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SUMMARY

When a metal matrix composite (MMC) is cooled down from the fabrication or annealing temperature to
room temperature, residual stresses are induced in the composite due to the mismatch of the thermal ex-
pansion coe�cients of the matrix and reinforcement. A thermomechanical model describing these processes
is presented considering that the reinforcement component has a thermo-elastic behaviour and that the ma-
trix material exhibits a thermo-elastoviscoplastic behaviour. The model is implemented with a semi-implicit
forward gradient �nite element method algorithm and the resulting code is used to perform numerical sim-
ulations and calculate thermally induced residual stress �elds in MMCs. Several tests are performed on a
continuously reinforced MMC and a short cylindrical particle MMC in order to optimize the algorithm and
de�ne its governing parameters. Good agreement was obtained with results from other authors. Copyright ?
2001 John Wiley & Sons, Ltd.

KEY WORDS: metal matrix composites; residual stresses; numerical simulation; optimization algorithm;
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1. INTRODUCTION

Metal matrix composites (MMC) have become increasingly attractive in recent years for their
high strength and creep resistance properties [1–9]. When cooling down a metal matrix composite
from the fabrication temperature to the room temperature, thermally induced residual stresses are
generated. The development of residual stresses and the mechanical behaviour of MMCs in the
presence of these stresses has been thoroughly studied by analytical, numerical or experimental
methods (e.g. References [1–3; 8–17]).
Some speci�c theoretical and numerical models have been proposed in order to evaluate these

residual stresses. Both Arsenault and Taya [16] and Withers et al. [18] used Eshelby’s equivalent
inclusion approach to provide a theoretical basis for the prediction of the mechanical properties
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of short �bre metal matrix composites. This approach allows the prediction of thermal residual
stresses in MMCs considering thermoelastic �bres and plastic matrixes. Nevertheless it has a
drawback of being limited in the �elds of the geometric and physical modelation of the problem.
Dunn and Taya [19] also proposed an analysis of thermally induced residual stresses in metal
matrix composites based on Eshelby’s theory. The former studies the interaction among �bres at
�nite-volume fractions through the Mori–Tanaka mean �eld theory and treats the matrix as an
elastic=plastic material while the reinforcement is considered elastic. Povirk et al. [1] presented a
general formulation valid for �nite strains and rotations where account was taken of thermoelasticity
in the reinforcement and of temperature-dependent plasticity in the matrix. The ow theory of
plasticity was used by Zahl et al. [8] to characterize a rate-independent ductile matrix while the
reinforcement was considered both brittle and elastic. A mathematically more elaborate constitutive
model was presented by Zywickz and Parks [12]. In this model the matrix material parameters
are temperature-dependent, including the coe�cient of thermal expansion (CTE). The model used
can describe a temperature- and time-dependent inelastic and isotropic matrix deformation, while
the �bre reinforcements are modelled as linearly elastic and transversely isotropic. Su�ery et al. [9]
and Teodosiu and Menezes [10] studied the residual stress �elds in an aluminium matrix with a
spherical SiC particle. For this particular purpose a one-dimensional axisymmetric �nite element
code was developed considering a thermo-elastoviscoplastic behaviour for the Al matrix and a
thermo-elastic behaviour for the SiC reinforcement.
More recent works have been published in this domain, but most of them present models that

are only one or two dimensional. This fact is an obvious limitation to the study of complex and
more general reinforcement geometries.
The purpose of this paper is to present a fully three-dimensional �nite element algorithm

dedicated to the numerical calculation of thermaly induced residual stresses in metal matrix com-
posite materials. The mechanical model considers the reinforcement component to behave thermo-
elastically and the matrix material to have a thermo-elastoviscoplastic behaviour. The developed
code is tested with some numerical examples concerning a SiC reinforcement in an aluminium
matrix in order to validate and optimize the numerical algorithms that were implemented.

2. THERMO-MECHANICAL MODEL

The temperature �eld among the composite is assumed to be homogeneous at all times and its
evolution given by

T (t)=T0 + Ṫt (1)

where t is the time, T0 is the initial fabrication temperature at time t = t0 and Ṫ the constant
cooling rate.
Since the maximum temperature reached by the reinforcement of the MMC is signi�cantly apart

from its decomposition temperature, it is assumed that the reinforcement behaves in a thermoelastic
manner. On the other hand, the homologous temperature of the metallic matrix material varies
from values close to 1, at t=0, to approximately 0.3 on cooling down to room temperature. Thus,
the inelastic properties of the matrix material must be accounted for over the whole temperature
range. It is then assumed that the matrix material has a thermo-elastoviscoplastic behaviour. This
behaviour will be described by the stress tensor b, the temperature �eld T (t) and a structural scalar
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parameter s that accounts for the isotropic work-hardening and recovery phenomena happening on
the matrix material.

