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The magnetized phase diagram for three-flavor quark matter is studied within the Polyakov extended
Nambu–Jona-Lasinio model. The order parameters are analyzed with special emphasis on the strange quark
condensate.We show that the presence of an externalmagnetic field induces several critical endpoints (CEPs)
in the strange sector, which arise due to the multiple phase transitions that the strange quark undergoes. The
spinodal and binodal regions of the phase transitions are shown to increase with external magnetic field
strength. The influence of strong magnetic fields on the isentropic trajectories around the several CEPs is
analyzed. A focusing effect is observed on the region towards the CEPs that are relatedwith the strange quark
phase transitions. Compared to the chiral transitions, the deconfinement transition turns out to be less
sensitive to the external magnetic field and the crossover nature is preserved over the whole phase diagram.
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I. INTRODUCTION

The possible existence of a critical endpoint (CEP) in the
QCD phase diagram is a long-standing issue that has
captured the attention of the physics community. The
nature of the phase transition between hadron matter and
quark gluon plasma (QGP) can be inferred from its
existence. A wide range of theoretical frameworks have
been applied in analyzing the QCD phase diagram and the
possible existence of a CEP: lattice QCD (LQCD) simu-
lations [1,2]; Dyson-Schwinger equations [3]; and several
effective models, namely, the Nambu–Jona-Lasinio (NJL)
model [4], its extension up to eight-quark terms [5], and the
Polyakov–Nambu–Jona-Lasinio (PNJL) model [6].
The QGP expansion is recognized as a hydrodynamic

expansion of an ideal fluid, which follows trajectories of
constant entropy, known as isentropes. The conservation of
the baryon number restricts the isentropic trajectories to
lines of constant entropy per baryon (s=ρB) in the (T; μB)
space with zero strange quark density. These isentropic
trajectories contain important information on the adiabatic
evolution of the system. For AGS, SPS, and RHIC, the
values of s=ρB are 30, 45, and 300, respectively [7]. Lattice
results for the (2þ 1)-flavor equation of state (EOS) at
these s=ρB values are given in Refs. [8,9]. The presence of

a CEP in the QCD phase diagram might deform the
isentropes’ trajectories [10]. This reinforces the importance
of the search for the CEP, because modifications of the
expansion trajectory may lead to observable effects in the
hadron spectra (see Ref. [11]).
From the experimental point of view, the CEP existence/

location is a major goal of several heavy-ion collision
(HIC) programs. The Beam Energy Scan (BES-I) program
at the RHIC searched for experimental signatures of
the CEP, by colliding Au ions at several energies [12].
Results of the moments of net-charge multiplicity distri-
butions [13] and of moments of net-kaon (proxy for net-
strangeness) multiplicity distributions [14] from the STAR
Collaboration provide relevant information on the freeze-
out conditions (also for strange quarks) and can help to
clarify the existence of the CEP. However, high precision
measurements and high statistics data are required for
definitive conclusions regarding the CEP and precise
determination of the freeze-out conditions [13,14]. High
precision measurements for the net-kaon fluctuations
will be made in the second phase of the RHIC BES.
Furthermore, QCD calculations should take into account
the dynamics associated with heavy-ion collisions before
definitive conclusions about the CEP can be made [15]. The
results from the NA61/SHINE experiment at CERN SPS on
the particle spectra and fluctuations (in pþ p, Beþ Be, and
Ar þ Sc collisions) show, so far, no indications of the
existence of a CEP [16,17]. In the near future, planned
experiments at FAIR (GSI) and NICA (JINR) will extend
the search for a first-order phase transition and the CEP to
regions of higher baryonic chemical potentials and lower
temperatures, and hopefully unveil the existence and
location of the CEP on the QCD phase diagram (see
[18] for a review on the experimental search of the CEP).
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Strong external magnetic fields may play a role in
multiple physical systems: from HIC experiments at very
high energies, to the early stages of the Universe, and
astrophysical objects like magnetized neutron stars. It
becomes crucial, therefore, to understand how an external
magnetic field affects the structure of the QCD phase
diagram. Several LQCD calculations have been performed
that address the impact of the magnetic field over the
deconfinement and chiral transitions [19–24]. Besides the
catalyzing effect of B on dynamical chiral symmetry break-
ing, known as the magnetic catalysis (MC) effect (see [25]
for a review), LQCD results show also an additional effect:
in the crossover transition region, the magnetic field, instead
of catalyzing, weakens the dynamical chiral symmetry
breaking [19–21]. This additional phenomenon is called
the inverse magnetic catalysis (IMC) effect (for a review, see
[26]). Several low-energy effective models, including the
NJL-type models, have been used to investigate the MC
effect and its impact at finite chemical potential [27–39].
The existence/location of the CEP can be influenced by

