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A moving finite elements scheme is developed and used for solving 1-D dynamic
population balance equations (PBE). The method stands on the weighted finite-
elements based approach, and the local solutions are represented by cubic Hermite
polynomials. The weighting function is the gradient of residuals with respect to time
derivatives of the solution at the nodes and nodal velocities. The general PBE consid-
ered includes nucleation, growth, aggregation and breakage terms. The accuracy of
the moving finite elements method (MFEM) is evaluated by comparing the results to
the analytical solution in problems involving combinations of the first three phenomena
considered. The formulation addressed was successful when used for solving a two-
phase system representing a semibatch precipitation reactor. The MFEM enables one
to achieve accurate results at reasonable CPU times, thus, showing to be adequate for
these kind of problems. � 2008 American Institute of Chemical Engineers AIChE J, 54: 673–
692, 2008
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Introduction

During recent decades the particulate and emulsion pro-
cesses gained great prominence in Chemical Engineering,
mainly because they became economically advantageous and
technologically attractive for some production units/goods.
These systems, designated as particulate systems, are charac-
terized by both a continuous and a dispersed phase. The anal-
ysis of these systems aims at describing the behavior of the
particles’ population distribution forming the dispersed phase
and the continuous environment surrounding it. This popula-

tion is commonly represented by an extensity density, usually
the number of particles, dependent on the spatial dimension

that represents them, such as the volume or the length, here

called characteristic dimension. The population balance equa-

tions allow to calculate the particle-size distribution (PSD)

dynamics, which is essential to understand the processes.

Population balance equations are of use in a vast number of

fields ranging from astrophysics to chemistry, chemical engi-

neering and biophysics. Typical chemical engineering appli-

cations cover crystallization systems, gas-liquid and liquid–

liquid dispersion columns, and some grinding units. More-

over, with the increasing relevance of biochemistry and bio-

physics in chemical engineering other problems have been

addressed, such as the cells growth behavior1 and the simula-

tion of emulsion based processes.2
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The general PBE described by Eqs. 1–33,4 represents four
different phenomena—particles growth, nucleation, aggrega-
tion and breakage
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nðv; 0Þ ¼ f ðvÞ (3)

where v stands for the characteristic dimension of the PSD,
n(v,t)dv is the number of particles with size between v and v
1 dv, G(v) is the growth rate of particles, q(v0,v) is the
aggregation kernel rate, b(v) is the breakage rate, r(v)
stands for the distribution of the number of particles pro-
duced due to the breakage of one particle of characteristic
dimension v, g(v,v0) is the daughter distribution of particles
produced by breakage, S(v,t) is the nucleation rate, b(�) is
the boundary condition, and f(v) is the initial size distribu-
tion. The first term on the rhs of Eq. 1 accounts for growth
of particles, the second term represents the production of
particles of characteristic dimension v due to the aggrega-
tion of particles of v 2 v0 and v0, the third quantifies the
particles disappearance due to the aggregation phenomena,
the fourth represents the production of particles of charac-
teristic dimension v by breakage, the fifth the consumption
due to breakage, and the last accounts for the nucleation
phenomena.

In recent years, as the particulate based processes gained
relevance in the chemical industry, researchers have been
paying an increasing attention to these problems. Moreover,
since many of the processes are used for manufacturing
high-value products, the development of efficient control
strategies became essential. The design of model based con-
trol strategies cannot be achieved if process behavior is not
known, and this information can be obtained by solving PBE
(see the works of El-Farra et al.5 and Immanuel and Doyle
III6). In most cases the analytical solution of the PBE is not
available, therefore, its numerical solution has emerged as a
demanding challenge and a requisite for implementing so-
phisticated control strategies.

The general PBE has the form of an integropartial-differ-
ential hyperbolic equation whose numerical solution is not
easy to reach, particularly due to instability and numerical
diffusion. Moreover, it is rather common that its solution
gives rise to moving fronts and sharp changes originated by
either steep initial distributions or the combination of the
particulate mechanisms involved. To cope with the develop-
ment of fronts that travel all around the spatial domain mov-
ing grid techniques can be used allowing one to reach accu-
rate results without a prohibitive increase in the computa-
tional time required.

This article is organized as follows. The next section
presents a review of previous works focused on the numeri-
cal solution of PBE equations, and on the moving finite ele-
ments method applied to the solution of partial differential
equations (PDE). The approach proposed for solving the
PBE is developed in the following section and its perform-
ance is tested in several case studies that involve growth,
nucleation and aggregation terms. Later in the article this for-
mulation is extended to systems described by PBE coupled
with other extensity balances representing the dynamics of
the continuous phase. The conclusions are summarized in the
last section.

Literature review

The classification of numerical approaches for PBE solu-
tion is perfectly established in the literature.3,4 It contains
two categories:

� Methods where global basis functions associated to time
dependent coefficients are used to approximate the solution.
The sum of the basis functions weighted by local time de-
pendent coefficients will satisfy the solution of the PBE. This
group of strategies encompasses all finite-element schemes,
those based on global functions and those based on local
approximations.

� Methods which are based on the discretization of the
spatial dimension into a given number of intervals, thus, con-
verting the original PDE into a set of ordinary differential
equations (ODE) later solved with respect to the number of
particles contained in each interval, commonly designated as
bin. This framework is usually referred as discretized popula-
tion balances (DPB) methods.

The state of the art on DPB methods can be found in the
remarkable work of Ramkrishna.3 The first schemes in the
literature denoted the difficulty in conserving the volume
and droplet number,7 and this led to the development of
methodologies to overcome this problem. However, most
of them are problem dependent since they use properties of
the PBE to derive the equations arising from discretization
(see the work of Hill and Ng8). This disadvantage was
overcome by Kumar and Ramkrisha9 with a strategy that
ensures internal consistency of two predefined moments of
the population and some generality in treatment (see also
the work of Kumar and Ramkrishna10). The key concept
introduced to guarantee internal consistency is called
pivot—a discrete size delimiting a bin—which allows one
to convert the PBE into a set of partial differential equa-
tions by redistributing the total property associated to each
bin. This framework is able to provide the desired popula-
tion distribution instead of sophisticated approximations of
the density number.

Problems involving growth and nucleation are demanding
challenges for fixed grid approaches, such as the fixed pivot
discretization scheme, mainly due to the development of
moving fronts not accurately described by coarse fixed grids.
To overcome this problem Hounslow et al.11 and Marchal
et al.12 used a set of expressions based on finite difference
approximations. To deal with the same growth and nuclea-
tion phenomena Kumar and Ramkrishna13 extended the pivot
method by combining it with the method of characteristics
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enabling it to handle any grid distribution, and, therefore,
avoiding instability problems. The key idea behind this
approach is to derive discrete equations taking into account
the velocity of the moving fronts, and this information is
obtained from the equation of characteristics corresponding
to the original PBE. Recently Bürger et al.14 also used a fi-
nite differences based scheme to reach a solution for a prob-
lem dealing with the wear of steel balls in grinding mills.

Gelbard and Seinfeld15 pioneered the derivation of local
finite-elements approaches with regard to exploiting the flexi-
bility of basis functions in capturing moving fronts and dis-
continuities, thereby improving the performance of the meth-
ods available to accurately describe those features. However,
at the time, this class of methods presented a lower computa-
tional efficiency, due to the complexity of the algorithms
involved and the limitations in terms of CPU velocity. The
exponential increase in computational velocity together with
an improved robustness of ODE integrators provided finite-
elements methods with a remarkable applicability. This fea-
ture combined with the generality and the accuracy they
guarantee increased the interest of other researchers to this
family of methods, thereby improving it and demonstrating
its ability to cope with different types of particulate phenom-
ena. Among others, Nicmanis and Hounslow16 proposed a
Galerkin finite elements approach, based on cubic Lagrange
polynomials to describe the basis functions. Later, Rigopou-
los and Jones4 derived and used a finite-elements based
scheme standing on orthogonal collocation combined with
local linear approximations. An approximated solution meth-
odology based on the method of characteristics was used by
Lee et al.17 to solve the model of a semibatch precipitation
reactor and derive a model predictive control strategy. Imma-
nuel et al.18 also used with success a finite-elements scheme
coupled with local approximations given by fifth order
Legendre polynomials.

