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SUMMARY

In the last decades, short-term load forecasting(STLF) has been the object of particular attention in the
power systems field. STLF has been applied almost exclusively to the generation sector, based on variables,
which are transversal to most models. Among the most significant variables we can find load, expressed as
active power (MW), as well as exogenous variables, such as weather and economy-related ones; although
the latter are applied in larger forecasting horizons than STLF.
In this paper, the application of STLF to the distribution sector is suggested including inductive reactive

power as a forecasting endogenous variable. The inclusion of this additional variable is mainly due to the
evidence that correlations between load and weather variables are tenuous, due to the mild climate of the
actual case-study system and the consequent feeble penetration of electrical heating ventilation and air
conditioning loads.
Artificial neural networks (ANN) have been chosen as the forecasting methodology, with standard feed

forward back propagation algorithm, because it is a largely used method with generally considered
satisfactory results.
Usually the input vector to ANN applied to load forecasting is defined in a discretionary way, mainly

based on experience, on engineering judgement criteria and on concern about the ANN dimension, always
taking into consideration the apparent (or actually evaluated) correlations within the available data. The
approach referred in the paper includes pre-processing the data in order to influence the composition of the
input vector in such a way as to reduce the margin of discretion in its definition. A relative entropy analysis
has been performed to the time series of each variable. The paper also includes an illustrative case study.
Copyright # 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Load Forecasting in several time scales and specially short-term load forecasting (STLF), has
greatly developed in the last few decades, mainly due to power systems management needs,
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experienced by electric utilities (Bunn 1985; Gross and Galiana, 1987; Rahman, 1990; Lee et al.,
1992; Drezga and Rhaman, 1998; Hippert et al., 2001).

Forecasting techniques and methods have developed by starting with approaches based on
time-series analysis through statistical methods (SM) (Hagan and Behr, 1987; Papalexopoulos
and Hesterberg, 1990). They have later developed into knowledge-based systems (KBS)
(Rahman, 1990; Rahman and Hazim, 1993). More recently there have been other approaches
based on fuzzy algorithms (Hsu and Ho, 1992; Mori and Kobayashi, 1996), artificial neural
networks (ANN) (Lee et al., 1992; Lu et al., 1993; Caciotta et al., 1997; Charytoniuk and
Chen-Mo-Shing, 2000), hybrid systems (HS) (Mohamad et al., 1996) and genetic algorithms
(GA) (Maifeld and Shebl!ee, 1994).

The lack of information, as well as the diffuse relations between load and other relevant
variables as referred by Gross and Galiana (1987), led to a clear development of these most
recent methodologies.

ANN have been largely applied to STLF and particularly to the generation sector (Hippert
et al., 2001). In a context where costs due to forecasting errors may be significant in this sector as
Ranaweera et al. (1997), Douglas et al. (1998) and Hobbs et al. (1999) refer, ANN have
presented results generally considered quite satisfactory.

In this paper ANN are applied to the distribution sector, as in Chen et al. (1996) and Fidalgo
(1999). Criteria used in the analysis of forecasting error in the distribution sector are different
from those used in the generation sector, nevertheless revealing a good potential for the
application of ANN. Generally, the application of ANN to STLF involves three types of
variables (Drezga and Rhaman, 1998; Chen et al., 1992): electrical, auxiliary and weather
variables. Among the first type, active load power is frequently used the second type usually
comprises nonlinear functions which are used with the purpose of helping the forecasting
models to identify intrinsic load periodicity (daily, weekly and monthly); the third type includes
for example, temperature, relative air humidity, nebulosity, wind speed, etc.