the medium strangeness and isospin content, and by the
presence and strength of an external magnetic field [40].
Within the (2þ 1)-NJL model, it was verified that the CEP
becomes located at higher temperatures with increasing B
[41]. The same was obtained within the Ginzburg-Landau
effective action formalism with the renormalized quark-
meson model [42]. Using the (2þ 1)-PNJL model, the role
played by vector interactions and the IMC effect on the
CEP’s location was analyzed in [43], where opposite
competing effects were found. Another interesting aspect
of the QCD phase diagram is the possible existence of a
CEP associated with the strange quarks (with the respective
first-order phase transition) in a generalized NJL model
with the inclusion of explicit chiral symmetry breaking
interactions [5]. This implies the existence of two CEPs in
the phase diagram. Indeed, the presence of these inter-
actions acts as a catalyst in the production of strange quark
matter when compared to conventional versions of the NJL
model [5]. Thus, it is interesting to explore in detail the
effect of external magnetic fields on the strange sector,
looking for the possible emergence of a CEP in this sector
due to the catalyzing effect of B at lower temperatures.
In the present work, we investigate the magnetized phase

diagram using the (2þ 1)-flavor PNJL model. Special
attention is devoted to the strange quark phase transition
and the CEPs that appear in the presence of an external
magnetic field. We investigate the isentropic trajectories
near the light and strange CEPs, in both the crossover and
first-order transition regions. The model is presented in
Sec. II, while the results are in Sec. III. Finally we draw our
conclusions in Sec. IV.

II. MODEL AND FORMALISM

In the presence of an external magnetic field, the
Lagrangian density of the PNJL model for a (2þ 1)-flavor
field takes the following form,

L ¼ q̄½iγμDμ − m̂c�qþ Lsym þ Ldet −
1

4
FμνFμν

þ UðΦ; Φ̄;TÞ; ð1Þ

where the quark sector is described by the SU(3) version of
the NJL model [44,45], which includes scalar-pseudoscalar,
Lsym, and the ’t Hooft six-fermion interaction, Ldet,

Lsym ¼ Gs

X8

a¼0

½ðq̄λaqÞ2 þ ðq̄iγ5λaqÞ2� ð2Þ

Ldet ¼ −Kfdet ½q̄ð1þ γ5Þq� þ det ½q̄ð1 − γ5Þq�g: ð3Þ

The quark field is represented in flavor space by
q ¼ ðu; d; sÞT , and m̂c ¼ diagfðmu;md;msÞ is the corre-
sponding (current) mass matrix. The Gell-Mann matrices
are denoted by λa (0 < a ≤ 8) and λ0 ¼

ffiffiffiffiffiffiffiffi
2=3

p
I, where I

represents the unit matrix. The coupling between the
(electro)magnetic field B and both the quarks and the
effective gluon field is implemented via the covariant
derivative Dμ ¼ ∂μ − iqfA

μ
EM − iAμ, where qf represents

the quark electric charge (qd ¼ qs ¼ −qu=2 ¼ −e=3); Aμ
EM

is the external magnetic field (Fμν ¼ ∂μAν
EM − ∂νAμ

EM); and
AμðxÞ ¼ gstrongA

μ
aðxÞ λa2 , where Aμ

a is the SUcð3Þ gauge
field. We consider a static and constant magnetic field in
the z direction, Aμ

