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An approach is presented for conducting multiscale statistical process control that
adequately integrates data at different resolutions (multiresolution data), called MR-
MSSPC. Its general structure is based on Bakshi’s MSSPC framework designed to handle
data at a single resolution. Significant modifications were introduced in order to process
multiresolution information. The main MR-MSSPC features are presented and illustrated
through three examples. Issues related to real world implementations and with the
interpretation of the multiscale covariance structure are addressed in a fourth example,
where a CSTR system under feedback control is simulated. Our approach proved to be
able to provide a clearer definition of the regions where significant events occur and a
more sensitive response when the process is brought back to normal operation, when it is
compared with previous approaches based on single resolution data.© 2006 American
Institute of Chemical Engineers AIChE J, 52: 2107–2119, 2006
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Introduction

Data generated in chemical process plants arise from many
sources, such as on-line and off-line process sensors, laboratory
tests, readings made by operators, raw materials specifications,
and weather conditions, to name just a few. To such a variety
of origins are usually associated complex data structures, due
to a diversity both in time acquisition and missing data patterns
among the different variables (which give rise to sparse tables),
as well as in variable resolutions, since the values from differ-
ent variables may carry information over different time ranges
(multiresolution data). In spite of several developments that
have already been proposed to address the sparsity problem
created by multirate1-3 and missing data4-7 problems, the issue
of adequately handling multiresolution process data remains, to
a large extent, unexplored, with developments mainly centered
around signal and image processing problems.8-10

In a multiresolution data structure, we can find variables

whose values are collected punctually (high time resolution) at
every node of a fine grid whose spacing is established by their
(also higher) acquisition rates, and variables that represent
averages over larger time ranges (that is, over several nodes of
this grid), to which we will refer as “lower resolution vari-
ables.” (The term “averaging support,” AS, will also be used to
address the range of time or number of nodes over which
averages are computed.)

In industrial applications, multiresolution data structures
usually arise when process sensor information is combined
with data taken from other sources, such as the following:
averages made by operators from several readings taken from
process measurement devices during their shifts, which are
then annotated in daily operation reports or introduced manu-
ally in a computer connected to the central data storage unit;
measurements from pools of raw material or products accumu-
lated during a certain period of time and mixed thoroughly
before testing; averages of process variables over a period of
time, which are computed automatically by local DCS com-
puters (such as on an hourly basis); and aggregated measure-
ments from an entire batch.

On the other hand, processes going on in chemical plants are
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themselves typically quite complex, and this complexity is also
reflected in collected data, which contain the cumulative effect
of many underlying phenomena and disturbances, with differ-
ent location and localization patterns in the time/frequency
plane. This means that not only the overall system has a
multiscale nature, since it is composed of processing units that
span different time scales and frequency bands, but also that
the inputs (manipulation actions, disturbances, faults) can
present a variety of features with distinct time/frequency char-
acteristics. For such reasons, multiscale approaches, designed
to handle and take advantage of the information contained at
different scales, have been developed for addressing different
tasks,11,12 namely, process monitoring, which will be the focus
of this article. In this regard, multiscale monitoring approaches
provide an adequate basis to develop a (multiscale) process
monitoring framework that integrates information with differ-
ent resolutions, as the concept of resolution (or scale) is already
present in their algorithmic structures, by design, in particular
for those based on the wavelet transform as a tool to separate
dynamic features contained at different scales. Therefore, the
structure underlying Bakshi’s13 MSSPC (for data at a single
resolution) was adopted in this work as an adequate starting
point to integrate data with different resolutions, a research
topic covered by a number of authors, as we will see in the next
paragraph.

Kosanovich and Piovoso14 presented an approach where the
Haar wavelet transform coefficients from filtered data (with a
finite impulse response median hybrid filter) were used to
estimate a PCA model, which is then applied for monitoring
purposes, but it was with the works of Bakshi at al.11,15 that the
first univariate and multivariate MSSPC methodologies were
established. Several modifications and improvements were
then introduced to the base methodology, such as its integration
with monitoring methods specialized in detecting changes over
data distribution features16 or the use of variable grouping and
the analysis of contribution plots when an event is detected in
the control charts at any scale, in order to monitor the process
and simultaneously perform early fault diagnosis.17

Other contributions include the development of nonlinear
process monitoring approaches, similar to MSPCA, but with a
nonlinear modeling step, namely, using neural networks.18,19

Rosen20 presented an alternative methodology, where the com-
ponents at different scales in the original time domain (that is,
not in the wavelet transform domain) are combined using
background knowledge about the process, in order to reduce
the number of monitoring statistics available when all the
scales are monitored separately and to provide physical insight
to the scales under analysis. In this approach, there is no
reconstruction stage, as in Bakshi’s MSSPC, and the coarser
scale coefficients are omitted in the monitoring procedure,
allowing for adaptation (in the mean) to nonstationary data.
Yoon and MacGregor21 also developed an approach based
upon a multiscale representation of data in the original time
domain that encompasses the successive extraction of principal
components for the extended set (all variables represented at all
scales), according to the decreasing magnitude of the associ-
ated eigenvalues. It turns out that, owing to the orthogonal
properties of the wavelet transform, the loadings only contain
non-zero entries for variables at the same scale, and therefore
each extracted component strictly conveys information regard-
ing a specific scale. As such, results are not very different from

what can be achieved with traditional MSSPC for the same
number of principal components. However, this approach does
allow for a ranking of the relevant structures underlying data
variability, regarding the contributions from the variables co-
variance at different scales.

