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Abstract:

This paper, the second in the series, uses the entropy theory to describe the spatial variability of groundwater quality
data sets. The application of the entropy theory is illustrated using the chloride observations obtained from a network
of groundwater quality monitoring wells in the Gaza Strip, Palestine. The application involves calculating information
measures, such as transinformation, the information transfer index and the correlation coefficient. These measures are
calculated using a discrete approach, in which contingency tables are used. An exponential decay fitting approach was
applied to the discrete models. The analysis shows that transinformation, as a function of distance, can be represented
by the exponential decay curve. It also indicates that, for the data used in this study, the transinformation model is
superior to the correlation model for characterizing the spatial variability. Copyright © 2004 John Wiley & Sons, Ltd.
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INTRODUCTION

Entropy theory (information theory) came to be viewed as a statistical concept at the beginning of the twentieth
century. About 50 years later, it found its way into engineering and mathematics, notably through the work
of Shannon in communication engineering. Shannon (1948) used entropy as a measure of uncertainty in the
mind of someone receiving a message that contains noise. Later, in 1957, Jaynes made use of Shannon’s
entropy metric to formulate the maximum entropy principle that formed a basis for estimation and inference
problems (Golan et al., 1997). In 1972 Amorocho and Esplidora were the first to apply the entropy concept
to hydrological modelling (Singh, 1997). Since then, there has been a great variety of entropy applications
in hydrology and water resources management (e.g. Rajagopal et al., 1987; Singh and Rajagopal, 1987,
Singh, 1998; Harmancioglu et al., 1999). Entropy theory can be used in modelling and decision-making in
environmental and water resources, especially in developing countries (Singh, 2000).

Entropy theory also has been applied to assess and evaluate monitoring networks with respect to:
water quality (Harmancioglu et al., 1994, Ozkul et al., 2000), rainfall (Krastanovic and Singh, 1992) and
groundwater (Bueso et al., 1999; Mogheir and Singh, 2002). Most of these applications involve applying
entropy theory to the evaluation, assessment and design of monitoring networks, and they used an analytical
approach with a presumed knowledge of the probability distributions of the random variables involved. In the
first paper of this series, Mogheir et al. (2004) adopted discrete and analytical approaches using a synthetic
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data set, where the data were spatially correlated and fitted the normal distribution function. Under these
conditions, it was found that there was a reasonable agreement between discrete and analytical approaches
for developing the transinformation model (T model), and it was shown that the T model also could be used
instead of the correlation model (C model) to characterize the spatial variability.

In this paper, a different set of data is used. The set of data includes groundwater quality from the Gaza Strip
monitoring network (chloride data). For these data, the spatial correlation is low and the normal distribution
function does not fit. The objective of this paper is to:

1. use a discrete approach (contingency table) for calculating information measures, such as transinformation
(T), information transfer index (ITI) and correlation coefficients.

2. apply an exponential decay fitting approach to the discrete T model and C model;

3. use the T model and C model to describe the spatial variability of the Gaza Strip data set.

GAZA STRIP GROUNDWATER QUALITY DATA

The set of data used in the analysis is part of groundwater quality data from the Gaza Strip, Palestine. The
data were selected from the groundwater quality data monitored in the middle part of the Gaza Strip. This part
of the Gaza Strip is the area with the most serious problems of seawater intrusion. More than 150 wells are
used to monitor the groundwater quality in this area. In this study, 26 monitoring wells that monitor chloride
were selected. Each well has 52 chloride data measured between 1972 and 1997. Chloride is measured twice
per year: in winter and summer. The winter cycle is considered to be taken in April and May whereas the
summer cycle is in October and November. The locations of these 26 wells in the middle part of the Gaza
Strip are shown in Figure 1. The chloride time-series of the 26 wells are presented in Table I. In the table,
X is the mean and S, is the standard deviation of the chloride data. The spatial variation of the mean of the
chloride time-series in each well is presented in Figure 2. The contour lines were drawn using the kriging
technique, which is an option in the Surfer-7 mapping program (Golden Software, 1999). Additionally, the
chloride time-series of some of these wells are plotted in Figure 3. The groundwater data in the Gaza Strip
(quality and water level) were summarized and presented by the Palestinian Water Authority (PWA, 2000).
These data were also used in the modelling of the Gaza Strip aquifer by Metcalf and Eddy (2000).

