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Data uncertainties provide important information that should be taken into account
along with the actual data. In fact, with the development of measurement instrumentation
methods and metrology, one is very often able to rigorously specify the uncertainty
associated with each measured value. The use of this piece of information, together with
raw measurements, should—in principle—lead to more sound ways of performing data
analysis, empirical modeling, and subsequent decision making. In this paper, we address
the issues of using data uncertainty in the task of model estimation and, when it is already
available, we show how the integration of measurement and actuation uncertainty can be
achieved in the context of process optimization. Within the scope of the first task (model
estimation), we make reference to several methods designed to take into account data
uncertainties in linear multivariate regression (multivariate least squares, maximum
likelihood principal component regression), and others whose potential to deal with noisy
data is well known (partial least squares, principal component regression, and ridge
regression), as well as modifications of previous methods that we developed, and compare
their performance. MLPCR2 tends to achieve better predictive performance than all the
other tested methods. The potential benefits of including measurement and actuation
uncertainties in process optimization are also illustrated. © 2005 American Institute of
Chemical Engineers AIChE J, 51: 3007–3019, 2005
Keywords: measurement uncertainty, multivariate least squares, maximum likelihood
principal component regression, partial least squares, principal component regression,
optimization under uncertainty

Introduction

The large amounts of industrial and laboratorial data gener-
ated in the chemical process industries and stored in databases
do have a substantial potential to set the ground for further
process improvement and optimization. Noting that this poten-
tial is not always being fully developed and that the goals that
were present at the conception of such databases are often not
being achieved, numerous efforts have been made and docu-
mented in the literature toward a more effective use of these

information resources, that is, in the fields of process monitor-
ing,1,2 fault detection and diagnosis,3 and data mining.4 How-
ever, quite often these approaches do not explicitly and quan-
titatively take into account data quality, or do so only in an
implicit or tacit way. Following the efforts undertaken in the
metrology field, with respect to the characterization and quan-
tification of measurement uncertainty, in a rigorous and nor-
malized approach,5 we believe it is quite appropriate and timely
to develop and apply methods that explicitly and consistently
take into account this important piece of information.

Measurement uncertainty is a well-defined quantity and
there are well-documented standardized procedures that assist
its specification or estimation. Basically, uncertainty is defined
as a “parameter associated with the result of a measurement
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that characterizes the dispersion of the values that could rea-
sonably be attributed to the measurand.” 5 The standard uncer-
tainty u (to which we will often refer simply as “uncertainty”)
should be expressed in terms of a standard deviation of the
values obtained under the same experimental conditions, and
can be obtained either from the analysis of collected data (the
so-called Type A evaluation) or through other adequate means
(Type B evaluation). The availability of raw values, along with
their associated uncertainties, implies that we should not have
only one data table available for analysis, but in fact two (one
with raw values and another one with the corresponding mea-
surement uncertainties). Therefore, with this additional infor-
mation at our disposal, we should be able to take advantage of
it through its integration into our data analysis tasks. For
instance, data reconciliation6-8 is designed to handle noisy
measurements, to adjust raw data in some optimal way, so that
it conforms to conservation laws and other constraints. The fact
that the objective function to be minimized consists of qua-
dratic terms involving the inverse of variance–covariance ma-
trices of measurements7 indicates that uncertainty information
is in fact being considered in data reconciliation. However,
there are many application scenarios where no conservation
laws are available to perform preliminary data reconciliation,
such as the analysis of spectra, microarray data, and laborato-
rial data sets. Furthermore, uncertainty-based methods can be
applied to data sets after reconciliation or filtering.

Sometimes it happens that uncertainty associated with mea-
surements is sufficiently small for the techniques that disregard
it completely or treat it in a very simplified way (such as
assuming homoscedastic behavior), still holding as adequate.
However, these are tacit assumptions, quite often not verified
or clearly stated. The main purpose of this article is to bring the
issue of data uncertainty into the priorities for the data analyst,
which should explicitly address it in a preliminary phase, as
well as to present, develop, and test procedures that do exploit
and take advantage of data uncertainty information.

In particular, we will address the use of uncertainty infor-
mation in two different tasks: model estimation and process
optimization. In the next section, we refer several methodolo-
gies with the potential of integrating uncertainty in the estima-
tion of parameters for a multivariate linear model. This type of
model is widely used in the analysis of industrial data sets, and
its prediction ability, when parameters are estimated by differ-
ent methodologies, is thus an important issue in practical
applications. In the following section, a complementary situa-
tion regarding the use of uncertainties, that is, when a model is
considered to be known, is illustrated under the context of
process optimization. Then, in the fourth section, we present
two case studies that provide the ground for comparison among
all the methods referenced in the second section and another
case study that illustrates the methodology presented in the
third section. We end this paper with a discussion section,
where some computational issues are addressed (fifth section)
and some final conclusions are drawn. Apart from the compar-
ative study undertaken in the case study section, new methods
(unc-PLS3, unc-PLS4, and unc-PLS5) are also presented and
tested. Methods MLMLS, unc-PLS1, unc-PLS2, MLPCR2,
rMLS, and rMLMLS are carefully described elsewhere.9 The
formulations presented in the third section provide also a
contribution to the explicit consideration of measurement un-
certainties for process optimization.