Trygg et al.22 applied a 2-D wavelet transformation to com-
press data from NIR (near-infrared) spectra collected over time
and estimated a PCA model for this 2-D compressed matrix.
Such a model was then used to check whether new incoming
spectra deviate from those collected during normal operation
using PCA tools. In the context of a PLS based monitoring
scheme, Teppola and Minkkinen23 used a multiscale decompo-
sition in order to remove seasonal and low-frequency contri-
butions to variation. A scale (or frequency band) selection
methodology is also adopted in Luo et al.24 to select the
frequency bands where data analysis should be focused when
trying to detect sensor faults. Sun et al.25 developed a frame-
work for detecting abnormal situations, using the so-called
wavelet-domain hidden Markov models (HMM). For further
references on multiscale monitoring, we refer the interested
reader to the review article by Ganesan et al.26

The remaining parts of this article are organized as follows:
In the next section, we present the essential background mate-
rial that supports the methodology here presented, and then
introduce our MSSPC approach that integrates multiresolution
data (MR-MSSPC). In the following section, several examples
illustrate its improved effectiveness in identifying the region in
the time domain where a fault occurs, and its promptness in
detecting transition points, when compared with other alterna-
tives based on single resolution data structures. A last example
addresses the case of monitoring a non-linear multivariate
dynamic process using the MR-MSSPC methodology, where
several important practical issues regarding its real world im-
plementation are addressed, as well as some extensions,
namely, the possible definition of an adequate resolution for
each variable being monitored. We finalize with a conclusions
section that summarizes the main results presented in this
article, and addresses some ongoing and future work to be
pursued in this field.

Theoretical Background
Principal components analysis (PCA) and PCA-SPC

PCA27-29 is a well known multivariate data analysis tech-
nique that addresses the problem of finding a reduced (p-
dimensional) set of new variables, the principal components,
which are linear combinations of the original (m) variables,
with the ability of explaining most of their variability (m � p).
Such linear combinations are those that successively present
maximal (residual) variability after the portion explained by
former components has been removed. The solution of such an
optimization formulation can be reduced to an eigenvalue
problem,30 where the optimal linear combinations (loadings)
are given by the successive normalized eigenvectors of the data
covariance matrix, associated with the eigenvalues sorted in a
decreasing ordering of magnitude. Applying PCA to the orig-
inal data matrix, we transform a set of correlated variables into
a smaller, decorrelated one (that is, with a diagonal covariance
matrix), which quite often still explains a large amount of the
structure and variability present in the original dataset.

PCA has been applied to Quality Control in multivariate
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contexts,31-33 where it provides an adequate alternative to the
monitoring procedure based upon the Hotelling-T2 statistic.34

In fact, such a procedure involves an inversion of the covari-
ance matrix, an operation that can be quite unstable from the
numerical point of view in situations where the system is of
low rank, or approximately so, as frequently happens in indus-
trial contexts due to, for instance, dependencies caused by
underlying phenomena and conservation laws (mass and en-
ergy), presence of control loops, use of redundant instrumen-
tation, and the bare nature of some measuring devices em-
ployed, that leads to highly redundant sets of variables (such as
spectrometers). In this context, process monitoring through
PCA modeling circumvents these problems, and consists of
monitoring process variability in a reduced space, the PCA
subspace, where normal process variation is mostly concen-
trated, using a Hotelling-T2 statistic. This is complemented
with another control chart, which follows variability around the
estimated PCA subspace through a residual statistic (often
called Q or SPE, standing for Squared Prediction Error) given
by the squared Euclidean distance of each multivariate obser-
vation to the PCA subspace. Thus, through PCA-SPC, a pro-
cess with dozens or hundreds of variables can be adequately
followed using just these two monitoring statistics. More de-
tails about this procedure, and the associated monitoring sta-
tistics and control limits, can be found in the literature.32,35,36

Wavelets

Wavelets correspond to particular types of functions that are
localized both in the time and frequency domains. Under
certain circumstances, collections of this type of functions
(wavelet families), whose elements differ only in the values
attributed to their two parameters, form basis sets. The two
parameters to be defined are the scale parameter, indexed by j
(which stretches or compresses the wavelet function and, there-
fore, defines its shape on the time-frequency plane), and the
time-translation or shift parameter, k (which positions the func-
tion in a given location in the time domain).

Any finite-energy signal can be expanded in terms of wave-
let basis functions (which carry information about all the scales
between the finest, j � 0, and the coarsest, given by the
maximum decomposition depth selected for the wavelet repre-
sentation of the signal, j � Jdec) and the associated scaling
functions (which contain all the contributions arising from
scales j � Jdec). These expansion coefficients are called details
coefficients, dk

i (i � 1, . . . , Jdec; k � �) (coefficients of the
wavelet functions), and approximation coefficients, ak

Jdec (k �
�) (multipliers of the scaling functions), and are usually re-
ferred to as the orthogonal wavelet transform or wavelet coef-
ficients.

A very efficient recursive scheme was developed by S.
Mallat37 for computing wavelet coefficients, with computa-
tional complexity O (n), once projection at the finest scale, ak

0

(k � �), becomes available. It essentially consists of imple-
menting a pyramidal algorithm based upon convolution with
quadrature mirror filters. In practice, the finest scale approxi-
mation coefficients, ak

0 (k � �), take the values from the
original data set,13 and the calculation of the wavelet transform
coefficients proceeds by implementing Mallat’s efficient algo-
rithm (more elaborate initialization strategies are discussed
elsewhere38). Therefore, in practice, we usually apply the anal-

ysis and reconstruction quadrature mirror filters associated to a
given wavelet without using any wavelet function explicitly.

Besides such a computational efficiency, wavelet transforms
can be very effective in representing signals with localized
features in the time/frequency plane, due to the nature of their
basis functions. They are, for this reason, very promising tools
for analyzing non-stationary data or data with localized regu-
larity characteristics.