METHOD

The method used in this study follows that presented in Mogheir et al. (2004). A contingency table is used
for the discrete approach. The discrete models’ results were smoothed using the moving average method. For
convenience, the base e and the unit nats were used for computing numerical results.

This study differs from Mogheir ez al. (2004) mainly in the analytical approach. As the Gaza Strip data,
which were used in this study, do not follow the Gaussian distribution function, and their spatial correlations
are low, an exponential decay curve is fitted to the discrete models and to the smoothed discrete models
(exponential decay fitting approach).

Harmancioglu et al. (1999) investigated the fitting of a semi-exponential curve to the discrete T model.
The analysis of the synthetics data (Mogheir et al., 2004) and the shape of the discrete T model, smoothed
by the moving average method, of the chloride data set signified that the exponential decay curve could be
the best representation of the discrete T model, and could be presented as (e.g. Motulsky, 1999)

Td)=G e XD 40 (1)

where the exponential decay curve starts with 7o = G + Q at distance (d) = 0; and the curve decays to reach
Q value with a constant rate K. The units of G and Q are expressed in the same way as the T unit (nats),

Copyright © 2004 John Wiley & Sons, Ltd. Hydrol. Process. 18, 2579-2590 (2004)



2581

SPATIAL VARIABILITY OF GROUNDWATER QUALITY II

aunsared ‘ding ezen oy jo 1ed o[pprw ay) ur s[jom Sunojiuow Ajjenb 1ojempunois pejos[es Jo uonedsoT | aIndnj

eoly Juswses -
ealy dnyjing am»
speoy oes [ )
speoy Jolepy 2

||om BULIONUON &

[CNESEN

awoiy

——

+—

"

/8

duis ezen
06

duis ezep

! | 16
\ n \:w.. Yo __ k
ol URg L N .
N \ ~ 6H ;
€ K - f
AN /\/w JJwV| 4 €6
P_/.A_Af S : &
U\ Ao - *, ety f.mmf|| ~ v6
B ® 0t N
fM_._. P st-H /es .
=Pl o 6
4 - P. . R4
&
ﬁ Ty \ \ % supssled
=5 . |4 \
bo—

Hydrol. Process. 18, 2579-2590 (2004)

Copyright © 2004 John Wiley & Sons, Ltd.