Measurement Uncertainties in Model Estimation

This section is devoted to the description of four groups of
multivariate linear regression methods that have the potential to
accommodate measurement noise information, either explicitly
or implicitly. As already mentioned, our focus on multivariate
linear regression methods arises from the quite widespread use
of this type of approaches in the development of input/output
models for industrial and/or laboratorial applications. The sev-
eral methodologies here addressed are combined under four
separate groups, according to their affinity: ordinary least
squares (OLS), ridge regression (RR), principal component
regression (PCR), and partial least squares (PLS, also referred
to as “projection to latent structures”). These four basic meth-
ods do not explicitly incorporate measurement uncertainty in-
formation, so that several alternatives already developed are
also presented, as well as other recent modifications that we
propose here and do take uncertainty information explicitly
into consideration.

OLS group

Ordinary least squares (OLS) and multivariate least squares
(MLS)10,11 parameter estimates for a linear regression model
are the solutions of the optimization problems formulated in
Eqs. 1 and 2 of Table 1.

OLS tacitly assumes a homoscedastic behavior (that is, with
constant variance) for the noise error term in the standard linear
regression model. On the other hand, MLS is built on an error
in variables (EIV) functional relationship relating true values of
both the input and output variables, which are then affected by
zero mean random errors with a given covariance structure
(presumed to be known). In the denominator of Eq. 2 we can
find a term, se

2(i), that results from the summation of the
uncertainties associated with the response to those arising from
the propagation of uncertainties of the predictors to the re-
sponse, according to a formula derived from error propagation
theory10,12:

Table 1. Formulation of the Optimization Problems
Underlying OLS and MLS Methods

OLS b̂OLS � arg min
b��b0· · ·bp�T

��
i�1

n

[y(i) � ŷ(i)]2� (1)

MLS b̂MLS � arg min
b��b0· · ·bp�T

��
i�1

n
[y(i) � ŷ(i)]2

se
2(i) � (2)

MLMLS b̂MLMLS � arg max
b��b0· · ·bp�T

��b�

��b� � �
1

2
n ln�2�� � �

i�1

n

ln���i�

�
1

2 �
i�1

n �[y(i) � ŷ(i)]2

��i

2 �
(3)
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se
2�i� � uy�i�2 � �

j�1

p

b̂j
2uX�i, j�2

� 2 �
j�2

p �
k�j�1

p

b̂jb̂kcov�	�j�i�, 	�k�i�� (4)

where uX(i, j) and uy(i) are the uncertainties associated with the
ith observation of the jth input and output variables, respec-
tively, and 	�j(i) is the random error affecting the ith measure-
ment of variable j; b̂j represents the coefficient of the linear
regression model associated with variable j.

The method whose objective function is presented in Table
1, Eq. 3, is derived from the analysis of the Berkson case
(controlled regressors with error) within the scope of EIV
models13,14 and under the assumption of Gaussian errors. The
objective function arises from the maximization of the resulting
likelihood function, and we included this approach in our
present study given both the similarity between the quadratic
functional part of its objective function and the one underlying
MLS, and its simplicity. Because the solution for the Berkson
case formulation is sometimes similar to MLS,14 we make
reference to the above formulation maximum likelihood mul-
tivariate least squares (MLMLS), to stress the statistical origin
of the underlying objective function.

RR group

A well-known characteristic of the OLS method is the fact
that the variance of its parameter estimates increases when the
input variables become more correlated. Computational simu-
lations showed us that the same applies to MLS. One possible
way to address this issue consists of enforcing an effective
shrinkage in the coefficients under estimation, following a
ridge regression (RR) regularization approach. It basically con-
sists of adding an extra term to the objective function that
penalizes large solutions (in a square norm sense). Optimiza-
tion formulations underlying RR estimates,15,16 as well as those
proposed for its counterparts based on MLS and MLMLS,
rMLS and rMLMLS, respectively (standing for “ridge MLS”
and “ridge MLMLS”), are presented in Table 2.

PCR group

PCR17,18 is another methodology that handles collinearity
among predictor variables. It uses those uncorrelated linear
combinations of the input variables that most explain input
space variability [from principal components analysis (PCA)]
as the new set of predictors, where the response is to be

regressed onto. These predictors are orthogonal and thus the
collinearity problem is overcome if we disregard the linear
combinations with small variability explanation power.19 After
developing MLPCA, which estimates the PCA subspace in an
optimal maximum likelihood sense, when data are affected by
measurement errors with a known uncertainty structure,20

Wentzell et al.21 applied it in the context of developing a PCR
methodology that incorporates measurement uncertainties
(MLPCR). As in PCR, MLPCR consists of first estimating a
PCA model, now using MLPCA, to calculate the scores
through nonorthogonal (maximum likelihood) projections to
the estimated MLPCA subspace (instead of the PCA orthogo-
nal projections), and then applying OLS to develop a final
predictive model. This technique makes use of the available
uncertainty information in the former phases (estimation of a
MLPCA model and calculation of its scores), but not during the
stage at which OLS is applied. Therefore, Martı́nez et al.10

proposed a modification to the regression phase, to make it
consistent with the efforts of integrating uncertainty informa-
tion carried out in the initial stages, which consists of replacing
OLS by MLS (we will call this modification MLPCR1). To
implement MLS in the second phase, estimated score uncer-
tainties for the ith observation need to be calculated, being
given by the diagonal elements of the following matrix10

Zi � 
PT�diag�uX�i, :����1P��1 (8)

where diag is an operator that converts a vector into a diagonal
matrix, and P is the matrix of maximum likelihood loads. In
our study, we will compare these algorithms based on OLS and
MLS (MLPCR and MLPCR1, respectively), with the one ob-
tained when we use the MLMLS algorithm instead of MLS, in
the second phase of MLPCR (MLPCR2).