2.1. Constitutive relations for the matrix

To specify the constitutive relations of the matrix material it is �rst assumed that the total strain
rate tensor D is decomposed as

D = De +Dth +Dp (2)

where De; Dth = �MṪ1 and Dp are the elastic, thermal and viscoplastic strain rate tensors, respec-
tively. �M is the thermal expansion coe�cient of the matrix material and 1 is the second-order
identity tensor. The viscoplastic deformation is assumed to be isochoric, i.e. trDp = 0.
Most of the thermo-elastoviscoplastic mechanical models assume that the material is isotropic

and that the plastic strain rate depends on the stress state, the temperature and a state variable
representing the strain history of the material (e.g. References [20–23]). Based on this assumption,
the viscoplastic strain rate tensor is given by

Dp =
3b′
2 ��
�̇� p (3)

where b′ is Cauchy’s deviatoric stress tensor, �� is the equivalent stress

��=
(
3
2b

′ : b′
)1=2

(4)

and �̇� p =f( ��; s;T ) is the equivalent plastic strain rate. T =T (t) is the temperature and s the scalar
parameter that accounts for the microstructural state of the material, its evolution being itself a
function of ��; s and T :

ṡ= g( ��; s;T )= �̇� ph( ��; s;T ) (5)

After the experimental tests done by Anand [21], it can be shown that the functional dependence
between strain rate and stress depends itself on the material. The data from these tests suggest that
the behaviour of 1100-aluminium can be correctly represented by a power law while iron — 2
per cent silicon is better represented by an exponential dependence. In order to accommodate both
dependencies of the strain rate on the stress, the adopted speci�c form for function f was [22]

f( ��; s;T )=A exp
(
− Q
RgT

)[
sinh

(
�
��
s

)]1=m
(6)

Thus, function h( ��; s;T ) that represents the hardening behaviour becomes

h( ��; s;T )= h0
∣∣∣1− s

s∗
∣∣∣a sign(1− s

s∗
)

(7)

with a ¿ 1, which is a simple modi�cation of the function proposed by Anand [21], who only
considered the particular case of a=1. h0 is the constant rate of athermic hardening. The quantity
s∗ is a saturation value of s, associated with a given temperature=strain rate pair and is taken to
be given by

s∗= �s
[
�̇� p

A
exp

(
Q
RgT

)]n
(8)
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In Equation (8) A; Q; �; m; h0; a; �s and n are material parameters. In Equation (7), |x| and
sign(x) denote the absolute value and sign of x, respectively. These mathematical operators are
introduced to allow the accommodation of situations where the current value of s is greater than
its saturation value, given by Equation (8). This allows the modelling of strain hardening and also
strain softening situations. Such a situation is certainly possible in hot working processes where
the strain rate decreases or the temperature increases at a given material point. Such changes may
cause the current value of s to be greater than the asymptotic value represented by s∗, calculated
under the new conditions [22].

2.2. Constitutive relations for the reinforcement

As mentioned above, the reinforcement of the metal matrix composite material is considered to
behave thermoelastically. Thus its constitutive relations are simply given by

ḃ=C e:De − 3KR�RṪ1 (9)

In the previous relation C e is the elastic modulus of the reinforcement material and KR and �R
are the bulk modulus and the thermal expansion coe�cient for the reinforcement, respectively.

3. TIME INTEGRATION PROCEDURE

An incremental time integration procedure is implemented where the state variables bn; sn and Tn
are assumed to be known at time instant tn. The evolution equation must then be integrated over
the time increment �t in order to calculate the state variables bn+1, sn+1 and Tn+1 at time instant
tn+1 = tn +�t.