Y. MOGHEIR, J. L. M. P. DE LIMA AND V. P. SINGH

2582

€29 1S9 086 016 6911 Ov8 968 16L 1L01 SEL  vEp 928 198 L6F PS8 688 1S9 TLY TO9 9vS LSO SL8 I6L Y901 ¥0S  O6F $8-TO-8T
S6S  PP9 Sv6 016  S801 618  TO6 9SL SSII LOL  OCTP ¥8L 688 SSt  T88 6L 859 8G9 €8y TS LSO 198 TI8  6C0L IS L6V €8-60-10
9vS  0£9 S¥6  OF8  PEIT LP8  ¥T6 I8 06I1 LOL  Iyy  Ov8 800 8K 0P8 618 859 1S9 06y 8IS 6 O¥8 9L 1001 ¥OS  SSP  €8-€0-S0
€SS 0€9 656 €601 SIOT 8L  9T8  88S TOIT S99  66E P8L OP8 Ipy 198 198 1S9 p¥9 €8y TS ILOI 198 9SL 1001 OSF  9LF  T8-60-90
06v TO9 TS6 016 ILOI SOL  LOL 18§ 6911 €69 0Ty 16L 198 8P  Op8 198  LE9 €9 06F 8IS +T6 €€8 LLL 656 YOS  T9¥  T8-E0-01
L6V STS ¥S8  LLL ¥S8 €69  THL PLS TTOI 8S9  OCTH ¥8L OP8 pEP 198 198 09 TO9 €8y 8IS 90l 9SL 1S9 068 0Tk  66€ 18-60-11
06F 8IS 198 SEL 996 00L  LOL 185 800T 0€9 0Ty S99 €9L T6E  9SL 6YL €SS TES 06k 69y +T6 €69 8G9 T8  0TF Y9  18-€0-SI
L6V 9¥S 896 LLL ¥S8 S99  THL 9SL €POI 0€9 66§ O0L 9SL S8  6PL 86L 095 TO9 €8F Ivy 6v6 TrL 1S9 898  90F 90  08-60-91
6L9  TES 198 SEL 1€6  6L9  LOL 18 800 €29  Ivy 00L €9L TEGE  ITL 6vL €SS TES LIy vk ¥T6 €69 9I8 898  90F  +9E  08-€0-0C
919 ST SL8 ¥T6 9SL S99 €69 88 SIOL TO9  vEY S99 SEL  8LE  8TL TI8  9¥S 8IS SSt vk 6v6  6hL 609 0P8  S8E  66E  6L60TT
Y9 YOS PS8  00L 6bL 885  v¥9 18 800I 8L9 9Ly 989 6L ILE  SEL TI8 SIS POS LIy 666 LI6 6L 09 9T8  90F  ILE 6LE09T
919 L6 O¥8 ¥T6 16L PLS 919 bLS 086 STL  SSy  SEL SEL  ¥9T  9SL TI8  L6F TES Ivy vk €06 O0L 609 SO8  T6E  S8E  8L6OLT
Y9 $OS TP8  00L THL 885 ¥¥9 I8 ¥T6 SEL 9Ly TwL VIL ILE  SEL TI8 TS POS LIy 666 LI6 I6L STS  SO8 90y  ILE 8LEOIE
VLS L6 OV8 989  9SL  PLS 919  bLS 968 TO9  SSy  6L9 LOL LSE  9SL 86L L6y 1IS Ivy 8pp €06 LOL 919 I6L  T6E 66 LLOI-TO
VLS ¥8S TS6 00L 6PL L9S 609 tOS ¥S8 8L9  TOY 989 ITL OTH  LIL 6L  6ES €SS POS 90v 6TOI 16L 989 ¥T6  ¥EP  0SE  LLH0-SO
09 €SS S¥6  TI8 16 I8S S99 bLS 1€6  STL 9Ly SEL OLL OTP  SO8 198 L9 09 9Ly SSy 9101 ITL ¥P9 T88  TEY 66 9LOI-LO
88 IIS 198 8TL S08 TES  €T9 09S LP8 SEL 8IS THL 9SL 66§  1TL 9SL  6£S €SS 9Ly  vEF €WOI €9L  PP9 T8 OTF  S8E  9LHOOI
S6S 8IS ¥C6 826 SEL  9vS 919 PLS ¥S8 pIL 11§ PIL ITL LTy 6L9 TI8  TES TES 09S €IF 800 OLL ¥P9  S¥6 66  ILE SLOI-EI
88 $OS 016 9SL OLL 11S 609 LT¥ 9SL YIL T9¥ TL9 9SL TIS €69 6I8  SSF  9pS €8y 0Tk 1001 00L S6S 016 90F TP  SLPO9I
609 L6V T88 TI8 ThL 8IS  S6S 8IS L8 989  8py vIL 6vL SIE  OSL 6L  STS 8IS 09 90v SIOI OLL €9 OP8 90y  TTE PLOI-8L
88 €8F 688 9L 9TL TES 609 LT 9SL LOL  TOF TL9 9SL 9EE €69 86L  STS 9vS €8y 0Tk SIOL O0L €29 016  8LE TLE PLPOICT
609 L6V YT6 TI8 THL 9PS S99 bLS L¥8 989 9Ly vIL 6bL SIE  SO8 ¥8L TS TES €8y 666 <TCOl OLL 919 O¥8  S8E  ILE ELOIEC
88 €8y 016 8L pIL 11S €9 LTk 9SL LOL 8IS TL9 9SL TTE  ITL 86L T 6€S 9Ly 0Tk 1001 Q0L €29 9T8  8LE T9F ELHO9C
609 €I T88 00L €69 €87 YOS LS 989 PP9 69y 8S9 THL 6TE  6L9 06L SIS TES 095 90v 8001 919 6ES O¥8  S8E  TTE  TLOISC
LE9  LTv SL8 LOL 918 66§ I¥F LTP STL PLS  STS OOL THL €PE  ¥¥9 86L  PI9E  6€S  SSy TOE P90 S6S  I8S  S08  8LE  ¥6T TL-SO10
6H 8H L(H 19H TSH 1SH O0SH 6y-H 8-H tvv-H Sr-H I¥H ObH vH 66H S¢H 8CH LTH STH $TH 0TH 61-H 9I-H SI'H 11-H 0I-H