PLS group

PLS17,18,22-27 is a widely used algorithm in the chemometrics
community that also adequately handles noisy data with cor-
related predictors in the estimation of a linear multivariate
model. As in PCR, PLS finds a set of uncorrelated linear
combinations of the predictors, belonging to some lower-di-
mensional subspace in the X-variables space, where y is to be
regressed onto. However, in PLS, this subspace is the one that,
while still adequately covering the X-variability, provides a
good description of the variability exhibited by the Y-vari-
able(s). Here we will make reference to a pair of classes of PLS
algorithms, one implemented from raw data and another based
on covariance matrices.

Table 2. Formulation of the Optimization Problems Underlying RR, rMLS, and rMLMLS

RR
b̂RR � arg min

b��b0· · ·bp�T
��

i�1

n

(y(i) � ŷ(i))2 � � �
j�1

p

b(j)2� (5)

rMLS
b̂rMLS � arg min

b��b0· · ·bp�T
��

i�1

n
(y(i) � ŷ(i))2

se
2(i)

� � �
j�1

p

b(j)2� (6)

rMLMLS
b̂rMLMLS � arg min

b��b0· · ·bp�T
��

i�1

n

ln(se(i)) � �
i�1

n
(y(i) � ŷ(i))2

se
2(i)

� � �
j�1

p

b(j)2� (7)
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PLS algorithms implemented directly from raw data

The algorithmic nature of PLS22,26 can be translated into the
solutions of a succession of optimization subproblems,17,18,23 as
presented in the first column of Table 3 for one of its common
versions, relative to the case of a single response variable
(PLS1). However, if besides having available raw data, [X � y],
we also know their respective uncertainties, [uX � uy], then one
way to incorporate this additional information into a PLS
algorithm is through an adequate reformulation of the optimi-
zation subtasks. Therefore, we have modified the objective
functions underlying each optimization subproblem to incor-
porate measurement uncertainties, but still preserving the suc-
cessful algorithmic structure of PLS. Such a sequence of opti-
mization subproblems is presented in the second and third
columns of Table 3, where MLS and MLMLS replace OLS in
several algorithmic stages, giving rise to the uncertainty-based
equivalents unc-PLS1 and unc-PLS2, respectively.

PLS algorithms implemented from covariance matrices

There are several alternative ways to develop a PLS model,
most of them leading to very similar or even exactly the same
results. In fact, Helland25 has shown the equivalence between
two of such algorithms (one based on orthogonal scores and
another using orthogonal loadings instead), both of them based
on available raw data matrices for the predictors and response
variables. Another class of PLS methods that encompasses the
so-called SIMPLS, developed by Sijmen de Jong (see Table 4),
or the approach presented by Kaspar and Ray,28 built on
previous work from Höskuldsson,29 consists of algorithms en-
tirely based on data covariance or cross-product matrices. For
the single response case, a SIMPLS solution provides exactly
the same results as Svant Wold’s orthogonalized PLS algo-
rithm, leading to only minor differences when several outputs
are considered. Matrices S and s in Table 4 do play a central
role in PLS. Theoretical analysis of this algorithm25,30 leads to
the conclusion that the calculated vector of coefficients, when
a latent variables are considered, 	̂PLS

a , is given by

	̂PLS
a � Va�Va

TSVa�
�1Va

Ts (9)

where Va � [v1, v2, . . . , va] is any (m � a) matrix whose
columns span the following Krylov subspace, �a(s; S), that is,
the subspace generated by the first a columns of the Krylov
sequence, {s, Ss, . . . , Sa�1s}. Thus, matrices S and s define the
structure of the relevant Krylov subspace where the PLS solu-
tion will lie. In fact, the columns of the PLS weighting matrix
W, which define the subspace of the full predictor space with
maximal covariance with the response, do form an orthogonal

base of �a(s; S). The relevancy of S and s for PLS provided the
motivation to direct some efforts toward the incorporation of
uncertainty information in the computation of better estimates
for both of these matrices. The reason that we have not called
them estimates so far is explained by the lack of a consistent
statistical population model underlying PLS.24,31,32 However,
when we now say that our goal is to calculate “better” covari-
ance matrices, this implies that some goodness criteria must be
assumed. Therefore, to give a step forward toward the integra-
tion of measurement uncertainties in our analysis, one should
postulate a statistical model to provide an estimation setting for
the covariance matrices S and s. For the sake of the present
work, we consider the following latent variable multivariate
linear relationship for Z � [xT � y]T, which has the ability to
incorporate heteroscedastic measurement errors with known
uncertainties (these uncertainties are considered by now to be
independent of the true levels for the noiseless measurands)

Z�k� � 
Z � A � l�k� � �m�k� (10)

where Z is the (m � 1) � 1 vector of measurements, 
Z is the
(m � 1) � 1 mean vector of x, A is the (m � 1) � a matrix of
model coefficients, l is the a � 1 vector of latent variables, and
�� m is the (m � 1) � 1 vector of measurement noise. This model
is still incomplete because we need to provide it with the
probability density functions assumed for each random com-
ponent

l�k� � iid MNa�0, 	l�, ��m�k� � id MNm�1�0, 	m�k��

l�k� and ��m� j� are independent @k, j (11)

where MN stands for multivariate normal distribution, 	i is the
covariance matrix of the latent variables, 	m(k) is the covari-
ance matrix of the measurement noise at time k, given by
	m(k) � diag[�� m

2 (k)]. Thus, for estimating the covariance ma-
trix, we assume a multivariate behavior for Z that can be
adequately described by propagation of the underlying varia-
tion of p latent variables, plus added noise in the full variable
space. This model and the calculation details associated with
the estimation of the unknown parameters are fully described
elsewhere.33 It can be shown that the probability density func-
tion of Z, under the conditions stated above, is a multivariate
normal distribution with the following form