3.1. Forward gradient

A forward gradient integration procedure is implemented based on an estimation of the integral of
Dp over the current time increment �t, in order to obtain the plastic strain increment �Up. The
increment of the deviatoric Cauchy stress may be expressed as

�b′=2�M(�U′ −�Up) (10)

where the plastic strain increment is given by

�Up =
∫ tn+1

tn
Dp dt (11)

The total strain increment and its deviatoric part are, respectively,

�U=
∫ tn+1

tn
D dt (12)

and �U′=�U− (1=3) tr(�U)1. An estimate for the plastic strain rate increment of Equation (11)
is obtained with the generalized mid-point rule:

�Up =
[
Dpn +�(D

p
n+1 −Dpn)

]
�t (13)
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where 0 6 � 6 1 [9; 10; 24; 25]. After some intermediate calculation and using a truncated
Taylor expansion of Dp around tn to approximate D

p
n+1, Equation (13) becomes

�Up =��� p
(
3b′n
2 ��n

)
+

3
2h1

[
�b′ − (b′n : �b′)

(
3b′n
2 ��n2

)]
(14)

with h1 = ��n=(�fn�t) and

��� p =
[
fn +�

(
@fn
@ ��
��� +

@fn
@s
�s+

@fn
@T
�T

)]
�t (15)

Equation (15) can be solved after the substitution of � �� and �s by their estimates

� �� =
3�M
��n
bn : �U− 3�M ��� p (16)

and

�s = ���ph( ��; s;T ): (17)

Using Equations (10), (14) and (15) the increment of the Cauchy stress tensor becomes

�b = Ltan : �U− K2b′n − 3KM�M(�T )1 (18)

where Ltan is the tangent elastoviscoplastic modulus whose components are given by

Ltanijkl= ��n�ij�kl + ��n(�ik�jl + �il�j k)− K1�′ij��′kl (19)

where �ij is the delta of Kronecker and

K1 =
3

��2n

[
vn

1 + vn

3�2M
Gn

− (�M − ��n)
]

vn =�
@fn
@ ��
Gn�t

��n =KM − 2
3
��n

��n =
�M

1 + 3�M=h1

Gn = 3�M −
(
@fn
@s

/
@fn
@ ��

)
h( ��n; sn;Tn)

K2 =
�t
1 + vn

(
fn +

@fn
@T
��T

)
3�M
��n

(20)

4. NUMERICAL IMPLEMENTATION AND ALGORITHM

4.1. Virtual work principle

For the thermo-mechanical model described above the Virtual Work Principle can be written as [26]∫
V
�ij��ij dV =

∫
S
�ti�ui dS with i; j=1; : : : ; 3 (21)
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V is the body volume and S the external surface of the volume where stress is restricted as ti = �ti.
As external charges are not considered in the present paper, principle (21) reduces to∫

V
�ij��ij dV = 0 with i; j=1; : : : ; 3 (22)

The metal matrix composite is discretized in hexahedral three-dimensional �nite elements with
eight nodes and eight integration points. The volumetric part of the displacement gradient is
interpolated with a reduced selective scheme [27; 28], in order to avoid the development of eigen-
strain modes. The �nite element discretization of Equation (22), for a generic time increment n,
leads to a standard linear algebraic system of equations:

Kn�un = �fn (23)

where �un is the displacement increment vector, Kn is the global sti�ness matrix and �fn is the
incremental nodal force vector, all evaluated at time tn and corresponding to time increment �t.
The solution of system (23) is then used to update the con�guration and all the state variables.

4.2. Time increment optimization

It is known that the forward gradient time integration procedure described above can become
inaccurate in situations where the plastic ow rate changes very rapidly [29]. However, the im-
plementation of an automatic time-step optimization algorithm can account for these changes. The
automatic time-step algorithm proposed is based on a measure of the rate of change of the plastic
ow rate tensor. The automatic optimization algorithm uses two-step reduction criteria. In the �rst
one a control parameter Cmax is calculated. Cmax is a scalar that represents the maximum absolute
value, over all the integration points (NGP) of the di�erence between the equivalent plastic strain
rate �̇� p, at the end and beginning of the current increment, multiplied by the size of the time
increment itself:

Cmax = max
NGP

| �̇� pn+1 − �̇� pn |�t (24)

In this criterion Cmax is compared with a prescribed tolerance Ctol de�ned as

Ctol = �
s0
EM

(25)

where EM is the Young’s modulus of the matrix material, s0 is the initial value of parameter s
and � ∈ [0; 1].
The second criteria is based on the determination of Dmax, the maximum value of the increment

of the equivalent plastic strain over all the integration points of the structure:

Dmax = max
NGP

���p (26)

This value is also compared with a prescribed tolerance Dtol.
A time-step reduction factor R is calculated after the determination of the two optimization

parameters Cmax and Dmax by combining the two criteria,

R = max
(
Cmax
Ctol

;
Dmax
Dtol

)
(27)
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Table I. Algorithm for the time integration procedure.

