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Spontaneous magnetization and magnetic susceptibility originated from the pseudovector-
type four-point interaction between quarks are calculated in quark matter with zero tem-
perature and finite quark chemical potential by using the two-flavor Nambu-Jona-Lasinio
model. It is shown that both the chiral condensate and spin polarized condensate coexist
in a narrow region of the quark chemical potential. And then, it is also shown that, in this
narrow region, the spontaneous magnetization appears. Also, the magnetic susceptibility
due to quarks with the positive energy is evaluated in the spin polarized phase.

§1. Introduction

One of recent interests to understand the world governed by the quantum chro-
modynamics (QCD) may be to clarify the phase structure in the plane spanned by
the temperature and baryon chemical potential.1) In the region of high temperature
and zero density, the numerical simulation by using the lattice QCD gives a useful
information about the phase structure. However, in the region with low tempera-
ture and large quark chemical potential, the lattice simulation does not work until
now. In that region, it has been remarked that various phases may appear such
as the color superconducting phase,2)–4) the quarkyonic phase,5) the inhomogeneous
chiral condensed phase,6) the quark ferromagnetic phase,7) the color-ferromagnetic
phase,8) the spin polarized phase due to the axial vector interaction9), 10) or due to
the tensor interaction11)–18) and so forth.

Furthermore, it may be interesting to investigate magnetic properties in quark
matter in the region of low temperature and large baryon chemical potential. The
reason is as follows: In the ultrarelativistic heavy-ion collisions, it has been remarked
that a strong magnetic field may be created in the early stage of nucleus-nucleus
collisions,19) for example, |eB| ∼ m2

π at the Relativistic Heavy-Ion Collider (RHIC)
experiment at Brookhaven, where e, B and mπ represent the elementary electric
charge, the magnetic flux density or magnetic field and pion mass, respectively, and
maybe even stronger at the Large Hadron Collider (LHC) experiment at CERN. In
astrophysical fields, compact stars such as neutron stars, especially magnetars,20), 21)
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show a very strong magnetic field. Thus, the investigation of magnetic properties in
quark matter is one of the interesting and important problems of QCD.22), 23)

Recently, the present authors have investigated the phase structure of high den-
sity quark matter under a strong external magnetic field.24) By using the Nambu-
Jona-Lasinio (NJL) model with tensor or pseudovector interaction between quarks,
we have shown that a quark spin polarized phase may exist in high density quark
matter under a strong external magnetic field in a certain model parameter regions.
Similarly, the effects of a strong magnetic field in the model with the tensor interac-
tion have been investigated in one-flavor NJL model at finite temperature with zero
chemical potential.25), 26) Also, in Ref. 27), the effects of the axial-vector interaction
under a strong magnetic field on the spatially-modulated chiral condensed phase was
investigated by means of the holographic technique. Thus, the physics of the strong
interacting matter under a magnetic field becomes interesting and important subject
in quark matter with various possible phases and many investigations are carried out
recently.28)

In this paper, we investigate spontaneous magnetization in the finite quark chem-
ical potential region or in high density quark matter at zero temperature by using
the Nambu-Jona-Lasinio (NJL) model29)–32) with the pseudovector-type9) four-point
interaction between quarks as an effective model of QCD. As for the tensor-type inter-
action, we have already investigated a possibility of a spontaneous magnetization.16)

As a result, the tensor interaction does not reveal the spontaneous magnetization
except for the existence of the anomalous magnetic moments of quarks, even if the
spin polarized condensate exists. Thus, in this paper, we investigate the magnetic
properties due to the pseudovector interaction between quarks in quark matter at
zero temperature.

This paper is organized as follows: In the next section, a model under consid-
eration is introduced as an extension of the original NJL model. In Sect. 3, the
thermodynamic potential is evaluated under a weak external magnetic filed and the
way how to calculate the spontaneous magnetization is explained. In Sect. 4, numer-
ical results are shown for the chiral condensate, spin polarized condensate and the
thermodynamic potential, and the spontaneous magnetization and the magnetic sus-
ceptibility are calculated. The last section is devoted to a summary and concluding
remarks.

