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Abstract

For robots to engage with human users in social interactions, the setup where they are included must be

prepared with a set of different capability’s.

In this work a system setup is proposed where some of this social skills were implemented with the

help of NAO robot. The framework is composed by a computer, kinect RGB-D depth sensor and the

previously mentioned NAO robot.

This work is included in a partnership between Instituto de Sistemas e Robótica (ISR) and Associação

de Paralesia Cerebral de Coimbra (APCC). This partnership intends to develop several works in child-

robot interaction area, focusing children from the APCC association that suffer from cerebral palsy.

The system setup skills were tested with adults and children users interacting with NAO robot. The

system was developed under Robot Operating System (ROS) which provided the necessary communi-

cations between all the parts of the system. The kinect depth sensor was used due to its capacities in

human recognition and skeleton tracking.

Among the different skills, the system is prepared for kinect motion learning and generalization

taught by the user. This is accomplished by using the tracking capacities of the sensor. The sensor

will track the user skeleton and it will publish the body joints on-the-fly. This allows the system to

save motion information over time. After the motion generalization, the system is prepared to map it to

NAO, which is then able to reproduce it.

A movement classification module was also implemented for movement detection. If the system is

able to identify a movement that was previously classified, the robot is ready to reproduce it. The robot

will reproduce the movement from the database of already known movements.

It was also developed an imitation module for the system. This module allows the robot to reproduce

the user upper-body pose.

In order to accomplish the described skills the system is also equipped with voice recognition and



at the same time it can reply using NAO speech capacities.

This type of system is a growing system where other skills can always be added. It also works the

other way around, the skills of the work proposed here have the potential to be included in future works.

Hopefully it will come to a point where it exists a system advanced enough suited to help children in

this situations. Small steps like the proposed system are the way to accomplish it.

Keywords: Kinect Motion Learning, Child-Robot interaction, Kinect, NAO, ROS.
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Resumo

Para que seja possı́vel a interação entre robôs e humanos em contextos sociais, a criação de uma estru-

tura com capacidades sociais deve servir de suporte ao robô.

Neste trabalho uma estrutura do género é proposta. Nesta estrutura algumas destas capacidades

sociais foram implementadas com a ajuda do robô NAO. A estrutura é composta ainda pelo sensor

kinect RGB-De um computador.

Este trabalho está incluı́do numa parceria entre o Instituto de Sistemas e Robótica (ISR) e a Associação

de Paralesia Cerebral de Coimbra (APCC). Esta parceria pretende desenvolver vários trabalhos na área

de interação entr robôs e crianças, com um foco nas crianças da associação APCC que sofrem de par-

alisia cerebral.

As diferentes funcionalidades da estrutura foram testadas por utilizadores adultos e por uma criança.

O sistema foi desenvolvido na plataforma robot operating system (ROS) que efectua as comunicações

necessárias entre todos os componentes do sistema. O sensor kinect foi utilizado devido às suas capaci-

dades de reconhecimento humano e rastreamento de esqueleto.

O sistema está preparado para realizar a aprendizagem e generalização de movimentos recorrendo

ao sensor kinect na captura da informação do esqueleto do utilizador. Depois de o movimento ser

generalizado o sistema está preparado para mapeá-lo no robô NAO, ficando depois preparado reproduzi-

lo. Um módulo de classificação também foi implementado para detecção de movimento, no caso de um

movimento ser reconhecido o robô poderá reproduzi-lo.

Foi desenvolvido ainda um módulo de imitação onde a parte superior do corpo poderá ser imitada

pelo robô.

A fim de realizar as habilidades descritas, o sistema também está equipado com o reconhecimento

de voz e, ao mesmo tempo, o robô NAO está equipado com um altifalante permitindo assim comunicar

com o utilizador.



Este tipo de sistema é um sistema expansı́vel onde outras habilidades podem sempre vir a ser adi-

cionados. O mesmo acontece no sentido contrário, as habilidades aqui desenvolvidas poderão ser in-

cluı́das em trabalhos futuro. É de esperar que seja alcançado o ponto em que exista um sistema avançado

o suficiente para ajudar as crianças nessas situações, para alcançar esse objetivo é necessário pequenos

passos como o sistema proposto.

Palavras-chave: Kinect, NAO, ROS

vi



Contents

Acknowledgements i

Abstract iii

Resumo v

List of Figures xi

List of Tables xiii

List of Abbreviations xv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Implementations and main contributions . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background and State of the Art 5

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Movement Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . 5

2.1.1.2 Dynamic time warping . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1.3 Gaussian Mixture Model with EM . . . . . . . . . . . . . . . . . . 8

vii



2.1.1.4 Classification Algorithms . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1.5 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1.6 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1.7 Dynamic Bayesian Mixture Model . . . . . . . . . . . . . . . . . . 14

2.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Robot Learning by Imitation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Child-Robot iteraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Child-robot Social Interaction System Setup 19

3.1 Hardware and Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Microsoft-Kinect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.2 NAO robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.3 Robot Operating System (ROS) . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 System Setup Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Motion Generalization and Classification 27

4.1 Kinesthetic Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.2 Movement Learning and Generalization . . . . . . . . . . . . . . . . . . . . . 31

4.1.3 Movement Imitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Kinect Gesture Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Kinect Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.2 Movement Learning and Generalization . . . . . . . . . . . . . . . . . . . . . 35

4.2.3 Movement Imitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Experiments, Tests and Results 39

viii



5.1 Kinesthetic Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Kinect Gesture Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Movement Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Conclusions and Future Work 51

Bibliography 53

ix



x



List of Figures

1.1 System setup components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 SVM trained by two different classes. White circles are the class number 1 and the

black circles represent class number 2. Image from [35] . . . . . . . . . . . . . . . . . 10

2.2 Kernel function applied to space transformation, image adapted from [7]. . . . . . . . 13

2.3 Dynamic Bayesian Mixture Model overview, image from [35]. . . . . . . . . . . . . . 14

3.1 System SetUp Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Microsoft-Kinect components [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 NAO H25-V4 description [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 OpenNI’s kinematic model of the human body [6] . . . . . . . . . . . . . . . . . . . . 23

3.5 System setup overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Motion Learning and Generalization - Model Overview . . . . . . . . . . . . . . . . . 28

4.2 NAO H25 V4 arms joints information. (Image adapted from Aldebaran Documentation

on NAO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Upper body joints published by ROS using the kinect Sensor . . . . . . . . . . . . . . 36

4.4 Kinect joints mapping to NAO robot [27] . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Data acquisition from 5 year old children performing the Goodbye movement. . . . . . 38

5.1 Bolt movement kinesthetic learning from user 1 . . . . . . . . . . . . . . . . . . . . . 39

5.2 Bolt movement kinesthetic learning from user 2. . . . . . . . . . . . . . . . . . . . . . 40

xi



5.3 Byebye movement motion generalization corresponding to the principal component

number 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Byebye movement signature - information from the joint number 1:’RShoulderPitch’. 42