EM ¼ δμ2x1B. The spatial components
of the gluon field are neglected in the Polyakov gauge at
finite temperature, Aμ ¼ δμ0A

0 ¼ −iδμ4A4. The Polyakov
loop is defined as the trace of the Polyakov line, Φ ¼
1
Nc
⟪P exp i

R β
0 dτA4ðx⃗; τÞ⟫β, which is the order parameter

of the Z3 symmetric/broken phase transition in pure gauge.
The pure gauge sector is described by the following

effective potential UðΦ; Φ̄;TÞ [46],

UðΦ;Φ̄;TÞ
T4

¼−
aðTÞ
2

Φ̄Φ

þbðTÞ ln ½1−6Φ̄Φþ4ðΦ̄3þΦ3Þ−3ðΦ̄ΦÞ2�;
ð4Þ

where aðTÞ ¼ a0 þ a1ðT0

T Þ þ a2ðT0

T Þ2, bðTÞ ¼ b3ðT0

T Þ3. The
parameters were fitted to reproduce lattice results [46]:
a0 ¼ 3.51, a1 ¼ −2.47, a2 ¼ 15.2, and b3 ¼ −1.75. The
critical temperature for the deconfinement phase transition
is set by the parameter T0, which in pure gauge was fixed
to T0 ¼ 270 MeV.
As a regularization scheme, we use a sharp cutoff Λ

in three-momentum space for the divergent ultraviolet
sea quark integrals. For the model parametrization, we
consider [47] Λ ¼ 602.3 MeV, mu ¼ md ¼ 5.5 MeV,
ms ¼ 140.7 MeV, G0

sΛ2 ¼ 1.835, and KΛ5 ¼ 12.36.
In the present study, we consider two model variants with

distinct scalar couplings: constant Gs ¼ G0
s and a magnetic
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field dependent Gs ¼ GsðeBÞ [31]. In the latter case, the
magnetic field dependence was determined phenomeno-
logically, by reproducing the decrease in ratio of the chiral
pseudocritical temperature obtained in LQCD calculations

[20]. Its functional dependence is GsðζÞ ¼ G0
sð1þaζ2þbζ3

1þcζ2þdζ4Þ,
where ζ ¼ eB=Λ2

QCD (with ΛQCD ¼ 300 MeV). The
parameters are a ¼ 0.010 880 5, b ¼ −1.0133 × 10−4,
c ¼ 0.022 28, and d ¼ 1.845 58 × 10−4 [31]. At zero
magnetic field both models coincide, i.e., Gs ¼ G0

s ¼
GsðeB ¼ 0Þ.
For each value of temperature T, baryonic chemical

potential μB, and magnetic field strength B, the mean field
equations are obtained by minimizing the thermodynamic
potential with respect to the order parameters [48]: huūi,
hdd̄i, hss̄i,Φ, and Φ̄. Both the chiral and the deconfinement
phase transitions can show different natures: first-order,
second-order, or crossover (analytic transition). Contrarily
to first-order phase transitions, the crossover transition
is characterized by an analytic behavior, allowing for
different definitions of (pseudo)critical temperature
through different observables. The pseudocritical temper-
ature is often defined as the temperature at which the
inflection point of the order parameters occurs.
Nevertheless, another possible definition is the temperature
at which the order parameter reaches half its vacuum
value, i.e., hqq̄iðT; μBÞ=hqq̄ið0; 0Þ ¼ 0.5 for quarks, and
ΦðT; μBÞ ¼ 0.5 for the Polyakov loop. As we are going to
analyze the order parameters via contour diagrams, the
latter definition of pseudocritical temperature will be
useful.

III. RESULTS

Herein, we consider the PNJL model with equal quark
chemical potentials, μu ¼ μd ¼ μs ¼ μq, which corre-
sponds to zero charge (or isospin) chemical potential and
zero strangeness chemical potential, i.e., μQ ¼ μS ¼ 0. The
baryonic chemical potential is then given by μB ¼ 3μq.