§2. Mean field approximation for the Nambu-Jona-Lasinio model with

vector-pseudovector-type four-point interactions between quarks

Let us start from the two-flavor Nambu-Jona-Lasinio model with vector-pseudovector-
type9), 10) four-point interactions between quarks under an external magnetic field.
The Lagrangian density can be expressed as

L = ψ̄(iγµDµ −m0)ψ +Gs[(ψ̄ψ)
2 + (ψ̄iγ5~τψ)

2]

−Gp[(ψ̄γ
µ~τψ)2 + (ψ̄iγ5γ

µ~τψ)2] , (2.1)
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wherem0 represents a current quark mass and Dµ represents the covariant derivative
introduced as

Dµ = ∂µ + iQAµ , Aµ =

(

0,
By

2
, −Bx

2
, 0

)

= (0, −A) . (2.2)

Here, Q = 2e/3 for up quark and −e/3 for down quark are the electric charges where
e is the elementary charge. There is an external magnetic field B along z-axis.

Hereafter, we treat the model within the mean field approximation. In order to
consider the spin polarization under the mean field approximation, the pseudovector
condensate 〈ψ̄γ5γ3τ3ψ〉 is taken into account. Then, the Lagrangian density reduces
to

LMF = ψ̄(iγµDµ −Mq)ψ + UAψ̄γ5γ
3τ3ψ − M2

4Gs
− U2

A

4Gp

= ψ̄(iγµDµ −Mq)ψ − UAψ
†Σ3τ3ψ − M2

4Gs
− U2

4Gp
, (2.3)

where

Σ3 = −γ0γ5γ3 =
(

σ3 0
0 σ3

)

Mq = m0 +M , M = −2Gs〈ψ̄ψ〉 ,
UA = 2Gp〈ψ̄γ5γ3τ3ψ〉 = −2Gp〈ψ†Σ3τ3ψ〉 ≡ Uτf . (2.4)

Here, τf = 1 for up quark and −1 for down quark denote the eigenvalues of τ3. Also,
σ3 is the third component of the Pauli spin matrices.

Introducing the quark chemical potential µ in order to consider finite density
quark matter, the Hamiltonian density can be obtained from the Lagrangian density
within the mean field approximation as

HMF − µN = ψ̄
(

−iγ · (∇− iQA) +Mq − µγ0 + UAγ
0Σ3τ3

)

ψ

+
M2

4Gs
+

U2

4Gp
, (2.5)

where N represents the quark number density, ψ†ψ.

§3. Thermodynamic potential

The Hamiltonian density (2.5) can be rewritten as

HMF,A − µN = ψ†(hA − µ)ψ +
M2

4Gs
+

U2

4Gp
, (3.6)

hA = −iγ0γ · (∇− iQA) + γ0Mq + UAΣ3τ3 . (3.7)

In order to obtain the eigenvalues of hA, namely the energy eigenvalues of a single
quark, it is necessary to diagonalize hA, the eigenvalues of which can be obtained
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easily as

Ef
A,pνη =



















Eu
A,pνσ =

√

2QuBν +
(√

p2z +M2
q + σU

)2

,

{

ν = 0, 1, 2, · · · for σ = 1
ν = 1, 2, · · · for σ = −1

Ed
A,pνσ =

√

−2QdBν +
(√

p2z +M2
q − σU

)2

,

{

ν = 1, 2, · · · for σ = 1
ν = 0, 1, 2, · · · for σ = −1

=

√

2|Qf |Bν +
(

ηU +
√

p2z +M2
q

)2

.

{

ν = 0, 1, 2, · · · for η = 1
ν = 1, 2, · · · for η = −1

(3.8)

The thermodynamic potential can be expressed as

ΦA =
∑

f,α

∫

dpz
2π

|Qf |B
2π

(

Ef
A,p ν=0 η=1 − µ

)

θ(µ− Ef
A,p ν=0 η=1)

+
∑

η,f,α

∫

dpz
2π

EA<µ
∑

ν=1

|Qf |B
2π

(

Ef
A,pνη − µ

)

θ(µ− Ef
A,pνη)

−
∑

f,α

∫ Λ dpz
2π

|Qf |B
2π

Ef
A,p ν=0 η=1 −

∑

η,f,α

∫ Λ dpz
2π

EA<Λ
∑

ν=1

|Qf |B
2π

Ef
A,pνη

+
M2

4Gs
+

U2

4Gp
. (3.9)

The first and the second lines represent the positive-energy contribution of quarks
and the third line represents the vacuum contribution. It should be noted that the
single quark energy does not depend on the flavor in the lowest Landau level with
ν = 0.