5.5 Byebye movement signature - information from the joint number 2:’RShoulderRoll’. . 42

5.6 Byebye movement signature - information from the joint number 4:’RElbowRoll’ . . . 43

5.7 Byebye movement motion generalization corresponding to the principal component

number 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.8 Byebye movement motion generalization corresponding to the principal component

number 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.9 Byebye movement motion generalization corresponding to the principal component

number 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.10 SVM performance results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.11 NB performance results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.12 5 year old children goodbye movement the classification process . . . . . . . . . . . . 49

xii



List of Tables

3.1 Microsoft-Kinect specifications [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Dataset from the Kinesthetic Demonstrations . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Table of symbols and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 15 body joints published description . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Dataset from the Kinect Body Pose Acquisition . . . . . . . . . . . . . . . . . . . . . 36

4.5 Dataset structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 PCA Analysis, necessary number of principal components to otbain at least 99% ”come-

back” to the original data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 PCA Analysis on byebye movement - necessary number of principal components to

otbain at least 99% ”comeback” to the original data. . . . . . . . . . . . . . . . . . . . 44

xiii



xiv



List of Abbreviations

2D, 3D Two Dimensional, Three Dimensional

PCA Principal Component Analysis

GMR Gaussian Mixture Regression

DBMM Dynamic Bayesian Mixture Model

DTW Dynamic Time Warping

FCT Fundação para a Ciência e Tecnologia

fps frames per second

GMM Gaussian Mixture Model

ISR Institute of Systems and Robotics

NBC Naive Bayes Classifier

RGB Red, Green, Blue

RGB-D Red, Green, Blue and Depth

ROS Robot Operating System

SVM Support Vector Machine

xv



xvi



Chapter 1

Introduction

Works using robots for children therapy have been increasing and proved that they can be useful tools

like it is showed in [12]. This kind of interaction demanded for the robots to have social and interactive

skills.

The evolution in child-robot interaction, either if it is for therapy purposes or others, will increas-

ingly require the robots to be more social intelligent. The work developed tries to develop some of the

necessary skills, that one day might be used in a robot fully capacitate for social interaction.

This dissertation explains the research done trying to develop social skills for NAO robot to be able

to interact with children users.

1.1 Motivation

Although social intelligence in robots is an object of study for some years now, there is still many

situations where this type of robots were not studied or only recent advances were made. This is the

case of the specific area of children with cerebral palsy (CP) interaction with NAO robot. There is still

some way to go until it is possible to fully use robots for educational or therapeutic purposes applied to

children with this problem.

Achieving fully social capacities in robots is already a big challenge per se, it becomes an even

bigger challenge when applied to children with social difficulties. This is the case of children that

suffer from CP, where robot-therapy can be used(e.g. children attention engagement). There is no

greater motivation than trying to contribute with social skills for robots that might be used one day in

1



1.2. OBJECTIVES

this situation

1.2 Objectives

The main objective of the research where this dissertation is based from, is to develop a system capable

of making NAO suited for social interacting with human users, including children. For accomplishing

this, the system framework needs to be equipped with different skills.

The robot should be suited to help in a therapeutic environment. The robot can be used for engaging

the children attention. It can make imitation or teaching and learning movements games with them. Is

expected that it can help with reducing the children stress. This implies that, as mentioned before, the

framework is equipped whith the required skills to be fit for social interactions. The necessary steps to

achieve such a goal encompass the following ones:

• Motion Learning and Generalization - the framework should have the skills to learn and general-

ize the user(s) movements.

• Motion Imitation - the robot should be able to imitate the generalized movements.

• Motion Classification - the framework needs to be capable of recognizing the movements.

• Testing the developed system in real situations.

1.3 Implementations and main contributions

This dissertation describes the work developed to achieve the proposed system.An overview on the

system setup components can be seen in figure 1.1. During the research for reaching to this system

some different approaches were studied. This document explains the algorithms, methods, software

and hardware used in the final system. The implementations and main contributions are the following:

Child-robot Interaction System Setup (Chapter 3):

• Description on the hardware and software used.

• Fully explanation on how the system works.

2



CHAPTER 1. INTRODUCTION

Motion Learning and Classification(Chapter 4):

• Movement kinhestetic learning and generalization implementation based on the work developed

in [15].

• Gesture Learning using kinect sensor - adapting the work [15] system to work on a shared learning

environment. The new system changes the learning method from a kinhestetic learning to a live

gesture learning.

• Movement Classification Module based on the work implemented in [22] [23] [35].

Experimental Results (Chapter 5):

• Motion signature using Kinhestetic learning.

• Motion signature using Gesture learning.

• Classification tests.

Figure 1.1: System setup components

Finally, Last chapter 6 provides the conclusions drawn and it suggests some guidelines for future

work.

3
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Chapter 2

Background and State of the Art

2.1 Background

2.1.1 Movement Generalization

2.1.1.1 Principal Component Analysis

Principal component analysis is a statistical procedure that when applied to a set of data tries to identify

uncorrelated variables. These variables are called principal components.

PCA was proposed in 1901 by Karl Pearson in [25]. The objective of the algorithm is to describe

the data with the minimum number of principal components. If there is correlation in the data, the

algorithm will lead to a reduction of the data dimensionality.

Given an input set of data defined by the matrix X(m,n), the first step it to subtract the mean X̄ and

save it.

X ′ = X− X̄ (2.1)

For the second step PCA will calculate the covariance matrix of X ′ and the projection o X ′ in the

latent space defined by PC(m,n).

Q = cov{X ′} (2.2)

In the third step the matrix of the eigenvectors of L and a matrix with the corresponding eigenval-

ues λ are calculated. The eigenvectors are sorted by relevance in a matrix L(m,n), and therefore the

corresponding eigenvalues λ (1,n) are ordered from high to low, and the sum of all equals 1.

5



2.1. BACKGROUND

The fourth step is where the reduction of dimensionality happens. Adding the eigenvalues provides

the information on how many eigenvectors are needed for describing a certain percentage (p) of the

original data X ′, pre-defined by the user. There will always be data loss, but normally it will be equal or

lower than p. This procedure will define the number t of necessary vectors to reach the percentage p.

In the fifth step W (m, t) is defined by the first t vectors from L(m,n), the same logic is applied for

the latent space PC′(m, t).

For coming back to the original data it is just needed to compute the following step:

Xnew = X̄ +PC′ ∗W (2.3)

Although Xnew has slightly less information than the original matrix of input data X , it will still reduce

drastically the computational resources.

2.1.1.2 Dynamic time warping

Dynamic time warp is an algorithm used for analysing the similarity between two linear vectors. DTW

will try to find similarities between the vectors. Using this information it is possible for the algorithm

to determine and map an optimal path between the sequences.

Given two temporal sequences:

X =
[
x1 (...) xm

]
{1,m}

,k = (1...m) Y =
[
y1 (...) ym

]
{1,n}

, l = (1...n) (2.4)

A 2 dimensions matrix (Z) with the euclidean distance between pairs (Xk,Yl) is computed in the

first step:

Z =

e(1,1) (...) e(1,n)
(...) (...) (...)

e(m,1) (...) e(m,n)


{m,n}

(2.5)

In the second step for being able to determine the warping path a cost matrix (A) is computed. The

cost matrix (Q) is built by determining the cost of all the possible warping paths.

