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Resumo

No presente trabalho é apresentada uma solução para um sistema autónomo de iden-

tificação/reconhecimento capaz de classificar componentes de válvulas e purgadores, numa

aplicação industrial de pintura, usando reconhecimento supervisionado de padrões baseado

em visão. O sistema de visão aqui proposto tem por objectivo servir de base para uma

solução a ser instalada numa unidade fabril de uma empresa especializada no fabrico de

equipamentos para vapor, por forma a complementar a modernização e e automação do pro-

cesso. Este processo passaria a contar como robôs para proceder à pintura dos produtos ao

invés de pessoas, utilizando programas específicos chamados de acordo com o resultado do

processo de identificação do produto, realizado à priori.

Começou-se por criar um conjunto de dados que incluiu o grupo dos produtos mais

produzidos/vendidos pela empresa, recolhendo imagens num setup semelhante àquele que

poderíamos montar no ambiente industrial. O passo seguinte consistiu no pré-processamento

das imagens extraídas. De seguida são aplicadas técnicas de processamento de imagem para o

tratamento e binarização das imagens. Nesta etapa é ainda desenvolvido um algoritmo para a

remoção das pinças que penduram as peças em posição para pintura. Neste momento estamos

na presença de imagens binárias com blobs que representa exclusivamente os produtos. O

passo seguinte consistiu na implementação de dois métodos de extração de características

das imagens. O primeiro método é baseado na extração características da forma dos blobs,

seguido de uma implementação de um descriptor HOG. Ambas as técnicas são posteriormente

usadas nas imagens resultantes do pré-processamento, sendo que as características extraídas

são utilizada para treinar um classificador discriminativo e generativo, respetivamente um

SVM (máquina de vectores de suporte) para classificação de múltiplas classes e um NBC

(classificador bayesiano ingênuo).

No que diz respeito aos resultados de classificação, o SVM provou ser a melhor solução em

termos de desempenho, velocidade e robustez quando comparado com o NBC. Relativamente

à escolha entre as features geométricas baseadas em formas e as features extraídas ao utilizar

iii



o descritor HOG, concluiu-se que as primeiras mostraram melhor resultados no que diz

respeito ao reconhecimento de maior número de imagens, mostrando precisões de 100% para

toda a gama de thresholds. Os resultados para a revocação foram igualmente elevados, neste

caso para thresholds abaixo dos 0.65− 0.70.

Palavras Chave: Reconhecimento Supervisionado de Padrões, Sistema de Visão Indus-

trial, Classificação de Componentes de Válvulas e Purgadores
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Abstract

In this work an autonomous identification/recognition system capable of classifying valve

and steam trap components in an industrial painting application was implemented, using

vision-based supervised pattern recognition. The proposed vision system has the main ob-

jective of being a foundation for a solution to be installed in the manufacturing facilities of

a company specialized in steam equipment, in order to complement the modernization and

automation of the process. The process would rely on robots instead of human beings, using

specific programs which would be called depending on a prior product identification result.

The first step corresponds to the creation of a dataset with a group of the best-selling/most

produced products, grabbing frames from a image acquisition scenario similar to the one

possibly built in the industrial environment. The following step consists in pre-processing,

where image processing techniques are introduced to threshold and treat the images as well

as removing the claw that holds the products in position for painting. At this point the

image contains a blob that exclusively represents the products. The following step consists

in the implementation of two feature extraction methods. Firstly blob features based on

shape and overall geometric characteristics, followed by a HOG implementation. Both fea-

ture extraction techniques are then used on the post-processing images and are trained on

a discriminative and generative classifier, respectively a multiclass Support Vector Machine

(SVM) and Naive Bayes classifier (NBC).

In terms of classification results, the SVM proved to be the best solution in terms of

performance, speed, and robustness, outclassing the NBC. Regarding the choice between

blob features or HOG features, it was concluded that the blob features would do a better

job in describing the objects, showing results with 100% precision for all possible threshold

values, and recalls equally high for thresholds below 0.65− 0.70.

Keywords: Supervised Pattern Recognition, Machine Learning, Valve and Steam Trap

Component Classification.
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“O homem comum é exigente com os outros; o homem superior é

exigente consigo mesmo."
— Aurélio, Marco
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1 Introduction

This thesis involves the proposition of a system for the recognition of valve and steam trap

components in the context of a industrial painting application, using vision-based supervised

pattern recognition.

1.1 Motivation and Context

The existing conveyor where valve and steam trap components 1 are transported to a

painting cabinet, installed in the manufacturing facilities of a company specialized in steam

equipment, is shown in Fig. 1.1(a). A employee is in charge of placing each component in a

claw, depicted in Fig. 1.1(b), attached to the conveyor of the cabinet. The conveyor is then

activated in order to move the components towards the painting section. Here, the employee

applies paint coats in each one, activating the conveyor occasionally to move new products

in, and freshly painted products out to the drying section. This process is repeated until

all the products in the conveyer are painted and dried, moment in which they are removed

from the same.
1The word "product" will also be used when referring to valve and steam trap components.
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(a) (b)

Figure 1.1: (a) The existing painting cabinet in the manufacturing facilities of a company
specialized in steam equipment; (b) A valve body and the claw that holds it in place for
painting.

In order to increase the level of automation in this process and to replace human beings

in the painting task by robots, it is necessary to automatically recognize each product,

before it enters the painting cabinet. The system would be in charge of outputting the

type of product to be sent to the robot’s controller. An automated painting cabinet offers

various advantages: robots are fast, reliable and able to apply the same high-quality finish

time after time without "tiring". Robots increase finish quality, consistency and throughput

while lowering operating costs, they also provide paint savings over a manual process, and

gain in speed. Finally, robots improve safety by reducing the exposure of human workers to

paint fumes and other environmental risks, as well as reducing repetitive motion injuries.

1.2 Goal

The goal is to integrate machine learning techniques, in particular vision-based supervised

pattern recognition, in the process of creating an automated recognition system for a new

painting cabinet project. The products will be recognized and painted by robots which will

execute specific movements depending on the object, in order to paint it thoroughly. This

movements can be planned using an automatic trajectory planning system (ATPS) that uses

techniques based on CAD-guided models[48] [10]. There are several solutions for this kind of

application (automated product finishes and coating solutions) however, when dealing with

a really high range of products (each one with their own particular shape and dimension;

e.g. the case of steam equipment), the majority of solutions using sensors or tags [15] (e.g.

RFID) might not be suited. Thus, this thesis proposes a solution based on machine vision.
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In summary, the purpose of this project is to create an autonomous identification/recog-

nition system for different manufactured and non-painted products, as they hang on the

transportation conveyor of a painting cabinet. Such products are components of valves and

steam traps manufactured by a specialized company, located in the central part of Portugal.

1.3 Setup, Dataset and Software

A setup was built and arranged in order to mimic a plausible image acquisition scenario

for the industrial environment, as shown in Fig. 1.2. A backlight was positioned behind a

claw that is similar to the ones used in the existing painting cabinet. The claw is fixed on a

wooden frame high enough in order to keep the products hanging. A PointGrey Grasshopper2

GS2-FW-14S5C camera, with a F1.4/8.2mm lens is then used to capture images on a Linux

machine with appropriate software.

Figure 1.2: Image acquisition setup scheme.

Regarding the dataset, it was selected a group of seven of the best-selling/most produced

products in the company (see Fig. 1.3) and one hundred images were taken for each one,

giving a dataset with a total of seven hundred images.
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Figure 1.3: Raw image examples of each of the products that belong to the dataset.