In the thermodynamic potential (3.9), the quantum number ν, which labels the
Landau level, has to be summed up. However, since it is interesting to consider the
spontaneous magnetization, it may be assumed that the external magnetic field B is
small and finally B becomes 0. Therefore, let us replace the sum with respect to ν by
an integration approximately.11) In general, let us consider a function f(x). Here,
we introduce a small quantity a and let us consider the Tailor expansion around
x = aν as follows:
∫ aν

a(ν−1)
dxf(x) =

∫ aν

a(ν−1)
dx

[

f(aν) +
df

dx

∣

∣

∣

∣

x=aν

(x− aν) +
1

2

d2f

dx2

∣

∣

∣

∣

x=aν

(x− aν)2 + · · ·
]

= af(aν)− 1

2
a2f ′(aν) +

1

6
a3f ′′(aν) + · · · . (3.10)

Thus, the following relations is obtained :

νM
∑

ν=νm+1

∫ aν

a(ν−1)
dxf(x) ≡

∫ aνM

aνm

dxf(x)

= a

νM
∑

ν=νm+1

f(aν)− a2

2

νM
∑

ν=νm+1

f ′(aν) +
a3

6

νM
∑

ν=νm+1

f ′′(aν) + · · · .

(3.11)
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Here, it should be noted that the definition of integral can be used when a is in-
finitesimally small, namely,

a

νM
∑

ν=νm+1

f ′(aν) =

∫ aνM

aνm

dx f ′(x) +
a2

2

νM
∑

ν=νm+1

f ′′(aν) + · · ·

= f(aνM )− f(aνm) +
a2

2

νM
∑

ν=νm+1

f ′′(aν) + · · · , (3.12)

and so on. Thus, by using the above formula repeatedly, useful approximate formula
is obtained as follows:

a

νM
∑

ν=νm+1

f(aν)

=

∫ aνM

aνm

dxf(x) +
a

2
[f(aνM )− f(aνm)] +

a2

12

[

f ′(aνM )− f ′(aνm)
]

+ · · · .(3.13)

In (3.9), we separate the sum over ν into a part with ν = 0 and another one with
ν > 0. As for the positive-energy part with η = 1, we obtain

νm = 0 , νM ≡ ν
(1)
M =







µ2 −
(√

p2z +M2
q + U

)2

2|Qf |B






, (3.14)

where [· · · ] represents the Gauss symbol. Also, νM ≥ 0, we obtain

|pz| ≤
√

(µ − U)2 −M2
q . (3.15)

Similarly, for η = −1, we obtain

νm = 0 , νM ≡ ν
(−1)
M =







µ2 −
(√

p2z +M2
q − U

)2

2|Qf |B






,

|pz| ≤
√

(µ+ U)2 −M2
q . (3.16)

As for the vacuum contributions, the three-momentum cutoff Λ is, as usually, intro-
duced as

p2x + p2y + p2z ≤ Λ2 . (3.17)

In the case under consideration, the Landau quantization in the x-y-plane is carried
out and p2x + p2y should be replaced to 2|Qf |Bν. Thus, we get the maximum integer
of ν as

νM ≡ νvacM =

[

Λ2 − p2z
2|Qf |B

]

, |pz| ≤ Λ . (3.18)
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Thus, the thermodynamic potential (3.9) can be evaluated, for example, up to order
of B as follows:

Φ = Φ0 + Φ1 + Φ−1 , (3.19)

Φ0 =
∑

f,α

∫

dpz
2π

|Qf |B
2π

(

Ef
A,p ν=0 η=1 − µ

)

θ(µ− Ef
A,p ν=0 η=1)