B Process input data
REPEAT
B Initialize state variables bn, sn and Tn of

the current time increment
REPEAT
B Calculate sti�ness matrix Kn and

incremental nodal force vector �fn
B Solve the system Kn�un = �fn
B Calculate increments �b and �s
B Determine optimization parameter R
B Optimize time-step, if necessary

UNTIL optimization requirements reached
B Update state variables bn+1, sn+1 and Tn+1 of

the current time increment
UNTIL the end of the proces

If R¿1 than the time step must be reduced with

�tnew 
Rcut
R
�told (28)

where Rcut is an optimization reduction factor. If R¡1 the time step does not need to be cut and
the next step can even be increased. May this be the case and the following step is enlarged with
a factor 1:16 Renl 6 2:5 [10]

�tnew Renl�told

depending on the magnitude of R.
The enlargement factor, Renl, can be calculated dynamically for each time step according to the

expression described below, in analogy with the iteration schemes proposed by Patankar [30]:

Renl = 2:5− 1:4
{
exp(Fc(R− 0:2)=0:6)− 1

exp(Fc)− 1
}

where Fc is a correction factor de�ning the shape of the optimization pro�le.

4.3. Global algorithm

The generic algorithm of the procedure described above can be synthesized as in Table I. This
algorithm was implemented in the �nite element code TROTE3D which is devoted to the numerical
calculation of thermally induced residual stresses in MMCs.

5. RESULTS AND DISCUSSION

A large number of numerical simulations was performed to test the numerical e�ciency of the
proposed algorithms. The simulations were performed with the meshes represented in Figures 1
and 2. The mesh on Figure 1 corresponds to a representative cell for a continuous �bre-reinforced
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Figure 1. MESH 1, representative of a continuously reinforced metal matrix,
composite with 240 elements and 536 nodes.

metal matrix composite and, in Figure 2, is a representative cell for a cylindrical particle reinforced
MMC.
The boundary conditions speci�ed were such that coordinate planes Oxy, Oxz, and Oyz were

planes of symmetry, leaving the other three planes as free moving.
All the simulations with the meshes described above were performed with Al–SiC composites

with 20 per cent volume fraction of reinforcement material. The material properties (Young’s
modulus, Lam�e coe�cient and CTE — coe�cient of thermal expansion) for the aluminium matrix
are temperature dependent and given as [9]

EM(T ) = 73474− 43:48× (T − 273) (MPa)
�M(T ) = 27041− 17:057× (T − 273) (MPa)

�M = 0:287× 10−4 K−1
(29)

and for the reinforcement material:

ER = 41× 104 MPa
�R = 16:532× 104 MPa
�R = 0:43× 10−5 K−1

(30)
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Figure 2. MESH 2, representative of a cylindrical particle reinforced metal matrix
composite with 760 elements and 1017 nodes.

Table II. Material parameters for the costitutive functions.

Parameter Value Parameter Value

A 1:91× 107 s−1 a 1:3
Q=Rg 21090K �s 18:9MPa
� 7 s0 18MPa
m 0:23348 n 0.07049
h0 1115:6MPa

The material parameters used in the constitutive Equations (6)–(8) were chosen after
Brown et al. [22] and are listed in Table II.

A constant rate cooling down process was considered with the initial and �nal temperatures
being Tini = 933 K and Tend = 293 K, respectively, and with the cooling rate Ṫ = −100K s−1.

5.1. Accurate results

For comparison purposes an accurate reference solution was obtained using a very small constant
time increment, dt = 0:001 s, and a value of �=0:65. The accurate temperature evolution of the
equivalent stress ��, parameter s and equivalent plastic strain rate �̇� p is shown in Figures 3 and 4 for
both meshes considered. These results were obtained on an integration point in the matrix material,
close to the matrix=reinforcement interface. The �nal plastic strain rate �elds can be visualized
in Figures 5 and 6. These results are equivalent to the unidimensional simulations of Teodosiu
and Menezes [10] and Su�ery et al. [9] and the plastic strain rate �eld in MESH 2 (Figure 6)
is identical to the one obtained by Haddadi [31].
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Figure 3. Accurate results for MESH 1. Equivalent stress ��; parameter s and plastic strain rate �̇� p.

Figure 4. Accurate results for MESH 2. Equivalent stress ��; parameter s and plastic strain rate �̇� p.
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Figure 5. Final plastic strain rate �eld for the continuously reinforced MMC (MESH 1).