The relative success of the application of weather variables depends on their degree of
correlation with load, thus varying with the climate of each region. In cold or warm and moist
weather regions the penetration of HVAC load strongly influences the daily load diagram (LD)
(Chen et al., 1996). However, STLF does not allow a clear way of establishing strong
correlations of this type due the inherently slow variation of weather-related variables.
Moreover, the presence of a mild weather (situation of the city of Coimbra in Portugal), and
consequently weak penetration of HVAC loads (in fact, load decreases in summer, influenced by
the low penetration of cooling loads (Figure 1), causes low correlation between load and
weather variables. To illustrate this, a correlation diagram is presented (Figure 2) relating active
power at certain hour and the average air temperature at the previous hour in a cold season
(from 21-2-98 to 15-3-99). In this diagram, not only the dots do not show a clear trend, but also
the r factor sign is symmetrical to what could reasonably be expected, as load should increase
for lower temperatures.

In this context, reactive power may be, as the paper shows, a good candidate for providing
extra efficacy to load forecasting approaches. The particular load composition of the studied
target substation may have a positive influence on the performance of reactive power in
improving active load short-term forecast. However, the substation may also be considered
typical in any urban environment, which is a favourable factor to a possible general application
of this approach. One should be aware also, that reactive power data is not always available at
all voltage levels in distribution networks. Frequently, SCADA systems do not acquire data of
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substation outgoing feeders, as is the case of 15 kV feeders at the target substation in the paper,
which limits forecast scope to each individual transformer, as in the case study, or, in the worst
case, to the substation as a whole.

Usually, the input vector to ANN applied to load forecast is defined in a discretionary way,
mainly based on experience, on engineering judgement criteria and on concern about the ANN
dimension, always taking into consideration the apparent (or actually evaluated) correlations
within the available data. The approach referred in the paper consisted in pre-processing data in

Figure 1. LD showing the decrease of summer load.

Figure 2. Scatter plot hourly diagram between active power in a certain hour (t) and temperature in
previous hour (t�1) period.
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order to influence the composition of the input vector in such a way as to reduce the margin of
discreation. At a first stage, a relative entropy analysis has been performed to the time series of
each variable, as referred in Chazottes et al. (1988), according to the entropy definition.

Hn ¼ �
XN

½x1Axn�

m½x1 . . . xn� ln m½x1 . . . xn� ð1Þ

Where m[x1. . . xn] represent the probability of finding the sequence [x1. . . xn] in the time series of
each variable. Following, a set of significant variables has been selected through principal
component analysis before defining the input vector to the ANN.

The paper is divided into four sections, including this introductin: in the second section, the
assembled variables are analysed as well as the correlations with load; in the third a forecasting
methodology is presented, based on ANN, and experimental results are discussed; in the fourth,
conclusions are drawn.

2. DATA ANALYSIS

One of the main concerns of distribution network management consists of predicting load in the
next hour, for a specific electrical substation (ES). This information is particularly relevant in an
open market context. The anticipated knowledge of consumption within this time frame allows
a suitable decision support to short-term power purchase decisions and to network
reconfiguration actions. It also provides the necessary information to allow the simulation of
power supply interruptions in order to evaluate its consequences.

The data used in this paper, was obtained from an ES (Relvinha) (Figure 3) in the city of
Coimbra, Portugal, property of EDP distribution utility. This ES is part of the city’s supply
network, which has the global scheme represented in Figure 4.

The ES is supplied at 60 kV and has two transformers (60 kV/15 kV 40MVA) supplying
power to 15 output medium voltage feeders, which supply other network transformer stations
(15 kV/230/400V), spread throughout the city.

Data on two kinds of field variables were collected: electrical and weather data. They refer to
the period between 21 December 1988 and 31 October 2000.

2.1. Electrical variables

Electricity data was collected at two voltage levels (Figure 3). At 15 kV only average active
power values were collected in each feeder. At 60 kV level, data on the following variables was
collected also on an hourly basis: active power (MW), inductive and capacitive reactive power
(MVAr). Only the information relating to the 60 kV level was used, once the purpose was to
forecast the ES power values related to global consumption. It is important, at this stage, to
consolidate some considerations about the LD that were obtained.

The collected data revealed the usual existence of periodicities (daily and weekly) (Figure 5),
as a consequence of the cyclic nature of demand (Gross and Galiana, 1987; Rahman, 1990).