−
∑

f,α

∫

dpz
2π

|Qf |B
2π

Ef
A,p ν=0 η=1 +

M2

4Gs
+

U2

4Gp

=
3eB

4π2



−(µ− U)
√

(µ− U)2 −M2
q +M2

q ln
µ− U +

√

(µ − U)2 −M2
q

M





×θ(µ− (U +Mq))

−3eB

4π2



Λ
√

Λ2 +M2
q +M2

q ln
Λ+

√

Λ2 +M2
q

M
+ 2UΛ



+
M2

4Gs
+

U2

4Gp
,

Φ1 =
∑

f,α

∫

dpz
2π

ν1M
∑

ν=1

|Qf |B
2π

(

Ef
A,pν η=1 − µ

)

θ(µ− Ef
A,pν η=1) + Φvac

1

=
3

4π2

[

1

6

√

(µ− U)2 −M2
q

(

−2µ3 + 2µ2U + 2µU2 − 2U3 − 13M2
q U + 5µM2

q

)

−
M2

q

2

(

M2
q + 4U2 − 4µU

)

ln
µ− U +

√

(µ− U)2 −M2
q

Mq

]

×θ(µ− (Mq + U))

+
3eB

8π2



(µ − U)
√

(µ− U)2 −M2
q −M2

q ln
µ− U +

√

(µ− U)2 −M2
q

Mq





×θ(µ− (Mq + U))

+Φvac
1 ,

Φvac
1 = −

∑

f,α

∫

dpz
2π

νvacM
∑

ν=1

|Qf |B
2π

EA,pν η=1

= − 1

π2

∫ Λ

0
dpz

[

(

Λ2 − p2z +
(√

p2z +M2
q + U

)2
)

3
2

−
(√

p2z +M2
q + U

)3
]

−3eB

4π2

∫ Λ

0
dpz

[
√

Λ2 − p2z +
(√

p2z +M2
q + U

)2

−
(√

p2z +M2
q + U

)

]

,
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Φ−1 =
∑

f,α

∫

dpz
2π

ν−1
M
∑

ν=1

|Qf |B
2π

(

Ef
A,pν η=−1 − µ

)

θ(µ− Ef
A,pν η=−1) + Φvac

−1

=
3

4π2

[

1

6

√

(µ+ U)2 −M2
q

(

−2µ3 − 2µ2U + 2µU2 + 2U3 + 13M2
q U + 5µM2

q

)

−
M2

q

2

(

M2
q + 4U2 + 4µU

)

ln
µ+ U +

√

(µ+ U)2 −M2
q

Mq

]

×θ(µ− (Mq − U))

+
3eB

8π2



(µ + U)
√

(µ+ U)2 −M2
q −M2

q ln
µ+ U +

√

(µ+ U)2 −M2
q

Mq





×θ(µ− (Mq − U))

+Φvac
−1 ,

Φvac
−1 = −

∑

f,α

∫

dpz
2π

νvacM
∑

ν=1

|Qf |B
2π

EA,pν η=−1

= − 1

π2

∫ Λ

0
dpz

[

(

Λ2 − p2z +
(√

p2z +M2
q − U

)2
)

3
2

−
(√

p2z +M2
q − U

)3
]

−3eB

4π2

∫ Λ

0
dpz

[
√

Λ2 − p2z +
(√

p2z +M2
q − U

)2

−
(√

p2z +M2
q − U

)

]

.(3.20)

Here, the integrations (
√

p2z +M2
q + U)n in Φvac

1 and Φvac
−1 can be performed. As a

result, the thermodynamic potential ΦA is arranged with the term independent of B
and dependent of B:

ΦA = ΦB=0 + ΦB + ΦB2 +O(B3) , (3.21)

ΦB=0 =
3

4π2

[

1

6

√

(µ− U)2 −M2
q

(

−2µ3 + 2µ2U + 2µU2 − 2U3 − 13M2
q U + 5µM2

q

)

−
M2

q

2
(M2

q + 4U2 − 4µU) ln
µ− U +

√

(µ− U)2 −M2
q

Mq

]

θ(µ− (Mq + U))

+
3

4π2

[

1

6

√

(µ+ U)2 −M2
q

(

−2µ3 − 2µ2U + 2µU2 + 2U3 + 13M2
q U + 5µM2

q

)