In practice the products would be positioned in specific poses, front or back, with slight

variance in rotation, and the claw would be always fixed in the same hanging spot of the

product and maintain a fixed distance to the camera (no significant variance to scale).

Therefore, the images, of size 800× 706, were taken with consideration to what would occur

in the industrial environment. This includes images with products on a front facing pose,

back facing pose as well as others with slight horizontal and vertical rotations in relation to

each of the two mentioned poses. Frames were also grabbed with purposely applied noise,

such as slight distortion, shadowing or reflexion, see Fig. 1.4.

(a) (b) (c) (d)

(e) (f) (g)

Figure 1.4: Some examples out of the 100 images taken for a certain product: (a) Front
facing pose; (b) Back facing pose; (c) Front facing pose with slight horizontal rotation to the
right; (d) Front facing pose with slight horizontal rotation to the left; (e) Front facing pose
with reflexions; (f) Front facing pose with shadowing; (g) Front facing pose with blur.
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The code written in this project was made using C++ language in conjunction with

the open source OpenCV 2.4.11 library, in a machine running Ubuntu 14.04. Part of the

experiments where also conducted in a Matlab environment.
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2 State of the Art

Throughout the literature, automated visual systems, i.e. machine vision systems, are

used in many industrial situations for a huge range of tasks. In terms of quality inspection,

it is used for detecting defects in surfaces like wood [54], concrete [41] and steel [38]. In the

food industry it’s used for quality evaluation of fruits [2], rice [53] and food manufacturing

inspection in general [12]. Automated visual inspection is also used in food packaging,

for applications such as can-end inspection [11] in beverage companies. In the industry of

electric components, machine vision can be used for inspection during the production of

printed circuit boards [17]. In other manufacturing industries we see machine vision being

used for bearings defect inspection [45], and fastener/bolt recognition [44]. Some examples

in textile industry are fabric pattern and garment recognition [35].

Based on the study of the above related works, it can clearly be concluded that regardless

of the application, in general, current state of the art machine vision systems have a pipeline

with common modules. Such pipeline may be described as the architecture for a typical

automated machine vision system, using machine learning [42], and it’s shown in Fig. 2.1.

The system starts by a camera, or more, that is used to capture a image at a certain key

point in the process. This raw image is then sent for preprocessing, in which it’s cropped

into a ROI (Region of Interest), and then further processing steps may be performed, such

as: binarization, normalization, morphological operations, segmentations, scaling, and so

on. A set of features are then extracted to compose a feature vector which is then sent to a

previously trained classifier in order to determine the category/class of an unseen image.

Figure 2.1: Typical supervised recognition based machine vision system architecture.

The sections bellow contain brief descriptions of each of the pipeline stages which rep-
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resent the machine vision system implemented in this thesis, with references to state of the

art techniques found in the literature.

2.1 Image Acquisition and Preprocessing

Image acquisition and image preprocessing represent two really large and very vast fields

in machine vision, with a lot of theory, background material, approaches and techniques.

Although it is beyond the scope of this thesis to provide a description and a literature

review as it deserves, a concise and focused description of some of the techniques will be

provided in the sequel.

In a vision system there is nothing more important than image acquisition, since any

deficiencies on the original images are likely to cause great problems with image analysis

and interpretation. In image acquisition, topics like the choice of camera (number, position,

frame-rate, type of sensor, output standard, robustness, cost, size, etc), the lens (telecentric,

multifocal, etc) and illumination technology and techniques are deeply discussed. For further

readings please check [16] [32] [43] [20] [28].

Image preprocessing involves operations with images at the lowest level of abstraction.

The aim of pre-processing is, in plain words, to improve of the image data, which is done

by suppressing unwanted distortion and enhancing important image features. In image

preprocessing topics like image filtering and enhancement, image compression, morphological

processing and image segmentation are discussed. For further readings please check [47] [43]

[31] [23].

2.2 Object Description and Feature Extraction Techniques

The selection of a proper and "optimal" feature set is probably the single most important

factor in achieving high performance in object recognition systems. Recognition of image

regions is an important step on the way to understanding image data, requiring an exact

region description in a form which is suitable for a classifier. The description will be used

to generate a feature vector characterizing properties of the region such as shape, texture,

color, motion and rotation.

Shape descriptors may be sorted according to whether they’re based on the object bound-

ary information (called contour-based, giving external description) or whether they’re based

on object region information (called region-based, giving internal description). Under each

7



class, different methods are further divided into structural approaches and global approaches.

This sub-class is based on whether the shape is represented as a whole or represented by

segments/sections [46]. Both contour-based and region-based shape descriptors differ in sen-

sitivity and invariance to translation, scaling and rotation. Table 2.1 represents a list of

some shape descriptors found in the literature [1] [39] [47] [43]. In [52] we may find a survey

of shape feature extraction techniques.

Contour-Based Region-Based
Simple geometric border representation:

Boundary length/Perimeter
Curvature

Bending energy
Signature

Chord distribution
Elongation

Compactness
Corner Points

Area
...

Simple scalar region descriptors:
Area

Euler’s number
Projections

Elongatedness
Height, width
Eccentricity

Rectangularity
Direction

Compactness
...

Chain codes Invariant Moments
Fourier Shape descriptors Convex Hull

B-splines Region Decomposition and Region Neighborhood graphs

Table 2.1: List of different contour-based and region-based shape descriptors.

The descriptors mentioned above are called high-level descriptors since they rely on high-

level features, extracted from shape information (information about spatial relationships).

Low-level descriptors on the other hand are defined by low-level basic features that can be

directly extracted from an image without any shape information. However, the function

of low-level feature extraction is oftentimes to provide information for a later higher level

analysis.

Some low-level features that might be extracted from images are, for example, edges

(using edge detectors with operators; e.g. Prewitt, Sobel, Canny and MarrHildreth) and

curvature (e.g. Harris operator). Carefully designed and dense descriptors such as SIFT

[36], SURF [3] and HOG [14] are also usually used as "low-level" descriptors. However,

the later descriptors are rarely, not so say never, covered in the traditional machine vision

literature since those descriptors (SIFT, SURF, HOG and others) were proposed for more

general purpose applications in object detection, intelligent systems, machine learning, and

others.

2.3 Object Classification

The theory of supervised pattern recognition and object classification is thoroughly dis-

cussed in various references [21] [4] [27] [51].
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In any object recognition system we obviously need classification, which involves a de-

cision machine (one classifier or an ensemble of classifiers) that allows the determination of

the object’s category/class based on its extracted features. In order to design a supervised

system, one needs labelling in part of the data, so that it may be used as training set to train

a classifier. Other methods, ignoring labeling (unsupervised learning), are also used, but the

solution proposed in this thesis depends on supervised classification and hence unsupervised

classifiers are not the scope of this work. Classifiers may also differ in the type of output

they produce. In the probabilistic case the output corresponds to the probability of a new

object belonging to a particular class. This type of output brings the great advantage of

assigning confidence levels for the classification which is important in industrial machine vi-

sion systems, since it helps to prevent misleading classifications when having low confidence

levels. On the other hand, the output of a non-probabilistic classifiers corresponds to the

assignment of the object to a class. Classifiers can also be categorized as discriminative and

generative [34]. Generative classifiers learn a model of the joint probability, p(x, y), of the

input x (in this case a feature vector) and label y, making their predictions based on rules

to estimate the posterior p(y|x), and then choosing the most likely label y. The Naive Bayes

classifier (NBC) is an example of a simple generative (and probabilistic) classifier, based on

applying the Bayes’ theorem with the assumption that all features are conditionally inde-

pendent given class labels [37]. Discriminative classifiers on the other hand are based upon

the direct mapping of inputs x to class labels y. As examples of this types of classifiers we

have Support Vector Machines (SVM) and Neural Networks. Support Vector Machines are

based on the conception of decision hyperplanes that define margins (minimal distances from

the separating hyperplanes to the closest data points) and separate between a set of objects

that carry different class memberships. The SVM learning machine seeks for the optimal

separating hyperplane, where the margin is maximal. An important feature of this approach

is the fact that the solution is based only on the points which are in the decision boundaries.