oM SULIOYUOA areq

7 pue T samSiy ur pajuasaid se s[om SuLojiuowr 9z Yy} Jo seuas-awy (/Sw) apHoy) T A[qeL

Hydrol. Process. 18, 2579-2590 (2004)

Copyright © 2004 John Wiley & Sons, Ltd.



2583

SPATIAL VARIABILITY OF GROUNDWATER QUALITY II

a4

€8¢
809
88¢
69¢
6¥9
186
09¢
BigY
919
09
SOL
609
619
L9S
YLS
08S
L9S
69S
06S
9¢¢
i%Y
L9S
399
L9S
549
L9S
549
L9S

9Tl
£v9
8128
126
68
LLL
16L
LLL
V8L
V8L
S08
S08
V8L
OLL
V8L
OLL
LOL
00L
LOL
V8L
LOL

159
¥¥9
§99
8¢9

1€6

0L6

1001

1001

1001
St6
Y6
L86
1001
SY6
St6
26
Y6

€61

ST10T1

1001

OLT
98
788
016

0r6
798
996
656
996
996
996
656
996
LSOT
6601
901
1001
LT0T
1001
656
1001
656
ST0T
656
Y26
656
L16
SL8

OLT
0CL
TL8

P68
16L
LY8
LLL
L8
989
LY8
989

989
Y6
Y26
1€6
L16
8¢6
1€6
996
LY8
996
0r6

016
768
SL8
768

6¢€1
8L
0601
1901
6201
1L01
Y66
0501
St6
656
656
656
656
1€6
0¥8
£€8

YIL

€9

oy
L89
09
L9S
609
061
6¢S
11s

1S
9Ly

1494
L6y
8hy
994

90¥
ocy
6t
901
(413
90
6t
90y
6t
(413
6t

9C8

98
S8
98
121
9¢8
618
618

oIl
CL8
0€T1
9111
370
1,01
66
656
66
656
656
656
656
656
¥C6
¥C6
¥T6
L16

89

544
L6y
€0S
L6y
0S
549
(439
Loy
L6y
L6y
0S
(154
0S
061
0S
(154
0S
0S
€87
L6y
06y
€8
£8Y
L6y
06
£8Y
€8
69

618

L16

SoT1
S€9
9SL
YyL
8CL
6vL
6vL
9SL
16L

1L
1L
SeL
9SL
0¥8
VIL
1L
£69
989
£69
6L9
6L9
00L
6L9
00L
L9
S99
159
8¢9

YTl

CI8

SEL

68

1429
L19
1€9

VIL
989
LOL
8CL
L
L
994
06y
1994
06
209
69¢
209
88¢
209
88¢
09
88¢
209
€87
06y
88¢
209
88¢

0Cl
6¥S
108
L9L
0IL

YIL
LOL
SeL
6L
6VL
YIL
YIL
9
159
LE9
69Y
186
88¢
VLS
S6S
186
886
VLS
88¢
L9S
oS
L9S
i%Y

41!
0s8
0901
0501
9¢01
LL6
656
1001
0r6
s6
0c6
016
1€6
St6
Y6
Sv6
8¢6
Sv6

[439

(439
€81
549
8I¢
8IS

11s
0S
8I¢
549
11s
549

61
(439
956
or6
88
198
88
898
SL8
SL8
CI8
CI8
989
86L
9
LE9
€79
€79
399
919
isY
L9S
549
(439
549
0S
IS
LE9
11s

s

ES
L6-90-61
96-C1-1¢
96-90-1¢
S6-CI-LT
§6-90-0¢
S6-10-10
¥6-L0-S0
¥6-10-90
£6-L0-01
€6-10-T1
CT6-LO-ST
T6710-LT
16-L0-1C
16-10-CC
06-L0-9C
06-10-LC
68-L0"T¢
68-20-10
88-80-S0
88-20-L0
L8-80-11
L8-20CI
98-80-91
98-C0-LI1
68-80-1¢C
$8-20-C¢C
¥8-80-9¢