Multiscale statistical process control (MSSPC)

MSSPC explores some key properties of the wavelet trans-
form, namely, those regarding the ability to extract determin-
istic features in a few wavelet coefficients (energy compac-
tion), whereas stochastic processes spread their energy across
all the coefficients. Furthermore, they approximately decorre-
late signals, that is, the autocorrelation matrix of such signals is
approximately diagonalized (decorrelation ability).13,39,40 This
allows for handling contexts where signals monitored present
autocorrelation and features with widely different time/fre-
quency characteristics. More specifically, MSSPC is based
upon multiscale principal component analysis (MSPCA),
which combines the decorrelation ability of PCA, regarding
cross-correlations among variables, with that of the wavelet
transform for any potential autocorrelated behavior in each
variable, as well as the deterministic/stochastic separation
power characteristic of this type of transform. It was developed
by Bakshi,13 who then proposed its application to the context of
statistical process monitoring (through MSSPC).

The MSSPC procedure consists of computing independent
principal components models and control limits for PCA-SPC
control charts at each scale, using data collected from a process
running under normal conditions. Then, as new data are ac-
quired, wavelet coefficients are calculated at each scale, ac-
cording to the chosen discretization scheme, and control chart
procedures implemented separately at each scale. If any sig-
nificant activity is detected at any scale, the signal is recon-
structed back to the time domain, using only those coefficients
arising from the significant scales. The covariance matrix at the
finest scale is also computed using information related to the
significant scales, in order to implement the statistical tests at
the finest scale (T2 and Q control charts) that will produce the
final outcome of the MSSPC method, stating whether the
process can be considered to be operating under normal con-
ditions, or if a special event has occurred.

MR-MSSPC

This section describes our MR-MSSPC approach, including
the adopted discretization strategies underlying its application.

Discretization strategies

One of the differentiating features regarding alternative im-
plementations of MSSPC, and an important one, regards the
type of data windows over which the wavelet transform is
applied, and based upon which the subsequent data analysis is
carried out.

In one extreme, we have the moving window of constant
dyadic length, used by Bakshi,13 which consists of translating
in time a window of length 2Jdec (where Jdec stands for the
decomposition depth of the wavelet transform used in the
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multiscale analysis), so that the last vector of observations is
always included in the window, after an initial phase that goes
from observation number 1 to observation number 2Jdec. Its
length increases in such a way that a dyadic window is always
used, until the maximum length is reached (Figure 1a).

Concerning now procedures that involve a time delay, we
have the moving window of variable dyadic length that enables
a successive calculation of the coefficients regarding an or-
thonormal wavelet transformation (Figure 1b), in opposition to
the coefficients of its undecimated counterpart, also known as
translation invariant wavelet transform, which is calculated
using the first type of moving window. The former procedure
corresponds to a uniform discretization of the wavelet transla-
tion parameter, while the second one implements a dyadic
discretization strategy.41 As can be seen from Figure 1b, the
length of the window is not constant along time, and therefore
not all the wavelet coefficients are used for monitoring at each
stage.

Finally, we have the non-overlapping moving windows of
constant dyadic length (2Jdec), over which all the relevant
orthogonal wavelet coefficients can be calculated using batches
of data collected every (2Jdec)th observation (Figure 1c). This
strategy also corresponds to a dyadic discretization of the
wavelet translation parameter, but now all the coefficients for
the selected decomposition depth are calculated simulta-
neously.

Let us now consider the situation where, among the collected
data set, there are variables whose values regard averages over
different time supports (multiresolution data). These values
become available at the end of such time periods, at which they
are recorded in the data storing units. The traditional way for
incorporating this type of data in monitoring procedures de-
signed to analyze information available at a single resolution
usually consists of holding the last available value constant
during the time steps at the finest resolution where no new
information is collected, until a new average value become
available (zero-order hold).

This strategy creates a mismatch between the time support
where the averages were calculated, and the one attributed to
the average values. To illustrate this point, let us consider the
situation where a variable corresponding to averages over four
successive observations at the finest resolution is being ac-
quired. Figure 2a illustrates the time ranges along which the

average values are calculated, while Figure 2b depicts the
ranges where the values are hold constant with such a proce-
dure. These are quite different, and in fact only have an
interception point in the discretization grid at the finest reso-
lution.

From the different discretization approaches above de-
scribed, the one that we have found to be most adequate for
setting up a multiresolution MSSPC procedure (MR-MSSPC)
is the variable window length, dyadic discretization. As hap-
pens with its constant window length dyadic counterpart, this
strategy has the important property of allowing low resolution
measurements to maintain their effective time supports as
represented in Figure 2a. This derives from the compact sup-
port associated with the calculations of the approximation
coefficients, but without introducing large time delays in the
monitoring procedure. The uniform procedure was designed to
handle on-line MSSPC tasks in situations where all the vari-
ables have the same resolution (single resolution data), where
it is quite effective, but requires, for this same reason, a data
structure of the type represented in Figure 2b.

Description of the MR-MSSPC methodology

Our MR-MSSPC methodology begins with a specification of
the resolution relative to the values collected for each variable.
Quite often there is a finest resolution, corresponding to vari-
ables collected at higher sampling rates, that is used to set the
finest grid (scale index j � 0). If variable Xi corresponds to
averages over time supports of length 2Ji times that of the finest
resolution, then its scale index or resolution level is set to Ji. A
variable at a resolution Ji will only be decomposed to scales
coarser (that is, higher) than Ji, and therefore it does not
contribute to the monitoring procedures implemented at finer
scales (j � Ji). This attribution is straightforward in situations
where the low resolution variables represent averages over
dyadic supports. In case this does not happen, we propose
setting Ji as the immediately next coarser scale, that is, Ji �
log2( AS) where AS is the averaging time support,
log2( AS) standing for the smallest integer n � log2( AS),
and project data onto this scale using a weighted averaging
procedure that will be described later. The decomposition
depth to be used in the wavelet transformation phase, Jdec, is
another parameter to be set before implementation of the meth-
odology. It must be higher than max{ Ji}i�1:m (usually Jdec �
max{ Ji}i�1:m � 2 for reasons related to the ability to recon-
struct behavior of past events). A summary of the whole
procedure is presented in Table 1.