This points are called support vectors [7] [8]. A Neural network, more properly referred to

as an artificial neural network (ANN), consists in a type of artificial intelligence that at-

tempts to imitate the way a human brain works. The principle of AAN is based on creating

connections between processing elements, the computer equivalent of neurons. The weights

and organization of the connections determines the output [26] [27]. ANN have gained much

attention recently because of the promising and success of deep learning architectures (e.g.

convulational NN) in many problems of machine vision.
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3 Image Preprocessing

This chapter presents the preprocessing techniques implemented and used in this disser-

tation. Firstly a thresholding algorithm is used in order to create a suitable binary image,

followed by a morphological operation called "closing". The next step is the implementation

of an algorithm for removing the claws that hold the objects, and finally a filling algorithm

is used to fill undesirable gaps from the resulting blob. The images will be, at this point,

ready for feature extraction.

3.1 Thresholding

Thresholding consists in a binarization method of image segmentation, allowing the trans-

formation of a grayscale image into a binary image [23]. Otsu’s method, named after its

inventor Nobuyuki Otsu, is a "benchmark" on this field, being a very effective and popular

binarization algorithm. The method involves iterating thoughout all the possible threshold

values and calculating a measure of distribution for the pixel levels in each "side" of the

threshold, i.e. the pixels that fall in the category of background or foreground. The goal is

to find the threshold value where the foreground and background distribution sum is mini-

mal [40]. This means that for a bimodal image (an image whose histogram has two peaks,

which represent foreground and background) the Otsu’s method is clearly an appropriate

and robust algorithm for binarization. Therefore, since the images acquired in this project

meet the requirement for being bimodal, the Otsu’s method was the chosen algorithm for

binarization, see Fig. 3.1.
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(a) (b) (c)

Figure 3.1: (a) Raw image examples; (b) Grayscale histograms of each image represented in
(a); (c) Otsu’s thresholding method results.

3.2 Morphological Closing Operation and Flood Fill

A brief analysis of the thresholding results show good binary representations of the objects

of study, with preservation of the objects shape and outline. However it also shows presence

of noise which is the result of reflections caused by illumination, as well as some distortion

purposely applied to some images of the data set. Several filters (e.g average, Gaussian,

median) may be introduced before the segmentation step in order to minimize this noise.

Another way of achieving this goal is by applying morphological operators, but this time

after segmentation.

Morphological operations are based on the image shape characteristics and are normally

performed on a binary image. The image is then used alongside a structuring element, or
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kernel, which correspond to the two needed inputs for the transformation. The structuring

element is a small matrix of pixels, with values zero or one, which is shifted over the image

and positioned at all possible locations. In each of this locations, the structuring element is

compared with the corresponding neighborhood of pixels and, depending on the operations,

it’s tested whether the elements "fit", "hit" or intersect the neighborhood [22]. The two most

basic morphological operators are called erosion and dilation, followed by variant forms like

opening and closing.

The closing operator, which corresponds to a dilation followed by erosion, connects ob-

jects that are close to each other, filling up small holes, and smoothing the object’s outline

by filling up narrow gulfs. The images in 3.2 illustrate the results obtained by applying this

operator. In order to prevent the operator from smoothing the object’s outline and affecting

the objects shape, which is an important feature to maintain for the next pipeline stage, a

small 3x3 structuring element is used.

Figure 3.2: Closing operation results for the images shown in Fig. 3.1.

As seen in the last figure, the operator is successful in eliminating small pixel dots in

the images. However if the images present bigger holes (high noise concentration in specific

areas), like the ones shown in Fig. 3.3, the operator is not able to remove them fully.
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(a)

(b)

Figure 3.3: (a) Thresholding results for images with high amount of noise; (b) Closing
operation results for each image shown in (a), with a 3x3 structuring element.

A solution to this problem is the usage of a flood fill algorithm [6], to complement the

morphological operation results. The algorithm is responsible for filling up a given contour

with a specific color. The images in Fig. 3.4 show the results obtained after applying the

algorithm, on the problematic example images shown in Fig. 3.3.

Figure 3.4: Flood fill results for the images in Fig. 3.3.

Note: The flood fill algorithm is applied after the claw removal step, discussed in the

next section, since it’s the stage where we end up with a blob that exclusively represents the

object, see Fig. 3.5.
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Figure 3.5: Flood fill results for the images in Fig. 3.3, when applied before the claw removal
process.

3.3 Claw Removal

This section presents the algorithm responsible for the removal of the majority of the

visible claw sections present in the images of the data set. The algorithm can be divided

in two stages. In the first stage the average claw piece lengths1 are calculated based on

the upper section of the image, the "region of interest". At this stage we are also able to

determine a estimated initial horizontal position for each claw piece. In the second stage two

masks (one for each claw piece) are slided along the image, performing comparisons between

the mask values and the underlying image pixel values. A decision is then made whether or

not to unset a section of those underlying pixels, based on the amount of "hits" between the

mask and the current image region thats being analyzed, allowing the removal of each claw

piece segment by segment.

In order to understand how the average length of each claw piece is calculated, lets first

take a look at Fig. 3.6 which illustrates the upper sections of the images shown in Fig. 3.2.
1The word "length", "dimension" and "size" is used throughout the thesis when referring to the number

of pixels. Measurement units such as the millimeter or inch are not used.
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Figure 3.6: Upper section of the images in Fig. 3.2. The purple rectangles outline a set of
rows, corresponding to our "region of interest".

In the pixels rows inside the "region of interest" there is exclusive presence of claw

segments, without presence of the object that it holds, see Fig. 3.7. This means that for

each of this rows all the information extracted is related to the claw. The result is a fairly

straightforward calculation of the left and right claw piece segment lengths in each of those

rows.

Figure 3.7: Example of an image row inside a "region of interest".

The algorithm starts by performing a scan from left to right in each row inside the "region

of interest", row_set, in order to analyze each of its pixels. The scan seeks for a transition

from an unset pixel to a set pixel, which will correspond to the left edge of a left claw piece

segment, followed by a transition from a set pixel to an unset pixel, which will correspond to

the adjacent edge of that segment, see Fig. 3.8. The number of pixels between each of those

transitions gives the length of the left claw piece segment in that row. The same is done for

the right claw piece segment, but this time with a scan from right to left. This process is

repeated for each row in row_set and the average segment length of each piece is calculated.

The algorithm also estimates the initial horizontal axis position of the left and right claw

pieces, est_left_claw_axis and est_right_claw_axis, respectively. The position is only

based on the first row, row_set[0], and is calculated by relating the points where the pixel

transitions occur with the length of each claw piece in that row.
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Figure 3.8: Representation of a row of pixels inside a "region of interest". The unset pixels
are represented by the number ’0’ and the set pixels by ’1’.

As said before, the claw removal process is based on masks. For simplicity reasons it’s

considered that a single mask, shown in Fig. 3.9, is used for the removal of both claw pieces.