The literature on the application of adaptive grid strat-
egies to PBE solution is scarce. However, in problems
where the initial distribution or the combination of phe-
nomena involved generates moving fronts and sharp zones,
adaptive grids are a good choice. They allow to move and
concentrate the nodes representing the bins boundaries in
the zones where an indicator of the solution magnitude,
such as the first order spatial derivative, is higher, there-
fore, avoiding the use of tight fixed grids in the whole do-
main. This reduces the CPU time without compromising
the accuracy of the solution. The moving pivot approach
proposed by Kumar and Ramkrishna10 falls into this group
of methods. To preserve the number of ordinary differential
equations arising from discretization, the positions of the
pivots are allowed to move in order to follow the changes
in the number density, according to the ratio between the
moments of order 1 and 0. This strategy was successfully
used by Crowley et al.19 to solve the PBE describing the
dynamics of an emulsion polymerization process enclosed
in the calculation of the optimal control strategy. To mini-
mize the finite domain error when solving problems that
include breakage and aggregation Attarakih et al.20 com-
bined moving grids, based on a moving pivot scheme with
a procedure to locate the position of the nodes. Eyre
et al.21 derived a spline collocation technique comple-
mented with an adaptive grid. Mahoney and Ramkrishna22

combined a Galerkin finite-elements formulation with the
method of characteristics enabling it to track discontinuities
by associating its position to the position of a given node.
A moving finite elements explicit approach was presented
by Tsang and Rao23 and used to solve PBE.

The seminal idea of using the moving finite elements
method for solving evolutionary PDE is owed to Miller and
Miller24 (complimentarily see the work of Miller and
Miller25). This methodology is based on computing simulta-
neously the node positions, and the solution of the PDE at
the nodes in order to minimize the square norm of the resid-
uals across the spatial domain. The domain is partitioned
into finite elements, delimited by nodes, and the local
approximations of the solution in each element are piecewise
linear polynomials. The ODE system arising from the appli-
cation of the method of lines is solved with respect to nodal
velocities and time dependent coefficients associated to local
basis functions, which represent the solution of the PDE at
the nodes. Baines and Wathen26 presented a global explicit
formulation of the MFEM, based on the spatial projection of
the L2 norm of the residuals. The key step of the method is
to carry out a ‘‘mass’’ matrix inversion through the conjugate
gradient method. This procedure includes a first step in
which such matrix is conditioned employing algebraic
manipulation to explicitly identify and overcome node coa-
lescence and parallelism.

The original space of basis functions employed was con-
sidered nonadequate to handle partial differential equations
containing diffusion terms, since the approximation of sec-
ond-order spatial derivatives leads to d-functions, and the
integrals generated by the minimization of the residuals
square norm in the domain are difficult to calculate (can only
be approximated). To widen the complexity of the problems
handled and the accuracy, high-order polynomial spaces have
been considered. Among others, Hansen and Hassager27 used
quadratic functions, Herbst et al.28, Pipilis29 and Duarte30

used cubic Hermite polynomials, Sereno et al.31 and Coimbra
et al.32 used variable order Lagrange polynomials.

Formulation of Moving Finite Elements
Based Algorithm

The algorithm proposed in this section to solve 1-D PBE
stands on the moving finite elements method combined with
cubic Hermite polynomials to represent local approximations
of the solution. The choice of a finite-elements based scheme
aims at achieving a flexible framework that can easily cope
with any combination of particulate mechanisms, any structure
of aggregation kernel or growth rate, and provide the complete
PSD in terms of density number, with good resolution.

The cubic Hermite polynomials’ space, here represented as
H3, is chosen due to its ability to represent the solution and
its first order spatial derivative, and the ease of interpretation.
Furthermore, this space of functions assures the continuity of
both the solution and its first-order spatial derivative at the
nodes, thus, allowing no need for additional algebraic equa-
tions to represent continuity conditions. This is relevant
because for this the differential algebraic equations (DAE)
system generated by discretization includes the algebraic
equations arisen from boundary condition approximation,
thus, leading to better integration properties and requiring
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less computational effort. Each node is associated with two
time-dependent coefficients, one representing the solution of
the PDE at the node, the other its spatial derivative. The
advantages of using this space of functions regarding the
interpretability are straightforward.

For the sake of compactness and considering the nomen-
clature already introduced, the general PBE described by
Eqs. 1–3 is redefined as

nt ¼ L n; nv;

Z
X
n dX; � � � ; v; t

� �
(4)

nð0; tÞ ¼ B n; nv;

Z
X0
n dX0; � � � ; v; t

� �
(5)

nðv; 0Þ ¼ f ðvÞ (6)

t 2 ½0; tf �; v 2 X (7)

where n is the number of particles, nt the time derivatives of
n, L(�) and B(�) are operators including nonlinear transfor-
mations of n, spatial derivatives represented by nv, and inte-
gral terms in domains X and X0, with X0 ( X. The residual
of the PDE equation, is, therefore, given by:

r ¼ nt � L n; nv;

Z
X
n dX; � � � ; v; t

� �
(8)

Figure 1 represents the discretization scheme of a general
domain X into NE finite elements of length hk(t), k [ {1, . . .
NE}, delimited by nodes located at positions sj(t), j [ {0, . . .,
NE}.

Global approximations of the terms included in operators
L(�) and B(�) are defined as follows:
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where N is the approximation of n, Nt the approximation of
nt, Nv the approximation of nv, Ak(t) time dependent coeffi-
cients, /k[�] basis functions dependent on a spatial dimen-

sion normalized with respect to the length of the finite ele-
ments, hk(t) 5 sk(t) 2 sk21(t), which are also time dependent
due to node mobility, _Ak(t) stands for time derivatives of
Ak(t), _hk(t) 5 ṡk(t) 2 ṡk21(t) for time derivatives of hk(t), and
u is the normalized spatial variable in each of the finite ele-
ments, u 5 (v 2 sk21(t))/(sk(t) 2 sk21(t)), v [ [sk21(t);sk(t)].
The approximation of residuals becomes

R ¼ Nt � L N;Nv;

Z
X
N dX; � � � ; v; t

� �
(13)

with terms defined by Eqs. 9–12.
The finite elements formulation here presented stands on

the minimization of the square norm of the residuals with
respect to _Ak(t), Vk, and node velocities ṡj(t), Vj. The method
falls into the classic formulation of finite-element approaches.
The weighting function employed to generate local discre-
tized equations is the derivative of residuals with respect to
the time derivative of coefficients and nodal velocities,
respectively. The most common schemes are the orthogonal
collocation, the method of Galerkin and the method of
moments.33 This weighting function increases the CPU time
required, because the integrals in the weighted residuals have
to be evaluated at every finite element. Nevertheless, it guar-
antees the equidistribution of the error at local and global
scales, which is appropriate for problems giving way to com-
plex evolutionary dynamics.