The PCA models developed in the initial stage, involving
wavelet coefficients calculated from reference data (I), are not
only for the detail coefficients at each scale (0 � j � Jdec) and

Figure 1. Discretization strategies used in MSSPC, for
Jdec � 3.
(a) Overlapping moving windows of constant dyadic length
(uniform discretization), (b) Dyadic moving windows for
orthogonal wavelet transform calculations (variable window
length dyadic discretization), (c) Non-overlapping moving
windows of constant dyadic length (constant window length
dyadic discretization).

Figure 2. Time ranges over which the average values are
actually calculated (a) and those where the
values are held constant in a conventional
strategy to incorporate multiresolution data in
single resolution methodologies (b).
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for the approximation coefficients at scale Jdec, as happens with
MSSPC with uniform discretization, but also for the approxi-
mation coefficients at scales 0 � j � Jdec Thus, we often do
have available approximation coefficients for j � Jdec, and, in
practice, we found that they can play indeed an important role
in the early detection of sustained shifts.

Furthermore, PCA models at different scales may have a
different number of variables associated with them. The mod-
els for the finest scales have fewer variables than those for the
coarser scales, as these also integrate lower resolution vari-
ables. For this reason, the number of components for the
models at each scale has to be chosen individually. A rule must
also be defined to specify the number of PC to be used in the
PCA model for reconstructed data at the finest scale. We will
use the minimum from all the scales involved in the recon-
struction, so that the number of PC will always be smaller than
the number of reconstructed variables.

Stage II.iv corresponds to an extension of the MSSPC’s
reconstruction phase using information from scales where sig-
nificant events were detected, back to the original time domain,
when multiresolution data are present. As we are now dealing
with variables having different resolutions, we test the statistics
derived from reconstructed data at these intermediate resolu-
tions, besides j � 0 (now converted to the more general Jmin),
provided that they stay below the coarser scale where signifi-
cant activity was detected. Therefore, we may end up with
more than one plot for the reconstructed T2 and Q statistics
(one per resolution satisfying the conditions mentioned). Thus,

in order to maintain the overall significance level of the SPC
procedure adopted in the confirmation phase for each of the
two statistics, control limits are adjusted using a correction
factor applied over significance level (�), derived from the
Bonferroni inequality: �/ncharts, where ncharts is the number of
charts used simultaneously for each statistic.

Another relevant issue regards the wavelet decomposition of
variables available at coarser resolutions. Filtering operations,
followed by dyadic down-sampling at each stage of the wavelet
decomposition, encompass scaling operations that assure en-
ergy conservation for the orthonormal transformation (Parseval
relation). As the coarser resolution variables have fewer de-
composition stages than the other finer resolution variables,
scaling operations that might have been made initially to the
whole data set would now be distorted at each scale if no
additional scaling is imposed to the coarser resolution vari-
ables. We have considered this issue in our computations,
preventing such distortion from occurring in the implementa-
tion of MR-MSSPC.

Illustrative Examples of MR-MSSPC Application

In this section, we will illustrate the main features of the
proposed MR-MSSPC methodology through its application to
a number of case studies. The good properties of MSSPC
methodologies in the monitoring of systems exhibiting auto-
correlation were already widely explored in the litera-
ture.13,16,17,20,41 Such properties are inherited by the proposed
MR-MSSPC. In fact, since our methodology is based upon a
dyadic discretization strategy, the decorrelation ability of the
multiresolution decomposition is even higher than the one
associated with a uniform discretization scheme. It is therefore
expected to be even more suited to address highly correlated
and nonstationary processes.41 For this reason, we will focus
our application studies mainly over stationary uncorrelated
systems, where the main features of the method can be more
clearly illustrated. However, we also present an example re-
garding a more complex dynamic system (CSTR under feed-
back control), where several interesting features connected to
real world implementations of the methodology are also ad-
dressed.

The following latent variable model was adopted for data
generation in the first three studies presented below,13 since this
kind of model structure is representative of data collected from
many real world industrial processes:42,43

X�k� � �
X1

X2

X3

X4

� � �
1 0
0 1
1 1
1 �1

� � L�k� � ��k� (1)

L�k� � iid N�0, �l�, �l � I2

��k� � iid N�0, ���, �� � 0.2 � I4

where Im is the identity matrix with dimension m.
For the purposes of illustrating our MR-MSSPC framework,

variable X4 contains coarser resolution information, given as
the successive averages over nonoverlapping windows of
length AS (to be defined in each example), while the remaining
variables are all available at the finest resolution. Therefore,
variable X4 will only be acquired at the end of each period of

Table 1. Summary of Our MR-MSSPC Methodology

I. Calculate PCA models at each scale using reference data.
a. For each variable (Xi, i � 1:m), perform the wavelet

decomposition from Ji � 1 to Jdec.
b. Calculate the mean vectors and covariance matrices for all

scales.
c. Select the number of PC and calculate PCA models for all

scales.
II. Implement the MR-MSSPC methodology.

a. For each observation index, k, multiple of 2Jmin�1 (Jmin �
min{Ji}i�1:m):

i. Get dyadic window corresponding to current
observation (length equal to 2Jmax(k)).

ii. Decompose those variables Xi for which Ji � Jmax(k),
from Ji � 1 to Jmax(k).

iii. Implement PCA-based SPC at each scale where
coefficients are available, using Hotelling’s T2 and Q
statistics, and select the scales where significant events
are detected from the standpoint of these statistics.

iv. Using the scales where significant events are detected,
reconstruct data at the resolution levels between the
coarser scale where a significant event was detected, J*,
and Jmin, i.e., scales j that satisfy the condition j:Jmin

� j � J* � j � {Ji}i�1:m. Do the same for the mean
vectors and covariance matrices associated with the
selected scales.

v. Using the reconstructed data, recombined covariance
matrices, and mean vectors, calculate T2 and Q statistics
at each intermediate resolution, and look for significant
events in these charts. If none detects a significant event,
consider the process to be operating under normal
conditions; if any of them does show an abnormal value,
then trigger an alarm, and study the contribution plots
for the reconstructed statistics at the scale where the
signal occurs. The plots of the tests performed at each
scale also contain information about the frequency
ranges involved in the process perturbation identified.
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AS consecutive observations, representing the mean of its val-
ues over that period of time.