The masks consists on a window with two sections of unset pixels, ΓL and ΓR, of sizes ρL and

ρR respectively, and one section, ΓC , of size ρC . All three sizes are based on the average claw

piece length value previously calculated. In reality there are two masks, claw_mask_left

and claw_mask_right, one for each claw piece.

Figure 3.9: Illustration of the mask used for the claw removal process.

The mask is used as a slide window, which moves across the image row by row, firstly

from left to right, as the algorithm searches for the left claw segment, and vice versa, as it

searches for the right one. In both situations the slide window moves inside a rectangular

validation region of size 2× (ρL + ρC + ρR).

As the slide window moves from left to right, the algorithm calculates the amount of

pixel "hits" in each of it’s locations (i.e. HL, HC and HR). If that amount is greater or

equal to a defined percentage of pixels for each section (i.e. θL, θC and θR) it means that a

claw piece segment was found in that row. At that point, all the corresponding ΓC section

pixels in that particular row of the image are removed, see Fig. 3.10 . The measured left

claw piece segment axis position of the current row, obs_left_claw_axis, is stored, and

coincides with the central pixel of the ΓC removed section. The hole process is repeated

for the right claw piece but this time the slide window moves from right to left, removing

the right claw piece. In this case the measured claw piece segment axis position is stored in

obs_right_claw_axis.
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Figure 3.10: Claw removal process results. The removed pixels from the left and right claw
pieces are represented in green and red respectively. The colors were chosen for illustrative
purposes, in reality the pixels are unset.

The validation region aforementioned corresponds to the set of columns where the mask

is positioned, and it’s used as a claw segment tracking mechanism. The region starts by

being centered on the estimated initial horizontal axis position value of each piece calculated

in the first stage. A one dimensional Kalman filter [50] is then applied in order to estimate

the next axis positions, est_left_claw_axis and est_right_claw_axis , based on the

current observed positions and the previous estimated position. In other words, the goal is

to estimate the state of the current time step k, which corresponds to x ∈ ℜ, based on the

state of the previous time step k − 1, or xk−1, where x is the axis position.

The discrete-time controlled process is governed by the linear stochastic difference equa-

tion

xk = Axk−1 + ωk−1 (3.1)

with a measurement z ∈ ℜ that is

zk = Hxk + vk (3.2)

and considering a state matrix A = 1, a output matrix H = 1, a process noise covariance

Q = 0.1 and a measurement noise covariance R = Q× 0.1.

The full algorithm responsible for the claw removal process discussed in this section is

shown bellow (see Algorithm 1).
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Algorithm 1 Claw removal algorithm
1: procedure ClawRemoval(Src, claw_mask_left, claw_mask_right, row_set) ▷ Src: Input image

with claws
2: len_claw_left = {};
3: len_claw_right = {};
4: //Stage 1: Claw piece segment length calculations and initial horizontal claw piece axis

position estimations:
5: for each Src row in row_set do
6: Search for left claw piece segment;
7: len_claw_left← Left claw piece segment length for the current row;
8: if Src row= row_set[0] then
9: est_left_claw_axis=Left claw piece estimated axis value (column), for the current row (row

0);
10: end if
11: Search for right claw segment;
12: len_claw_right← Right claw piece segment length for the current row;
13: if Src row= row_set[0] then
14: est_right_claw_axis=Right claw piece estimated axis value (column), for the current row

(row 0);
15: end if
16: end for
17: claw_mask_left← mean(len_claw_left); ▷ Average len_claw_left value calculation
18: claw_mask_right← mean(len_claw_right); ▷ Average len_claw_right value calculation
19: //Stage 2: Claw removal:
20: Estimation of the rectangular validation regions position based on est_left_claw_axis and

est_right_claw_axis;
21: for Src row=0 to (Number of rows in Src)/3 do
22: for each Src column inside the rectangular validation region of the left claw piece do
23: Center claw_mask_left in the current column;
24: Calculate HL, HC and HR;
25: if HL >= ρL × θL & HC >= ρC × θC & HR >= ρR × θR then
26: Unset all pixels in the ΓC section of the image; ▷ Left claw segment removal
27: obs_left_claw_axis= Measured left claw piece current axis value (column);
28: end if
29: Kalman filter is used to estimate est_left_claw_axis based on it’s last value and

obs_left_claw_axis;
30: Estimation of the left rectangular validation region position for the next row, based on

est_left_claw_axis;
31: end for
32: for each Src column inside the rectangular validation region of the right claw piece do
33: Center claw_mask_right in the current column;
34: Calculate HL, HC and HR;
35: if HL >= ρL × θL & HC >= ρC × θC & HR >= ρR × θR then
36: Unset all pixels in the ΓC section of the image; ▷ Right claw segment removal
37: obs_right_claw_axis= Measured right claw piece current axis value (column);
38: end if
39: Kalman filter is used to estimate est_right_claw_axis based on it’s last value and

obs_right_claw_axis;
40: Estimation of the right rectangular validation region position for the next row, based on

est_right_claw_axis;
41: end for
42: end for
43: end procedure
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4 Feature Extraction

This chapter presents the feature extraction methods used in this work’s implemented

system. We start by presenting a set of geometric features based on the objects shape

characteristics followed by a HOG implementation suited for simple blob description.

4.1 Blob Features Based on Shape

Each image of the data set and after post preprocessing, contains a blob that represents

a object. A way of obtaining relevant features from this kind of structure involves the

extraction of it’s shape characteristics. The following is a list of features pertaining to a

given blob, together with their description:

1. Area: Number of pixels of the blob. For an image with a single object, it corresponds

to the total number of set, or white, pixels in it.

2. Perimeter: Length of the blobs contour in pixels.

3. Straight Bounding Box: Minimum straight (i.e. not considering the rotation of the

object) rectangle which contains the blob. In other words it’s the smallest straight

rectangle that contains every point in the shape.

4. Rotated Bounding Box: Minimum rotated rectangle which contains the blob, rep-

resenting the true minimum enclosing rectangle.

5. Minimum Enclosing Circle: Minimum circle which contains the blob.

6. Line Fit: Line that best fits the blob. The line passes through the blob’s geometric

center and has orientation given by the direction in which the blob is oriented. A way

of fitting a line is by minimizing
∑

i ρ(ri) where ri is a distance between the ith point,

the line and ρ(r) is a distance function:

ρ(r) = r2/2 (the simplest and the fastest least-squares method) (4.1)
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The algorithm is based on the M-estimator [55] technique that iteratively fits the

line using the weighted least-squares algorithm. After each iteration the weights wi

are adjusted in order to be inversely proportional to ρ(ri).

7. Convex Hull: The convex hull of a blob B is the smallest convex polygon that

contains all it’s points.

This first seven features are illustrated in Fig. 4.1.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.1: (a) Post-processing example image; (b) Area; (c) Perimeter; (d) Straight Bound-
ing box; (e) Rotated rounding box; (f) Minimum enclosing circle; (g) Line fit; (h) Convex
Hull; (i) Centroid.