−
M2

q

2
(M2

q + 4U2 + 4µU) ln
µ+ U +

√

(µ+ U)2 −M2
q

Mq

]

θ(µ− (Mq − U))
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+
1

4π2



Λ
√

Λ2 +M2
q (5M

2
q + 2Λ2 + 12U2) + 3M2

q (M
2
q + 4U2) ln

Λ+
√

Λ2 +M2
q

Mq





− 1

π2

∫ Λ

0
dpz

[

(

Λ2 − p2z +
(√

p2z +M2
q − U

)2
)

3
2

+

(

Λ2 − p2z +
(√

p2z +M2
q + U

)2
)

3
2

]

+
M2

4Gs
+

U2

4Gp
, (3.22)

ΦB =
3eB

8π2



−(µ− U)
√

(µ− U)2 −M2
q +M2

q ln
µ− U +

√

(µ− U)2 −M2
q

Mq





×θ(µ− (Mq + U))

+
3eB

8π2



(µ + U)
√

(µ+ U)2 −M2
q −M2

q ln
µ+ U +

√

(µ+ U)2 −M2
q

Mq





×θ(µ− (Mq − U))

−3eB

2π2
ΛU

−3eB

4π2

∫ Λ

0
dpz

[
√

Λ2 − p2z +
(√

p2z +M2
q + U

)2

+

√

Λ2 − p2z +
(√

p2z +M2
q − U

)2
]

,

(3.23)

ΦB2 =
5e2B2

72π2





√

(µ − U)2 −M2
q

µ
−

∫

√
(µ−U)2−M2

q

0
dpz

1
√

p2z +M2
q + U





×θ (µ− (Mq + U))

+
5e2B2

72π2





√

(µ+ U)2 −M2
q

µ
−

∫

√
(µ+U)2−M2

q

0
dpz

1
√

p2z +M2
q − U





×θ (µ− (Mq − U))

−5e2B2

72π2

∫ Λ

0
dpz

[

(

Λ2 − p2z +
(√

p2z +M2
q + U

)2
)− 1

2

+

(

Λ2 − p2z +
(√

p2z +M2
q − U

)2
)− 1

2

]

+
5e2B2

72π2

∫ Λ

0
dpz





1
√

p2z +M2
q + U

+
1

√

p2z +M2
q − U



 .

(3.24)
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Here, it is found that no problem arises. We define a spontaneous magnetization M
as

M = − ∂ΦA

∂B

∣

∣

∣

∣

B=0

. (3.25)

Here, in (3.23), even if U = 0 and µ < Mq, M appears because the last two
integrations in the last line in (3.23) survives, which leads to ΦB = −3eB/(2π2) ·
Λ
√

Λ2 +M2
q . When we sum up ν over the Landau level, we have introduced the

maximum value of ν. Then, the maximum value of ν, namely νvacM , has been replaced
to the boundary value (Λ2−p2z)/(2|Qf |B) which is not always integer. So, we subtract
the following ΦR in order to delete this artificial contribution.

Φ = ΦA − ΦR , (3.26)

ΦR =
∑

f,α

∫ Λ

−Λ

dpz
2π

|Qf |B
2π

(−EΛ) = −3eB

2π2
Λ
√

Λ2 +M2
q ,

where EΛ =
√

Λ2 +M2
q . As a result, M disappears when U = 0 and µ < Mq.

§4. Numerical results

4.1. Spontaneous magnetization

First, we set up U = 0. Then, ΦB=0 is written as

ΦB=0(U = 0) =
3

4π2





1

3

√

µ2 −M2
q (−2µ3 + 5µM2

q )−M4
q ln

µ+
√

µ2 −M2
q

Mq





×θ(µ−Mq)

− 3

4π2



Λ
√

Λ2 +M2
q (2Λ

2 +M2
q )−M4

q ln
Λ+

√

Λ2 +M2
q

Mq





+
M2

4Gs
. (4.27)

When we adopt the chiral limit, namely Mq = M with m0 = 0, the gap equation is
derived as

∂ΦB=0(U = 0)