As the space H3 was chosen to represent local approxima-
tions it is now possible to rewrite Eq. 9

N ¼
XNE
k¼1

X4
i¼1

ak;iðtÞ Hi½u; hkðtÞ� (14)

where ak,i(t) are time dependent coefficients associated with
each of the cubic Hermite polynomials that represent the so-
lution in the element k, and Hi is the cubic Hermite polyno-
mial (see the book of Abramowitz and Stegun34). The formu-
las of cubic Hermite polynomials and their derivatives with
respect to hk(t), and u can be found in the works of Pipilis29

and Duarte.30 Notice that the time dependent coefficients
ak,i(t) replace the parameters Ak(t) when the formulation
based on general specified functions is applied in the space
of orthogonal polynomials H3. Local approximations of the
terms Nt, Nv and $X N dX (Eqs. 10–12) are obtained simi-
larly, thus, converting the global feature of the method to
local-coefficient dependent equations. The resulting global
equations are

Z
X
R

@R

@ _ak;i
dX ¼ 0; k 2 f1; . . . ;NEg; i 2 f1; . . . ; 4g (15)

Z
X
R

@R

@ _sj
dX ¼ 0; j 2 f0; . . . ;NEg; (16)

leading to local equations

Z sk�1

sk�2

Rk�1

@Rk�1

@ _ak�1;i
dhk�1 þ

Z sk

sk�1

Rk
@Rk

@ _ak;i
dhk ¼ 0

k 2 f2; � � � ;NE� 1g; i 2 f1; � � � ; 4g ð17Þ

Figure 1. Domain discretization scheme.
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@ _sj
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Z sk

sk�1

Rk
@Rk

@ _sj
dhk ¼ 0 k 2 fNEg; j 2 fk � 1; kg (22)

where Rk is the residual approximation in the kth finite ele-
ment.

The original formulations of the moving finite elements
method referred that its application is conditioned by two
major problems which increase the difficulty of integrating
the arising system of ODEs (Eqs. 17–22). The first, called
parallelism, is due to the occurrence of solution linearities in
neighbor finite elements that lead to linearly dependent equa-
tions. The second, designated as node overtaking, causes grid
tangling. The strategies proposed to overcome each of these
problems depend on the basic formulation of the MFEM
used, with the most common strategies being mesh redistrib-
ution, addition of a penalty function to the square norm of
residuals to be minimized, and node avoidance. The
approach adopted here was originally proposed by Miller and
Miller25—the addition of a penalty function to avoid that
internodal viscosity forces lead to nodal coalescence. Several
authors proposed different penalty terms, some of them intro-
ducing more than one parameter which have to be set (see
for instance the work of Gelinas et al.35). The choice of a
penalty function based on a single parameter allows reducing
the dependence of the MFEM on parameters to tune, which
would be problem dependent. The internodal viscosity force,
e, which can be understood as the degree of freedom given
to the nodes, is the only parameter included in the penalty
function, and Eq. 16 becomes

Z
X
R

@R

@ _sj
dXþ � ð _sj � _sj�1Þ ¼ 0; j 2 f0; � � � ;NEg (23)

thus, leading to
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Z sk

sk�1

Rk
@Rk

@ _sj
dhk þ e ð _sk � _sk�1Þ ¼ 0

k 2 f1g; j 2 fk � 1; kg ð25Þ

Z sk

sk�1

Rk
@Rk

@ _sj
dhk þ � ð _sk � _sk�1Þ ¼ 0

k 2 fNEg; j 2 fk � 1; kg ð26Þ

Equations 24–26 replace the relations (20–22). Eqs. (17–
19) and (24–26) together with the relations obtained by dis-
cretizing the boundary condition B(�), and the equations that
describe the movement of the nodes at the boundaries of do-
main X form the DAE system obtained by PDE discretiza-
tion. In problems with fixed boundaries the nodes associated
with domain extremes are not allowed to move, therefore

_s0ðtÞ ¼ 0 (27)

_sNEðtÞ ¼ 0 (28)

The formulation presented in this section is written in
terms of generic operators and functional forms aiming to
reduce the complexity. In the Appendix the closed-form
coded DAEs for Case 1 are presented to enlighten the meth-
odology application.

The algebraic equations included in the DAE system result
from the discretization of the boundary conditions. The com-
plete DAE system, of 3 (NE11) equations, falls into the gen-
eral form

Uðy; _y; v; tÞ ¼ 0 (29)

where F is a vector of nonlinear functions, and y 5 [{ak,i(t),
k [ {1, . . . , NE}, i [ {1, . . . , 4}}, {sj(t), j [ {0, . . . , NE}}]T.
The cubic Hermite polynomials allows one to take advantage
of the equality of the time dependent coefficients at the
nodes

ak�1;3ðtÞ ¼ ak;1ðtÞ (30)

ak�1;4ðtÞ ¼ ak;2ðtÞ (31)

resulting in three variables per node (ak,1(t), Vk, ak,2(t), Vk,
and sj(t), Vj), with ak,1(t) as the solutions’ approximation at
the nodes, N(v,t), and ak,2(t) its first-order spatial derivative,
Nv(v,t). The initialization of the coefficients ak,1(t) is based
on the initial PSD, represented as f(v). By their turn, the initi-
alization of ak,2(t) is based on the spatial derivative of f(v),
represented as df(v)/dv, evaluated numerically employing the
perturbation method.

The grid is initialized according to two distinct strategies:
� The initial assignment of the nodes’ positions taking

into account the combination of the phenomena involved and
the type of dynamics forecasted;

� The calculation of a geometric grid by employing the
algorithm owed to Nicmanis and Hounslow.16 This requires
choosing the length of the first element and of the spatial do-
main considered.

The first methodology takes advantage of the moving char-
acter of the grid that conforms to the solution in a few time
steps. It allows using smaller values of the internodal viscos-
ity force parameter, increasing the freedom of the nodes to
move in pursuit of the fronts in the later stages. However, it
depends on the problem structure and the information on the
dynamic features of the PBE being handled.
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The initial values of y provided to the solver are

sjð0Þ ¼ Iðj;NEÞ
ak;1ð0Þ ¼ f ðsk�1ð0ÞÞ k 2 f1; � � � ;NE� 1g
ak;3ð0Þ ¼ f ðskð0ÞÞ k 2 fNEg

ak;2ð0Þ ¼ df ðsk�1ð0ÞÞ
dv

k 2 f1; � � � ;NE� 1g

ak;4ð0Þ ¼ df ðskð0ÞÞ
dv

k 2 fNEg

(32)

where I (�) is the initial grid distribution, and df(sk(0))/dv is
the spatial derivative of f(v) at v 5 sk(0).

The solver DASOLV,36 which is based on backward dif-
ference formulas of variable order is used. It enables exploit-
ing the system sparsity in order to reduce the computational
effort, and includes a procedure to find a consistent initial so-
lution. The absolute and relative tolerance values were set to
1026.

The integrals in every differential-algebraic equation are
evaluated by means of Gaussian Quadrature based on eight
collocation points in each finite element, located on the zeros
of seventh order Jacoby polynomials. Two of them coincide
with the extremes of the finite element. The same approach
is used to calculate the integrals describing the breakage and
aggregation mechanisms.

Numerical tests

The moving finite elements method is applied to simulate
PBE describing particulate processes including several

combinations of nucleation, growth, and aggregation phe-
nomena. In order to evaluate the performance of the
method and its ability in dealing with each mechanism the
tests were carried out using models with a known analyti-
cal solution. The following list of combinations of phenom-
ena was considered:
(a) Pure growth;
(b) Simultaneous growth and nucleation;
(c) Simultaneous growth and aggregation.