5.2. Optimized simulations

Further calculations were performed in order to evaluate the performance and accuracy of the
algorithms proposed, for a set of values of the parameters �, � and the initial time step dtini. The
optimization reduction factor Rcut was assumed to be equal to 0:85 after the studies performed by
Teodosiu and Menezes [10]. The results obtained were then compared with the accurate solutions.
The inuence of the numerical parameters �, � and dtini on the total CPU time and on the quality
of the results was evaluated. This quality was measured calculating the relative errors of the �nal
values of s, �� and �̇� p. Figures 7–9 show the evolution of the relative errors of s, �� and �̇� p with
�, � and the initial time step dtini, respectively, and for both meshes.
For the range of values tested no signi�cant errors are observed in either s or ��. Nevertheless,

quite large errors develop eventually in the plastic strain rate �̇� p. This can be explained by the
results shown in Figure 10, which shows the evolution of the plastic strain rate �̇� p with the
temperature, for three di�erent values of � and for MESH 1. The accurate result for MESH 1 is also
added for comparison purposes. The uctuations of �̇� p that increase with �, are directely associated
with the increase of the time step. This fact con�rms that large time steps lead to large variations
of the plastic strain rate that deteriorate the stability of the forward gradient time integration
procedure. The implementation of the proposed time-step control algorithm avoids the possibility
of a numerical crash. The �nal solution can be obtained even with severe oscilations on the
evolution of the plastic strain rate �̇� p. The value of � is also a determinant factor for the accuracy
of the results. For low values of � (� 6 0:40) the solution cannot be calculated, independently
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Figure 6. Final plastic strain rate �eld for the cylindrical particle-reinforced MMC (MESH 2).

Figure 7. Errors obtained in the optimized numerical simulations as a function of � (� = 0:1, dtini = 0:001).
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Figure 8. Errors obtained in the optimized numerical simulations as a function of � (� = 0:65, dtini = 0:001).

Figure 9. Errors obtained in the optimized numerical simulations as a function of dtini (� = 0:65, � = 0:1).
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Figure 10. Temperature evolution of the equivalent plastic strain rate �̇� p for � = 0:1, 0:25 and 0:5.

of the value of � used. In fact, when a small value of � is adopted, the algorithm aproaches a
pure explicit time integration method, where the high non-linearities of the constitutive equations
strongly limitate the size of the time step. The inuence of the parameter dtini on the accuracy
of the �nal results is much lower than the other control parameters (� and �) and the automatic
control of the time increment size rapidly eliminates its inuence during the �rst steps of the
simulation. This fact leads to the conclusion that � works as an accuracy control parameter. Thus,
it is clearly more economical in terms of CPU to use larger values of �. However, increasing
� leads to higher variations in the equivalent plastic strain rate. These uctuations are clearly
undesirable and a compromise value for � should be chosen.
The total CPU times required by the accurate solutions was CPU1acc = 35 977 and CPU

2
acc =

150 388 s for MESH 1 and MESH 2, respectively. These values were obtained with a 166 MHz
IntelTM PentiumTM II personal computer with 128 Mbytes of RAM memory. The numerical control
parameters have some degree of e�ect on the relative CPU time. The relative CPU times are shown
in Figure 11 as a function of � and �, for MESH 1. Identical behaviour is veri�ed for MESH 2
and no signi�cant evolution of the relative CPU time, calculated as CPUrel =CPU=CPUacc, was
detected as a function of dtini.
For values of �¡0:6 the computational time increases signi�cantly, as can be seen in Figure 11.

In fact, it is in these situations that the numerical instabilities referred above appear (see Figure
7) and the automatic time-step control leads to very small time steps and thus to the veri�ed
increase in the overall CPU time. As seen clearly in Figure 10, decreasing � leads to much better
results but also to higher CPU times (see Figure 11). It should be noted that the implementation
of the proposed automatic time-step control algorithm leads to a drastic reduction (more than
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Figure 11. Relative CPU times as a function of � and � for MESH 1.

90 per cent) of the CPU time, without signi�cant changes in the numerial results, when compared
to the accurate solutions, obtained with a constant time step.

6. CONCLUSIONS

A three-dimensional mechanical model applicable to metal matrix composites was presented. The
mechanical model considers the reinforcement component to have a thermoelastic behaviour and the
matrix material to behave thermo-elastoviscoplastically. The model was applied in a �nite element
method algorithm and tested with some numerical examples. Residual stresses and deformation
�elds were determined in Al–SiC composites with 20 per cent volume fraction of reinforcement
material. Two meshes were used in order to represent a continuously reinforced and a cylindrical
reinforcement metal matrix composite. The numerical parameters that control the algorithms were
studied. The choice of the numerical values for the parameters �, � and the initial time step dtini
must lead to a compromise between accuracy and computational cost. Based upon the presented
calculations, the values �=0:1, �=0:65 and dtini = 0:001, seem reasonable.
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