∂M
= −3M

π2

[

Λ
√

Λ2 +M2 −M2 ln
Λ+

√
Λ2 +M2

M
− π2

6Gs

]

= 0 . (4.28)

There is a solution except for M = 0 in the vacuum µ = 0. For example, if we adopt
the model parameters Λ = 0.631 GeV and Gs = 5.5 GeV−2, then, the dynamical
quark mass M is obtained as M = 0.322 GeV. If we introduce the current quark
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µ / GeV M / GeV Φ(M,U = 0) M /GeV U /GeV Φ(M,U) Φ(M = 0, U = 0)

(M 6= 0, U = 0) / GeV4 /GeV4 /GeV4

0.0 0.322387 −0.0246944 0.279373 0.138605 −0.0246559 −0.0240940

0.1 0.322387 −0.0246944 0.279373 0.138605 −0.0246559 −0.0240991

0.1408 0.322387 −0.0246944 0.279373 0.138605 −0.0246559 −0.0241139

0.1409 0.322387 −0.0246944 − − − −0.0241140

0.1999 0.322387 −0.0246944 − − − −0.0241749

0.2 0.322387 −0.0246944 0.286078 0.11997 −0.0246606 −0.0241751

0.3 0.322387 −0.0246944 0.311389 0.0431851 −0.0246902 −0.0245044

0.32 0.322387 −0.0246944 0.318850 0.0152899 −0.0246941 −0.0246252

0.322387 0.322387 −0.0246944 0.320032 0.0103812 −0.0246943 −0.0246412

0.3224 − − 0.320039 0.0103560 −0.0246943 −0.0246413

0.323 − − 0.320391 0.00885381 −0.0246944 −0.0246454

0.324 − − 0.321140 0.00560727 −0.0246944 −0.0246523

0.3246 − − 0.321754 0.00289703 −0.0246944 −0.0246564

0.3247 − − − − − −0.0246564

0.4 − − − − − −0.0253909

µ (> 0.4) − − − − − −µ4+3Λ4

2π2

Table I. The numerical results for the quark mass M , the pseudovector condensate U and the

thermodynamic potential Φ(M,U) are shown as a function of the quark chemical potential µ.

The underline for the numerical values of the thermodynamic potential means the lowest value

of the thermodynamic potential in a few branch of the solutions.

mass m0 = 0.005 GeV, the constituent quark mass Mq = 0.335 GeV is obtained
under the same model parameters.

Next, let us assume U ≥ 0. If the quark chemical potential µ is large, then, the
dynamical quark mass becomes zero because the chiral symmetry is restored. Then,
if M = 0 and µ > U in the chiral limit, the thermodynamic potential with B = 0 is
written as

ΦB=0(M = 0) =
1

2π2
(−µ4 + U4 + Λ4 + 6Λ2U2) +

1

5π2
1

U

(

(Λ− U)5 − (Λ+ U)5
)

+
U2

4Gp
. (4.29)

Then, the gap equation for U is obtained as

∂ΦB=0(M = 0)

∂U
=

U

5π2

(

2U2 − 10Λ2 +
5π2

2GP

)

= 0 (4.30)

Thus, we obtain the solution

U = 0 , or U =

√

5Λ2 − 5π2

4Gp
. (4.31)

In the following parts of this section, we adopt Gp = 2Gs. Under these parameters
with Λ = 0.631 GeV and Gs = 5.5 GeV−2, a non-trivial solution of the gap equation
gives 0.932 GeV for U . This value is larger than the cutoff Λ and also the condition
µ > U is not satisfied. Thus, if M = 0, then only U = 0 may be a possible solution.
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µ / GeV M / GeV U / GeV Φ(M,U) /GeV4 M× 1018 / (C/ms)