Hydrol. Process. 18, 2579-2590 (2004)

Copyright © 2004 John Wiley & Sons, Ltd.



2584 Y. MOGHEIR, J. L. M. P. DE LIMA AND V. P. SINGH

95500

95000

94500
Mediterranean Sea

Distance (m)

94000

93500

93000 S -
3 H-10 %o
| 1" \
[}
-9
T T T T T T
89500 90000 90500 91000 91500 92000

Distance (m)

Figure 2. Chloride contour map for the middle part of the Gaza Strip. The average of chloride data (mg/L) was used in drawing the contour
map

whereas K is expressed in the inverse unit used by d (1/m). Note that Equation (1) was also used to represent
the analytical lognormal T, ITI and correlation models.

The fitting of the exponential decay curve to the discrete models was performed using the least-square
fitting procedure with the GRAPHPAD PRISM statistical software (Motulsky, 1999). The coefficient of
determination was used to quantify the goodness of fit between the exponential decay curve and discrete
models. The coefficient of determination (R?) was computed as (e.g. Motulsky, 1999)

(2)

where SSy, is the sum of the squares of the residuals between the discrete model and the best-fit exponential
decay curve, and SSy is the sum of the squares of the residuals between the discrete model and the horizontal
line through the mean.

As in Mogheir et al. (2004), the T model and C model were compared to characterize the spatial variability
of the Gaza Strip data set.

COMPARISON OF DISCRETE AND EXPONETIAL DECAY FITTING APPROACHES

Correlation model (C model)

The discrete C model is obtained by computing the correlation values using the discrete approach and
the distance between wells. The discrete C-Model data is smoothed by using the moving average method

Copyright © 2004 John Wiley & Sons, Ltd. Hydrol. Process. 18, 2579-2590 (2004)
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Figure 3. Chloride time-series of 12 monitoring wells (H-10, H-11, H-20, H-28, H-35, H-45, H-48, H-50, H-41, H-61, H-15 and H-4)
for the period winter 1972 to summer 1997, used in the analyses. In the graph X is the mean of the chloride time-series and S, is the

standard deviation

(DCMM4 )- The exponential decay fitting approach is applied to the discrete C model and DCMy4. A summary
of the best-fit equations of the exponential decay curve to the discrete T, lognormal T, ITI, correlation models
and R? values for each model is presented in Table II.

The discrete C model (DCM), the C model smoothed by the moving average method (DCMya) and the
exponential decay of the discrete C model (DCMgp) are plotted in Figure 4. This figure and Table II show
that DCMgp does not fit the discrete C model well, as R? = 0-07, which is very low. The coefficient R? is
increased by applying the exponential decay fitting approach to the DCMya (R?> = 0-22). Nevertheless, for
both the DCMys and discrete C models the coefficient R? is quite small. Therefore, the exponential decay
curve, which was selected to present the discrete C model, does not infer the spatial variability of the chloride

data adequately.