PBE simulating pure growth

The PBE used to test the MFEM in dealing with
pure growth mechanisms is described by the following
equations

@nðv; tÞ
@t

¼ � @½GðvÞ nðv; tÞ�
@v

(33)

nð0; tÞ ¼ 0 (34)

nðv; 0Þ ¼ 0 if v < 10�5

v0;i
v0;i

exp � v
v0;i

� �
if v � 10�5

8>><
>>: (35)

The parameters involved in the initial distribution, v0,i and
v0,i, were set to 0.00384 and 0.0062, respectively. It is
assumed that the minimum characteristic dimension of the
particles is 1025. The differential and algebraic Jacobian
matrices of the ODE system, arisen from discretization, have
the same structure, which is band-diagonal with five non-
zeros to the left of the diagonal, and five immediately to its
right (see Figure 2).

Figure 2. Jacobian structure for pure growth PBE (NE 5 5).

(a) Differential; and (b) Algebraic.
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Case 1 – G(v) 5 1, t [ [0,0.01], v [ [0, 0.05]
This case represents a constant growth rate and, according

to Kumar and Ramkrishna,13 the analytical solution is

nðv; tÞ ¼ 0 if v < t

v0;i
v0;i

exp � v�t
v0;i

� �
if v � t

8>><
>>: (36)

This problem gives rise to an evolutionary front with a ve-
locity equal to 1 unit of characteristic dimension/unit of time
associated to the discontinuity of the initial distribution. It is
a challenging problem for PDE solvers because of the nu-
merical instability it originates near the shock.

Figure 3a shows the movement of the nodes which con-
forms to the movement of the front and fits the discontinuity
in Figure 3b. This figure represents the 3-D solution, and
Figure 3c illustrates the contour surface that highlights the
movement of the front corresponding to the growth of par-
ticles, perfectly captured by MFEM. Along the time interval
the PSD moves toward the larger particles zone, and its dis-
tribution gets narrower, as shown in Figure 3d, where the

good agreement between analytical and numerical solutions
is also evident. The ability of MFEM in capturing the front
location without numerical diffusion is due to the placement
of two nodes immediately before and ahead of the disconti-
nuity, in order to handle the large magnitude of the spatial
derivative, and follow the residuals maximal gradient.

Case 2 – G(v) 5 v, t [ [0,2.0], v [ [0, 0.5]
The growth rate of a particulate growth process, G(v) is

now considered as linear. In their work Kumar and Ramk-
rishna13 also give the analytical solution for the linear growth
rate case which is

nðv; tÞ ¼ v0;i
v0;i

exp � v expð�tÞ
v0;i

� �
expð�tÞ (37)

As G(v) is not constant, it is expected to obtain a broader
PSD than in the previous case and this is shown in Figure
4b. As a consequence the discontinuities are attenuated,
thus, producing lower residuals dispersed all over the spa-
tial domain. This phenomenon brings the nodes, initially
placed in the region of smaller particles, to move along fol-
lowing the front, as can be seen in Figure 4a. Figure 4b

Figure 3. Solution of the PBE simulating growth at constant growth rate.

(a) Nodes movement; (b) 3-D solution; (c) Solution surface plot; and (d) Numerical vs. analytical solutions.
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also highlights the agreement between numerical and ana-
lytical solutions.

Although similar, the two models studied (Cases 1 and 2)
give origin to quite different dynamics. The first leads to
PSD narrowing, in the second the distribution gets broader
and this is followed by a reduction in particles density,
comparing to initial distribution. Table 1 lists computational
parameters used to simulate Cases 1 and 2, emphasizing the
low computational effort required to get very accurate
results.

In these two case studies the MFEM proved to be able to
handle growth mechanisms with different dynamics, and,
therefore, its adequacy to solve PBE involving pure growth
can be generalized.

PBE simulating growth and nucleation

The PBE representing the combination of particles growth
and nucleation are

@nðv; tÞ
@t

¼ � @½GðvÞ nðv; tÞ�
@v

þ SðvÞ (38)

nð0; tÞ ¼ 0 (39)

nðv; 0Þ ¼ 0 if v < 10�5

v0;i
v0;i

exp � v
v0;i

� �
if v � 10�5

8>><
>>: (40)

with S(v) standing for the nucleation rate. The initial and
boundary conditions used in Cases 1 and 2 will be used in
this subsection, in order to enable comparing and analyzing
the complexity introduced by the nucleation term. The struc-
ture of both jacobian matrices originated by this kind of
problems is similar to those presented in Figure 2. The nucle-
ation rate expression employed is

SðvÞ ¼ v0;n
v0;n

exp � v

v0;n

� �
(41)

with v0,n 5 5 3 1023 and v0,n 5 0.001.
Case 3 – G(v) 5 0.005, t [ [0,0.5], v [ [0,0.1]
The growth rate, which remains constant, was set to a

lower value than in previous case studies in order to simulate
a situation where growth and nucleation phenomena have
similar contributions to the system dynamics. The analytical
solution for this problem is given by Kumar and Ramk-
rishna13

nðv; tÞ ¼ v0;i
v0;i

exp � v� 0:005 t

v0;i

� �

þ v0;n
0:005

exp � vl
v0;n

� �
� exp � v

v0;n

� �� �
vl ¼ maxð1310�5; v� 0:005 tÞ ð42Þ

Figure 4. Solution of the PBE simulating growth at linear growth rate.

(a) Nodes movement; and (b) Numerical vs. analytical solutions.

Table 1. Parameters Employed in the Simulation
of Pure Growth PBE

Case Nodes Grid Initialization e CPU Time†

1 12 s 5 [0.0, 9.9 3 1026,
2.0 3 1025,
1.0 3 1023,
1.5 3 1023,
2.0 3 1023,
5.0 3 1023,
6.0 3 1023,
8.0 3 1023,
1.6 3 1022,
3.2 3 1022,
5.0 3 1022]T

0.2 1.000

2 13 s 5 [0.0, 1.0 3 1025,
1.0 3 1024,
1.0 3 1023,
1.5 3 1023,
2.0 3 1023,
5.0 3 1023,
6.0 3 1023,
8.0 3 1023,
1.6 3 1022,
3.2 3 1022,
0.1, 0.5]T

0.002 2.812

†On a Windows Pentium 2.80 GHz computer.
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The displacement of the nodes as they follow the growth
front is illustrated in Figure 5a. In agreement with the lower
growth rate the front moves slower than in Case 1. Due to
nucleation, the density of particles in the front increases with
time, and the discontinuity becomes sharper causing the PSD
to narrow. Figure 5b shows the increase in the density num-
ber of particles at the front during the time this process was
simulated, and Figure 5c emphasizes the smooth movement
of the front due to both the lower growth rate and the
increase in the density of particles.

Moreover, Figure 5c shows that the particles with charac-
teristic dimension smaller than those in the front are continu-
ously generated by nucleation, and its density number is not
null, as was observed in pure growth cases. Moreover, once
particles are generated by nucleation, the growth mechanism
provokes its growth, thus, leading to an increase in density
number for characteristic dimension values lower than front
position. This behavior was also reported by Kumar and
Ramkrishna,13 and can also be seen in Figure 5d where, at
any instant, the growth phenomenon gives origin to a front
that moves toward larger characteristic dimension values.

The good performance of the numerical technique in this
example is evident in this last figure.

Case 4 – G(v) 5 v, t [ [0,4.0], v [ [0,5.0]
In this case study a linear growth rate and an exponentially

based nucleation rate are considered, and the analytical solu-
tion is given by Kumar and Ramkrishna13

nðv; tÞ ¼ v0;i
v0;i

exp � v expð�tÞ
v0;i

� �
expð�tÞ

þ v0;n
v

exp � vl
v0;n

� �
� exp � v

v0;n

� �� �
vl ¼ maxð1 3 10�5; v expð�tÞÞ ð43Þ

The results obtained in Case 2 allow to expect that this so-
lution will also have a broader distribution due to the growth
dynamics, and this is confirmed in Figure 6b. Each phenom-
enon dominates in a different zone, the nucleation for smaller
particles, and the growth for larger (see Figure 6b). In this
figure, this behavior is very clear, particularly for t 5 4.0,
and one can easily locate the characteristic dimension for

Figure 5. Solution of the PBE simulating nucleation and growth at constant growth rate.