In the first example, presented next, we illustrate the situa-
tion where the averaging window length, AS, is a dyadic
number (2Ji), leaving for later the situation where such a
support is nondyadic.

Example 1. MR-MSSPC for multiresolution data with
dyadic supports

A reference set with 4096 observations was generated using
the latent variable model.1 Variables {X1, X2, X3} are avail-
able at the finest scale (J1 � J2 � J3 � 0), while variable X4

represents averages over windows with length 4 (J4 � 2). To
test the monitoring features of MR-MSSPC, 128 observations
are generated and a shift of magnitude �1 is imposed to all
variables between observations 43 and 83 (included). The fact
that transition times do not fall in the dyadic grid at a boundary
between two averaging windows is intentional, in order to see
how the method behaves in such less favorable conditions.

Figure 3 presents the results obtained regarding control
charts for the T2 and Q statistics at the two resolutions available
in the data set, that is, at Ji � {0, 2}. In our MR-MSSPC
charts, circles are used to indicate that the respective statistic’s
abscissa corresponds to the time where the last value of the
method’s analyzing dyadic window is acquired, and where
calculations are actually made and results plotted. For instance,
in Figure 3, circles appear every 2nd observation in the plots for
Ji � 0, and every 4th observation in the plots for Ji � 2, since
only at such time instants do new values become available at
these resolutions. Therefore, a decision about the state of the
process is only taken at times corresponding to observations
signaled by circles.

If a statistic (T2 or Q) signaled with a circle falls above

control limits, its observation number also appears next to it.
That being the case, all the values of this statistic regarding the
same dyadic window are also presented (as well as the asso-
ciated control limits). This plotting feature enables a more
accurate reconstruction of the time at which a special cause
occurred, even if it is detected at a later stage.

We also represent the points of the statistics and control
limits even if the last observation is not significant, provided
that there is at least one scale where a significant event was
detected (with no number associated with it in the plots). This
allows us to visualize more clearly when the process returns
back to normal operation, as well as to see imminent abnormal
situations in their early stages.

When no significant event is detected at any scale, a “zero”
point is plotted. From Figure 3, we can see that Q charts are
more sensitive than T2 charts for the type of fault analyzed in
this example. The Q statistic at Ji � 0 clearly indicates that an
abnormal observation has occurred in the immediate past
neighborhood of observation 44, and that the process has
returned back to normal shortly after observation 80. A mild
spurious observation is also detected, again at time 88, but in
general the procedure was able to reconstruct quite clearly what
has occurred when the process returned back to normality.

Figure 4 illustrates the underlying MR-MSSPC monitoring
tasks conducted at each scale over detail coefficients for 0 �
j � Jdec and on the approximation coefficients at scale Jdec,
while Figure 5 regards the ones involving approximation co-
efficients for scales 0 � j � Jdec. As can be seen from these
plots, detail coefficients play an important role in the detection
of transition times, while approximation coefficients have the

Figure 4. Plots of the T2 and Q statistics for detail coef-
ficients at each scale (Jdec) and for approxima-
tion coefficients at scale (0 < j < Jdec), with
control limits set for a confidence level of 99%.
[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Figure 3. Plots of the T2 and Q statistics at the two
resolutions available in the data set, Ji � {0,2},
using data reconstructed from significant
scales.
Control limits are set for a confidence level of 99% (horizon-
tal line segments). Legend:† - signals effective plotting times
(“current times”); 	 - appears if the statistic is significant at
“current time,” in which case its values in the same dyadic
window are also represented (the “current time” index also
appears next to the corresponding circle); — control limit for
the statistic, which is represented every time a significant
event is detected at some scale relevant for the control chart;
●- indicates a “common cause” observation (event is not
significant). [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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complementary role of signaling abnormalities during the du-
ration of a sustained shift.

We now analyze the same situation, but using techniques
designed to handle data at a single resolution that adopt the
procedure for handling multiresolution data represented in Fig-
ure 2b. Results regarding the T2 and Q statistics for the MSSPC
methodology with uniform discretization (Unif.-MSSPC) are
presented in Figure 6. Once again, the number of the observa-
tion appears as a label when it is significant from the standpoint
of the control chart statistic. One can see that control charts
detect the shift quite promptly, but the definition of the region
where the shift occurs is distorted due to the way values for
lower resolution variables are handled.

Figure 7 presents results regarding the use of PCA-SPC. We

can see that in this case only the Q statistic detects significant
abnormal activity going on during the duration of the shift,
even though its detection rate is not as high as that exhibited by
multiscale methods. This difference derives from the increased
sensitivity of MSSPC methods, which have the ability of
zooming into process behavior at different scales (octave fre-
quency bands) in the search for changes in normal variability
patterns.

The main feature of the MR-MSSPC methodology illus-
trated in this example is its ability to define well the duration of
abnormalities when multiresolution data are present. It is quite
sensitive in detecting its beginning, but, even more than this,
effective in the detection of its end, due to a consistent use of
the time supports regarding low resolution values achieved
through the implementation of an orthogonal wavelet transfor-
mation over a variable dyadic length window. In the next
example, we consolidate these features through an extended
Monte Carlo simulation study.