• A path always start at the first cell (1,1) and end at cell (m,n).

• It is not possible to go back in time. This imposes a restriction that a path can only go forward.

If, for example, the path is in cell (1,1) it can only go to the following cells:(1,2), (2,1) or (2,2).

6
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• Each time the path moves to a certain cell (k,l) it will add all the previous accumulated cost to the

euclidean distance from the pair Z(k,l). This value is then added to the respective cell in the cost

matrix Q(k,l).

Q =

q(1,1) (...) q(1,n)
(...) (...) (...)

q(m,1) (...) q(m,n)


{m,n}

(2.6)

In order to find the optimal path the algorithm will minimize the cost matrix.

• The optimal will start at the first last cell (m,n) and end at cell (1,1).

• It is only possible to go back in time. This imposes a restriction that a path can only go backward.

If, for example, the path is in cell (m,n) it can only go to the following cells:(m,n-1), (m-1,n) or

(m-1,n-1).

• Each time the path is in a certain cell (k,l) it will always move to the cell that minimizes the cost

saving it. This next cell as the index from the cell that equals to the min(Q(k,l−1),Q(k−1,l)Q(k−1,l−1)).

P =
[
[m,n] (...) [1,1]

]
{2,k}

(2.7)

In the last step the warped vectors (Xw,Yw) are created by going trough all the indexes in the optimal

path.

• If the the actual cell (k+1,l+1) and the next cell(k,l) in the optimal path decrease a value in both

columns, the value in Xk is added to Xwk and the value in Yl is added to Ywl .

• If the next cell (k,l) and the actual cell (k,l+1) in the optimal path have the same value k, in the

first column, the value in Xk is added to Xw(k+1).

• If the next cell (k,l) and the actual cell (k+1,l) in the optimal path have the same value l, in the

second column, the value in Yl is added to Yw(l+1).

In the way the DTW performs the warped vectors (Xw,Yw) will have equal or higher dimensions

than the original sequences (X ,Y ).

7



2.1. BACKGROUND

2.1.1.3 Gaussian Mixture Model with EM

Gaussian mixture model is a probabilistic model that is used for data clustering. Each cluster is mod-

elled with Gaussian distributions, meaning each value is defined by a mean and a covariance.

Each mixture component (index c) is defined by a mean uc, a covariance σc and a ”size” sc.

The probability distribution of the data is defined as:

p(x) = ∑
c

scN (x;uc,σc) (2.8)

In the latent space a cluster (c) is selected:

p(z = c) = sc (2.9)

The probability of a data point x knowing c was selected is given by:

p(x|z = c) = N (x;uc,σc) (2.10)

The expectation maximization algorithm will iteratively update the clusters in 2 steps:

• E-step, that is called the expectation step, will consider for each point xi the mean uc, covariance

σc and ”size” sc fixed and it will compute a ”responsibility” value ric. This value will measure

the probability of xi belonging to cluster c.

∑c rcN (x;uc,σc)

∑c′ rc′N (x;u′c,σ ′c)
(2.11)

In case xi is not probable to be in cluster c it will have a small ric and if it is likely to be in cluster

c it will have an high ric.

• M-step, that is called the maximization step, will fix ric and it will update the components(uc,σc,sc)

of each cluster.

Using the total responsibility (mc)allocated to cluster c:

mc = ∑ric (2.12)

the algorithm will update sc by normalizing it to the total responsibility m from all the cluster.

sc =
mc

m
(2.13)

8
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sc represents the data point probabilities assign to cluster c. The mean uc will be updated by

computing the weighted average of the data:

uc =
1

mc
∑ric ∗ xi (2.14)

The covariance σc will be updated by computing the weighted average of the data:

σc =
1

mc
∑ric ∗ (xi−uc)

T (xi−uc) (2.15)

For both the mean and the covariance if ric is small xi will have a low influence. In the opposite

situation if ric is large xi will have a big influence in the cluster update.

In each step the log-likelihood of the model will increase:

σc = ∑ log∑ric ∗ (xi−uc)
T (xi−uc)i

(2.16)

The algorithm will iterate until it converges. Normally it will stop when a pre-defined log-likelihood

is reached or when the log-likelihood as a small difference between iterations.

In the end GMM as distributed the clusters that hopefully will describe the sub-sets of data.

2.1.1.4 Classification Algorithms

2.1.1.5 Support Vector Machine

In classification Support Vector Machines (SVM) are a set of supervised learning methods commonly

used. In 1963 the first SVM algorithm was created by Vladimir N. Vapnik and Alexey Ya. Chervo-

nenkis. The present version, soft margin, was presented in [19] in 1995.

SVM is used for linearly separate binary sets. It will try to separate two different sets with a straight

line. This is done by centering the line in the maximum distance between two sets of data as it can be

seen in2.1. This line is also referenced to as hyperplane.

For determining the hyperplane the normal vector w̄ to it must be calculated.

An unknown sample s̄ can only belong to one of two classes:

1. if w̄ · s̄+b≥ 0, then s̄ is from the first class

9
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𝑢  

𝑤  𝑥  1 

𝑥  2 

X1 

X2 

Figure 2.1: SVM trained by two different classes. White circles are the class number 1 and the black

circles represent class number 2. Image from [35]

.

2. if w̄ · s̄+b≤ 0, then s̄ is from the second class

(2.17)

Both the constant b and w̄ need to be determined and the constraints in 2.18 must be met to accomplish

this.

1. w̄ · x̄i +b≤−1, x̄i belongs to the first class

2. w̄ · x̄i +b≥ 1, x̄i belongs to the second class

(2.18)

The variable yi as to meet some requirements. When the samples belong to the first class => yi = 1

and when they belong to the second => yi = −1. The variable is then multiplied to (2.18) and it is

obtained:

1. yi(w̄ · x̄i +b)≥ 1, for x̄i from the first class

10
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2. yi(w̄ · x̄i +b)≥ 1, for x̄i from the first class

(2.19)

Now it is possible to describe samples from either class with one equation,

yi(w̄ · x̄i +b)−1≥ 0⇒ yi(w̄ · x̄i +b) = 1 if x̄i is in the margin (2.20)

The total margin or separability from 2.1 needs to be calculated. In order to do it the distance between

the hyperplanes in each margin is computed:

separability = (x̄1− x̄2) ·
w̄
‖w̄‖

, (2.21)

where x̄1 and x̄2 are support vector that are the samples from each class closer to the center of the

hyperplane, they are also called margin vectors. Using (2.20) it is determined:

x̄1 · w̄ = 1−b and − x̄2 · w̄ = 1+b (2.22)

The next step is to maximize the separability. In order to do that equation 2.22 is substituted in the

equation (2.21). With this it is obtained that the separability = 2
‖w̄‖ and it needs to be maximized :

max
(

2
‖w̄‖

)
⇔ max

(
1
‖w̄‖

)
⇔ min(‖w̄‖)⇔ min

(
1
2
‖w̄‖2

)
. (2.23)

Minimizing
(

1
2 ‖w̄‖

2
)

is a nonlinear optimization task, solved by the Karush-Kuhn-Tucker(KKT)

conditions[31]. To solve this optimization problem, the Lagrange multipliers α are used:

L =
1
2
‖w̄‖2−

n

∑
i=1

αi [yi(w̄ · x̄i +b)−1] . (2.24)

In the next step L is derived in with respect to w̄ and b:

∂L
∂ w̄

= w̄−
n

∑
i=1

αiyix̄i = 0⇒ w̄ =
n

∑
i=1

αiyix̄i, (2.25)

∂L
∂b

=−
n

∑
i=1

αiyi = 0⇒
n

∑
i=1

αiyi = 0. (2.26)

11
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It is possible to conclude that from (2.25) w̄ will be a linear combination from the training vectors. The

αi higher than 0 correspond to the support vectors. By replacing w̄ from equation 2.25 in (2.24) it is

obtained:

L =
1
2

(
n

∑
i=1

αiyix̄i

)(
n

∑
j=1

α jy jx̄ j

)
−

n

∑
i=1

αiyix̄i

(
n

∑
j=1

α jy jx̄ j

)
−

n

∑
i=1

αiyib︸ ︷︷ ︸
0

+
n

∑
i=1

αi

=
n

∑
i=1

αi−
1
2

n

∑
i=0

n

∑
j=0

αiα jyiy jx̄i · x̄ j

(2.27)

To solve the maximization in equation (2.27) the method described in [34] was used. The maximum

separability of the hyperplane is given by:

w∗ =
n

∑
i=1

α
∗
i yixi, (2.28)

b∗ =−1
2
〈w∗, xr + xs〉, (2.29)

αr > 0,αs > 0 and yr =−1ys = 1 (2.30)

Where xr and xs are the support vectors from each class where the conditions in 2.30.

In situations where it is not possible to linearly separate the two classes a transformation in to an

higher space dimension is needed. This is accomplished recurring to a Kernel function. In the higher

dimension space φ it is necessary to maximize φ(x̄i) ·φ(x̄ j).

K(x̄i, x̄ j) = φ(x̄i) ·φ(x̄ j). (2.31)

In many situations there is the need of classifying multiple classes. For solving this there are two

wildly used methods: ”one-against-all” and ”one-against-one” approaches. A detailed explanation on

this can be found in [28].

12
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Figure 2.2: Kernel function applied to space transformation, image adapted from [7].

2.1.1.6 Naive Bayes

Naive Bayes is a classification algorithm that is based in Thomas Bayes theorem. Naive Bayes assumes

that each feature is independent and therefore unrelated to each other.

Bayes’ theorem tries to describe a probability of an event and its mathematical form is defined as:

P(A|B) = P(B|A)P(A)
P(B)

, (2.32)

A and B are events and P(A) and P(B) are the prior probabilities of those events. Sometimes the

equation 2.32 is also defined with Bayesian terms a it is written as:

posterior =
likelihood× prior

evidence
(2.33)

When applied to classification if the features vectors are defined as A1(...)An and the classes are defined

as C the Bayes’ theorem establishes the following:

P(C|A1, ...,An) =
P(C)P(A1, . . . ,An|C)

P(A1, . . . ,An)
(2.34)

Then by using the naive independence of the features the algorithm assumes that

P(Ai|C,A1, . . . ,Ai−1,Ai+1, . . . ,An) = P(Ai|C), (2.35)

By simplifying the equation 2.35 the naive Bayes probability model is obtained:

P(C | A1, . . . ,An) =
P(C)∏

n
i=1 P(Ai |C)

P(A1, . . . ,An)
(2.36)

Combining the model NB probability model with a decision rule algorithm it is possible to make an

estimation of P(C|A) and P(Ai|C). The resulting Naive Bayes Classifier will then be as follows:

13
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ŷ = argmax
C

P(C)
n

∏
i=1

P(Ai|C). (2.37)

The most commonly used algorithm for decision rule is the maximum a posteriori estimation. A de-

tailed explanation on MAP can be found in [26].

2.1.1.7 Dynamic Bayesian Mixture Model

Dynamic Bayesian Mixture Model (DBMM) was proposed in [22] with the purpose of increasing the

classification on human activity recognition. This was accomplished by combining single base classi-

fiers. An extended version of this method was implemented in [23]. In this version DBMM already

included a dynamic update of the weights attributed to each classifier by using the passed information

of the system. Using this process the weights of each classifier are updated using the memory from past

behaviours. The principles of Bayesian Mixture Models (BMM) are used dynamically for combining

the outputs from different probabilistic classifiers, resulting in the DBMM algorithm. An overview on

the algorithm can be seen in 2.3. The detailed mathematical explanation is documented in [22] and

[23].
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𝑡  
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. 
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. 

Figure 2.3: Dynamic Bayesian Mixture Model overview, image from [35].
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2.2 State of the Art

It is proved that a robot can be a catalyst for increasing social interaction in children with social dis-

abilities.

Child-robot interaction in teaching and educational environments require many different functional-

ities. In order for the robotic platform to be able to interact with children it needs different social skills.

The functionalities of the used framework in the interaction must implement those skills. Skills like

people detection, movement generalization, movement classification and speech recognition processing

are essential in any interaction.

Humanoid robots, like NAO robot, are great investigation tools while at the same time have great

results engaging the children attention.

In the rest of this chapter an overview on the related works to the proposed system is presented.

2.2.1 Robot Learning by Imitation

Robot learning by demonstration is a commonly used approach for human movement generalization.

In [17] a real-time motion imitation by an humanoid robot was presented. Some years later robotic

learning by kinhestetic demonstration was proposed in [14]. In [16] an approach based on Hidden

Markov Model and Gaussian Mixture Regression for movement learning and reproduction was pre-

sented. Other works were also done by acquiring the motion information trough the use of wearable

sensors on the human body. The work in [11] accomplishes this and also uses NAO as the robotic

platform for reproducing the movements.

Many other works were developed in this area, the ones closer to the proposed method are [21]

and [32]. In [21] the Kinect sensor was used as the movement teaching method for the robot gesture

imitation. In [32] the kinect sensor was also used as a teaching method and NAO robot was used as the

platform for the movement reproduction. The proposed method used the work developed in [15]. The

method was adapted for a more user friendly acquisition by replacing kinesthetic learning system with

a gesture learning acquisition using the kinect sensor.
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2.2.2 Child-Robot iteraction

There are many works in children-robot interaction with different purposes. The worked proposed here

is intended for being continued until the proposed system is fitted to work in an environment with

children with disabilities, more specifically children that suffer from cerebral palsy (CP).

The investigation on this field started long time ago when computers started being used in the treat-

ment of children with autism [18]. Ever since many different works were developed, and robotic plat-

forms started to be introduced in the interactions. In [20] the authors address the problem of what are the

social skills needed in order for the robotic platforms to develop a ’social-behavior. In [29] the authors

used Keepon a creature-like robot in order to engage the attention of children with autism. The work

proposed in [13] presented Robota, a mini-humanoid doll-shaped robot for building children–robot so-

cial interactions with children with autism. In [36] presented an explanation on how mobile robots

could teach children with autism social skills, [29] is a work where this was implemented. In [24] robot

interaction with children with autism spectrum disorders was studied. Later in 2012 a similar work [33]

was done recurring to NAO robot as the robotic platform. The closest work to the work proposed here

is proposed in [37] where the NAO robot was used with the purpose of motivating childrens with CP to

keep them engaged in therapy.