In order to classify and group the forecast results, it is useful to separate days according to
similar patterns of daily LD. Hence, days were grouped as weekdays (Monday–Friday),
weekends (Saturday and Sunday), holidays and special days.
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Special days are those that, although being weekdays, occur either immediately before or after
a holiday, thus implying some decrease of economic activities (Figure 6). The behaviour of
inductive reactive power is somewhat similar to active power variation with time (Figure 7). The
inductive characteristic of load increases along daylight hours, becoming more resistive to the
end of the day and during the night. This is a clear sign of the reduction of commercial and
industrial activities. The decrease of inductive reactive power during weekends confirms what

Figure 3. (ES1) Relvinha substation simplified layout.

Figure 4. Simplified layout of the global medium voltage network of the city of Combra.
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was previously said (Figures 5 and 6). The inductive reactive power presents the disadvantage of
not being always available for voltages under 60 kV.

2.2. Weather variables

Hourly averages were obtainted from the Portuguese Meteorology Institute from 21 December
1998 to 31 October 2000. It was possible to collect the following data: average temperature;
average relative humidity; average nebulosity; average wind direction; average wind speed.

Figure 5. Typical LD 2 weeks.

Figure 6. Weekly LD with special day.
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3. MODELLING AND FORECASTING METHODOLOGY

As forecasting methodology, ANN were chosen with standard feed forward back propagation
algorithm with one output, once it is only intended to forecast the next hour’s active power
value.

The kind of variables involved and their high degree of nonlinearity led to choosing activation
functions such as hyperbolic tangent for the hidden layer, and linear to the output layer. These
kinds of functions are largely used and lead to quite acceptable performances (Chen et al., 1996;
Fidalgo, 1999). Several dimensions were tested for the hidden layer and five neurons have been
chosen, as a higher number did not seem to positively influence the results. The size of the input
vector was established as the result of correlation analyses among the different variables, in
order to determine the eligible ones.

A relative entropy analysis of the time series was performed for each variable, in order to
assess the dimension of each one’s contribution to the input vector.

3.1. Analysis periods

To increase the possibility of finding significant correlations between electrical and weather
variables, each year was divided in periods that were established according to the evolution
of average daily temperature. This resulted in eight periods represented in Figure 8.
They correspond approximately to the standard seasons, although driven by actual
average temperatures, seeking to isolate periods around extreme values (roughly winter and
summer) and periods of approximately constant temperature gradient (roughly autumn and
spring).

Figure 7. Typical LD working day.
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3.2. Correlation analysis

For each of the referred periods, a correlation analysis was performed among all the electrical
and weather variables. Only temperature showed to have some significant correlation with load.

Several correlation matrices were built, containing the corresponding coefficients, for
different time shifts of the temperature time series in order to explore the possible delayed effect
(1, 3 and 6 h) of temperature variations on active power load demand, due to the influence of
thermal inertia of buildings on HVAC loads.

Figures 2 and 9 give evidence to the fact that there is appreciable correlation between
electrical variables (P and Q1, cf. Figure 9) and a feeble correlation between air temperature and
active load (cf. Figure 2).

The leftmost zone of the graphics on these two figures corresponds to the lowest active power
demand values, during the night periods, weekends and special days. In order to avoid the
influence of these occurrences and to be able to find stronger correlation, only the weekdays of
each period were considered, also excluding the first hours of each morning (from 0:00 to 9:00
AM). This is consistent with the forecast goals of supporting network management decisions,

Figure 8. Periods to analyse the correlation between the variables.
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which are not critical during weekends and non-working days in general, due to lower demand
values. Among the weather variables only temperature (Figure 10) presented a behaviour similar
to the one expected, with negative correlation with load, thus explaining the evolution of load
throughout the four seasons.