(a) Nodes movement; (b) 3-D solution; (c) Solution surface plot; and (d) numerical vs. analytical solutions.
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which both phenomena are equally important, and, therefore,
profiles associated to each phenomenon meet. Figure 6a illus-
trates the smooth motion of the nodes to adapt to the slow-
ness of the dynamics developed. This motion will be remark-
ably faster if the contribution of the growth term is larger
than nucleation. Table 2 summarizes the runs carried out to
simulate the PBE described by Cases 3 and 4.

PBE simulating growth and aggregation

The general PBE model used to test the MFEM perform-
ance when growth and aggregation mechanisms are present is

@nðv; tÞ
@t

¼ � @½GðvÞ nðv; tÞ�
@v

þ 1

2

Z v

0

nðv� v0; tÞ nðv0; tÞ qðv� v0; v0Þdv0

� nðv; tÞ
Z 1

0

nðv0; tÞ qðv; v0Þ dv0 ð44Þ

nð0; tÞ ¼ 0 (45)

nðv; 0Þ ¼ v0;i
v0;i

exp � v

v0;i

� �
(46)

with q(v,v0) standing for the rate of aggregation of particles
of characteristic dimension v 2 v0 with particles of v0 to pro-
duce particles of characteristic dimension v. The values used
for the parameters v0,i and v0,i are those used when the com-
bination of growth and nucleation phenomena was studied.
The second integral is evaluated at each finite element
employing Gaussian quadratureZ 1

0

nðv0; tÞ qðv; v0Þ dv0 ¼
XNE
k¼1

hkðtÞ
XNC
m¼1

Nðum; tÞ qðv; vmÞ wm

vm ¼ sk�1ðtÞ þ hkðtÞ um ð47Þ
where wm is the Gaussian quadrature weight, NC the number
of collocation points, and um the roots of the collocation

points corresponding to the characteristic dimension vm
within the finite element k. This approximation is subject to
finite domain error (FDE), due to discarding the portion of
the integral outside the domain of discretization. Neverthe-
less, this error is kept low by considering large X domains in
order to capture most of the aggregation phenomena.

The evaluation of the integral

zðv; tÞ ¼
Z v

0

nðv� v0; tÞ nðv0; tÞ qðv� v0; v0Þ dv0 (48)

involves additional complexity, particularly when adaptive
grid methods are chosen. Two major difficulties arise, the
first related to the evaluation of the approximation of n(v00,t),
where v00 5 v 2 v0, the second associated to the need to
compute the integral z(v,t) when v does not coincide with a
node. The latest occurs when v coincides with an internal
collocation point employed for integral calculation.

Table 2. Parameters Employed in the Simulation of
Growth plus Nucleation PBE

Case Nodes Grid Initialization e CPU Time†

3 12 s 5 [0.0, 9.9 3 1026,
1.0 3 1023,
5.0 3 1023,
6.0 3 1023,
8.0 3 1023,
0.016, 0.032, 0.05,
0.1, 0.5, 1.0]T

0.002 3.453

4 15 s 5 [0.0, 9.9 3 1026,
4.0 3 1025,
1.0 3 1023,
2.0 3 1023,
5.0 3 1023,
6.0 3 1023,
8.0 3 1023, 0.016,
0.032, 0.05, 0.1,
0.5, 1.0, 5.0]T

0.08 4.234

†On a Windows Pentium 2.80 GHz computer.

Figure 6. Solution of the PBE simulating nucleation and growth at linear growth rate.

(a) Nodes movement; (b) Numerical vs. analytical solutions.
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The first problem is handled with a three step algorithm,
here designated as Algorithm 1.

Algorithm 1
(1) Location of the finite element, denoted as �k, that con-

tains v00, satisfying the condition s�k21(t) � v00 � s�k(t);
(2) Evaluation of the normalized spatial variable corre-

sponding to v00, designated as u00, by using the equation

u00 ¼ v00 � s�k�1ðtÞ
s�kðtÞ � s�k�1ðtÞ

(49)

(3) Evaluation of the approximation of the solution at v00

Nðv00; tÞ ¼
X4
i¼1

a�k;iðtÞ Hiðu00; h�kðtÞÞ (50)

The location step involved in this procedure is rather
demanding in terms of computational effort.

The residuals’ integrals involved in the MFEM fundamen-
tal equations (Eqs. 17–19 and 24–26) require the evaluation
of z(v,t) at different values of v, which either coincide with
the nodes (when the collocation points are at the extremes of
the finite elements), or are located inside the finite elements.
When v coincides with a node K of the grid, the integral
z(v,t) is approximated by Z(v,t)

Zðv; tÞ ¼
XK
k¼1

hkðtÞ
XNC
m¼1

Nðv00m; tÞ Nðvm; tÞ qðv00m; vmÞ wm

vm ¼ sk�1ðtÞ þ hkðtÞ um; v00m ¼ s�k�1ðtÞ þ h�kðtÞ u00m ð51Þ

employing Algorithm 1 to calculate the terms N(v00m,t) and
q(v00m, vm). Whenever v = sj, Vj, the procedure for its evalua-
tion requires its partition into two terms

zðv; tÞ ¼
Z sK�1

0

nðv� v0; tÞ nðv0; tÞ qðv� v0; v0Þ dv0

þ
Z v

sK�1

nðv� v0; tÞ nðv0; tÞ qðv� v0; v0Þ dv0 ð52Þ

here sK21(t) stands for the node immediately to the left of v.
The first integral is calculated by Eq. 51. The second is eval-
uated following the Algorithm 2 described as follows.

Algorithm 2
(1) Location of the finite element, generically designated by

K, that contains v, satisfying the condition sK21(t) � v � sK(t);
(2) Determination of the corresponding normalized spatial

variable

u0 ¼ v� sK�1ðtÞ
sKðtÞ � sK�1ðtÞ ; (53)

(3) Evaluation of N(v,t) and Nv(v,t) at v

Nðv; tÞ ¼
X4
i¼1

aK;iðtÞ Hiðu0; hKðtÞÞ (54)

Nvðv; tÞ ¼
X4
i¼1

aK;iðtÞ
hKðtÞ

dHiðu0; hKðtÞÞ
du

(55)

(4) Construction of a ‘‘pseudo-finite’’ element, designated
as K*, standing for the portion of domain [sK21(t);v]. The

time dependent coefficients associated to cubic Hermite poly-
nomials for finite element K* are set by using the equality
relations

aK�;1ðtÞ ¼ aKþ1;1ðtÞ aK�;2ðtÞ ¼ aKþ1;2ðtÞ

aK�;3ðtÞ ¼ Nðv; tÞ aK�;4ðtÞ ¼ Nvðv; tÞ
(5) Location of the finite element �k, that contains v00 5 v

2 v0, satisfying the condition s�k21(t) � v00 � s�k(t);
(6) Evaluation of the normalized spatial variable corre-

sponding to v00, designated as u00, by the relation

u00 ¼ v00 � s�k�1ðtÞ
s�kðtÞ � s�k�1ðtÞ

(56)

(7) Determination of the approximation of the solution at v00.
(8) Computation of the integral term in the ‘‘pseudo-finite’’

element K* through Gaussian quadratureZ v

sK

nðv� v0; tÞ nðv0; tÞ qðv� v0; v0Þ dv0 ¼ ðv� sK�1ðtÞÞ

3
XNC
m¼1

Nðv00m; tÞ Nðvm; tÞ qðv00m; vmÞ
	 


wm

vm ¼ sK�1ðtÞ þ ðv� sK�1ðtÞÞ um
v00m ¼ s�k�1ðtÞ þ h�kðtÞ u00m ð57Þ

This procedure emphasizes the advantages of cubic Hermite
polynomials regarding interpretability, since they allow one to
easily build local approximations of the solution and its spatial
derivative, and to use those values as time dependent coeffi-
cients of any finite element delimited by such a point.