A. Magnetized phase diagram

To analyze how an external magnetic field affects the
chiral/deconfinement transitions, we determine the quark
condensates and the Polyakov loop value (order parame-
ters) in the ðT; μBÞ plane, for two magnetic field strengths:
eB ¼ 0.3 GeV2 and eB ¼ 0.6 GeV2. As we are mainly
interested in examining where the phase transitions occur
rather than on the specific condensates values, we normal-
ize the condensates as

hqq̄i0 ¼ hqq̄i0ðT; μB; eBÞ ¼
hqq̄iðT; μB; eBÞ
hqq̄ið0; 0; eBÞ : ð5Þ

This way, regardless of the magnetic field strength, the
normalized condensate hqq̄i0 lies between 0 and 1. If one

thinks about the quark masses instead, then we are looking
at how the in-medium quark mass MqðT; μB; eBÞ varies
with respect to its magnetized vacuum value Mqð0; 0; eBÞ.
The results for the normalized up-quark condensate

huūi0 for both G0
s (constant coupling) and GsðeBÞ (mag-

netic coupling) models are in Fig. 1. The top panels show
the results for eB ¼ 0.3 GeV2, while the bottom panels
have the eB ¼ 0.6 GeV2 results. Furthermore, the left
panels contain the G0

s model results, while the right panels
display the GsðeBÞ model results. The following conclu-
sions can be drawn. At low temperatures, the chiral
transition between the broken and the (approximately)
restored regions is of first order for all cases. The first-
order transition occurs at μcritðTÞ, at which the condensate
changes abruptly from huūi0 ¼ 1 [or, looking at the quark
mass, Muð0; 0; eBÞ], to the (approximately) restored chiral
symmetry with a much lower value of huūi0 (Mu ≈mu).
Therefore, the chiral symmetry is restored via a strong (and
unique) first-order phase transition from the vacuum value
to an almost zero value of huūi0. The first-order transition
persists in the phase diagram up to the CEP where the phase
transition turns into second order. Above the CEP’s temper-
ature, the transition shows an analytic nature (crossover
transition). The position of the CEP, ðT; μBÞCEP, is given in
Table I for each case. An important difference between the
G0

s and GsðeBÞ models is clear: at zero temperature, the

FIG. 1. The normalized up-quark condensate huūi0 (the color
scale represents its magnitude) with G0

s (left) and GsðeBÞ (right)
for eB ¼ 0.3 GeV2 (top) and eB ¼ 0.6 GeV2 (bottom).

TABLE I. The temperature, baryonic chemical potential, and
baryonic density (in units of ρ0 ¼ 0.16 fm−3) at the light CEP,
ðT; μB; ρBÞCEP, for different values of B (in GeV2).

Gs ¼ G0
s Gs ¼ GsðeBÞ

CEP T (MeV) μB (MeV) ρB=ρ0 T (MeV) μB (MeV) ρB=ρ0

eB ¼ 0 157.5 890.4 1.74 157.5 890.4 1.74
eB ¼ 0.3 192 674 3.54 177 627 2.63
eB ¼ 0.6 214 692 7.22 171 535 3.90
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chemical potential at which the phase transition occurs,
μcritB ðT ¼ 0Þ, increases with B for G0

s, while the opposite
happens for GsðeBÞ. Likewise, the pseudocritical temper-
ature at μB ¼ 0 decreases for GsðeBÞ [as expected, due to
the GsðeBÞ parametrization] and increases for G0

s.
Therefore, the overall effect of GsðeBÞ on the μB-T phase
diagram is the diminishing of the region where chiral
symmetry is broken.
The phase diagrams for the down quark, hdd̄i0