In table 2.2.2 it is exposed some of the related works in child-robot interaction. It includes a small

description from each work.
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Work Area of work Description
Kozima et al. [30] Creature robot interaction with

children with autism

Children interacted with

Keepon robot in orther to

engage in dyadic interaction.

Feil-Seifer et al. [24]
Humanoid robot Interaction with
children with autism

In this work computers and

robot have been used in inter-

action with children with ASD

and it proved to be a catalyst on

social interactions.
Shamsuddin et al. [33] Humanoid robot Interaction

with children with autism

Children with autistic disorder

engaged with NAO robot. Re-

sults showed a decrease on the

autistic behaviours .
Yussof et al. [37] Humanoid robot Interaction

with children with Cerebral

Palsy

Children with cerebral palsy

(CP) interacted with NAO robot

for therapeutic purpose.
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Chapter 3

Child-robot Social Interaction System Setup

This chapter will give an overview on the components that compose the setup and on how the selected

method is integrated in it.

Firstly a description on the hardware and software is provided which is followed by a detailed

explanation on how the setup works is given.

3.1 Hardware and Software

This section describes the hardware and software used in the setup (these components can be seen in

figure 3.1). This figure also intends to demonstrate how the system framework works in a real-life

situation.
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Figure 3.1: System SetUp Components

3.1.1 Microsoft-Kinect

Having the need of a setup suited for a shared-learning environment the kinect was the sensor chosen

for depth data acquisition. Furthermore, it is commonly used in movement classification what made it

ideal for this system.

Figure 3.2: Microsoft-Kinect components [10]

The Kinect sensor components figure 3.2 are composed by an infrared, a laser and an RGB camera.

The camera specifications are explained in table 3.1.

One of the great advantages of the Kinect sensor is its skeletal tracking, which is the feature that
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Kinect Array Specifications
Viewing angle 43◦ vertical by 57◦ horizontal field of

view
Viewing tilt range ± 27◦

Frame rate (depth and color stream) 30 frames per second (FPS)
Audio format 16-kHz, 24-bit mono pulse code mod-

ulation (PCM)
Audio input characteristics A four-microphone array with 24-bit

analog-to-digital converter (ADC) and

Kinect-resident signal processing in-

cluding

acoustic echo cancellation and noise

suppresssion
Accelerometer characteristics A 2G/4G/8G accelerometer config-

ured for the 2G rande, with a 1◦ ac-

curacy upper limit

Table 3.1: Microsoft-Kinect specifications [10]

allowed data acquiring from the body pose. [1] explains how this process is done. ROS will use this

feature for publishing the joint values over time (this is explained in more detail in section 3.4).

3.1.2 NAO robot

NAO robot (H25-V4) was the chosen robotic platform for the child-robot system. NAO is a pro-

grammable humanoid robotic platform produced by Aldebaran Robotics. Its full documentation can

be found in [2] where all the sensors, actuators and joints of the platform are described. Figure 3.3

summarizes in resume this information.

This platform is widely used for investigation purposes, including similar works done in human-

interaction therapy for children’s with autism in [33].

Since the focus of the proposed system, is for it to work with children, this platform as the right

stature since it has 57,4cm in height. A really positive feedback was obtained when children interacted

with the robotic platform.
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Figure 3.3: NAO H25-V4 description [2]

3.1.3 Robot Operating System (ROS)

ROS is an open source operating system that is used for programming robotic platforms. ROS is

commonly used in robotics research since it supports and incentivize code sharing and reuse.

ROS is what allows the communication between all the components from the system setup. It also

provides the necessary resources for programming the algorithms used.

In the rest of this section a brief explanation on the main applications and utilities from ROS is

presented.

• Openni tracker is the package that makes the communication with the kinect sensor. This pack-

age publishes the transforms corresponding to each body joint. Each joint is defined as transfor-

mation (x,y,z,yaw,pitch,roll) from the camera. The list of body joints published can be seen in

figure 3.4.

• Pi speech processes the voice. This package grants the possibility of a contact less setup. Using

this package and Openni tracker conceived the system a shared-learning environment.

• Mvm database is where the movement signatures are saved for future reproductions.
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• Mvm classify is the package which includes the classification process defined in section 4.3.

This is used when the setup needs to assess if the movement already exists in the database.

• Motion genralization correspond to the method explained in section 4.1.2. When the setup

requires the signature for a new movement this algorithm is called.

• Nao control is the package that controls the robotic platform. Aldebaran Robotics provides a

python API which allows communication between ROS and NAO (more details can be found in

[3]).

• Full app is the package that controls all the setup, works as the bridge between all the packages

described above.

Figure 3.4: OpenNI’s kinematic model of the human body [6]

3.2 System Setup Overview

In this section a detailed explanation on the way the system setup works is presented. An overview of

the system is shown in figure 3.5.

There are some pre-requirements for the system to work. The user should be within the range

of vision of the Kinect camera and relatively close to the computer microphone. Once in within
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range of the Kinect sensor, the user must do a calibration pose by raising his arms. This will acti-

vate Openni tracker package, which will start publishing the skeleton’s joints. Once the pre-requisites

are met the system is ready to use.

The setup starts with the imitation mode by making NAO imitate automatically the users arms

movements. The package Pi speech is in standby waiting for a command. When the user asks if NAO

recognizes the movement (light-blue arrow), Pi speech will trigger Tf saving. Tf saving (dark-blue

arrow) will then record sets of 5 seconds of the joint transforms for being compared in classification.

Once Mvm classify finishes the classification, one of two options will occur:

• The movement is recognized (green arrow) and ROS will search in the movement database

sending it then to the robot for reproduction. NAO will acknowledge to the user that he recognizes

the movement and will reproduce it.

• The movement is not recognized (red arrow) and ROS will send a command to NAO to in-

form the user. NAO will explain to the user that the movement was not recognized and will

ask for more repetitions with the purpose of learning it. The user replies and once the com-

mand ”START” is sent, (grey arrow) Pi speech will activate Tf saving(yellow arrow). Af-

terwards, when the ”STOP” command is sent ROS will generated and send the dataset to the

Motion genralization method(orange arrow), which will then generate a movement signature.

The new movement will be saved in the Mvm dataset and ROS will send a command to NAO

to reproduce it. Finally, NAO will inform the user that a signature from the movement was

generated and saved for future reproductions.
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Figure 3.5: System setup overview
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Chapter 4

Motion Generalization and Classification

In the previous chapter the system requirements were exposed. It was also explained how the system

setup functions. The system requires motion generalization and classification.

This chapter explain the two approaches used to accomplish this. It will explain the necessary steps

to learn, generalize and reproduce a movement. The method developed here was based on what is

accomplished in [15], being that work adapted to meet the system objectives.

Firstly the same method of the work [15] was applied, using kinhestetic learning to learn and gen-

eralize new movements with NAO robot. Being the aim of the work proposed, for the robot to interact

with disabled children’s there was the need for creating a more user friendly setup. The system needed a

contact less movement learning system that would be suited for those children, being the kinect gesture

learning the proposed method to accomplish this. This made it possible for the system setup to work

on a shared-learning environment.