0.3224 0.320039 0.0103560 −0.0246943 1.15849

0.3226 0.320153 0.00987126 −0.0246943 1.1046

0.3228 0.320269 0.00937387 −0.0246944 1.04871

0.3230 0.320391 0.00885481 −0.0246944 0.990414

0.3232 0.320518 0.00830905 −0.0246944 0.929145

0.3234 0.320653 0.00772916 −0.0246944 0.864079

0.3236 0.320797 0.00710339 −0.0246944 0.793903

0.3238 0.320956 0.00641091 −0.0246944 0.716291

0.3240 0.321140 0.00560727 −0.0246944 0.62679

0.3242 0.321380 0.00454891 −0.0246944 0.507837

0.3244 0.321717 0.00305037 −0.0246944 0.339844

0.3246 0.321754 0.00289703 −0.0246944 0.321587

Table II. The numerical results for the quark mass M , the pseudovector condensate U , the thermo-

dynamic potential Φ(M,U) and the spontaneous magnetization per unit volume M are shown

as a function of the quark chemical potential µ in the range from µ = 0.3224 GeV to 0.3246

GeV, in which the phase with M 6= 0 and U 6= 0 is realized.

The numerical results for the quark mass M , the pseudovector condensate U
and the thermodynamic potential Φ(M,U) are summarized in Table I as a function
of the quark chemical potential µ. The underline for the numerical values of the
thermodynamic potential represent the lowest value of the thermodynamic potential
in a few branch of the solutions and hyphen represents no solution. Usually, µ ≤
0.3224 GeV (= µcr,1), the chiral symmetry is broken and the non-trivial solution of
the gap equation for chiral condensate or dynamical quark mass exists. Also, in µ >
µcr,1, the chiral symmetry is restored and only M = 0 has a true solution. However,
in the case with the pseudovector interaction, other solutions exist. Namely, in
larger region of the quark chemical potential µ > µcr,1, the chiral symmetry is still
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Fig. 1. The spontaneous magnetization per unit volume M is depicted as a function of the quark

chemical potential µ.
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not restored and the solution of the gap equation for the dynamical quark mass with
M 6= 0 appears with U 6= 0. The window of the quark chemical potential where
the non-trivial solutions with M 6= 0 and U 6= 0 exist is very narrow. In the region
with µ > 0.3247 GeV (= µcr,2), only the trivial solution with M = U = 0 exists,
which corresponds to the free quark gas. It should be noted here that the critical
baryon density from the pseudovector condensed phase or spin polarized phase with
M 6= 0 and U 6= 0 to the chiral symmetric phase with M = U = 0 corresponds
to 1.78ρ0 where ρ0 = 0.17 fm−3 is the normal nuclear density. However, the two
critical chemical potentials, µcr1 and µcr,2 correspond to rather small quark number
densities, 0.0116 fm−3 and 0.0030 fm−3, respectively. According to Ref. 33) where
the first order phase transition was studied in the ρ-T and µ-T space, these small
densities lie inside the low density metastable before the onset of the spinodal region.

In this narrow window, the spontaneous magnetization per unit volume (3.25)
with Φ in (3.26) instead of ΦA appear. The numerical results are summarized in
Table II. The order of magnitude of the spontaneous magnetization is about 1017

and/or 1018 C/ms. These magnitude leads to the magnetic flux density with 1013

or 1014 Gauss in the surface of compact stars.16) Also, the result of the spontaneous
magnetization per unit volume is shown in Fig.1. It should be noted here that, if
the coupling strength Gp is smaller than the value adopted here, the window, in
which the spontaneous magnetization occurs, does not open. Namely, there is no
pseudovector condensate or spin polarized condensate. On the other hand, if Gp

is rather large, the local minimum of the thermodynamic potential with respect to
finite U and M changes to the saddle point as Gp increases. Thus, the pseudovector
condensate only exists in very narrow region in the parameter space, Gp.

4.2. Magnetic susceptibility

We calculate the magnetic susceptibility in the same way as spontaneous mag-
netization. First, we define the magnetic susceptibility as

χ = µ0
∂M
∂B

∣

∣

∣

∣

B=0

= −µ0
∂2ΦA

∂B2

∣

∣

∣

∣

B=0

, (4.32)

where µ0 represents the vacuum permeability. From (3.21), specifically, it is obtained
as follows:

∆χ ≡ χ− χ(µ=0)

= −5e2µ0
36π2





√

(µ− U)2 −M2
q

µ
−

∫

√
(µ−U)2−M2

q

0
dpz

1
√

p2z +M2
q + U





×θ (µ− (Mq + U))