Table II. Fitting discrete models with the exponential decay curve applied to the Gaza

Strip data

Model type

Fitting equation

R2

Discrete C model
Discrete T model

Lognormal discrete T model

Discrete ITI model

r(d) = 0-43 003 D 4 (.53

T(d) = 0-29 e-00087 &) 4 (.90
T(d) = 0-90 ¢-00102d) 4 (.59
ITI(d) = 0-39 e-00359 & 4 .61

0-07
0-33
0-43
0-57

Copyright © 2004 John Wiley & Sons, Ltd.
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Figure 4. Correlation models for the groundwater quality monitoring network in the middle part of Gaza Strip (chloride)

Transinformation model (T model)

The discrete T model was obtained in the same way, by computing the T values using the discrete approach
and the distance between wells. The discrete T model data were smoothed using the moving average method
(DTMpma). The exponential decay fitting approach is applied to the discrete T model and DTMy4. For the
discrete T model, the R? coefficient is 0-33, which is smaller than that for DTMya (R* = 0-71). This indicates
that the exponential decay curve fits the DTMya much better than does the discrete T model. The discrete T
model, the DTMya and exponential decay of the discrete T model (DTMgp) are plotted in Figure 5.

T-model using logarithmic chloride data

As the normal distribution did not fit the chloride data well, the lognormal distribution was assumed.
The chloride logarithmic data from the Gaza Strip monitoring wells are used to compare the discrete and
exponential decay fitting approaches in obtaining the T values. The logarithmically transformed chloride data
are used to check the fitting of the normal function by constructing the histogram and plotting the probability
diagram. The chi-square test was used to assess the adjustment of the lognormal distribution to the empirical
data.

After fitting the lognormal function of the chloride data from the Gaza monitoring wells, the lognormal
discrete T model (lognormal DTM) is obtained by computing the T values of the logarithm of the chloride
data, using the discrete approach and the distance between wells. The lognormal discrete T model is smoothed

1.50

Discrete

1.20

0.90 4% %4

Nats

0.60

0804 - - - - st e e

0.00 T T T T T T
0 500 1000 1500 2000 2500 3000 3500
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Figure 5. Transinformation models for the groundwater quality monitoring wells in the middle part of Gaza Strip (chloride)

Copyright © 2004 John Wiley & Sons, Ltd. Hydrol. Process. 18, 2579-2590 (2004)
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using the moving average method (lognormal DTMya). The exponential decay fitting approach is applied
to the lognormal discrete T model and to the lognormal DTMya. Figure 6 illustrates the lognormal discrete
T model, the lognormal DTMy;s and the exponential decay of the lognormal discrete T model (lognormal
DTMgp). From Figure 6, it can be seen that, for the lognormal DTMya, R? is 0-68 which is greater than the
R? value obtained by the lognormal discrete T model (R?> = 0-43). As for all the T models, the exponential
decay curve fits better to the DTMpy4 than that to the discrete T model. The lognormal DTMgp is compared
with the DTMEgp. As shown in Figure 6, the minimum value of the transinformation in the lognormal DTMgp
is 0-3 nats less than that found in the DTMgp. Additionally, the initial value of the transinformation in the
lognormal DTMgp, is 0-3 nats greater than that in the DTMgp. This indicates that the T model is sensitive to
the type of distribution of the data, whether its normal or lognormal.

CHARACTERIZATION OF SPATIAL VARIABILITY

When comparing the correlation model (C model) and the transinformation model (T model), to characterize
the spatial variability of the chloride data, Figure 4 shows that the discrete C model is highly scattered and the
exponential decay curve does not fit to the discrete C model well. This is also found where R> = 0-07 and 0-22
for the discrete C model and DCMy,, respectively. On the other hand, Figure 5 shows that the exponential
decay curve fits to the DTMy4 better than it does to the discrete T model, as R? = 0-33 and 0-71 for the
discrete T model and DTMya, respectively. Furthermore, the R> values are greater if the logarithmically
transformed chloride data are used.

As the ITI and correlation models have the same range from O to 1, they are compared in Figure 7, which
demonstrates that there is less scatter in the discrete ITI model, which is smoothed by the moving average
method (DITIMp,), than there is in the DCMya. The R? value for DITIMya is 0-79, which is greater than
that for the DCMy4 (R? = 0-22). These values suggest that the exponential decay curve is representing the
ITI model much better than it represents the C model. As a result, it can be inferred from Figures 5—7 that
the T model and ITI model represent the dependency between wells better than the discrete C model.