The differential Jacobian matrix of PBE problems including
aggregation have a similar structure to that obtained for growth
and nucleation phenomena cases (Figure 2a). Due to the integral
terms involved, the residual at each node depends on the solution
all over the domain considered, thus, leading to full algebraic
Jacobian matrices. This, together with the need to evaluate the in-
tegral terms involved in the PBE, and the location procedure pre-
viously discussed (Algorithm 1), increases the computational
effort involved. Moreover, the aggregation phenomenon gives or-
igin to slower dynamics than nucleation and growth mechanisms,
since the integral terms tend to stabilize the dynamics. A PBE
problem involving a fast dynamics phenomenon coupled with
aggregation presents two distinct behavior features. At the begin-
ning the ‘‘fast’’ phenomenon prevails, while the later stages of the
process are dominated by the aggregation.37

Case 5 – G(v) 5 v, q(v0,v) 5 v0 1 v, t [ [0,2.0], v [
[0,10.0]

In this case study the growth rate was again considered as
linear and an additive aggregation kernel rate was used. The
analytical solution derived by Ramabhadran et al.38 is

nðv; tÞ ¼
M2

0

M1
exp �M0

M1

2 v0;i
M0

� 1
� �

v
h i

3 I1 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� M0

v0;i

q
v0;i
M1

v
� �

M0

M1
v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� M0

v0;i

q
M0 ¼ v0;i exp v0;i v0;i ð1� expðtÞÞ	 


M1 ¼ v0;i v0;i expð�tÞ ð58Þ

where I1(�) is the modified Bessel function of the first kind
and first-order. Figure 7a highlights the smoothness of the
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movement of the nodes, particularly those located in
the zones with larger particles, due to the low residuals
developed by the PBE, and the attenuation in particles den-
sity shown in Figure 7b. The front associated to particles
growth moves toward the region of larger particles (see Fig-
ure 7d), where it can also be confirmed that the particles
aggregation causes the PSD to broaden. Figure 7b presents
the 3-D solution and Figure 7c the contour surface plot of
the solution. Figure 7d shows the agreement between analyti-
cal and numerical solutions, with a lower performance
detected on the far rightside, and associated to larger particles.
This inaccuracy can be partly due to FDE which occurs when
the particles originally located in the larger size finite elements
aggregate and give origin to particles with a characteristic
dimension not considered in the range of the integrals
(Eq. 47).

Case 6 – G(v) 5 v, q(v0,v) 5 1, t [ [0,2.0], v [ [0,5.0]
This case involves a linear growth rate combined with a

constant aggregation kernel rate. The analytical solution
derived by Ramabhadran et al.38 is

nðv; tÞ ¼ M2
0

M1

exp �M0

M1

v

� �

M0 ¼
2 v0;i

2þ v0;i t

M1 ¼ v0;i v0;i expð�tÞ

(59)

Figure 8a shows the nodes displacement corresponding to
the narrowing of the PSD. The numerical solution is also in
good agreement with the analytical one except in the zone of
larger particles, where differences can be seen (Figure 8b).

Table 3 summarizes the simulation conditions employed in
Cases 5 and 6. The CPU time is a few orders of magnitude
larger than in the previous phenomena combination studied.
Nevertheless, this was expected because an iterative proce-
dure is required to locate the finite element that contains v,
and now the algebraic Jacobian matrix is full.

Simulation of a particulate process unit dynamics

Having tested the performance of MFEM for solving PBE
models that include several combinations of mechanisms, in

Figure 7. Solution of the PBE simulating growth at constant growth rate combined with an additive aggregation kernel.

(a) Nodes movement; (b) 3-D solution; (c) solution surface plot; and (d) numerical vs. analytical solutions.
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most cases with accurate results, this section is devoted to
applying MFEM to simulate the dynamics of a unit in which a
particulate process occurs. The models for these units involve
a PBE, to represent the dispersed phase behavior, combined
with a few ODEs which describe the dynamics of the continu-
ous phase. The case used for testing was presented by Lee
et al.17 to show the adequacy of a MPC based algorithm in
controlling a particulate process. It describes the dynamics of a
semibatch precipitation reactor where the reaction
Ca(OH)21Na2CO3 ? CaCO312NaOH takes place. The
authors solved it employing a finite elements based scheme,
but implemented a different technique standing on the method
of characteristics for supporting the control algorithm. Such a
technique was not able to cope with the dynamics accounting
for breakage and aggregation phenomena, but was computa-
tionally more efficient than finite elements based scheme.

The reactor is fed with solutions of calcium carbonate
and sodium hydroxide, and precipitation occurs when the
concentrations of calcium and carbonate ions are above the
supersaturated conditions. Supersaturation requires exceed-
ing the solubility of both ionic species. The unit model was
built assuming that the ionization reactions are fast, com-
pared to the precipitation, and perfect mixing is reached.
Additionally, the aggregation and breakage phenomena are
neglected due to the flow conditions. However, to extend
the formulation of the MFEM presented to problems com-
prising dispersed and continuous phases with the first
involving the aggregation of particles, the PBE presented
by Lee et al.17 is reformulated to include such a phenom-
enon (Case 8).

Case 7 – Calcium carbonate semibatch reactor without
aggregation

According to Lee et al. the normalized model representing
the unit dynamics is17

@nðv; tÞ
@t

þ nðv; tÞ
V

dV

dt
¼ � @½Gðv; tÞ nðv; tÞ�

@v
(60)

dðVCnÞ
dt

¼qfn C
f
n�ka V

Z 1

0

Gðv;tÞnðv;tÞv2 dv; n¼1;2 (61)

dV

dt
¼ q f

1 þ q f
2 (62)

nð0; tÞ ¼ 1

Gð0; tÞ
Z 1

0

an Cbn
s nðv; tÞ v2:5 dv (63)

Gðv; tÞ ¼ as C
bt
s

1þ expð�aL ðv� bLÞÞ (64)

nðv; 0Þ ¼ 0:01

2
v2 expð�vÞ (65)

Cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C1 C2

p
� 1 (66)

t 2 ½0; 600:0�; v 2 ½0; 20:0�

In this example the characteristic dimension v represents
the length of the particles. The normalized values of the pa-
rameters and variables used in the model are listed in Table 4.

The model for the dispersed phase accounts for growth and
nucleation phenomena, the last are only accounted for in the
boundary condition (BC), and this explains why Eq. 63 is
used. Particles of all sizes contribute to nucleation, and the BC
accounts for the ratio between the nucleation and the growth
rates for the null size particles, as was established by

Figure 8. Solution of the PBE simulating growth at linear growth rate combined with a constant aggregation kernel.

(a) Nodes movement; (b) Comparison of numerical vs. analytical solutions.

Table 3. Parameters Employed in the Simulation of Growth
plus Aggregation PBE

Case Nodes Grid Initialization e CPU Time†

5 12 Geometrical,
h1(0) 5 1.0 3 1025

0.004 913.902

6 12 Geometrical,
h1(0) 5 1.0 3 1025

0.003 1317.178

†On a Windows Pentium 2.80 GHz computer.
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Eek et al.39 Its discretization leads to an algebraic equation
including integral terms, which are evaluated by Gaussian quad-
rature in the same fashion described in the third section. The
structure of the Jacobian matrices of this problem is illustrated
in Figure 9. The first line of the matrices represents the BC,
including an artificial differential zero added to avoid DAE sys-
tems of index 1, the three last lines represent the global balance
equations included in the model (Eqs. 68 and 69).