8. Convexity: Convexity is a measure of how close a region is to being convex. Convex

regions have convexity equal to 1.0, while the more concave the region is, the closer to

0.0 is its convexity. The same applies to blob’s. The convexity of a blob B is calculated
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as follows:

Convexity(B) =
Area(B)

Area(ConvexHull(B)
(4.2)

9. Invariant Moments: Invariant moments are a very popular shape-based statistical

feature. The 2-D moments of order (p, q) of a pdf function f(x, y) are defined by

mpq =

∫ ∫
xpyqf(x, y)dxdy (4.3)

and the central moments of oder (p, q) are defined as

µpq =

∫ ∫
(x− x̄p)(y − ȳq)f(x, y)dxdy (4.4)

where

x̄ =
µ10

µ00

ȳ =
µ01

µ00

(4.5)

For a digital image, the integrals are replaced by summations to get

µpq =
∑
x

∑
y

(x− x̄)p(y − ȳ)qf(x, y) (4.6)

Given the normalized central moments as denoted by ηpq,

ηpq =
µpq

µγ
00

(4.7)

where

γ =
p+ q

2
+ 1 for p+ 1 = 2, 3, .... (4.8)

A set of seven invariant moments, also called Hu moments [30], with respect translation,
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rotation and scale can be derived from the second and third moments as

ϕ1 = η20 + η02,

ϕ2 = (η20 + η02)
2 + 4η211,

ϕ3 = (η30 − η02)
2 + (3η21 − η03)

2,

ϕ4 = (η30 + η12)
2 + (η21 + η03)

2,

ϕ5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]

+ (3η21 − η03)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2],

ϕ6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2] + 4η11(η30 + η12)(η21 + η03),

ϕ7 = (3η21 − η03)(η30 − η12)[(η30 + η12)
2 − 3(η21 − η03)

2]

+ (3η12 − η30)(η21 − η03)[3(η30 + η12)
2 − (η21 + η03)

2]

(4.9)

10. Centroid: The centroid, also called center o mass, corresponds to the arithmetic mean

("average") position of all the points in the blob. It’s value derives directly from raw

moments, as shown in Equation 4.5.

11. Compactness: Ratio between the blob’s area and the area of it’s minimum bounding

box.

Compactness(B) =
Area(B)

Area(RotatedBoundingBox)
(4.10)

12. Bounding Box Ratio: Indicates the elongation of the blob.

BoundingBoxRatio =
width(RotatedBoundingBox)

height(RotatedBoundingBox)
(4.11)

13. Circularity: Represents how circular a blob is, and may be given by:

Circularity(B) =
Perimeter(B)

2
√

π.Area(B)
(4.12)

14. Form Factor: Provides a measure that describes the shape of the blob. Mathemati-

cally, the form factor of a blob is given by:

FormFactor =
4πArea(B)√
Perimeter(B)

(4.13)

15. Features Resulting from Intersections between a blob and a Circular Beam

of Line Segments: A feature extraction technique inspired in works found in the lit-

erature [9] [24], and based on the extraction of information regarding relations between
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the centroid of shapes and their contour points, is here proposed. The technique will be

first introduction, following by the explanation of an algorithm capable of extracting

features, based on it.

The angle between a straight line segment and the horizontal axis x is given by θ.

This segment is traced from the centroid C of a blob B and has length R, given by

the radius of it’s minimum enclosing circle plus a certain constant D. Considering N

segments, with different angles θN , given by k.(360/N).π
180

where k = 1, ..., N , are traced

over a circle of radius R. For each line segment it is extracted information regarding

their intersection with the blob B’s points.

This technique allows us to extract interesting features. e.g. the Euclidean distance

rN between C and the first contour point ωN , the number of B’s sections nsN , and

number of pixels pN that each line intersects with, as shown in Fig. 4.2.

Figure 4.2: Geometrical representation of the line segments for N = 12, and contour inter-
section points.

The figure above illustrates the positions of the contour points of intersection be-

tween a blob B, and the N line segments. The small pink circles represent each of the

ωN points, and the squares represent the contour points of intersection for the cases

where the lines intersect in regions with multiple blob sections. In the case of the

image above nsN = 2 in N = 1, 5, 7 and 11. This information provides details about

the shape of B and may be extracted in the form of feature vectors, fr = {r1, ..., rN},
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fns = {ns1, ..., nsN} and fp = {p1, ..., pN}. Algorithm summarizes the approach used

to extract the mentioned features from a binary image with a single blob B.

Algorithm 2 Extraction of fr, fns and fp

1: procedure LineBeamIntersectionFeatures(Src, N , t1, t2) ▷ Src: Input binary image with a
single blob B

2: C=centroid(B);
3: R=Radius(MinimumEnclosingCircle(B))+D;
4: fr = {}; fns = {}; fp = {};
5: for k=1 to N do ▷ For each line segment
6: it = 0;
7: lppk = {}; lpvk = {};
8: for it=1 to segment ending (x, y) position do ▷ For each line segment pixel starting at C
9: lppk ← current (x, y) position of the segment in relation to the image;

10: lpvk ← current pixel value for the current (x, y) position; ▷ ’0’: unset; ’1’: set
11: end for
12: Extract ωk by knowing lppk and lpvk, and taking into account t1;
13: fr ← Euclidean distance between C and ωk;
14: Search for groups of set elements in lpvk taking into account t2;
15: fns ← Number of groups;
16: fp ← Total number of elements with the value ’1’ in lpvk;
17: end for
18: end procedure

The algorithm is based on the calculation of the intersections between the line

segment pixels and the underlying image pixels, performed by iterating over the line

segment pixel (x, y) positions. The line segment iterator it start at C and ends on

the opposite side of the line, being that each intersection result and corresponding

positions in the image is stored in arrays, lpvk and lppk respectively.

The arrays allow the extraction of the position of the first contour point of intersec-

tion ωk. In theory, this position corresponds to the first transition between a set and

an unset pixel in lpvk however, since possible presence of noise has to be taken into

account, a threshold t1 in used. The threshold considers the following pixels in the

array in order to decide whether the outside contour of B was reached or if it simply

reached a small hole resulting from noise. As soon as the algorithm decides on the

contour point it proceeds on calculating rk using the Euclidean distance formula.

Additionally the arrays also allow the extraction of nsk and pk, where nsk is given

by the number of groups with the value ’1’ in lpvk. The groups are considered sections

of the image if they include a number of elements greater than a certain threshold t2.

The total number of elements with the value ’1’ in lpvk gives pk.

This process is repeated for each of the k = 1, ..., N line segments, filling up the

feature vectors fr, fns and fp which will ultimately have size N .
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4.2 HOG Implementation for Simple Blob Description

The gradient of an image consists in a vector that points in the direction with the biggest

increase in scalar values in the neighborhood. It provides two pieces of information, the

magnitude, which tells us how quickly the image is changing, and the direction, which tells

us the direction in which the image is changing most rapidly. For an image I, the gradient

vector at a certain point (x, y) is given by:

▽I =

[
∂I

∂x
,
∂I

∂y

]
(4.14)

The gradient magnitude is given by

| ▽ I| =

√(
∂I

∂x

)2

+

(
∂I

∂y

)2

(4.15)

and the orientation by

θ = arctan

( ∂I
∂y

∂I
∂x

)
(4.16)

The thought behind Histograms of Oriented Gradients (HOG) is that local object appear-

ance and shape within an image can be described by the distribution of intensity gradients

or edge directions, even without clear information about the corresponding gradient or edge

positions. The image is divided into small spatial regions called cells, and for the pixels

within each cell, a one-dimensional histogram of gradient is composed. The descriptor is the

concatenation of these histograms. In order to improve accuracy, each local histogram can

be contrast-normalized by calculating a measure of the intensity across a larger region of the

image, called block. The results are used to normalize all of the cells in the block [14].

Dalal et al. (2007) concludes, in his paper regarding HOG in human detection [14], that

for a good performance, many orientation bins should be used, as well as well as moderately

sized overlapping descriptor blocks. However, in simple blob description, there is no real

need for such complexity.