Z�k� � id MNm�1�
Z, Z�k�� (12)

where

Z�k� � l � 	m�k� l � A	lA
T (13)

With the raw measurements (Z) and the associated uncer-
tainties [from which we can calculate 	m(k)], it is possible to
estimate 
Z and l by maximizing the likelihood function.
Matrix Z(k) � l � 	m(k) is the estimate of the covariance
matrix for noisy measurements at time step (k), but because
PLS is based on S and s, it requires single estimates for the
population parameters (and not one per time step k). Thus, we
maintain the estimate of the covariance of noiseless data, ̂l,

Table 4. SIMPLS Algorithm43

S � XTX
s � XTy
for a�1, . . . ,A

r � 1st left singular vector of s
r � r/(rTSr)1/2

R � [R,r]
P � [P,Sr]
s � [I � P(PTP)�1P•

T]s
end
T � XR
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but average out the heteroscedastic square uncertainties, to
come up with a single term, �	̂m, leading to

̂Z � ̂l � 	̂�m (14)

With the estimate of Z, we can finally calculate the esti-
mates for S and s: S � ̂Z(1 : m, 1 : m), s � ̂Z(1 : m, m � 1).
The algorithm that consists of implementing the SIMPLS al-
gorithm with these matrices as inputs will be referred to here as
unc-PLS3. In the present context, we use the full measurement
space to estimate Z (a � m) because we want the relevant
subspace for prediction to be defined by the PLS algorithm
itself, and not by a previous estimation step. In the prediction
phase, when new values for the predictors become available
along with their measurement uncertainties, and the goal is to
predict what the value of the response variable would be, we
add an additional calculation step before applying the unc-
PLS3 regression vector (calculated in the estimation phase).
This step consists of projecting the new multivariate observa-
tion in the full X-space into the subspace that is relevant for
predictions (that is, the one spanned by the columns of the
weighting matrix, W in PLS or R in SIMPLS). The availability
of the associated uncertainties leads to a generally nonorthogo-
nal projection methodology that consists of estimating the
projected points using a maximum likelihood approach, just as
the one adopted in MLPCA.21 In the present study, we also
tested an algorithm that implements the same nonorthogonal
projection operation, but using the weighting matrix provided
by PLS (a hybrid version of the classic PLS because it contains
a projection step that incorporates measurement uncertainty),
herein referred to as unc-PLS4. For the sake of completeness,
we also introduced another methodology, based on the same
weighting matrix as unc-PLS3, but that bypasses the non-
orthogonal projection step, designated as unc-PLS5.

Measurement Uncertainties in Process
Optimization

In the previous section we have addressed the explicit in-
corporation of measurement uncertainty in statistical model
development. We now move to a different working scenario,
where an appropriate model is already available and our goal is
to use it for process optimization, but also taking into account
information regarding measurement and actuation uncertain-
ties. In particular, we address the problem where one wants to
optimize an objective function (such as maximizing some profit
metric or minimizing a cost function), for a given measurement
of the vector of load variables (L), by manipulating another set
of variables (M). However, because of the presence of uncer-
tainties, the following issues do arise:

● Measured quantities (that is, the loads L̃ and the outputs Ỹ)
are affected by measurement noise, with statistical character-
istics defined by their associated uncertainty

L̃ � L � �L Ỹ � Y � �Y (15)

with quantities marked with a tilde accent (�) being the values
actually available, whereas L and Y are the corresponding true,
but unknown, values for these quantities (Figure 1).

● Similarly, the set-point that we specify for the manipu-

lated variables (Z̃) does not correspond to the exact true value
of the manipulation action over the process. In fact, because of
actuation noise, there is also here another uncertainty source to
be taken into account.

Considering that we want to drive the process in such a way
as to minimize some relevant cost function, ��, we propose
the following formulation that incorporates measurement and
actuation uncertainties, in the calculation of the adequate val-
ues for the manipulated variables to be specified externally,
when a given measurement for the load is acquired (L̃). As
often happens in the formulation of optimization problems
under uncertainty, the objective function constitutes an ex-
pected value for the performance metric, taken over the space
of uncertain parameters:

Formulation I

min
Z̃

E�
��L, Z, Ỹ��

s.t. g�Y, L, Z� � 0

L � L̃ � �L

Z � Z̃ � �Z

Ỹ � Y � �Y (16)

where E�{ � } is the expectation operator,

E�
�� � �
�

��� � j�� �d� (17)

� � [�L
T, �Z

T, �Y
T]T and j(�) provide the joint probability density

function for the uncertain quantities �. The available model is
represented by g(Y, L, Z) � 0, and we will assume here that the
uncertainty associated with its parameters is negligible (if not,
such uncertainties can also be incorporated into our problem
formulation34).

In Formulation I, we assume that the relevant quantities for
evaluation of the performance metric are the values of L and Z
that really affect the process, as well as the measured value of
the output. We point out that these assumptions do not neces-
sarily hold in every situation. For instance, sometimes the
performance metric should be calculated with the “true” value
of the output, Y, instead of Ỹ] (Formulation II, see below), as is
the case when output measurements become available with
much less uncertainty in a subsequent stage (such as from

Figure 1. Schematic representation of measured quan-
tities [as seen by an external operator and
marked with a tilde (�)] and the quantities that
are actually involved in the underlying process.
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off-line laboratory tests). Other times, only measured values
should be used because no better measurements or reconcilia-
tion procedures can be adopted. The correct formulation is
therefore case dependent, and should be tailored to each par-
ticular situation.