Figure 10 shows how the MFEM is capable of dealing with
the dynamics of this particulate process. The initial solution
(Figure 10c) is a G(�) distribution with the maximum at v 5 2
and a discontinuity at v 5 0, due to the boundary condition.
The growth mechanism causes the initial G(�) distribution to
move toward the larger particles region, as registered in this
figure. On the other hand, the nucleation increases the density
of the smaller sized particles, whose size augments due to the
growth mechanism. One may see that in the initial stages,
when the concentration of calcium and carbonate ions is high
and supersaturation occurs, the nucleation increases the number
of particles in the system. The dynamic solution includes a
moving point that can be seen in Figure 10c, at which both
phenomena are balanced. This pattern was already registered in
Case 4. The growth mechanism is over-expressed ahead of the
discontinuity, and on the leftside the nucleation is dominant.

The trade-off between both phenomena leads to the motion of
the discontinuity point (Figures 10a and 10c). As a conse-
quence of the development of large gradients of the residuals
in the vicinity of such a point the nodes tend to concentrate
there and follow the shock, as it is shown in Figure 10a. Once
the saturation of ionic species is reached the rates of both phe-
nomena become very low (Figure 10b) due to lim

t!1Cs ¼ 0

(Figure 10d) at the end of the simulation. On the other hand,
the saturation leads to a local maximum on the steady state
PSD at the point where d[G(v,t)]/dv reaches a minimum.

Case 8 – Calcium carbonate semibatch reactor with aggre-
gation

The model employed to represent the semibatch reactor
dynamics comprising the aggregation of particles is based on
Eqs. 60–66 previously introduced in Case 7, to which the
aggregation terms were added

@nðv; tÞ
@t

þ nðv; tÞ
V

dV

dt
¼ � @½Gðv; tÞ nðv; tÞ�

@v
þ 1

2

Z v

0

nðv0; tÞ

3 n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v3 � v033

p
; t

� �
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v3 � v033

p
; v0

� � v2

ðv3 � v03Þ2=3
dv0

� nðv; tÞ
Z 1

0

nðv0; tÞ qðv; v0Þ dv0 ð67Þ

dðV CiÞ
dt

¼ q f
i C f

i � ka V

Z 1

0

Gðv; tÞ nðv; tÞ v2 dv; i ¼ 1; 2

(68)

dV

dt
¼ q f

1 þ q f
2 (69)

nð0; tÞ ¼ 1

Gð0; tÞ
Z 1

0

an Cbn
s nðv; tÞ v2:5 dv (70)

Figure 9. Jacobian structures for semibatch reactor model (NE 5 5).

(a) Differential; and (b) Algebraic.

Table 4. Parameters Used by the Model Representing the
Semibatch Precipitation Reactor Processing CaCO3

Description Designation Value

Inlet concentrations Cf
n, n 5 1, 2 6.0, 6.0

Inlet flow rates qn
f, n 5 1, 2 0.3, 0.3

Initial concentrations Cn(0), n 5 1, 2 5.0, 5.0
Initial solution volume V(0) 10.0
Nucleation rate parameters an, bn 0.001, 1
Growth rate parameters at, bt, aL, bL 0.03, 1, 23, 17
Area factor ka 1
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Figure 10. Solution of the dynamic model for the semibatch precipitation of CaCO3.

(a) Nodes movement; (b) 3-D solution; (c) numerical solution; and (d) reactant concentrations.

Gðv; tÞ ¼ as C
bt
s

1þ expð�aL ðv� bLÞÞ (71)

nðv; 0Þ ¼ 0:01

2
v2 expð�vÞ (72)

qðv; v0Þ ¼ 3:0 3 10�5

ffiffiffiffiffiffiffiffiffiffiffiffi
C1 C2

ksp

s
� 1

 !2

(73)

Cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C1 C2

p
� 1 (74)

t 2 ½0; 600:0�; v 2 ½0; 20:0�

where ksp is the equilibrium constant of calcium carbonate
(4.7 3 1023 mol2/m6),40 and other data are listed in Table 4.
The aggregation rate expression used is owed to Collier and
Hounslow,40 and stands on the assumption that supersatura-
tion is the driving force for growth, nucleation and aggrega-

tion.22 Notice that the original kernel rate was normalized
with respect to Lee et al.17 model domains.

The numerical treatment of the integrals modelling the
aggregation phenomenon is similar to the one described to
handle PBE with aggregation terms. The algebraic Jaco-
bian matrix has a full structure similar to the one used in
Cases 5 and 6, meaning it does not share the structure
with Case 7.

The movement of the nodes following the discontinuity,
due to the growth of previously nucleated particles, can be
seen in Figure 11a, and the dynamic solution is shown in
Figure 11b. The increase in particles’ density in the vicinity
of the left boundary is due to nucleation, and is followed by
an increase in their dimension, due to growth, this evolution
is highlighted in the surface plot in Figure 11c. On the other
hand, the increase in growth leads to an increase in nuclea-
tion rate, since it is proportional to v2.5. The combination of
both phenomena gives origin to a front that broadens until
the supersaturation conditions are nearly reached. Figure 11d
allows comparing the solutions for Cases 7 and 8. The strik-
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ing feature in this figure is that in the initial stages differen-
ces are not registered, and this was expected because the
nucleation and growth phenomena dominate the solution in
Case 8. In the later stages the solutions obtained are slightly
different, and the PSD for Case 8 is marginally broader than
when aggregation was neglected. When aggregation phenom-
enon is considered the lower density of particles of smaller
size is due to their aggregation producing particles of larger
dimension, therefore, leading to a decrease on the total num-
ber of particles inside the reactor. As the density of particles
of larger size increases, the PSD broadens.

Table 5 lists the information on the performance of the
MFEM employed in Cases 7 and 8, emphasizing once more
the low-computational effort required by the method to han-
dle intricate problems commonly found in industrial units.
The CPU time required to solve the problem described by
Case 8 is one-order of magnitude larger than that in Case 7.
The main reasons for such an increase are the need to
numerically determine all integral terms modelling the aggre-

gation, and to determine a dense algebraic Jacobian matrix
required by the DAE solver at each time step. Although the
CPU time needed for solving Case 8 is larger the computa-
tional effort is not dramatically increased and the MFEM
provides a stable and accurate solution

Figure 11. Solution of the dynamic model for the semibatch precipitation of CaCO3.

(a) Nodes movement; (b) 3-D solution; (c) solution surface plot; and (d) comparison of numerical solutions of Cases 7 and 8.