−5e2µ0
36π2





√

(µ+ U)2 −M2
q

µ
−

∫

√
(µ+U)2−M2

q

0
dpz

1
√

p2z +M2
q − U





×θ (µ− (Mq − U))
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µ / GeV M / GeV U / GeV ∆χ× 10−6

0.3222 0.322387 0 0

0.3224 0.320039 0.0103560 −5.80492

0.3226 0.320153 0.00987126 −5.42174

0.3228 0.320269 0.00937387 −5.03584

0.3230 0.320391 0.00885481 −4.64583

0.3232 0.320518 0.00830905 −4.24974

0.3234 0.320653 0.00772916 −3.84460

0.3236 0.320797 0.00710339 −3.42554

0.3238 0.320956 0.00641091 −2.98378

0.3240 0.321140 0.00560727 −2.50005

0.3242 0.321380 0.00454891 −1.91054

0.3244 0.321717 0.00305037 −1.09987

0.3246 0.321754 0.00289703 −0.60179

0.3248 0 0 −336.097

Table III. The numerical results for the quark mass M , the pseudovector condensate U and the

magnetic susceptibility ∆χ by the positive energy quarks are shown as a function of the quark

chemical potential µ in the range from µ = 0.3222 GeV to 0.3248 GeV.

+
5e2µ0
36π2

∫ Λ

0
dpz

[

(

Λ2 − p2z +
(√

p2z +M2
q + U

)2
)− 1

2

+

(

Λ2 − p2z +
(√

p2z +M2
q − U

)2
)− 1

2

]

−5e2µ0
36π2

∫ Λ

0
dpz





1
√

p2z +M2
q + U

+
1

√

p2z +M2
q − U



− χ(µ=0). (4.33)

Here we subtract the following χ(µ=0) in order to investigate the contribution only of
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the positive-energy particles due to the pesudvector-type interaction between quarks:

χ(µ=0) = −5e2µ0
18π2



− Λ
√

Λ2 +M2
q (µ = 0)

+ ln
Λ+

√

M2
q (µ = 0) + Λ2

Mq(µ = 0)



 . (4.34)

In the region with µ < µcr,1, the solutions of gap equations have the values M 6= 0
and U = 0, so χµ<µcr,1 ≡ χ< is obtained as

∆χ< = −5e2µ0
18π2



− Λ
√

Λ2 +M2
q

+ ln
Λ+

√

M2
q + Λ2

Mq



− χ(µ=0)

= 0 (4.35)

due to a subtraction of the contribution of the vacuum χ(µ=0). In the same way, in
the region with µ > µcr,2, the solutions with M = U = 0 exist. Then χµ>µcr,2 ≡ χ>

is obtained as

∆χ> = −5e2µ0
18π2

ln
Λ

µ
− χ(µ=0). (4.36)

The numerical results are summarized in Table III. The order of magnitude is about
10−6 in the region with µcr,1 . µ . µcr,2. Also, the result of the magnetic suscepti-
bility is shown in Fig.2.

§5. Summary and concluding remarks

It has been shown that the spontaneous magnetization occurs due to the pseudovector-
type four-point interaction between quarks in quark matter at zero temperature
within the NJL model. In the narrow region of the quark chemical potential, both
the chiral condensate and pseudovector condensate, namely spin polarized conden-
sate, coexist, which leads to the spontaneous magnetization. On the contrary, in
the tensor-type four-point interaction between quarks, the spin polarization occurs
above a certain quark chemical potential, that is in the high density quark mat-
ter. However, the spontaneous magnetization does not appear in the case of the
tensor interaction except for the existence of the anomalous magnetic moment of
quarks.16) Also, we have calculated the magnetic susceptibility by expanding the
thermodynamic potential up to the second order of the external magnetic field. As
a result, the Landau diamagnetism may be revealed because only the contribution
of the positive-energy quarks being free quasi-particles is considered.

In this paper, we ignore the effects of current quark mass. It was pointed out
that the region in which the pseudovector condensate has non-zero value enlarges, if
the current quark mass is introduced.34) Further, the effects of the strange quark is
missing in this work. These are interesting future problems which are left in order
to clarify the magnetic properties of high density quark matter.
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