Formulation II

min
Z̃

E�
��L, Z, Y��

s.t. g�Y, L, Z� � 0

L � L̃ � �L

Z � Z̃ � �Z (18)

In our case studies section we will also present the results
obtained for the situation where uncertainties are not at all
taken into account, and thus where the manipulated variable
values are found by solving the following problem

Formulation III

min
Z̃

��L̃, Z̃, Ỹ�

s.t. g�Ỹ, L̃, Z̃� � 0 (19)

Case Studies

In this section we present the results reached from compar-
ative analysis encompassing all the methods mentioned above
(PLS, unc-PLS1, unc-PLS2, unc-PLS3, unc-PLS4, unc-PLS5,
RR, rMLS, rMLMLS, PCR, MLPCR, MLPCR1, MLPCR2,
OLS, MLS, and MLMLS), and illustrate the implementation of
the approach treated in the third section under a realistic
simulation scenario, using a model estimated from a real paper
pulp pilot digester.

Case studies 1 and 2 provide different contexts to set a
ground for the comparison study among the multivariate linear
regression methods. In both of them, a latent variable model
structure is adopted to generate simulated data, given that this
kind of model structure is quite representative of data collected
from many real industrial processes because the number of
inner sources of variability that drives process behavior is
usually of a much smaller dimensionality than the number of
measured variables.35,36 The latent variable model used has the
following form

X � 1n � 
X
T � TP � E

Y � 1n � 
Y
T � TQ � F (20)

where 
X and 
Y are the m � 1 and k � 1 vectors with the
column averages of X and Y; 1n is an n � 1 vector of ones; X
is the n � m matrix of input data; Y is the n � k matrix of
output data; T is the n � a matrix of latent variables that
constitute the inner variability source, structuring both the
input and output data matrices; E and F are n � m and n � k
matrices of random errors; and P and Q are a � m and a � k
matrices of coefficients.

The model used in our simulations consists of five latent
variables (a � 5) that follow a multivariate normal distribution
with zero means and a diagonal covariance (Ia, that is, the

identity matrix of dimension a). The dimension of the input
space is set equal to 10 and that of the output space equal to 1
(m � 10, k � 1). Rows of the P matrix form an a-orthonormal
set of vectors with dimension m. The same applies to matrix Q,
which consists of an a-orthonormal set of vectors with dimen-
sion k.

Each element of matrices E and F of random errors is drawn
from a normal distribution with zero mean and standard devi-
ation given by the uncertainty level associated with that spe-
cific variable (column of X or Y) for a particular observation
(row). These uncertainties were allowed to vary, and this
variation is characterized by the heterogeneity level (HLEV),
which measures the degree of variation or heterogeneity of
uncertainties from observation to observation: HLEV � 1
means a low variation of the noise uncertainty or standard
deviation from observation to observation, whereas HLEV � 2
means a highly heteroscedastic behavior for the noise uncer-
tainties. More specifically, for variable Xi the uncertainties
along the observation index are randomly generated from a
uniform distribution centered at u� (Xi) (the average uncertainty
for a given variable), with range given by R(HLEV) �
K2(HLEV) � u� (Xi), where K2 � 0.01 (if HLEV � 1; low
heterogeneity level) or K2 � 1 (if HLEV � 2; high heteroge-
neity level), that is,

u�Xi�k�� � U�u� (Xi) �
R(HLEV)

2
, u�(Xi) �

R(HLEV)

2 	
In the present study, u� (Xi) was kept constant at 0.5 times the
theoretical standard deviation calculated for each noiseless
variable.

Case study 1: complete heteroscedastic noise

With the goal of evaluating overall performance of the
methods under different uncertainty structures for the measure-
ments errors, the following sequence of steps was adopted:

(1) We set the tuning parameters for each method and for
each set of conditions (number of latent dimensions for PLS
and PCR methods, and ridge parameter for RR methods).
Regarding PLS and PCR methods, we did set a � 5. As for
ridge methods, we selected our ridge parameter using cross-
validation and the generation of a logarithmic grid in the range
of plausible values (the criterion used in cross-validation is
RMSEPW). This procedure is repeated 10 times, and the me-
dian of the best values is chosen as the tuning parameter to be
used in our simulations. Variables are “auto-scaled” in all
methods, except for OLS, MLS, and MLMLS.

(2) For each scenario of HLEV (1 or 2), two noiseless data
sets are generated according to the latent variable model pre-
sented above: a training or reference noiseless data set and a
test noiseless data set, both with 100 multivariate observations.
Furthermore, a random sequence of uncertainties (noise stan-
dard deviations) for all the observations belonging to each
variable is generated according to HLEV.

(3) Zero-mean Gaussian noise, with standard deviation
given by the uncertainties calculated in (2), is generated and
added to the noiseless training and testing data sets, after which
a model is estimated according to each linear regression
method (using the training data set) and its prediction perfor-
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mance evaluated (using the test data set). This process of noise
addition, followed by parameter estimation and prediction, is
repeated 100 times, and the corresponding performance metrics
saved for future analysis.