3.3. Entropy

Once the most significant variables to STLF were established (active power, reactive power and
temperature), the dimension of the input vector had to be assessed. For this purpose, a relative
entropy analysis was carried out for each chosen variable’s time series}for details on the use
of entropy analysis, see Chazottes et al. (1998). Different data windows were used with
incrementally increasing length, entropy being computed for each, according to Equation (1)
(Figure 11). A saturation criterion was used to stop the search, based on the evolution of the
difference (Hn�1�Hn).

The result of the entropy analysis revealed that, for the active power, the values of (Hn+1�Hn)
had practically no alterations for window lengths above 3 h (P(t�1). . .P(t�3)).

In the case of reactive power, this type of saturation is obtained for a longer sequence of
values, with 7 h previous to the forecast hours (Qiðt�1Þ. . .Qiðt�7Þ). As in the case of active power
demand, for temperature the saturation is reached with three values previous to the forecast
hours (tempðt�1Þ. . . tempðt�3Þ).

Figure 9. Scatter plot hourly diagram between active power at hour (t) and reactive inductive power at
hour (t).
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Entropy analysis has to be performed for each variable’s time series individually, which is not
a guarantee per se of the validity of the input vector that may result from the simple
combination of the individual results. Hence, a systematic procedure was defined, according to
which several ANN were trained and tested for incrementally increasing length of the input
vector length. This latter value is always a multiple of 3, as three variables were being used, with
an incremental step of one each. Figure 12 also shows the results obtained by means of this
procedure, plotting the mean absolute percentage error (MAPE) against the input vector
dimension. The MAPE trend line is also plotted. The MAPE for the ANN designed with the
input vector composed with 3-7-3 (P-Qi-temp) values previous to the forecast hour, as resulted
from the entropy analysis is also shown, corresponding to the value 13 (3+7+3) in the X-axis.
Its relative position in the plot reveals that the input vector as defined with the help of the
entropy analysis is not outside acceptable error bounds. Hence, it may be used, at least in this

Figure 11. Windows over the series.

Figure 10. Scatter plot hourly diagram between active power at hour (t) and temperature at hour (t) from
(10.00 AM to 0.00 PM) working days period 1.
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case, as a rationale for driving the composition of the input vector, thus reducing the discretion
of the analyst intervention in the modelling phase.

The final input vector and ANN were defined as depicted in Figure 13. The input vector was
subsequently normalized, before the training and test phases of the ANN. It should be noted
that the training, test and validation sets of values have all been defined as completely
independent of each other. The simulations that have been performed in order to evaluate the
ANN with values not involved in model tuning, have also been based on an additional
independent set of values.

3.4. Experimental results

For the training testing and validation procedures, periods 1–4 were used and for simulation,
periods 5–8 were used (cf. Figure 8).

The most common way of measuring performance, in models with similar methodologies, as
referred by Hippert et al. (2001), is based on the MAPE. Nevertheless, and still also according to
this author, it is advisable to use other parameters (as the standard deviation (STDV), among
others), in order to be able to obtain a better compromise.

It is usually not possible to find a way of comparing the performances of the models reported
in the literature once both the periods under analysis, and the goals are not similar. Even so, it is
a common approach to classify the results according to grouping of days, weeks and months.

Figure 12. Mean absolute percentage error for different ANN.

Figure 13. Input vector.
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In face of the several values of MAPE published in the literature, an error margin of 2–5% for
a certain period is usually accepted as adequate, in what concerns STLF models based on ANN.
In this paper, the results were grouped according to the type of day and period, as defined
previously.

In order to provide a better insight to the performance of the model than a simple MAPE
value can provide, two sets of additional parameters are presented. First, Tables I and II contain
the: mean absolute deviation (MAD), standard deviation (STDV), and the average power
demand in the period (Pav). Secondly, to specifically measure the error, also the mean percentage
error (MPE), the mean squared error (MSE), the residual standard error (RSE), the mean error
(ME) and the absolute deviation are shown in Tables III and IV besides the MAPE.

The results obtained can be considered fairly satisfactory. The generalization capability of the
ANN can be testified when it is applied to different types of weekdays (Figure 14). weekends
(Figure 15) and special days (Figure 20).