Fig. 5.1 represents the computed HOG descriptor in binary test images with blobs, using

few orientation bins and relatively large block sizes. Piotr Dollár’s implementation [18] of

the HOG features is used in this work.
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(a) (b) (c)

Figure 4.3: (a) Post-processing example image; (b) Computed HOG features with 2 bins
and blocks of size 20; (c) Computed HOG features with 4 bins and blocks of size 20.
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5 Object Classification

This chapter includes an explanation of each of the classification techniques used in this

work. A generative and a discriminative algorithm are used, namely a NBC and multiclass

SVM, in order to test one of each of this classifier types. Other reasons for the choice are

the fact that the first one consists in a really simple probabilistic algorithm, and the second

one in a powerful algorithm, as well as a standard for data classification for the past years,

with proven results throughout the literature [14] [45] [54] [41].

5.1 Naive Bayes Classifier (NBC)

A vast group of classifiers may be viewed as computing a set of discriminant functions

of the example, one for each class, and assigning it to the class whose function is maximum

[21]. Considering E as the example, and fi(E) as the discriminant function corresponding

to the ith class, the chosen class Ck is the one for which

fk(E) > fi(E),∀i ̸= k. (5.1)

Suppose an example is a vector with A attributes and let vjk be the value of attribute Aj, a

possible set of discriminative functions is

fi(E) = P (Ci)
n∏

j=1

P (Aj = vjk|Ci). (5.2)

The classifier obtained by using this set of discriminant functions is called Naive Bayesian

classifier. The reason for being called "naive" is due to the assumption that the attributes

are independent given the class, which mean this classifier can easily be shown to be optimal,

in the sense of minimizing the misclassification rate or zero-one loss, by a direct application

of Bayes’ theorem. If P (Ci|E) is the probability that example E is of class Ci, zero-one loss

is minimized if, and only if, E is assigned to the class Ck for which P (Ck|E) is maximum
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[21]. This means that, using P (Ci|E) as the discriminant functions fi(E) is the optimal

classification procedure. By Bayes’ theorem

P (Ci|E) =
P (Ci)P (E|Ci)

P (E)
(5.3)

which in plain English, using the Bayesian probability terminology, can be written as

Posterior probability =
Class Prior Probability× Likelihood

Predictor Prior Probability
(5.4)

P (E) can be ignored since it’s the same for all classes, not affecting the relative values

of their probabilities. If the attributes are independent given the class, P (E|Ci) can be

decomposed into the product P (N1 = v1k|Ci)...P (Nn = vak|Ci), leading to P (Ci|E) = fi(E),

as defined in equation 5.2 [19]. In this work P (Aj = vjk|Ci) follows a normal (Gaussian)

distribution.

5.2 Support Vector Machine (SVM)

The basic idea behind a Support Vector Machine is that of finding a hyperplane which

separates the d-dimensional data perfectly into its two classes (SVM only deals with binary

classification). However, since example data is often not linearly separable, SVM’s introduce

the notion of a "kernel induced feature space", casting the data into a higher dimensional

space where the data is separable. Casting into such a space would normally cause problems

with overfitting and computation, however this concerns are eliminated due to a key insight

used in SVMS’s, which tell us that the higher-dimensional space does not need to be dealt

with directly. As we will see next, only the formula for the dot-product in that space is

required.

Assuming l training examples {xi, yi}, i = 1, ..., l, where each example has d inputs

(x ∈ ℜd), and a class label with one of two values (yi ∈ {−1, 1}), all hyperplanes in ℜd are

parameterized by a vector ω and a constant b, expressed in the equation

ω · x+ b = 0 (5.5)

where ω is the vector orthogonal to the hyperplane, see Fig. 5.1.
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Figure 5.1: Maximum-margin hyperplane and margins for a linear SVM, trained with sam-
ples from two classes.

A given hyperplane represented by (ω,b) may be expressed by all pairs {λω,λb} for

λ ∈ ℜ+. So we define the canonical hyperplane as the one that separates the data from the

hyperplane by a distance of at least 1 (in fact, we require that at least one example on both

sides has a distance of exactly 1). This means that we consider those that satisfy:

xi · ω + b ≥ 1 when yi = 1

xi · ω + b ≤ −1 when yi = −1
(5.6)

which is equivalent to

yi(xi · ω + b) ≥ 1 ∀i (5.7)

It’s also true that for a given hyperplane ω,b), all pairs {λω,λb} define the same hyperplane,

but each has a different functional distance to a given data point. To obtain this geometric

distance, we must normalize the hyperplane by the magnitude of ω, giving the distance:

d((ω, b),xi) =
yi(xi · ω + b)

∥ω∥
≥ 1

∥ω∥
(5.8)

Intuitively, we want the hyperplane that maximizes the geometric distance to the closest data

points. From equation 5.8 it’s clear that this is accomplished by minimizing ∥ω∥ (subject to
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the distance constraints). The main method of doing this is with Lagrange multipliers (see

[13] [49] for derivation details), transforming the problem into:

minimize: W (α) = −
l∑

i=1

αi +
1

2

l∑
i=1

l∑
j=1

yiyjαiαj(xi · xj)

subject to:
l∑

i=1

yiαi = 0 and 0 ≤ αi ≤ C ∀i

(5.9)

where α is the vector of the l non-negative Lagrange multipliers to be determined and C is

a constant.

Additionally, from the derivation of these equations, the optimal hyperplane can be

written as:

ω =
∑
i

αiyixi (5.10)

which means that the vector ω corresponds to a linear combination of the training examples.

It can also be shown that

αi(yi(ω · xi + b)− 1) = 0 ∀i (5.11)

which means that when the functional distance of a certain example is greater than one,

yi(ω · xi + b) > 1), then αi = 0. This means that only the closest data points contribute to

ω. These training examples for which αi > 0 are called support vectors, and they are the

only ones needed in defining, and finding, the optimal hyperplane [5].

Assuming we have the optimal α from which we build ω, b is determined by

(ω · x+ + b) = 1

(ω · x− + b) = −1
(5.12)

where x+ and x− are respectively the positive and negative support vectors. Solving these

equations gives

b = −1

2
(ω · x+ + ω · x−) (5.13)
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6 Experiments and Results

This chapter includes the presentation and discussion of the classification results obtained

while testing the complete pipeline with a multiclass linear SVM and NBC, using the dataset

presented in section 1.3 and labeled as shown in Fig. 6.1. As said before SVM performs

binary classification. In order to achieve multi class classification, libsvm [8], which corre-

sponds to the chosen open source library for the SVM algorithm used in this work, performs

what is called "One vs All" [29] which involves training a single classifier per class.

Class A Class B Class C Class D

Class E Class F Class G

Figure 6.1: Dataset image examples with labels.

The pipeline will also be tested with both the geometric features, which will be called

"blob features", and the features obtained from the HOG algorithm, or "HOG features".

In order to give insight on how the models would generalize to an independent dataset as

well as trying to limit problems like overfitting it was used 4-fold cross validation. This

means that the dataset, composed by 100×7 images (100 images times 7 classes) in random

order, is divided in 4 subsets, and in each of 4 trials, one of the subsets is used for training

(25%, i.e. 25 images per class) and the other 3 subsets are put together to form a set for

testing (75%, i.e. 75 images per class). The presented testing results are the average of
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all 4 trials and are returned as probability estimates. The reason for a smaller training

set and larger testing set as opposed to what usually happens in k-fold cross validation,

resides in the fact that we are trying to generalize for what would actually happen in reality,

on a manufacturing facility. It’s important to add that the classifier trains with a number

of samples equally distributed between classes, preventing biases towards specific classes.