ðT; μB; eBÞ, are similar to the up-quark results (Fig. 1)
and are not shown. The main difference is that the crossover
band, identified by the yellow band where hdd̄i0 ≈ 0.5,
which defines the pseudocritical transition temperature, is
located at slightly lower temperatures for the down quark,
due to the electric charge difference.
The phase diagrams for the normalized strange-quark

condensate hss̄i0 are displayed in Fig. 2 (same configura-
tion as in Fig. 1), showing the following interesting
features. The condensate shows multiple discontinuities,
indicating the presence of multiple first-order phase tran-
sitions, and thus the existence of multiple CEPs in the
strange sector for all cases.
The existence of several first-order phase transitions at

zero temperature in the presence of an external magnetic
field for the SU(2) NJL model was reported in [49]. Due to
the Landau quantization induced by the magnetic field,
instead of a single first-order transition, connecting the
vacuum phase to the chirally restored phase, several
intermediate first-order phase transitions take place.
These complex patterns of multiple phase transitions were
analyzed at zero temperature in [50–52], where the number
of first-order phase transitions, characterized by small
jumps in the order parameters, were seen to grow as the
magnetic field decreases. At zero temperature, each phase
transition can be attributed to the filling of a specific
Landau level. At finite temperature, even though all the
Landau levels have a finite probability of being populated,
at small temperatures, the multiple phase transitions can
still be associated with the partial filling of the lower

Landau levels. With increasing temperature, the number of
phase transitions decreases to just one, and thus the
multiple CEPs that appear in the phase diagram (one for
each first-order phase transition) decreases to just one. The
several first-order phase transitions for the light sector, and
the corresponding CEPs, were analyzed in [40]. In Fig. 1
just one first-order phase transition is present for the up
quark (and down quark) because the magnetic fields
considered are too high for multiple transitions to set in.
For smaller magnetic fields, several phase transitions, and
corresponding CEPs, are also present in the light sector
(see [40]).
At eB ¼ 0.3 GeV2 (top panels of Fig. 2) both models

show three first-order phase transitions that end up in three
CEPs, while for eB ¼ 0.6 GeV2 (lower panels of Fig. 2)
two first-order phase transitions are present. Let μcriti ðTÞ
denote the chemical potential at which the first (i ¼ 1),
second (i ¼ 2), and third (i ¼ 3) first-order phase transi-
tions take place, where μcrit1 ðTÞ < μcrit2 ðTÞ < μcrit3 ðTÞ. The
first first-order phase transition, μcrit1 ðTÞ, at which hss̄i0 has
a small jump, is induced on the strange quarks by the
chiral transition of the light quarks (see Fig. 1). With the
chiral symmetry already restored in the light sector for
μB > μcrit1 ðTÞ, the two subsequent first-order phase tran-
sitions [i.e., μcrit2 ðTÞ and μcrit3 ðTÞ], at which a sudden
decrease of hss̄i0 occurs, can only be associated with the
strange sector. Therefore, at lower temperatures, the strange
quarks undergo a phase transition from a region of broken
chiral symmetry to an (approximately) restored one via
intermediate transitions. At eB ¼ 0.3 GeV2, the strange
quark takes the following values: hss̄i0 for μB < μcrit1 ðTÞ,
0.9hss̄i0 for μcrit1 ðTÞ < μB < μcrit2 ðTÞ, 0.5hss̄i0 for
μcrit2 ðTÞ < μB < μcrit3 ðTÞ, and 0.1hss̄i0 for μB slightly above
μcrit3 ðTÞ and, then decreases smoothly with increasing μB.
The GsðeBÞ model predicts smaller values for
μcrit1 ðTÞ, μcrit2 ðTÞ, and μcrit3 ðTÞ than the G0

s model. At
eB ¼ 0.6 GeV2, the same pattern occurs but now with
just two phase transitions. The location of the bright band,
which indicates the value ðT; μBÞ where hss̄i0 ≈ 0.5, also
shows that for eB ¼ 0.3, the first jump in the condensate at
μcrit2 ðTÞ only reduces hss̄i0 slightly, and another second
phase transition at μcrit3 ðTÞ is necessary to obtain a more
complete restoration of the chiral symmetry. The positions
of the CEPs are listed in Table II for each case.
The phase diagram for the confinement/deconfinement

transition, determined by the Polyakov loop value,
ΦðT; μB; eBÞ, is presented in Fig. 3. The deconfinement
pseudocritical temperature TΦ, defined by ΦðTΦ;μBÞ¼0.5,
is a decreasing function of μB for all scenarios. The bright
band represents a value of Φ ≈ 0.5, and thus it can be used
as a visual guide of the pseudocritical deconfinement
transition in the T-μB plane. The discontinuity in the
Polyakov loop value only reflects the first-order chiral
phase transition for the light sector. For small values of μB,