Example 2. MR-MSSPC: extended simulation study

The previous example illustrated several interesting proper-
ties of MR-MSSPC. In order to consolidate such properties and
show that they are not connected with the particular dataset
analyzed, an extended Monte Carlo simulation study was also
conducted, where several shifts were tested, together with
different resolution levels associated to variable X4 (or, stated
equivalently, with averaging windows of different lengths used
for variable X4). Resolution levels tested were J4 � {2, 3},
and the shift magnitudes analyzed were as follows: shifts �
{0, 0.5, 1, 2, 3, 4}. For each resolution level, a reference data
set composed of 2048 observations was created in order to
estimate the models underlying each of the tested methodolo-
gies, after which a test set with 256 observations was generated
with a shift introduced between observation number ni and
observation number nf. To avoid biases due to shift location, ni

is randomly extracted from a uniform distribution: ni 
 U
(40,50), while the duration of the shift was kept constant,
corresponding to the next 40 observations (nf � ni � 40). The

Figure 5. Plots of the T2 and Q statistics for the approx-
imation coefficients at scales 0 < j < Jdec, with
control limits set for a confidence level of 99%.
[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Figure 6. Results for MSSPC with uniform discretiza-
tion: plots of the T2 and Q statistics for recon-
structed data.
Control limits are set for a confidence level of 99% (repre-
sented by symbol 	). [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.
com.]

Figure 7. Results for cPCA-SPC: plots of the T2 and Q
statistics, with control limits set for a confi-
dence level of 99% (cPCA stands for “classic”
PCA, also referred to here simply as PCA).
[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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generation of the test set and shift location was repeated 2000
times for each shift magnitude.

The methods tested and compared here are the following:
MR-MSSPC, Dyadic-MSSPC (MR-MSSPC with dyadic dis-
cretization, but using only data at a single resolution), Unif.-
MSSPC, and PCA-SPC.

The detection metrics that will provide the ground for our
comparisons are:

● Average run length (ARL), calculated considering the first
occurrence of a significant event either in the T2 or Q control
charts;

● True Positive Rate (TPR), which in this work corresponds
to the fraction of significant events detected during the duration
of the shift (between ni and nf), relative to the maximum
possible amount of detections that could be achieved with each
methodology (that is, if all the statistics’ values computed
during this interval were assumed to be significant);

● False Positive Rate (FPR), here defined as representing the
fraction of false alarms detected right after the process returns
to normality, in a range of time with the same amplitude as the
one used for calculating TPR (between nf � 1 and nf � 41),
once again relative to the maximum possible amount of detec-
tions that could be achieved with each technique.

The number of selected principal components was kept
constant at 2, Jdec set to 5, and the wavelet transform used was
the Haar transform. Our significance levels, adopted for each
method, were also adjusted in order to obtain similar ARL(0)
performances (average run length obtained under the absence
of any shift).

Figure 8 compares ARL performances obtained for the var-
ious methods. The time delay associated with MR-MSSPC
only becomes an issue for shifts of magnitude greater than 2,
after which it stabilizes at around 0.5, which seems acceptable
for most applications. Thus, even though speed of detection
was not a specific goal motivating the conception of our frame-
work, it ends up also performing well in this regard.

Results regarding TPR are shown in Figure 9, where we can

see that MR-MSSPC performs better than its alternatives. It
also does quite well when the process goes back to normal
operation (Figure 10), with a low false alarm rate, which is only
sometimes overtaken by PCA-SPC. However, in this situation,
one must not forget that such a technique presents lower true
positive detection metrics (TPR), as shown in Figure 9. There-
fore, these results point towards an improved overall perfor-
mance achieved by MR-MSPSC regarding the duration of the
fault (higher TPR), quick detection of its beginning (low ARL),
and effective delimitation of its end (low FPR).

Figure 8. ARL results for the different methodologies,
using shifts of different magnitude and two
levels of resolution associated with variable
X4.

Figure 9. TPR results for the different methodologies,
using shifts of different magnitude and two
levels of resolution associated with variable
X4.

Figure 10. FPR results for the different methodologies,
using shifts of different magnitude and two
levels of resolution associated with variable
X4.
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Example 3. MR-MSSPC for multiresolution data with
nondyadic supports

When the values of a lower resolution variable represent the
mean values over a non-dyadic time support, the attribution of
its scale index is not straightforward. In this example we show
how this issue can be effectively dealt with within the scope of
our MR-MSSPC framework. The proposed solution consists of
implementing the sequence of steps summarized in Table 2.

When the averaging supports have dyadic length, the above
procedure provides the same values for Xi as the standard
procedure. When they do not have such a property, it balances
the contribution from each value within each sub-region of
length 2Ji. To illustrate the application of this strategy, we will
now consider variable X4 in model (1) to represent the average
taken over a window of 5 successive values. Thus, according to
step I in Table 2, J4 � log2(5) � 3. The data set is also
processed in order to be used with approaches based on single
resolution data, by holding average values constant until a new
mean value becomes available (Figure 2b). The results ob-
tained for MR-MSSPC, Unif.-MSSPC, and PCA-MSSPC,
when a shift of magnitude 1 is introduced between observation
43 and 83 (included), are presented in Figures 11 to 13. An
improvement in the definition of the faulty region, as well as in

the detection of returns back to normality, is obtained through
MR-MSSPC, even in this situation where the averaging win-
dow does not have a dyadic support.