Performance metrics used for prediction assessment are the
square root of the weighted mean square error of prediction in
the test set (RMSEPW), where the weights are the result of
combining the predictor and response uncertainties, and the
more familiar root mean square error of prediction (RMSEP)

RMSEPW�i� � 
1

n �
k�1

n [y(k) � ŷ(k)]2

uy(k)2 � [uX(k, :)*2]TB*2 i � 1100

(21)

RMSEP�i� � 
1

n �
k�1

n

[y(k) � ŷ(k)]2 i � 1100 (22)

where n is the number of observations in the test set.
At the end of the simulations, we do have 100 values for the

above metrics available for comparing the performances
achieved by the different methods, under a given noise struc-
ture scenario. To take into account both the individual vari-
ability of the performance metrics for the different methods, as
well as their mutual correlations, we based the comparison
strategy in paired t-tests among all the different combinations
of methods. Therefore, for each simulation scenario, paired
t-tests were used to determine whether method A is better than
method B (a Win for method A), performs worse (a Loss), or
if there is no statistical significant difference between both of
methods A and B (a Tie), for a given significance level (we
used  � 0.01). For the sake of simplicity, we will only present
here the number of wins, losses, and ties that each method
obtained for each simulation scenario.

Figure 2 presents the comparison results for the scenario

HLEV � 1, using RMSEP as performance metric (because the
trends for RMSEP and RMSEPW do not differ significantly,
only those for the more familiar RMSEP are presented).

Examining first the performance of the methods belonging to
the same group, we can see the following for this simulation
scenario:

● OLS Group. MLS performs worse than OLS and
MLMLS shows the best performance among the three meth-
ods. In general terms, comparing all the methods where MLS
and MLMLS have similar roles (such as unc-PLS1/unc-PLS2,
rMLS/rMLMLS, MLPCR1/MLPCR2), the second version
never resulted in worse results and, as a matter of fact, almost
always significantly improved them.

● RR Group. Both rMLS and rMLMLS conducted to im-
proved results with respect to those obtained by RR.

● PCR Group. MLPCR does not improve over PCR predic-
tive results, but MLPCR2 leads to an improvement.

● PLS Group. Methods unc-PLS3 and unc-PLS5, both us-
ing uncertainty-based estimation of the relevant covariance
matrices for PLS, present the best performance. Their similar
performance results can be explained by the fact that, under
mild homoscedastic situations and if the variables present
approximately equal uncertainties associated with them, the
orthogonal and nonorthogonal projections almost coincide. The
same applies for the comparison of PLS and unc-PLS4, both
using PLS weighting vectors but different projection strategies.
Comparing the results obtained for all the methods against each
other, we can see that MLPCR2 is the one that presented the
best overall performance, followed by PCR, MLPCR, unc-
PLS3, and unc-PLS5.

Figure 3 summarizes the results obtained for condition
HLEV � 2. A comparison of performances regarding methods
within the PLS group shows that those methods that estimate
the covariance matrices using uncertainty information (unc-
PLS3, unc-PLS5) present better performance then their coun-
terparts that use the same projection strategies (unc-PLS4, PLS,
respectively). However, looking now to the methods that differ

Figure 2. Results for number of losses, ties, and wins for each method, under the simulation scenario with hetero-
geneity level (HLEV) � 1 [using root mean square error of prediction (RMSEP)].
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only on the projection methodology, we can see that those that
are based on orthogonal projections achieve better results that
those based on nonorthogonal maximum likelihood projec-
tions. This result is quite interesting and will be further dis-
cussed below. In the PCR group we can see that all the methods
perform quite well. As for the remaining groups of methods,
the trends mentioned for HLEV � 1 remain roughly valid.
MLPCR2 continues to be the method with the best overall
performance, followed by MLPCR and a group of methods that
include MLPCR1, PCR, and unc-PLS5.

Case study 2: handling missing data

In this second case study, we analyze the prediction perfor-
mance of the several methods when missing data are present
(both in model estimation and in prediction), and a very simple
strategy for handling missing data is adopted: mean substitu-
tion. For uncertainty-based methods, one also has to specify the
associated uncertainty, and the values we have considered here
are the standard deviations of the respective variables during
normal operation. Other more sophisticated methodologies for
missing data imputation during model estimation are also avail-
able for regression methods (especially PLS and PCR37), as
well as methods for handling missing data once we have
already available an estimated model.38 Analogous approaches
can also be developed for the uncertainty-based techniques that
require only the estimated value and the respective uncertainty
to fill existing blanks. However, the aim of this study is to
assess the extent to which one can easily handle missing data
in model estimation and prediction (that is, with minimum
assumptions regarding missing values and the least modifica-
tion over standard procedures), taking advantage of the possi-
bility of using uncertainty information. That being the case, we
decided to keep the same replacement strategy among all
methods, so that the real advantage of handling such an addi-
tional piece of information, provided by measurement uncer-
tainties, can be easily evaluated and compared with the current
alternatives.

Because our focus here is related with the evaluation of the
methods regarding prediction when missing data is present, we
adopted a simulation structure which is now different from that
of case study 1. For each simulation the following steps are
repeated and the corresponding results saved:

(1) Generate a new latent variable model (matrices Q and P)
and noiseless data to be used for model estimation and predic-
tion assessment. Also generate measurement uncertainties to be
associated with each nonmissing value, according to the value
of HLEV used in each simulation study.

(2) Generate a new “missing data mask” that removes (on
average) a chosen percentage of the data matrix [X � Y]. We
used a target percentage of 20%, both for the reference and test
data sets.

(3) Generate and add noise to the noiseless data that were
not removed, according to the measurement uncertainties gen-
erated in (1).

(4) Replace missing data with column means for the data set
used to estimate the model, and calculate the associated uncer-
tainties using the columns standard deviations, for the same
data set.

(5) Estimate models using the data set constructed in (4).
(6) For the test data set, do the same operation as in (4).