FIG. 2. The normalized strange-quark condensate hss̄i0 (the
color scale represents its magnitude) with G0

s (left) and GsðeBÞ
(right) for eB ¼ 0.3 GeV2 (top) and eB ¼ 0.6 GeV2 (bottom).
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the band of Φ ≈ 0.5 is very close to the crossover region of
the light sector. For low temperatures and high chemical
potential values, there is a quark phase on which the chiral
phase is already restored but confinement is still realized
(low Φ values). At eB ¼ 0.6 GeV2, the G0

s model (bottom
right panel) presents an intersection of the Polyakov loop
line Φ ¼ 0.5 with the first-order chiral phase transition line
in the vicinity of the CEP for the light quarks. As the
magnetic field increases, an overlapping occurs between
the first-order phase transition, which moves to higher
temperatures for the G0

s model, and the deconfinement
transition, which in turn remains almost unchanged by the
magnetic field presence.

B. Phase-separation boundaries

In this section we briefly analyze the quark phase
transitions through the phase-separation boundaries (bino-
dals) and instability boundaries (spinodals).
We first consider the phase-separation boundaries at zero

temperature in a μB-B plane. The results are in Fig. 4, where
we display the spinodal lines (thick blue) and binodal line
(thick black line) for the light quarks within both models.
The spinodal region (blue area) increases with the magnetic
field for both G0

s (left panel) and GsðeBÞ (right panel)
models.
The pattern followed by the baryonic chemical potential

value at which the light phase transition occurs at zero

temperature, μcritB ðT ¼ 0Þ, was studied in detail for the
PNJL model in [43]. A lowering of μcritB with B was seen
until eB ≈ 0.3 GeV2 for G0

s, followed by a monotonically
increasing of the μcritB for stronger field strengths. The μcritB
always decreases for the GsðeBÞ mode. The existence of a
range of magnetic fields, where at least two first-order
phase transitions occur for the light sector, was also pointed
out. Therefore, instead of a single first-order transition,
connecting the vacuum phase to the (approximately)
chirally restored phase, we have multiple intermediate
first-order phase transitions at T ¼ 0, that subsist at low
and moderate temperatures, giving rise to multiple CEPs
that appear in the phase diagram for the light sector [40,43].
Indeed, the magnetic field induces a complex pattern of
phase transitions for all quarks, i.e., for both the light (up
and down) and the strange quarks.
Another clear feature also from Fig. 4 is the spreading of

the spinodal region in the μB direction with the increase of
B for both models, to a lower extent within the GsðeBÞ
model. This has implications on the CEP location at finite
temperatures, as seen in [43]. The temperature of the CEP is
an increasing function of B for the G0

s model, reflecting the
increasing spreading of the spinodal region with B. The
slower spreading of the spinodal region for the GsðeBÞ
model, however, leads to an increase of the CEP’s temper-
ature only up to an intermediate B strength. For higher B
fields, the width of the spinodal region remains approx-
imately constant and the CEP’s temperature remains almost
unchanged (as we will see in Fig. 9).
In Figs. 5 and 6 we represent, respectively, T-μB and

T-ρB diagrams, where the binodals are represented by the
thick lines and the spinodal by the thin lines. The phase-
separation boundaries are in blue for the light quarks and in
green for the strange quark. Three magnetic field intensities
are studied, 0 (top), 0.3 (middle), and 0.6 GeV2 (bottom),
for theG0

s (right) andGsðeBÞ (left) models. As already seen
in Fig. 2, we have two CEPs for the strange sector at
eB ¼ 0.3 GeV2. The existence of two CEPs for the strange

TABLE II. The temperature, baryonic chemical potential, and
baryonic density (in units of ρ0 ¼ 0.16 fm−3) at the strange
CEPs, ðT; μB; ρBÞCEP, for different values of B (in GeV2).