Focusing on the overall performance of the classifiers it is made an analysis on precision,

recall and F-measure for different thresholds values. In order to understand which images

are being misclassified and to compare similarities between the classification results and the

actual classes of the images, there will be presented confusion matrices followed by their

analysis. The matrices are related to the sum of all four cross validation trials (75×4 images

per class). The matrices were built for specific thresholds.

6.1 Blob Features

The features mentioned on section 4.1 allowed the assembly of a vector with a total size

of 146 different features. From non numeric features; e.g. the bounding box, minimum

enclosing circle and convex hull, there were extracted numeric features such as areas, circle

radius, rectangle width and height among others. Suitable parameters where then chosen for

the thresholds t1 and t2 used in algorithm 2 as well as the number of line segments N , which

in this case ended up with the value N = 36. The reason for this value resides in the fact

that in testing, greater values proved to results in redundancy, with some features presenting

null variance. Lower values on the other hand showed lower classification performance.

6.1.1 NBC

Before proceeding with the presentation of the attained results for the application of a

NBC on the extracted blob features it’s important to firstly assess certain issues regarding the

classifier. Equation 5.2 corresponds to the posterior probability function used in the NBC.

This function, as shown before, is basically a likelihood function times a prior distribution,

divided by a normalization element. The number of data points corresponds to the number

of terms in the product. Those numbers are likelihood values, which range close to zero,

and if enough of them are multiplied together, the result will be an awfully small number

to represent in a floating point. This means the calculation will eventually underflow to

zero. To avoid this problem sums of logarithmic probabilities are used instead of products
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of probabilities, transforming equation 5.2 in:

log (fi(E)) = P (Ci)
n∑

j=1

log (P (Aj = vjk|Ci)). (6.1)

A second problem with the NBC, which is actually related with the previous one, resides

in the fact that it has a really high tendency of favoring a specific class in detriment of others.

This favoring tends to grow as the number of features increases, meaning that the difference

between likelihoods ends up becoming prohibitive. As a result, the probability estimates

end up being 1 for the class with the larger probability (rank) and 0 for the others, rather

than what the actual probability is, which doesn’t allow a thorough analysis of the results.

In order to overcome this problem a regular Min-Max normalization strategy is applied to

the values returned by equation 6.1. This results in more conservative probability estimates,

which in turn allowed the creation of the following graphics:
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Figure 6.2: P-R curve (a) and F-measure curve by threshold (b) for a NBC using blob
features.

From the results shown above, it’s clear that the classifier preforms remarkably well in

terms of precision since it has maximum value for all the threshold values, meaning that the

classifier doesn’t output false positive values. It does however start giving false negatives

for thresholds above 0.15, which is the result of decrease in recall. After a 0.4 threshold the

classifier has recall (i.e. true positive) equal to zero. Regularly the confusion matrix of a

classifier is done for thresholds of 0 or 0.5, which in our case brings a dilemma on figuring

out which threshold to choose (see Fig. 6.2(b)). In the case of 0 threshold the result is a

confusion matrix with the main diagonal with the value 300 for each class, and 0 on the

rest; otherwise for a threshold of 0.5, the matrix will only have null values. For a situation

like this the solution does not reside in selecting the point for higher threshold since we do
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hit maximum precision and recall, i.e. maximum F-measure, at a certain point, and thus it

would end up like the first case. For this reason it was decided to select a threshold value

on a point where the curve is already start dropping. This allows the analysis of which

classes are the first to lose true positives, and where did they get misclassified in case of false

positives.

Table 6.1: Confusion matrix for a NBC using HOG features, considering a threshold of 0.17.

By analyzing the confusion matrix for a threshold of 0.17, it’s clear that the class where

the classifier has worse performance is class F , followed by class B. However, we do see

no false positive results which is expected since the classifier presents constant precision of

100% (see Fig. 6.2(a)).

6.1.2 SVM

The obtained results after the application of a linear SVM classifier on the blob features,

are shown in the following graphics:
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Figure 6.3: P-R curve (a) and F-measure curve by threshold (b) for a SVM using blob
features.
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The P-R Curve shows perfect precision results throughout all the threshold values even

as the recall starts to fall. It also shows that the greatest accumulation of threshold values is

close to 100% recall which is reflected in the F-measure curve. This curve presents maximum

value for thresholds bellow 0.7 meaning that the the classifier hits in all the testing classes.

After 0.7 the curve starts falling quite drastically until the threshold reaches it’s maximum

which means the classifier stops hitting all the set even though we continue with no false

positive values (maximum precision). The F-measure eventually reaches null value moment

in which the recall is also null.

Table 6.2: Confusion matrix for a SVM using blob features, considering a threshold of 0.85.

The confusion matrix for a threshold of 0.85 shows presence of true negative results

and absence of false positives which makes sense, once again, due to the constant precision

of 100% (see Fig. 6.3(a)). In this case the class showing a bigger decrease in terms of

performance is class D followed by class G.

6.2 HOG Features

6.2.1 NBC

In order to extract HOG features there are three key parameters that have to be settled,

which correspond to the number of orientation bins for the histograms, the block sizes and

the cell sizes. Since Piotr Dollár’s implementation of the HOG descriptor is being used,

the number of cells is fixed at half the size of a block, meaning that in each block a total

of four histograms are computed. In order to determine the best block size we developed

experiments using blocks of size 10 × 10 to 200 × 200 in increments of 10 × 10, calculating

the F-measure values for different number of bins ranging between 1 an 4. The following
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step was the calculation of each of the areas under the curve (AUC) of the F-measure (see

Fig. 6.4).
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Figure 6.4: AUC of the F-Measure curve for a NBC in function of the increase in HOG block
sizes considering different number of orientation bins.

From the analysis of the graphic above it was concluded that block sizes of 80× 80 with

4 orientation bins per histogram consists in the best combination of parameters when using

HOG features and a NBC, in this application. This means 8×6 blocks1 and 16×12 cells for

each image (each image has size 800 × 706). For each of this cells a histogram with 4 bins

is computed. The results is a vector of 768 features for each image. It’s important to note

that this methodology is conditioned to the classifier. Other methods include the usage of a

feature selector algorithm [25] to rank the features.

The graphic also allows the conclusion that smaller and larger sized blocks tend to worsen

the results. This might have to do with the fact that, since each blob occupies a large portion

of its corresponding image, then a greater area of the image might be needed in order to

gather meaningful information. Thus, smaller sized blocks result in too few pixels per cell

for a relevant histogram. On the other hand, if the blocks are too large, then we end up

losing too much of the spatial information.

The following is an image with graphic representations of the attained results for the

NBC with the optimal values previously referred (see Fig. 6.5).
1Consult [18] for more information on Piotr Dollár’s implementation of HOG
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Figure 6.5: P-R curve (a) and F-measure curve by threshold (b) for a NBC using HOG
features.

The graphics show that in the moment which the classifier has it’s higher precision, with

values extremely close to 100%, the recall is close to null. It’s also visible that recall values

drop quite drastically for thresholds above 0.20, which by result drops the F-measure value.

The precision values reduce a little as recall increases indicating that a few false positive

values start to appear. From 0.60 threshold forward the classifier gives no true positive

results.

Table 6.3: Confusion matrix for a NBC using HOG features, considering a threshold of 0.25.