Table 5. Parameters Employed in the Simulation of the
Semibatch Precipitation Reactor Dynamics

Case Nodes Grid Initialization e CPU Time†

7 16 s 5 [0.0, 0.1, 0.2, 0.5,
1.0, 1.7, 2.0, 2.5,
3.0, 4.0, 5.0, 7.5,
10.0, 15.0, 17.0, 20.0]T

7.0 3 1026 10.864

8 16 s 5 [0.0, 0.1, 0.2, 0.5,
1.0, 1.7, 2.0, 2.5,
3.0, 4.0, 5.0, 7.5,
10.0, 15.0, 17.0, 20.0]T

7.0 3 1026 321.451

†On a Windows Pentium 2.80 GHz computer.
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Conclusions

This article presents a moving finite elements method
focused on the solution of population balance equations. The
method is based on the minimization of the square norm of
the residuals all over the spatial domain, and uses cubic Her-
mite polynomials as local basis functions. The performance
of this methodology is evaluated by comparing the numerical
solution to the analytical solution of PBE, when these are
available. The MFEM proved to be able to handle a vast
range of phenomena and combinations of mechanisms and
kernels. In most cases it produces accurate solutions and,
although CPU time is increased, prohibitive values are not
attained. The case studies presented show the ability of the
method to deal with problems developing moving fronts and
near discontinuities by automatically concentrating the nodes
on the zones where residuals’ gradients are higher. The per-
formance of the MFEM was also tested when simulating a
semibatch reactor used to produce calcium carbonate par-
ticles. The model of the unit includes a PBE, to describe the
particles behavior, coupled with global balance differential
equations that represent the continuous phase dynamics. The
method confirmed its robustness and accuracy when handling
this problem. The accuracy it guarantees, and the reduced
computational effort it requires enables one to consider it as
a promising alternative to solve PBE based systems. This
method has also the potential to be enclosed into robust con-
trol algorithms that often use process model forecasts to
compute a set of optimal control strategies of units where
particulate processes occur.
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Appendix

Equations 17–19 lead to

Z sk�1

sk�2

X4
i¼1

_ak�1;iðtÞ Hiðu; hk�1ðtÞÞ þ ak�1;iðtÞ @Hiðu; hk�1ðtÞÞ
@u

@u

@hk�1ðtÞ
_hk�1ðtÞ

�(

þ ak�1;iðtÞ @Hiðu; hk�1ðtÞÞ
@hk�1ðtÞ

_hk�1ðtÞ þ ak�1;iðtÞ
hk�1ðtÞ

@Hiðu; hk�1ðtÞÞ
@u

�
Hiðu; hk�1ðtÞÞ

�
dhk�1

þ
Z sk

sk�1

X4
i¼1

_ak;iðtÞ Hiðu; hkðtÞÞ þ ak;iðtÞ @Hiðu; hkðtÞÞ
@u

@u

@hkðtÞ
_hkðtÞ þ ak;iðtÞ @Hiðu; hkðtÞÞ

@hkðtÞ
_hkðtÞ

�(

þ ak;iðtÞ
hkðtÞ

@Hiðu; hkðtÞÞ
@u

�
Hiðu; hkðtÞÞ

�
dhk ¼ 0 k 2 f2; � � � ;NE� 1g ðA1Þ

Z s1

s0

X4
i¼1

_a1;iðtÞ Hiðu; h1ðtÞÞ þ a1;iðtÞ @Hiðu; h1ðtÞÞ
@u

@u

@h1ðtÞ
_h1ðtÞ þ a1;iðtÞ @Hiðu; h1ðtÞÞ

@h1ðtÞ
_h1ðtÞ

�(

þ a1;iðtÞ
h1ðtÞ

@Hiðu; h1ðtÞÞ
@u

�
Hiðu; h1ðtÞÞ

�
dh1 ¼ 0 ðA2Þ

Z sNE

sNE�1

X4
i¼1

_aNE;iðtÞ Hiðu; hNEðtÞÞ þ aNE;iðtÞ @Hiðu; hNEðtÞÞ
@u

@u

@hNEðtÞ
_hNEðtÞ

�(

þ aNE;iðtÞ @Hiðu; hNEðtÞÞ
@hNEðtÞ

_hNEðtÞ þ aNE;iðtÞ
hNEðtÞ

@Hiðu; hNEðtÞÞ
@u

�
Hiðu; hNEðtÞÞ

�
dhNE ¼ 0 ðA3Þ

Employing Gaussian quadrature, based on NC collocation points, the following equations are obtained

XNC
m¼1

X4
i¼1

_ak�1;i Hiðum;hk�1Þ� ak�1;i
dHiðum;hk�1Þ

du

um
hk�1

_hk�1þ ak�1;i
dHiðum;hk�1Þ

dhk�1

_hk�1 þ ak�1;i

hk�1

dHiðum;hk�1Þ
du

� �
H3ðum;hk�1Þ

( )

3 hk�1 wmþ
XNC
m¼1

X4
i¼1

_ak;i
hk

Hiðum;hkÞ� ak;i
dHiðum;hkÞ

du

um
hk

_hk þ ak;i
dHiðum;hkÞ

dhk
_hk þ ak;i

hk

dHiðum;hkÞ
du

� �
H1ðum;hkÞ

( )

hk wm ¼ 0 k 2 f2; � � � ;NE� 1g ðA4Þ

XNC
m¼1

X4
i¼1

_ak�1;i Hiðum;hk�1Þ � ak�1;i
dHiðum;hk�1Þ

du

um
hk�1

_hk�1 þ ak�1;i
dHiðum;hk�1Þ

dhk�1

_hk�1 þ ak�1;i

hk�1

dHiðum;hk�1Þ
du

� �
H4ðum;hk�1Þ

( )

3 hk�1 wm þ
XNC
m¼1

X4
i¼1

_ak;i Hiðum;hkÞ � ak;i
dHiðum;hkÞ

du

um
hk

_hk þ ak;i
dHiðum;hkÞ

dhk
_hk þ ak;i

hk

dHiðum;hkÞ
du

� �
H2ðum;hkÞ

( )

hk wm ¼ 0 k 2 f2; � � � ;NE� 1g ðA5Þ
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XNC
m¼1

X4
i¼1

_a1;i Hiðum; h1Þ � a1;i
dHiðum; h1Þ

du

um
h1

_h1 þ a1;i
dHiðum; h1Þ

dh1
_h1 þ a1;i

h1

dHiðum; h1Þ
du

� �
H1ðum; h1Þ

( )
h1 wm ¼ 0 (A6)

XNC
m¼1

X4
i¼1

_a1;i Hiðum; h1Þ � a1;i
dHiðum; h1Þ

du

um
h1

_h1 þ a1;i
dHiðum; h1Þ

dh1
_h1 þ a1;i

h1

dHiðum; h1Þ
du

� �
H2ðum; h1Þ

( )
h1 wm ¼ 0 (A7)

XNC
m¼1

X4
i¼1

_aNE;i Hiðum; hNEÞ � aNE;i
dHiðum; hNEÞ

du

um
hNE

_hNE þ aNE;i
dHiðum; hNEÞ

dhNE
_hNE þ aNE;i

hNE

dHiðum; hNEÞ
du

� �
H3ðum; hNEÞ

( )

3hNE wm ¼ 0 ðA8Þ

XNC
m¼1

X4
i¼1

_aNE;i Hiðum; hNEÞ � aNE;i
dHiðum; hNEÞ

du

um
hNE

_hNE þ aNE;iðtÞ dHiðum; hNEÞ
dhNE

_hNE þ aNE;i
hNE

dHiðum; hNEÞ
du

� �
H4ðum; hNEÞ

( )

3 hNE wm ¼ 0 ðA9Þ

Equations 24–26 lead to

Z sk�1

sk�2

X4
i¼1

_ak�1;iðtÞHiðu;hk�1ðtÞÞþak�1;iðtÞ@Hiðu;hk�1ðtÞÞ
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@hk�1ðtÞ
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_hk�1ðtÞþ ak�1;iðtÞ

hk�1ðtÞ
�(

3
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@hk�1ðtÞ _skðtÞ� _sk�1ðtÞð Þ

� ��
dhk�1

Z sk

sk�1

X4
i¼1

_ak;iðtÞHiðu;hkðtÞÞþak;iðtÞ@Hiðu;hkðtÞÞ
@u

@u

@hkðtÞ
_hkðtÞþak;iðtÞ@Hiðu;hkðtÞÞ
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which yields

XNC
m¼1

X4
i¼1
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�
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h1 wm

�
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XNC
m¼1

X4
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du
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dhNE
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� �
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)
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The discretization of the boundary condition renders

X4
i¼1

a1;iðtÞ Hið0; h1ðtÞÞ ¼ 0 (A16)
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