In order to visualize the ANN performance, several typical LD for different periods
(Figures 16–19) are also presented.

Table I. Next hour load forecast}comparative data analysis (working days).

Period No. of
days

Target Forecasting

STD V (MW) MAD (MW) Pav (MW) STD V (MW) MAD (MW) Pav (MW)

5 57 4.76 4.04 17.59 4.71 4.02 17.40
6 50 3.21 2.78 16.02 3.24 2.84 16.01
7 70 3.42 2.04 15.91 3.37 1.99 15.76
8 32 3.63 3.25 15.83 3.60 3.20 15.80

Table II. Next hour load forecast}comparative data analysis (non-working days).

Period No. of
days

Target Forecasting

STD V (MW) MAD (MW) Pav (MW) STD V (MW) MAD (MW) Pav (MW)

5 28 3.48 2.76 14.16 3.25 2.51 13.97
6 24 2.02 1.66 12.76 1.91 1.54 12.73
7 36 1.87 1.46 12.08 1.75 1.33 12.09
8 13 1.83 1.52 11.76 1.79 1.041 11.87

Table III. Next hour load forecast}error results (working days).

Period No. of days ME (MW) MAD (MW) MSE (MW2) RSE (MW) MPE (%) MAPE (%)

5 57 0.19 0.63 0.69 0.83 0.97 3.76
6 50 0.01 0.7 1.20 1.10 �0.16 4.50
7 70 0.15 0.52 0.56 0.75 0.76 3.33
8 32 0.04 0.5 0.49 0.70 0.07 3.27
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4. CONCLUSIONS

STLF assumes great importance in electricity distribution network management, particularly in
the context of unbundling and subsequent liberalization processes applied to power systems
worldwide. In fact, STLF may be a crucial activity either if distributors are also retailers or if
they are confined to network management, as the activities of energy purchasing and network
reconfiguration. for example, clearly illustrate.

The use of reactive power as an input variable to ANN applied to active load forecast has
been demonstrated to be an adequate choice among the endogenous variables usually available
through distribution SCADA systems, especially in cases where the correlation of active power
with exogenous variables is not very significant, as happens with air temperature in the used case
study. The main drawback of modelling based on reactive power is the possible unavailability of
data on this variable for lower voltage levels, particularly when more disaggregated
consumption data is available for active power and forecasts would be useful at that level as
well.

Table IV. Next hour load forecast}error results (non-working days).

Period No. of days ME (MW) MAD (MW) MSE (MW2) RSE (MW) MPE (%) MAPE (%)

5 28 0.19 0.72 1.00 1.00 0.78 4.96
6 24 0.02 0.57 0.59 0.77 �0.13 4.47
7 36 �0.01 0.42 0.32 0.56 �0.33 3.49
8 13 �0.11 0.50 0.45 0.67 �1.21 4.13

Figure 14. Typical LD of a working day in a winter period.
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Designing ANN-based models for load forecasting is usually associated to a certain level of
discretion by the analyst, since the input vector is commonly defined according to intuition,
experience and engineering judgement, complemented with extensive experimentation. In the

Figure 15. Typical weekend LD of a winter period.

Figure 16. Typical week LD period 5.
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paper, the concept of relative entropy has been used in order to try to reduce the level of
discretion, as it helps defining an alleged appropriate length of the time window for each
variable to be included in the input vector to the ANN used to predict the next hour’s active

Figure 17. Typical week LD period 6.

Figure 18. Typical week LD period 7.
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load. Also, an appropriate level of the ANN complexity has been sought for, in order to avoid
the possibility of overfitting due to the relatively modest length of the available time-series data
(a little less than 2 years in the used case study).

Figure 19. Typical week LD period 8.

Figure 20. Typical week LD with special day.
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The obtained MAPE compare well with the average intervals available for other distribution
systems, although other types of forecasting error indicators that have been quantified in the
paper cannot be compared because they do not usually appear in the literature.
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