Finally this chapter will explain the movement classification used based on the work proposed in[23]

and [35].

4.1 Kinesthetic Learning

4.1.1 Data Acquisition

In order to learn and generalize a movement it is required a way to acquire the information of a move-

ment. In orther to do so, the first approach followed the same method used in [15] where kinesthetic
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Figure 4.1: Motion Learning and Generalization - Model Overview

Movement N. of Persons N. of Repetitions N. Repetitions(i) total N. of Joints From NAO
Clapping (1) 2 3 6 12

Raise arms (2) 2 3 6 12
Bolt (3) 2 3 6 12

Bye Bye (4) 2 3 6 12

Table 4.1: Dataset from the Kinesthetic Demonstrations

learning was used to collect the robot joints information along the movement.

Kinesthetic learning, when applied to robot movement learning, consists on acquiring the joints in-

formation over time while an experienced user manipulates the robot to perform the desired movement.

This work focused only on the upper body movements, so the joint information collected targeted

only the joints described in 4.2,in which each joint name is written in bold.

Two different experienced users reproduced 4 different movements, each user repeated each move-

ment 3 times. The data from each joint was acquired at a frequency of 10 hz. The acquired dataset

structure can be seen in table 4.1.
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Figure 4.2: NAO H25 V4 arms joints information. (Image adapted from Aldebaran Documentation on

NAO)
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Symbol Meaning
i Index corresponding to each of the moevement repetition
li Corrresponds to the size of all of the joint vectors (v j) in the ith repetition
va Vector corresponding to the joint number a, where a = (1...12)
di Matrix with the data from the 12 v j corresponding to the the ith repetition, where i=1 ... 6
X Input dataset
j Number of necessary principal components to obtain a 99% comeback to the original data

uk Vectors corresponding to each principal component, k = (1... j)

Y
Matrix composed by the principal components of the 6 repetitions,

representing the data X in the latent space
wi Matrix composed by the principal component coefficients corresponding to the repetition i
pci Matrix composed by the principal components corresponding to the repetition i
λi Matrix composed by the eigenvalues of the latent space corresponding to the repetition i
Wk Matrix composed by the warped principal components of the 6 repetitions
W ′k Matrix composed by the resized warped principal componentsof the 6 repetitions
Ck Matrix composed by the concatenation of W ′k and the corresponding temporal constraints
m Number of clusters used
γ Mean corresponding to a specific cluster
σ Mean corresponding to a specific cluster
Gk Matrix composed by the means and covariances from all the clusters
urk Regression vector of each principal component, k = (1...k)
Rk Matrix composed by all the urk .
v′a Signature vector corresponding to the joint number a, where a = (1...12)
S Matrix composed by all the signature vectors from each joint

Table 4.2: Table of symbols and abbreviations
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4.1.2 Movement Learning and Generalization

As explained before, each movement is repeated 6 times in total and a

movement is composed by 12 joints (va), which are described in table 4.1.

Each of the 6 repetitions of a movement can be defined with the following

matrix:

di =
[
vli

1 (...) vli
18

]
(4.1)

The input (X) is composed by all 6 demonstrations of a specific movement

defined in the equation 4.1 and is defined as:

X =
[
d1 d2 d3 d4 d5 d6

]
(4.2)

For all movements the data acquired has shown redundancy making it pos-

sible to represent it in a latent space of lower dimensions. This allowed to re-

duce the computational time and the amount of computational resources used.

PCA was applied to the input X . A detailed explanation on how this algorithm

works can be found in section 2.1.1.1. PCA will orthogonally transform the

vectors Di in X into a latent space of principal components Y as follows:

Y =
[

pc1 pc2 pc3 pc4 pc5 pc6

]
(4.3)

pci =
[
u1...u j

]
, i = 1...6 (4.4)

All the principal component vectors in pci have the same size li as the

corresponding vectors in di. Each pci matrix has associated to itself a matrix

of coefficients (wi) and a matrix of eigenvalues (λi). Eigenvalues have an

important role since they can be used as a metric of ”relevance” of each pci.
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It is at this point where the reduction of dimensionality happens, PCA

sorts each column of the pci by ”relevance”, and the eigenvalues tell us the

importance of each column. With this information it is chosen the number ( j)

of necessary columns (u), in order to reach at least 99% of ”comeback” to the

original data.

As it can be seen in the results 5.2 for all movement repetitions of each

movement 2 to 3 vectors uk of a pci matrix were enought to achieve the re-

quired percentage of ”comeback”. Since the mean is subtracted before per-

forming PCA, the mean of each di(va) is saved as d̄i.

[wi(tk), pci(uk),λi(sk)] = PCA(di(va)), (4.5)

In the end there is the need to ”comeback” to the original data, this is done as

follows:

pci(uk) = (di(va)− d̄i(va))∗wi(uk) (4.6)

since w is orthogonal this can be rewritten as,

di(va) = d̄i(va)+ pci(uk)∗w′i(uk) (4.7)

As each repetition has a different duration, if there is no pre-processing

GMM may have a poor performance. Therefore, in the next step of the

method dynamic time warp (DTW) is applied to each pci(uk) . Since the

same movement can be reproduced with different lengths and still be the same

movement, DTW is used to align the movement repetitions.

As explained in the background, DTW will align a vector with a reference

vector. An average vector with data from 6 repetitions was generated to work

as the reference vector. To accomplish this a resizing function which performs

a polynomial interpolation (spline) was used in order to resize all the vectors

to the average size. The resized vectors were then used to create the average

vector.

Wk =
[

pcw1(tk) pcw2(tk) pcw3(tk) pct4(tk) pcw5(tk) pcw6(tk)
]

(4.8)
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The warped vectors in Wk have higher dimension because of the way the

DTW algorithm performs. When working with movements the dimension

of the movement vector is important as each value has a temporal value as-

sociated to itself. To avoid this problem caused by the DTW algorithm the

resizing function was used again to resize each vector in pcwi to its original

size:

W ′k =
[

pcw1(uk) pcw2(uk) pcw3(uk) pct4(uk) pcw5(uk) pcw6(uk)
]

(4.9)

Before performing Gaussian mixture model (GMM) the warped vectors

from W ′k are concatenated with the respective temporal constraint in to a ma-

trice Ck:

Ck =

[
t1k t2k t3k t4k t5k t6k

pcw1(uk) pcw2(uk) pcw3(uk) pct4(uk) pcw5(uk) pcw6(uk)

]
k=(1... j)
(4.10)

In the next step,(GMM), a probabilistic model for clustering is a applied to

Ck in order to to itsdescribe subsets of data. GMM was applied to each group

of principal components Ck.GMM uses a predefined number m of clusters for

representing the data, which must be chosen carefully: if it is too high over-

fit may occur; being too low can lead to a poor representation of the data.

Following the suggestion in [15] 10 clusters (m = 10) were used and good

results were obtained in all the movements. Each cluster is defined by a mean

(γ) and a covariance (σ ) and these 2 values are updated in each iteration. The

algorithm iterates until it converges to a satisfying representation of the data.

