 Euros. Thus we have shown that at least 40% of the total cost
related to sampling can be spared by the suggested approach.

4.3. Sensitivity analysis for the optimal chart

Table IT shows the effect when the optimal chart was used for different parameter values (in each
simulation a time horizon of 1000 units was used, being replicated 100 times), with the first row
corresponding to the situation analysed in Section 4.2. This simulation study was aimed at
checking whether the stationary distribution is useful in cost estimation. The results are in good
agreement with the cost values shown above, so that the approximation in (A2) does seem to be
adequate.
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Table II. Average cost of the optimal procedure, for different processes.

d K Cost (std. dev.)
0.33 1.25 53.78 (2.05)
0.5 1.5 68.94 (3.44)

The results in the last row of Table II show that even for larger and more frequent shifts the
actual costs do not increase dramatically, showing the robustness of the suggested methods.

5. CONCLUSION

We presented an economic approach for tuning statistical control charts based on Markov
chains. We firstly derived the methodology for fixed shifts and then extended it for random,
exponentially distributed shifts. The performance of CUSUM charts was compared with X-
charts, and the approach was extended to accommodate random shift size distributions. The
latter cases lead to continuous-state Markov chains that were treated by discretizing the domain
of shift size into classes. Finally, the approach was applied to an industrial problem respecting
quality control in the pulp and paper industry. Such an application involved the formulation of
cost function as a Taguchi type loss function, with the process parameters estimated from data
using MLE procedures. The comparison of optimally tuned control X-charts with the actual set-
up enables to achieve a substantial cost reduction.

It is important that managers and engineers be aware of both the costs of applying SPC,
together with the possible gains resulting from its optimal use. We hope that approaches like the
one presented here will become more and more accepted, as the financial gains obtained through
a statistically driven six-sigma projects become more and more of common knowledge.

APPENDIX A

A.1. Markov chain method for CUSUM charts

The calculations are based on the following observation. If the distance of the nearest value of
the CUSUM chart to the line after n observations is 4,, then

. sin .
My = mm(hn — Xpil cosoc+—,a,asm oc) (A1)
J

For a process under statistical control, this results in a continuous-state Markov chain, where

h, <asin o. h, <0 corresponds to the alarm as the line intersects the CUSUM chart. In order to

simplify the problem, we approximated it by a discrete Markov chain, dividing the interval

[0, a sin o] into m equal parts, and considering the m + 1 cutpoints as the possible states of this

chain. Now we can formulate the transition from state i to state /, as this is equivalent to
lasinoc asino . asina sinoe _asina asino

— <i — Xpric0sa +——</ - (A2)
m m m Jj m m
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which can be rearranged as
v—Q2U -+ Dw<xp<v—Q2U—-9)—Dw (A3)

where
atano
2m

As there is the possibility of a (fixed) shift occurrence, we have to introduce another component
of the states: 0 corresponds to correct operation, and 1 to the shifted case.
Assuming the lack of shift, the (7, /)th element of the transition matrix is the following:

(1 =d)[Pw— Q2 —i)— DHw) — D — 2 — i)+ DHw)]
by (A3); the cases with shift are analogous.

v=ttanoa, w=

A.2. Transition matrix for random shift sizes
The upper-left corner of the transition matrix is the following (with analogous continuation):
state 1 [ 1 —p; qg(D)D(c —A) g2)D(c —2A) q(3)D(c — 3A)
state 2 | 1 —p, q(0)D(c —A) q(1)D(c —2A) q(2)D(c — 3A)
state 3 [ 1 —y; 0 q(0)D(c — 2A) g(1)D(c — 3A)
state 4 | 1 — 1y, 0 0 q(0)®(c — 3A)

(A4)

where y; is the sum of the transition probabilities in the ith row from state max(i, 2) to m, the
total number of states.

A.3. Maximum likelihood estimator for shift intensity and size

We present maximum likelihood estimators for d, s and . This is preferred to heuristic
calculations, especially for the random shift size, since it is not easy to determine the time point
of a relatively small shift.

The inference is based on the differences X;,| — X;, these being assumed independent,
identically distributed, with X; denoting the ith observation. The mean value of this difference is
ds and its variance consists of two components: a part from the normal operation and an
additional one, based on the shift as

Xy —Xi=Zi+ W (AS)

where Z; is the random term of normal operation and W; represents the shift. We used the first
two moments of the shift-distribution to formulate the log-likelihood function:

1) = —nIn(n(20> +2d%7))/2 — 3 _u=d9?

2202 + 2ds?)
The fact that both ds and ds? appeared in the formula for the log-likelihood function (A6)
allowed for estimating the parameters separately. A small simulation study was carried out in
order to find out the properties of the estimator, with a set of 100 replicates being generated
from sample sizes of 100 and 500. The observed results are summarized in Table Al. The
parameters to be estimated were (o, d,s) = (1.0,0.1, 1.0). It might be interesting to investigate the

(A6)
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Table Al. Properties of the maximum likelihood estimator.

n Mean (std. dev.) for o Mean (std. dev.) for d Mean (std. dev.) for s
100 0.981 (0.084) 0.098 (0.044) 0.997 (0.091)
500 1.001 (0.047) 0.096 (0.020) 1.012 (0.045)

estimator’s robustness against discrepancies from the assumed model, but we do not tackle this
problem here.
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