The referred false positives are reflected in the confusion matrix shown in Fig. 6.3, as

expected. In this case the classifier misclassifies 5 images of class C, labeling them as being

part of class A. It also has some problems classifying classes as B, probably due to similarities

between both classes B and D.
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6.2.2 SVM

For the SVM classifier we used the same process for determining the optimal HOG

parameters (see Fig. 6.6).
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Figure 6.6: AUC of the F-Measure curve for a SVM in function of the increase in HOG block
sizes considering different number of orientation bins.

The F-measure area shows a tendency to maintain rather steady for block sizes bellow

110 × 110 pixels. From that point on the curve that represent 1 orientation bin starts

dropping, followed by the curves that represent 2 and 3 orientation bins respectively. The

curve representing 4 orientation bins has a slight different behavior, continuing a slow increase

in area value before reaching it’s maximum point corresponding to a block size of 150× 150.

After reaching this point the curve drops with less intensity than the rest. With this results

in mind, it’s concluded that 4 orientation bins and block sizes of 150× 150, are the optimal

block size and number of orientation bins for this problem. This translates in 3 × 2 blocks

and 6× 4 cells in each image, and thus vectors with 96 features per image.
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Figure 6.7: P-R curve (a) and F-measure curve by threshold (b) for a SVM using HOG
features.

Fig. 6.7 represents graphical results for the SVM classifier using HOG features with the

optimal parameters. The P-R curve shows once again tremendous precision, in this case

maximum, for close to all the recall values. However, the recall is never 1 which translates

to a F-measure curve that also doesn’t reach that value. The classifier manages to maintain

good values until it reaches thresholds of about 0.6%, starting and exponential fall due to

a great increase on false negative values, and stoping at around 0.93 where we start getting

no true positives whatsoever.

Table 6.4: Confusion matrix for a SVM using HOG features, considering a threshold of 0.85.

For a threshold of 0.85 the classifier is still able to correctly determine most of the images

(see Table.6.4). On top of that, it continues presenting no false positives meaning that for

the images its able to classify, there are no false predictions. The classifier shows a tendency

for not being able to classify as much images of class D as it does the others, which is similar

with what happened to the SVM when using blob features. This might have to do with the

fact that class D and B have a lot of similarities which means that the classifier might have
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a slightly lower certainty when classifying class D.

6.3 Discussion

From the developed tests using blob features, the SVM classifier proved to be much more

robust than the NBC, which is reflected by a much higher degree of certainty while presenting

true positive results. This is the main reason why the F-measure curves are presented in

function of threshold, since they allow an easier interpretation of the actual values for which

the classifiers start worsening their results, thus allowing a more straightforward comparison

between classifiers. It is important to mention that even though the NBC is less robust

it does give good results in terms of decision, so long as the correct class is the one more

probable than all the others. What this means is that, regardless of whether the probability

estimate is slightly or even exceptionally inaccurate, the classifier can be robust enough even

under its underlying naive probability model. However, the NBC also proved its drawbacks,

in comparison with the SVM, in terms of computation speed and resource consumption

due to the numeric computations involved in the NBC. When training the HOG features

with small block sizes and 4 bins, the NBC took almost teen times more time to test when

compared to the SVM, using all the RAM storage resources of the machine.

The SVM classifier also showed better results when using HOG features. From the

moment we choose the HOG parameters for both classifiers, we start seeing big contrast

between the SVM’s ability of managing much higher block sizes than the NBC. Meaning

that the SVM is able to give better results with much less features, 96 in comparison with

the NBC’s 768, which translates in a lower degree of complexity involved in the classification,

a thus lowering the tendency of affecting generalization and reducing the change of overfit.

The SVM also shows greater precision and recall for higher threshold values, meaning once

again that it’s more robust than the NBC. As the NBC starts lowering it’s stats for thresholds

above 0.2 the SVM continues with good results, only starting it’s drop, due to a increase

in false negatives, as it reaches thresholds of 0.6. For this reasons, the SVM seems a better

choice of a classifier.

The next step consists in the comparison between both blob and HOG features, in order

to determine which group of extracted features is best on solving the problem discussed in

this work (see Fig. 6.8).
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Figure 6.8: F-measure curve by threshold for a SVM using HOG and Blob features.

The previous image shows the combined graphics which represent the F-measure curves

while using a SVM classifier with both HOG and blob features. Straight away it’s visible

that both curves maintain high F-measure values for much of the threshold range. However,

the curve related with the HOG features tends to keep slightly worse values than the one

related with the blob features, which has to do with the output of a few false negative results.

As the threshold reaches 0.6 the curve representing the HOG features start falling followed

by the the one representing the blob features at around 0.65 − 0.7. Both curves fall with

similar slopes. The P-R curves shown in Fig. 6.3(a) and 6.7(a) display another interesting

for comparison, which is related with the fact that the HOG features are never able to

present SVM results with maximum recall for all thresholds contrary to what happens with

the blob features. Therefore the SVM achieves a better performance when aligned to the

blob features.
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7 Conclusions

Throughout this work a system able to accurately distinguish each class of the dataset

was developed, following with stringency each step of an automated machine vision pipeline,

using machine learning. In the image preprocessing stage, feature processing techniques were

used to successfully create binary images. This techniques were also implemented to extract

most of the noise created by reflections on the surface of the products as well as blur. A well

performed system capable of removing the majority of the claws that hold each product was

also implemented, allowing the isolation of the same in the form of a blob. Regarding feature

extraction two different methods were implemented, firstly using basic features based on the

blobs shape and overall geometric characteristics, followed by a HOG implementation. Each

of the two feature extraction techniques were then used on the post-processing images and

combined with a multiclass SVM and NBC for classification. This corresponded to the final

stage of the pipeline.

During the course of this project several important conclusions were attained. When test-

ing both SVM (discriminative classifier) and NBC (generative classifier) it was concluded

that that, even though the NBC gives good results regarding decision, it’s far away from the

robustness of a SVM. This results are identical to the theoretical predictions found in the

literature regarding de performance of generative versus discriminative classifiers [34], which

indicate that generative algorithms should initially do better as the number of training ex-

amples increases, but for discriminative algorithms to eventually catch up and likely overtake

the performance quite easily. The NBC is also far slower than the SVM classifier, especially

as the feature vector size grows, which in a industrial environment, where quick decisions

matter, is not ideal. Regarding the choice between HOG and blob features, the results turned

out slightly better, in terms of performance, in favor of the blob features. The blob features

showed results with 100% precision and recall for all possible threshold values, outclassing

the state of the art HOG descriptor which presented marginally worse results. This means

the blob features would ultimately be the best solution out of both. However, it is important
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to mention that the feature vector corresponding to the blob features is slightly bigger then

the one corresponding to the HOG features that ended up performing well for blocks of size

150 × 150 and 4 orientation bins. The sizes correspond to 146 and 96 respectively for the

blob and HOG features, meaning a slightly lower complexity in the classification with the

HOG features. A solution for this problem is a feature selector algorithm, which might help

remove possible redundant features, decreasing the blob feature vector’s size.

In conclusion, this work presents a system able of classifying steam trap and valve com-

ponents on a transportation conveyor of a painting cabinet with extremely high accuracy,

which is a huge step in the right direction in terms of creating a autonomous painting station.

In the future one can investigate the possibility of using a feature selection (FS) tech-

nique, such as Principal Component Analysis (PCA) [33]. One can also search for different

discriminatory features of valves and steam traps that could help improve even more the

performance of the classifiers, or even test both HOG and blob features together and look

for improvements after applying the FS. It would also be interesting to test the system in a

real time scenario inside the manufacturing facilities to see the results in practice.
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