In the end all the clusters are represented in matrix Gk as follows:

Gk =

[
γ1 ... γm

σ1 ... σm

]
k=(1... j)

(4.11)
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4.1.3 Movement Imitation

Using the means and covariances from GMM, gaussian mixture regression

(GMR) will create a regression(Rk) for each of the principal components:

Rk =
[
ur1 ... ur j

]
(4.12)

Using the regression of each principal component and the average of each

vector, following the procedure in (4.7), the motion signature is generated:

S =
[
v′1 ... v′12

]
(4.13)

In the end, in order for the robot to reproduce the movement the vectors v′a from the motion signature

S are sent to the robot joints at the same frequency of acquisition 10 hz. It is expected that the motion

signature has a duration equal to the average of the durations of the movement repetitions.

The algorithm and the code was adapted from [14].
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CHAPTER 4. MOTION GENERALIZATION AND CLASSIFICATION

4.2 Kinect Gesture Learning

As previously mentioned, to learn a movement trough kinhestetic learning an experienced user is re-

quired to reproduce the movement with the robot. As one may expect, this is not a common user

friendly approach, since not every subject can reproduce a movement in this way. This problem, adding

to the fact that the final objective is to work with disabled children’s, leads to the need of finding an

alternative to the kinesthetic learning.

In this final approach kinect gesture learning was the method chosen to acquire motion since it

doesn’t need any direct iteration. This allowed to work on a shared-learning environment where any

subject can teach new movements to the setup.

4.2.1 Kinect Data Acquisition

Microsoft Kinect RGB-D sensor was used on a ROS environment with the purpose of acquiring body

pose information. The sensor accomplishes this by acquiring a density map using the infra-red sensor.

In chapter 3 a detailed description of the setup can be found. ROS will publish, at a frequency of 10 hz,

the information from 15 body joints 4.3. This work only focus on the upper body joints identified in

bold in table 4.2.1. Only the translational information of each human body joint is needed to map to the

motion to the robot. This means that, only the x, y, and z information over time will be used, ignoring

the yaw, pitch and roll information. This is due to the fact that the angular information formed through

the body joints will be computed as explained later in this section.

/head /left shoulder /right shoulder /left hip /right hip
/neck /left elbow /right elbow /left knee /right knee
/torso /left hand /right hand /left foot /right foot

Table 4.3: 15 body joints published description

The new input dataset was also acquired by two different persons, making 3 repetitions of a move-

ment each. The new dataset structure can be seen in table 4.4.

4.2.2 Movement Learning and Generalization

The motion learning follows the same method from figure 4.1 that is explained in subsection 4.1.2 with

the small difference that each repetition vector has higher dimension being composed by 9 joints and 3

35



4.2. KINECT GESTURE LEARNING

Figure 4.3: Upper body joints published by ROS using the kinect Sensor

Movement N. of Persons N. of Repetitions N. Repetitions(i) total N. of Body Joints (x,y,z)
Clapping 2 3 6 9

Raise arms 2 3 6 9
Bolt 2 3 6 9

Bye Bye 2 3 6 9

Table 4.4: Dataset from the Kinect Body Pose Acquisition

values(x,y,z) each. One repetition as the following structure:

di =
[
vli

1 (...) vli
18

]
(4.14)

The input (X) is composed all the 6 demonstrations of a specific movement and is defined as:

X =
[
d1 d2 d3 d4 d5 d6

]
(4.15)

4.2.3 Movement Imitation

As previously mentioned, the same method 4.1 was followed and the movement signature is generated

as follows:

S =
[
v′1 ... v′18

]
(4.16)
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CHAPTER 4. MOTION GENERALIZATION AND CLASSIFICATION

In order to reproduce a movement there is the need to map the movement signature from the subject

body joints to the robot joints. This was achieved by adapting the work done in [9] and [8]. One

important feature of this work is the way this mapping is done. By using the angles created by the

triangles of the arm joints of the user it is possible to calculate the robot joints 4.4. A key feature of the

way this is implemented since the mapping does not depend on the size of the user. This particularity

makes the setup suitable for adult and children users. Additional filtering was done to the joints values,

for noise removal.

Figure 4.4: Kinect joints mapping to NAO robot [27]

4.3 Classification

A dataset for movement classification was created by 4 different persons repeating 8 different move-

ments. Table 4.5 shows a structure of the dataset with the number of frames from each movement. The

following movements: Goodbye, Bolt, Clapping, Cruising Arms, Raising arms to the top, Arms on

the hips, Air-plane and Arms calibration pose were the chosen movements for classification. This are

common movements in human interaction and allow the robot to engage the user attention.

Kinect sensor was used for the acquisition of the dataset. The information saved the sequences

from the body poses in relation to the camera and in relation to the torso. For the classification being
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4.3. CLASSIFICATION

Table 4.5: Dataset structure.
Activity Number of frames
Goodbye 1143

Bolt 818
Clapping 1064

Cruising Arms 986
Raising arms to the top 934

Arms on the hips 933
Air-plane 1158

Arms calibration pose 927

suited for every user it included 4 different persons, three female subjects and one male subject with

different ages. One of the female was a children with 5 yea old, once it is a key step to include children

in the work. Each subject repeated the different movements several times from different positions. An

example from the data acquisition can be seen in figure 4.5

Different features were taken in order to accomplish the classification such as the Euclidean distance

between body joints, angle variation, angle speed among others. The work developed here was adapted

from the work developed in [35]. Detailed explanation on the features and algorithms can be found

in that work. Here the SVM and naive NB were used alongside with DBBM with weights update, as

explained in the Background section.

Despite more tests are needed in order to better validate the classification approach in this context.

However, this work is relying on the potential results obtained in other works [35] and [23]. The

classification presented good results, despite this it is still missing a confusion test. More tests to the

classification will be done in the future.

Figure 4.5: Data acquisition from 5 year old children performing the Goodbye movement.
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Chapter 5

Experiments, Tests and Results

5.1 Kinesthetic Learning

Kinesthetic learning was used to generalize NAO robot movements. The kinesthetic movements were

taught to NAO robot, as it can be seen in figures 5.1 and 5.1. For accomplishing this a dataset was

generated by repeating the same movement 6 times by two different persons, each person repeated

the same movement 3 times. The robot learned 6 different movements: goodbye movement; clapping

movement; bolt movement; side arms movement; what movement; and finally the raise arms movement.

Since the 6 different movements only involved moving the arms, the work focused on collecting the

data related to the joints from the robot arms. NAO robot has 6 joints in each arm, so in total it was

collected data from 12 different joints.

Figure 5.1: Bolt movement kinesthetic learning from user 1

For the data collection a python script was created. The script was programmed to read joint’s

values each 100 milliseconds. After that, it is created a text file containing the formatted data in 12

vectors, each vector corresponding to one joint. Taking into account the frequency of acquisition time

39



5.1. KINESTHETIC LEARNING

Figure 5.2: Bolt movement kinesthetic learning from user 2.

vectors were created for each vector.

After this step the motion learning explained in 4.1 was applied and a signature was created for each

movement.