(using the same values for the input values and uncertainties)
and calculate the predicted value for the output variable. Cal-
culate overall performance metrics (RMSEPW and RMSEP).

The results obtained with HLEV � 1 are presented in Figure
4, where we can see that within the PLS group methods
unc-PLS5 and unc-PLS3 lead to improved predictive perfor-
mances, but now with unc-PLS3 presenting better results that
unc-PLS5, that is, the nonorthogonal projection seems to bring
some added value when missing data are present, under ho-
moscedastic scenarios. In the PCR group, all MLPCR methods
outperform the conventional PCR. As for the other groups,
results obtained follow the same trends verified when no miss-
ing data were present. In global terms, MLPCR2 presents the

Figure 3. Results for number of losses, ties, and wins for each method, under the simulation scenario with HLEV �
2 (using RMSEP).
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best overall performance, followed by MLPCR1, MLPCR, and
unc-PLS3.

By analyzing the results for HLEV � 2 (Figure 5), we can
also see that unc-PLS3 and unc-PLS5 still show the best
predictive performance within the PLS group, but now with
unc-PLS3 presenting lower scores relatively to the previous
scenario (HLEV � 1), a result that is consistent with what was
verified in case study 1. In the global comparison, after
MLPCR2 we can find MLPCR1 and MLPCR. Therefore, under
the conditions adopted for this simulation study, we can con-
clude that MLPCR methods tend to have the best overall
performance in the presence of missing data.

We point out that when adopting a methodology that inte-
grates data uncertainty, one follows the same calculation pro-

cedure adopted for the situation where no data are missing,
simply replacing the missing elements with rough estimates
that will be properly weighted by the algorithms, according to
their associated uncertainties. However, if we do have available
better estimates, such as those arising from more sophisticated
imputation techniques, one can also integrate them as well,
without any further changes.

Case study 3: process optimization under data
uncertainty

This case study illustrates the integration of measurement
uncertainties in process optimization decision making. The
problem we address herein consists of calculating the values

Figure 4. Results for number of losses, ties, and wins for each method, under the simulation scenario with HLEV �
1 and 20% of missing data (using RMSEP).

Figure 5. Results for number of losses, ties, and wins for each method, under the simulation scenario with HLEV �
2 and 20% of missing data (using RMSEP).
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for the manipulated variables to be specified (Z̃) to minimize a
cost function, when measurements for the loads become avail-
able (L̃). This particular case study is based on the following
model, developed for a batch paper pulp pilot digester39

TY � 55.2 � 0.39 � EA � 324/�EA � log10S� � 92.8

� log10�H�/�EA � log10S� (23)

This model relates pulp total yield (TY) with effective alkali
(EA, a measure of the joint concentration of Na2OH and Na2S,
the active elements in the cooking liquor), sulfidity (S, the
percentage of Na2S in the cooking liquor), and H factor (H, a
function of the temperature profile across the batch).

We consider the situation where a cost function (L) penalizes
deviations from a target value for TY (52%): the penalty for
lower values is attributed to fiber losses, and that for higher
values to deterioration in other pulp properties. Our cost func-
tion also considers the cost of S and H (proportional to their
respective magnitudes). As an example, Figure 6 illustrates the
shape of the assumed cost function for S � 20 and H � 1000

L � �100�TYsp

100
�

TY

100 �
S

4
�

H

500
d TY � TYsp

752�TYsp

100
�

TY

100
2

�
S

4
�

H

500
d TY � TYsp

(24)

In this example, EA is assumed to be a load variable, and
thus our optimization goal consists of calculating the S and H
values that minimize expected cost in the presence of uncer-
tainties for both measurements and process actuations. Formu-
lations I, II, and III hold for this example, with L � EA, Z �
[S H], and Y � TY (Table 5).

We further assumed that the vector of uncertain quantities,
� � [�EA, �S, �H, �TY]T, follows a multivariate normal distri-
bution with zero mean and diagonal covariance given by

� � diag��22 22 502 42�� (25)

where diag stands for the operator that converts a vector into a
diagonal matrix with its elements along the main diagonal.

To illustrate the implementation of the formulations above
referred, let us consider that the observed value for EA is 15

�EÃ). Table 6 summarizes the results obtained for the manip-
ulated variables (S̃ and H̃) and the average cost obtained with
the objective function assumed under formulations I and II,
with a third degree specialized cubature being used for estima-
tion of expected values.40

From Table 6 we can see that under the simulation condi-
tions considered here, and assuming that the relevant objective
function is the one associated with formulation I, the optimal
solution obtained when one disregards measurement and actu-
ation uncertainties (formulation III) corresponds to an average
cost increased by 136%. If the relevant objective function were
the one corresponding to problem formulation II, the average
cost increase would be 51%. It should also be noticed that the
location of the optimal solution in the (S̃, H̃) decision space,
found if one ignores uncertainties, is quite distant from the true
one.

The cost associated with the nonconsideration of these types
of uncertainties decreases when their magnitude becomes
smaller. Figure 7 presents the results obtained for three alter-
native problem formulations, when the covariance matrix for
uncertain quantities is multiplied by a monotonically decreas-

Figure 6. Cost function for deviations of total yield (TY)
from its target value (52%), for S � 20 and H �
1000.