Example 4. MR-MSSPC applied to a CSTR under
feedback control

This final example aims to illustrate several interesting fea-
tures that may arise in real world process monitoring imple-
mentations of MR-MSSPC, under the presence of time dynam-
ics and non-linearities, besides variables collinearity. In
particular, we will analyze how the number of components for
the PCA models at each scale can be selected from an analysis
of the multiscale covariance structure relative to normal oper-
ation conditions, and show how our method performs in the
detection of a bias in the temperature sensor for the inlet
stream. Furthermore, we also see how such information can be
applied in order to set the resolution needed for some variables
to higher scale indices, without compromising, in general,
monitoring performance.

The system considered here consists of a simulated industrial
nonisothermal CSTR, where an irreversible and exothermic

Table 2. Selection of Resolution Index (Ji) When the
Averaging Support for a Lower Resolution Variable

Is Not Dyadic

I. Set Ji as the index for the next coarser scale, i.e., Ji �
log2(AS), where AS is the averaging time support and
log2(AS) stands for the smallest integer n � log2(AS).

II. Project data onto scale Ji using the following weighted
averaging procedure:
a. FOR each window of dyadic length under analysis (length

2Jmax(k)), divide it into sub-regions of length 2Ji (K sub-
regions).
1. FOR each sub-region (l � 1:K):

i. Collect lower resolution values (xj) and calculate the
fractions of their averaging support contained in the
sub-region l under analysis (wj).

ii. Calculate the weighted average of the collected values:
Xi(l) � ¥j wjxj/¥j wj.

Figure 11. Plots of the T2 and Q statistics at the two
resolutions available in the data set, Ji � {0,3},
using data reconstructed from significant
scales.
Control limits are set for a confidence level of 99%. [Color
figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]

Figure 12. Results of MSSPC with uniform discretiza-
tion: plots of the T2 and Q statistics for the
reconstructed data.
Control limits are set for a confidence level of 99% (now
represented by symbol 	). [Color figure can be viewed in
the online issue, which is available at www.interscience.
wiley.com.]

Figure 13. Results for cPCA-SPC: plots of the T2 and Q
statistics.
Control limits are set for a confidence level of 99%. [Color
figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]
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first order reaction (A3B) takes place.44 This reactor is
equipped with a water jacket that removes excess heat released
and two control loops (proportional action) that act upon two
manipulated variables, that is, outlet flow rate (F) and flow rate
through the jacket (Fcj), in order to control the process vari-
ables volume, V, and reactor temperature, T, respectively. Fig-
ure 14 illustrates this system, whereas more details about its
mathematical model, parameters, and operating conditions can
be found in the Appendix.

Normal operating conditions variability was generated by
considering randomness associated with variables F0, T0, Tcj,0,
and CA0. For the first three variables, they were assumed to be
of the autoregressive type (first order, Eq. 2), with parameters
as presented in Table 3:

X�k� � � � X�k � 1� � ��k�, ��k� � N�0, 	X
2� (2)

As for CA0, we assume that the reactant is fed to the CSTR from
successive tanks, with 2 m3 each, for which concentration
shows little variation (homogenous mixture within each tank),
but changing from tank to tank, according to CA0 
 N(0.5,
0.12). A reference data set was generated, representing 364
hours of normal operation, during which 10 variables,
{Xi}i�1:10 � {V, T, Tcj, CA, F0, CA0, T0, Tcj,0, F, Fcj},
were collected every 10 s, and analyzed in order to set moni-
toring parameters, estimate models at each scale, and gain
insight regarding multiscale features. In this preliminary anal-
ysis stage, a decomposition depth of Jdec � 12 was chosen,
which is high enough to characterize all the phenomena going
on in the range of scales relevant for this process. Figure 15
presents the eigenvalues profiles for covariance matrices at
each scale. This plot clearly illustrates that the dimension of the
relevant PCA subspaces for process monitoring purposes in
dynamic non-linear systems is, in general, a function of scale,
according to the power spectra of the variables involved and

the correlation they present in the frequency bands correspond-
ing to different scales. Using the information conveyed by such
plots, we can also choose the number of principal components
to be adopted for PCA models of the wavelet coefficients at
each scale, as well as get important clues regarding the decom-
position depths that should be used in order to capture the
system’s main dynamic features. In this particular case, we did
set Jdec � 9 because above this scale the behavior of the
correlation structure does not seem to change significantly, thus
meaning that relevant dynamic features of the system are
expressed at lower scales.

The absolute values of the load vectors for the selected
principal components, at each scale, are presented in Figure 16
(shadowed plots), where we can deepen the analysis of the
correlation structure at different scales, looking for the main
active relationships in each frequency band, and distinguish
which variables are more significantly involved. This last point
can be conducted more effectively by looking at the fraction of
explained variance for each variable in the PCA model devel-
oped at each scale (Figure 17). From these two figures we can
see that, although there is some overlapping due to the inter-
ception between frequency bands characteristic of some vari-
ables, in scales 1–3 the variables involved are mainly those
with fast dynamics (notably, flow rates), whereas in the inter-
mediate scales (3–8) we get those variables with slower dy-
namics (temperatures), as well as the attenuated effect of flow
rate “filtered” by reactor capacity (volume). Finally, in scales
8–12, the slow mode variables (CA0, the majority of the system
outputs, and control variables) become relevant.

Figure 14. Representation of CSTR with level and tem-
perature control.

Table 3. Parameters of Autoregressive Models Used for
Simulating Normal Operation Regarding Variables F0, T0,

and Tcj,0

Variable � 	X
2

F0 0.5 0.750
T0 0.95 0.878
Tcj,0 0.9 1.72

Figure 15. Eigenvalues plots for the covariance matrices
regarding variables wavelet detail coeffi-
cients at each scale (j � 1:12) and for the
wavelet approximation coefficients at the
coarsest scale (j � 12, last plot at the bottom).
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After having estimated the MR-MSSPC monitoring param-
eters, a test data set containing about 45 hours of operation data
was also generated, with a bias of 6 K introduced in T0 (�/	 �
2), between times 22h:46m and 34h:09m. The monitoring
results obtained for the MR-MSSPC Q statistic are presented in
Figure 18, showing that our method successfully detected this
shift.