In the above analysis, the dependency is described by an exponential decay model, which is relevant to
the T model because the T value is maximized at a distance equal to zero. The maximum T value equals the
average of the marginal entropies of the 26 wells. There is a sharp drop in the T value when the distance
is around 500 m. With a further increase in the distance, T becomes essentially constant. Therefore, what is
significant for the spatial assessment and redesign of monitoring wells is selecting the distance at which T has
a minimum steady value. The prescribed 500 m value may be adopted as the recommended distance between
wells. This distance can be utilized in the assessment stage under the following conditions.

Nats
o
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o

s

D oo Opm o I:l:!‘l:I =
0 500 1000 1500 2000 2500 3000 3500
Distance (m)

Figure 6. Lognormal T models applied to the chloride data. The lognormal probability distribution was used in the analyses
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Correlation and ITI
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Distance (m)
Figure 7. Comparison between C model and ITI model using the discrete and exponential fitting approaches, for the chloride data. In the

figure: DCMpya = smoothed discrete C model by the moving average method; DITIMya = smoothed discrete ITI model by the moving
average method; DCMgp = exponential decay of the discrete C model; DITIMgp = exponential decay of the discrete ITI model

1. If the distances between wells are less than the recommended distance, then there is available transinfor-
mation (redundant information) between wells.

2. If the distances between the existing wells are greater than the recommended distance, then the transfor-
mation between wells is less than the minimum transinformation value (not enough information).

3. The adequate information that can be available between wells is found only where the distances between
wells equal the recommended distance and the transinformation is minimum.

These arguments afford efficient criteria to assess and redesign the existing wells according to that
recommended distance and minimum redundant information between wells. Consequently, the number of
wells can be extended or reduced.

It is also useful for redesigning groundwater quality monitoring networks, and developing an analytical
equation to relate T and distance. This equation can form an exponential decay curve, as in the synthetic data
(Mogheir et al., 2004) and the chloride data example, or any other type of curve. The monitoring network
redesign procedure also might need to look at the variations of the value of T and the shape of the T model
by changing the number of wells and the size of the time-series used for constructing the T model.

CONCLUSIONS

This article has presented a comparison between the discrete and exponential decay fitting approaches, using
a groundwater quality data set from the Gaza Strip (chloride data). The following conclusions can be drawn.

1. The exponential decay fitting approach shows that the exponential decay curve does not fit to the discrete
correlation model well.

2. The exponential decay curve fits to the discrete T model, the lognormal discrete T model and the discrete
ITI model much better than does to the discrete correlation model.

3. The characteristics of the exponential decay of the lognormal discrete T model, such as the minimum T
and initial T, differ from those of the exponential decay of the discrete T model.

4. The discrete T and ITI models are superior to the discrete correlation model for characterizing the spatial
variability by means of an exponential decay model.

The exponential decay T model can be used to evaluate a groundwater monitoring network. Furthermore,

the T model can be used to redesign the monitoring network by either increasing or decreasing the number
of wells. The assessment and redesigning of a groundwater quality monitoring network, using the sensitivity
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of the T model to the number of monitoring wells and the size of time-series, are part of an ongoing study
by the first author.
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APPENDIX

List of symbols and abbreviations

Symbols.
G the value of transinformation where distance equals O deducted from Q (NATS)
K the transinformation decay rate (1/m)
ITI(d) information transfer index as a function of distance (NATS)
0 the end value of transinformation at which the distance is maximum (NATS)
R? coefficient of determination
r(d) correlation as a function of distance.
SSreg sum of the squares of the residuals between the discrete model and the best fit curve (analytical model)
SStot  sum of squares of the residuals between the discrete model and the horizontal line through the mean
Sx sample standard deviation of variable x
T(d) transinformation as a function of distance (NATS)

x sample mean of variable x
Abbreviations.
C model correlation model
DCM discrete correlation model
DCMgp exponential decay of the discrete C model
DCMpma smoothed discrete correlation model by the moving average method
DITIM discrete ITI model
DITIMEgp exponential decay of the discrete ITI model
DITIMya smoothed discrete ITI model by moving average method.
DTM discrete transinformation model
DTMEgp exponential decay of transinformation model
DTMwma smoothed discrete transinformation model by the moving average method
ITI model information transfer index model

Lognormal DTMgp exponential decay of lognormal discrete transinformation model

Lognormal DTM  lognormal discrete transinformation model

Lognormal DTMj1s smoothed lognormal discrete transinformation model by the moving average method
T model transinformation model

REFERENCES

Amorocho J, Esplidora B. 1973. Entropy in the assessment of uncertainty of hydrologic systems and models. Water Resources Research 9:
1522-1551.