Table 5. Optimization Formulations I, II, and III as Applied to Case Study 3

Formulation I Formulation II Formulation III

min
S,H

E�
��EA, S, H, TỸ�� min
S,H

E�
��EA, S, H, TY�� min
S,H

��EÃ, S̃, H̃, TỸ�

s.t. g(TY, EA, S, H) � 0 s.t. g(TY, EA, S, H) � 0 s.t. g�TỸ, EÃ, S̃, H̃� � 0

EA � EÃ � �EA EA � EÃ � �EA

S � S̃ � �S S � S̃ � �S

H � H̃ � �H H � H̃ � �H

TỸ � TY � �TY

Table 6. Solutions Obtained under Formulations I, II, and
III, and Their Associated Average Costs

Solutions

Average Cost ($)

Formulation I Formulation II

I S̃� 7.16 10.80 5.93
H̃�1602.0

II S̃� 7.83 11.16 5.40
H̃�1184.2

III S̃� 5.38 25.46 8.17
H̃�1274.6
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ing shrinkage factor, 0.9i. As expected, the differences arising
from the solutions associated with such three optimization
formulations tend to vanish when measurement and actuation
uncertainties decrease. Furthermore, the average cost also de-
creases because of the improved quality of information ob-
tained from measurement devices and the better performance
of final control elements, as one moves across the several
simulation scenarios considered here.

Discussion

Results presented in the previous section highlight not only
the potential of using all the information that is available (data
and associated uncertainties), but also the difficulty that such a
task may encompass, with respect to model estimation. In fact,
we have come across with some unexpected results and rele-
vant issues have been identified and merit being discussed here.

First of all, we stress the fact that, even though simulation
results are strictly valid within the conditions established, they
can provide useful guidelines for real processes that present
structural similarities with them. The fact that classical meth-
ods do not make explicit use of uncertainty information
may not be very relevant if it represents just a small part of
the global variability exhibited by variables. Therefore, uncer-
tainty-based methods presented here are expected to bring
potentially more added value only under contexts where un-
certainty is quite high (noisy environments) or experiments
have large variations. In other words, these methods should
complement their classical counterparts, depending on the
noise characteristics that prevail in measured data.

Still regarding model estimation, we have found some con-
vergence problems in MLMLS, something that is not unusual
in approaches based on numerical optimization of a nonlinear
objective function. However, problems in MLPCR2 arising
from the nonconvergence of MLMLS are usually rare. From
the experience that we have gathered so far, no limitations were
found regarding the implementation of MLPCR2 in the anal-
ysis of real industrial data. The poor performance of MLS
under the scenarios considered here, where predictors are

strongly correlated, may indicate that the inversion operation
undertaken at each iteration is interfering with its performance
(the matrix to be inverted in this method becomes quite ill-
conditioned under collinear situations of the predictors). Re-
sults obtained for the ridge regularization of MLS (rMLS)
show an effective stabilization of this operation. As for PLS
methods, the extensive solution of small optimization problems
can make unc-PLS1 and unc-PLS2 more prone to numerical
convergence problems than the original PLS method, some-
thing that does not occur with the remaining uncertainty-based
PLS methods (unc-PLS3, unc-PLS4, and unc-PLS5), given that
they are based on the estimation of covariance matrices and
projection operations. Quite interesting is the fact that, when
comparing under heteroscedastic situations (Figure 3) PLS
methods that adopt the same estimation procedure for the
covariance matrices but differ in the projection phase (as hap-
pens with pairs PLS/unc-PLS4, unc-PLS3/unc-PLS5), one can
see that the use of uncertainty-based maximum-likelihood non-
orthogonal projections seems to be detrimental for prediction
with respect to orthogonal projections. In fact, a separate sim-
ulation study showed evidence toward a reduced variance of
the orthogonal projection scores, when compared to the one
exhibited by maximum likelihood projection scores. Appar-
ently, for heteroscedastic scenarios, oscillations in the non-
orthogonal projection line may also bring some added variabil-
ity to the scores, other than the one strictly arising from
variability attributed to noise sources. This increased disper-
sion in the reduced space of the scores, usually the one relevant
for prediction purposes, can increase prediction uncertainty
arising from poorly estimated models, something that is in line
with the results presented in Figure 3. Finally, there are also
some approximations considered in the methods that may in-
terfere with their predictive performance and should be con-
sidered in future developments. That is, methods unc-PLS1 and
unc-PLS2 neglect uncertainties in the load vectors and
MLPCR1/MLPCR2 do assume the score uncertainties to be
independent.

We emphasize that, although we have focused here on
steady-state applications, our approaches can also be used
under the context of dynamic models, that is, through the
consideration of lagged variables41-44 (the PLS methods based
on the uncertainty-based estimation of covariance matrices,
however, do need some modifications to cope with the noise
correlations appearing with the use of lagged variables). For
such situations, one may also consider uncertainty descriptions
connected with robust control methodologies, such as H-infin-
ity approaches.

Conclusions

In this paper we address the importance of specifying mea-
surement uncertainties and how this information can be used in
two distinct tasks: model estimation and process optimization.
With respect to model estimation, under the conditions studied
method MLPCR2 presented the best overall predictive perfor-
mance. In general, those methods based on MLMLS present
improvements over their counterparts based on MLS. We have
also illustrated the potential advantage of using measurement
and actuation uncertainties in process optimization problem
formulations and solutions. Our study points out the relevance
of not neglecting measurement/manipulation uncertainties

Figure 7. Behavior of average cost (formulation I), cor-
responding to solutions for the three alterna-
tive problem formulations, using ¥¥� � 0.9i.
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when addressing both on-line and off-line process optimiza-
tion.

Future work will address the application of uncertainty-
based methods in real industrial contexts, using the guidelines
extracted from the results achieved in our comparative study
presented herein, regarding the most adequate methods to be
adopted for a certain noise/data structure scenario.
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