As Figure 17 points out, variable number 4, CA0, only
becomes relevant at coarser scales. This means that we can use
a lower resolution to represent its behavior along time, without
loosing much detail but introducing a time delay related with

the process of average computation. Figure 19 illustrates what
happens when we set the resolution of CA0 at J4 � 5, and
conduct MR-MSSPC over the same test data set. Detection
results do not change significantly, but the location of the fault
becomes even more evident in the representation for Ji � 5.

In Figure 19 we are not handling existing multiresolution
data, but are actually creating a multiresolution data structure,
after analyzing the multiscale characteristics of the system
operating under normal conditions. The coarser scale selected
represents a trade-off between the adequate scale to express a
certain variable and the time delay involved in the computation
of its mean values.

Conclusions

We presented an approach for conducting MSSPC that ad-
equately integrates data with different resolutions (multireso-

Figure 16. Absolute value of the load vectors associated
with the principal components selected at
each scale (shadowed graphs).

Figure 17. Fraction of explained variance for each vari-
able in the PCA model developed at each
scale.

Figure 18. Plot of the Q statistic for MR-MSSPC applied
over the test data set, with all variables avail-
able at the finest scale Ji � 0(i � 1:10) (control
limits defined for a 99% confidence level).
[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Figure 19. Plot of the Q statistic for MR-MSSPC applied
over the test data set, with all variables avail-
able at the finest scale, except CA0, which is
available at J4 � 5 (control limits defined for a
99% confidence level).
[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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lution data). Such an approach was then tested under four
different scenarios, in order to illustrate and establish its main
features. The first three examples underline a consistent use of
the time supports regarding lower resolution variables, thus
enabling a clearer definition of the regions where significant
events occur and a more sensitive response when the process is
brought back to normal operation. They also show that, as long
as the fault does not happen exclusively in the lower resolution
variables, no significant time delay is introduced by the pro-
posed methodology. A final example brings into discussion
both interesting and important issues regarding practical appli-
cations involving dynamic systems with non-linearities, such
as the interpretation of their multiscale covariance structure,
selection of monitoring parameters, and corresponding scales.
Ongoing and future work address an extension of these ideas to
the development of a multiresolution dynamic modeling frame-
work, which encompasses the definition of a multiscale model
structure, its identification, and posterior use in other tasks,
such as multiresolution optimal estimation and control. At this
stage, we are also examining some applications of our data
analysis framework to sets of industrial data obtained from
chemical plants.
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Appendix

The CSTR mathematical model, supporting the simulations
carried out in example 4, is shown below,44 according to the
nomenclature, steady state, and parameter values presented in
Table A1.

Global mass balance to CSTR

dV

dt
� F0 � F (A1)

Partial mass balance to component A

dVCA

dt
� F0CA0 � FCA � k0e

�E/RTCAV (A2)

Global CSTR energy balance

dVT

dt
� F0T0 � FT �

�H


Cp
k0e

�E/RTCAV �
UA


Cp
�T � Tcj� (A3)

Global cooling jacket energy balance

dVcjTcj

dt
� Fcj�Tcj,0 � Tcj� �

UA


jCp,cj
�T � Tcj� (A4)

Control of reacting mixture volume (reactor level) using
outlet flow rate

F � Fset � Kc2�Vset � V� (A5)

Control of CSTR temperature using cooling water flow rate

Fcj � Fcj,set � Kc1�Tset � T� (A6)

Table A1. Variables Used in the Mathematical Model and
Their Steady State Values, Along with

Model Parameter Values

Variable/
Parameter Description

Steady state value/
parameter value

F Outlet flow rate 1.133 m3 � h�1

V Reacting mixture volume 1.359 m3

CA0 Concentration of reactant
A in the inlet stream

8.009 kmol � m�3

CA Concentration of reactant
A in the CSTR

3.924 kmol � m�3

T Temperature in the CSTR 333.3 K
Tcj Temperature in the cooling

jacket
330.3 K

Fcj Water flow in the cooling
jacket

1.413 m3 � h�1

T0 Temperature in the inlet
stream

294.4 K

Vcj Cooling jacket volume 0.1090 m3

k0 Pre-exponential factor 7.08 	 1010 h�1

E Activation energy 69780 kJ � kmol�1

R Gas constant 8.332
kJ � kmol�1 � K�1

U Overall heat transfer
coefficient

0.8517
kW � m�2 � K�1

A Heat transfer area 23.23 m2

Tcj,0 Temperature in the cooling
jacket’s inlet stream

294.4 K

�H Heat of reaction �69780 kJ � kmol�1

Cp Heat capacity of the
mixture

3.140
kJ � kg�1 � K�1


 Density of the mixture 800.9 kg � m�3

Cp,cj Heat capacity of the
cooling liquid (water)

4.187
kJ � kg�1 � K�1


cj Density of the cooling
liquid (water)

998.0 kg � m�3

Kcl Tuning constant for the
proportional action in
the temperature control
loop

0.3568
m3 � h�1 � K�1

Kc2 Tuning constant for the
proportional action in
the level control loop

10 h�1

Fset Set point for outlet reactor
flow

1.133 m3 � h�1

Fcj,set Set point for cooling jacket
flow

1.413 m3 � h�1

Tset Set point for reactor
temperature

333.3 K

Vset Set point for reacting
mixture volume

1.359 m3

Manuscript received Oct. 10, 2005, and revision received Jan. 27, 2006.

AIChE Journal June 2006 Vol. 52, No. 6 Published on behalf of the AIChE DOI 10.1002/aic 2119