Copyright © 2004 John Wiley & Sons, Ltd. Hydrol. Process. 18, 2579-2590 (2004)



2590 Y. MOGHEIR, J. L. M. P. DE LIMA AND V. P. SINGH

Bueso MC, Angulo JM, Cruz-Sanjulian J, Carcia-Arostegui JL. 1999. Optimal spatial sampling design in a multivariate framework.
Mathematical Geology 31(5): 507-525.

Golan A, Judge G, Miller D. 1997. Maximum Entropy Econometrics, Robust Estimation With Limited Data. Wiley: Chichester; 307 pp.

Golden Software. 1999. Surfer Version 7, Surface Mapping System. Golden Software: Colorado, USA. www.goldensoftware.com.

Harmancioglu NB, Alpaslan N, Singh VP. 1994. Assessment of the entropy principle as applied to water monitoring network design. In
Stochastic and Statistical Methods in Hydrology and Environmental Engineering, Vol. 3, Hipel KW, Mcleod AL, Panu US, Singh VP (eds).
Kluwer: Dordrecht: 135—148.

Harmancioglu NB, Fistikoglu O, Ozkul SD, Singh VP, Alpaslan MN. 1999. Water Quality Monitoring Network Design. Kluwer: Boston;
299 pp.

Jaynes ET. 1957. Information theory and statistical mechanics 1. Physics Revision 106: 620—650.

Krastanovic PF, Singh VP. 1992. Evaluation of rainfall networks using entropy II. Water Resources Management 6: 295-314.

Metcalf E, Eddy E. 2000. Coastal Aquifer Management Program, Final Report: Modelling of Gaza Strip Aquifer. The programme is funded
by US Agency for International Development (USAID) and owned by the Palestinian Water Authority (PWA): Gaza.

Mogheir Y, Singh VP. 2002. Application of information theory to groundwater quality monitoring networks. Water Resources Management
16(1): 37-49.

Mogheir Y, de Lima JLMP, Singh VP. 2004. Characterizing the spatial variability of groundwater quality using the entropy theory: I.
Synthetic data. Hydrological Processes (in press).

Motulsky HJ. 1999. Analysing Data with GraphPad Prism. GraphPad Software: San Diego. www.graphpad.com

Ozkul S, Harmancioglu NB, Singh VP. 2000. Entropy-based assessment of water quality monitoring networks. Journal of Hydrologic
Engineering, American Society of Civil Engineers 5(1): 90—100.

PWA. 2000. Summary of the Palestinian Hydrologic Data, Volume 2: Gaza. Technical and Financial support from US Agency for International
Development (USAID) and US Geology Survey, Palestinian Water Authority: Gaza.

Rajagopal Ak, Teitler S, Singh VP. 1987. Some new perspectives on maximum entropy techniques in water resources research. In Hydrologic
Frequency Modelling, Singh VP (ed.). Reidel: Dordrecht; 247-366.

Shannon CE. 1998. A mathematical theory of communication. Bell System Technical Journal 27: 379-423.

Singh VP. 1997. The use of entropy in hydrology and water resources. Hydrological Processes 11: 587—-626.

Singh VP. 1998. Entropy-based Parameter Estimation in Hydrology. Kluwer: Boston.

Singh VP. 2000. The entropy theory as a tool for modelling and decision-making in environmental and water resources. Water SA 1: 1-11.

Singh VP, Rajagopal AK. 1987. Some recent advances in application of the principle of maximum entropy (POME). International Association
of Hydrological Sciences Publication: 164: 353—-364.

Copyright © 2004 John Wiley & Sons, Ltd. Hydrol. Process. 18, 2579-2590 (2004)


www.goldensoftware.com
www.graphpad.com