The results presented next only refer to the byebye movement. Similar type of results were obtained

for the other movements. After applying PCA to the data it was tested how many principal components

Table 5.1: PCA Analysis, necessary number of principal components to otbain at least 99% ”comeback”

to the original data.
Byebye Movement Performance % Number of PC used

medeiros-bey2015-12-7-17-4-31 performance1 = 99.4509 num pcmvm1 = 3
medeiros-bey2015-12-7-17-5-12 performance2 = 99.4852 num pcmvm2 = 2
medeiros-bey2015-12-7-17-5-12 performance3 = 99.7948 num pcmvm3 = 3
rui-bey2015-12-7-17-5-49 performance4 = 99.0976 num pcmvm4 = 2
rui-bey2015-12-7-17-6-3 performance5 =99.3972 num pcmvm5 = 2
rui-bey2015-12-7-17-6-14 performance6 =99.3706 num pcmvm6 = 2

were need to obtain a 99 % ”comeback” to the original data(12 vectors, 1 corresponding to each joint).

Looking at table 5.1 it is possible to conclude that for this movement it needed at least 3 principal

components to obtain the desired performance. This happened because the first and the third movement

repetition needed 3 principal components to meet the necessary performance.

The next step was to temporally align the different movement repetitions. DTW was used to ac-

complish this.

After the two pre-processing steps (PCA,DTW) the data was concatenated in to 2d using the tem-

poral vectors as the second dimension. The next step was to apply GMM and GMR in order to obtain

the motions signatures.

The figures 5.1 show the results from the above steps corresponding to the first principal component.
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Figure 5.3: Byebye movement motion generalization corresponding to the principal component number

1.

It is possible to observe that 15 clusters were used in each PC signature. Each movement is com-

posed by the 12 joint values variation overtime. Since this would fill the work with too much informa-

tion here it is only presented the 3 joints with bigger variation in this movement. This results can be

seen in figures 5.1, 5.1 and 5.1
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Figure 5.4: Byebye movement signature - information from the joint number 1:’RShoulderPitch’.
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Figure 5.5: Byebye movement signature - information from the joint number 2:’RShoulderRoll’.

As it would be expected the joints with higher variation were the ones from the right arm of the

robot, the arm used in the kinhestetic reproduction.

A video with tje results from all the movements can be found online in [5].
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5.2 Kinect Gesture Learning

Gesture learning with kinect sensor was used for generalization of human movements. Given the con-

text of the work in this part only one user was used for acquiring data since, as explained in chapter 3,

only one user interacts with the system. For accomplishing this, each movement was repeated 6 times

by an user. The same 6 movements taught in section [?] were acquired. The joint information(x,y,z)

from the 15 body joints was acquired at a frequency of 10hz for each movement. Due to the big dimen-

sion of the results here it is only presented results for the byebye movement.

The PCA results 5.2 on the byebye movement required at least 3 principal components need to

be used in all the movement repetitions. PCA still performed really well since it reduced the data

dimension from 45 vectors (15 - joints x 3 - joint values) to 3 vectors, showing there is redudancy in

the data.

The method for gesture learning only differs on the type of data acquired, the rest of the method

executes the same steps as the ones explained in 5.1. The figure 5.2 show the PCA signature from

principal component number 1 being generated, using the same steps as before.

Byebye Movement Performance % Number of PC used
medeiros-bey2015-12-7-17-4-31 performance1 = 99.7255 num pcmvm1 = 3
medeiros-bey2015-12-7-17-5-12 performance2 = 99.6881 num pcmvm2 = 3
medeiros-bey2015-12-7-17-5-12 performance3 = 99.6321 num pcmvm3 = 3
medeiros-bey2015-12-7-17-5-49 performance4 = 99.6967 num pcmvm4 = 3
medeiros-bye2015-12-7-17-6-3 performance5 =99.7798 num pcmvm5 = 3
medeiros-bye2015-12-7-17-6-14 performance6 =99.7170 num pcmvm6 = 3

Table 5.2: PCA Analysis on byebye movement - necessary number of principal components to otbain

at least 99% ”comeback” to the original data.
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Figure 5.7: Byebye movement motion generalization corresponding to the principal component number

1.
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Figure 5.8: Byebye movement motion generalization corresponding to the principal component number

2.

In the end this values are mapped trough a set of functions that map body joints in to NAO robot

joints.

A video with the full results from all the movements can be found online in [4].
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Figure 5.9: Byebye movement motion generalization corresponding to the principal component number

2.
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5.3 Movement Classification

Classification still misses some results.

Classification was trained for recognizing the 8 following movements: Byebye movement, Arms

calibrate movement, Bolt movement, Clapping ,Cruising arms,Arms to the top,Arms to the hips and the

air plane.

As it can be seen in the figures 5.3 and 5.3 the tests the classifier performed properly. The SVM

classifier scored 94,8 % and the NB classifier scored 74.5 % .

The system was also tested with a children user. It also corresponded well in a continuous environ-

ment like the system set up proposed, where information is acquired on-the-fly. Future and precise tests

will be done to test the exact performance of the algorithm.

Figure 5.10: SVM performance results

In 5.3 it is possible to see the body joints of a 5 year old children performing the air plane movement

while classification was being performed.
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Figure 5.11: NB performance results

Figure 5.12: 5 year old children goodbye movement the classification process
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Chapter 6

Conclusions and Future Work

The use of robots in therapeutic environments for children has already proved to be a useful tool.

Robots, with the required social skills, can be applied to engage the children attention in order to

reduce stress. In this work, a fully implemented framework was developed for creating some of those

social skills. The system is composed by a computer, NAO robot and a kinect RGB-D depth sensor.

By communicating with the different components, the developed system allows NAO robot to interact

with children with the following skills: movement learning and generalization; movement imitation;

movement classification.

The work was tested in real-life situations with 3 different users, among them a child. All the skills

were tested and the system was able to perform the different tasks with the 3 users.

The system framework was developed in ROS and it comprises all the different modules. The im-

plemented modules are: communication module, gesture learning and generalization module, imitation

module, camera module and the robot module. ROS runs the modules in parallel making it possible for

the system to interact between the different parts.

Respecting to the proposed objectives in this work it reached the following contributions:

• The system is able to learning and generalize a movement either in offline (kinestetic learning)

or online (kinect gesture learning) contexts;

• The robot is able to imitate the generalized movements;

• The system is able to classify the movements on-the-fly and if they are recognized the robot is

able to reproduce them.
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Despite the satisfying results, there is always space for improvement. The system is already fitted

for interacting with children but it needs extra features for being suited for with children that suffer from

cerebral palsy. The system should have extra security measures that can detect abnormal situations and

in those cases it should be ale to warn someone.

It would be also interesting if the system could detect the children emotions and at the same time

being capable of emote. This would highly improve the decision making process and it would be easier

to engage the children attention. For example, if the system detected that the children is sad it could use

the imitation module implemented in this work to make an imitation game. Also a following module

would make the child-robot interaction more natural.

Also, it could be explored the possibility of including a physical therapy module. The kinect RGB-D

sensor would detect wrong movements and the robot would reproduce how to do them properly.
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