Gs ¼ G0
s Gs ¼ GsðeBÞ

CEP T (MeV) μB (MeV) ρB=ρ0 T (MeV) μB (MeV) ρB=ρ0

eB ¼ 0 No CEP No CEP
eB ¼ 0.3 62 1330 6.67 48 1193 5.40

30 1566 11.10 18 1539 10.75
eB ¼ 0.6 124 1234 12.10 54 934 8.50

FIG. 4. The spinodal (blue thick line) and binodal (black thick
line) μcritB boundaries as a function of the magnetic field intensity
at T ¼ 0. The models G0

s (left panel) and GsðeBÞ (right panel)
are shown.

FIG. 3. The Polyakov loop (the color scale represents its
magnitude) with G0

s (left) and GsðeBÞ (right) for eB ¼
0.3 GeV2 (top) and eB ¼ 0.6 GeV2 (bottom).
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sector occurs, for both G0
s and GsðeBÞ scenarios, in the

range 0.2≳ eB≳ 0.4 GeV2. For eB≲ 0.2 GeV2 more
CEPs can exist due to the existence of numerous first-
order transitions, while above 0.4 GeV2 only one CEP
persists.
Another important aspect is that, the stronger the

magnetic field is, the larger the spinodal region becomes
for both models, being the spinodal region bigger when
Gs ¼ G0

s . This is valid for both the light and strange
transitions. The first-order lines are also shifted to lower
values of μB. For eB ¼ 0.6 GeV2 (lower panels of Fig. 5)
the spinodal regions in the (T; μB) plane overlap with each
other (blue for light quarks and green for strange quark).
However, this happens at different baryonic densities (see
lower panels of Fig. 6). The spinodal region for the strange
quark is much smaller than for the light quarks and is
located at higher baryonic densities.
From Fig. 6 at zero temperature, we conclude that the

upper baryonic densities at which the onset of both
spinodal and binodal regions take place are increasing
functions of B.

C. The location of the critical endpoints

In this section, we determine the location of the CEPs in
the temperature vs. baryonic chemical potential diagram,
and its dependence on the magnetic field strength.

Figure 7 shows the location of the CEPs as a function of
the magnetic field, ðTðBÞ; μBðBÞÞCEP. The behavior of the
CEP related with the chiral (light) transition (blue and
black) was already reported in [43]. For moderate magnetic
fields (<0.3 GeV3) both models, G0

s and GsðeBÞ, show
similar results; i.e., the CEP moves towards higher temper-
atures and chemical potentials. A distinctive behavior is

FIG. 5. Binodal (thick lines) and spinodal (thin lines) regions
in the temperature vs baryonic chemical potential diagram for
the light quarks (blue) and strange quarks (green) at 0 (top),
0.3 (middle), and 0.6 GeV2. Both G0

s (left) and GsðeBÞ (right)
model results are shown.

FIG. 6. Binodal curve (thick lines) and spinodal section (blue
region) in the temperature vs. baryonic density diagram for the
light quarks (blue) and strange quarks (green) at 0 (top),
0.3 (middle), and 0.6 GeV2. Both G0

s (left) and GsðeBÞ (right)
model results are shown (ρ0 ¼ 0.16 fm−3).
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FIG. 7. Critical endpoint of the light (blue and black) and
strange (red and orange) quarks as a function of the magnetic field
intensity for the constant coupling, G0

s , and magnetic dependent
coupling, GsðeBÞ, models. The magnetic field increases from
0 to 1 GeV2 in the arrows’ directions.
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seen for higher magnetic fields: the CEP moves to lower μB
for the GsðeBÞ model, and the opposite occurs for the G0

s
model. As already noticed in [43], the GsðeBÞ model
results indicate that, for high enough magnetic fields, the
CEP moves towards the μB ¼ 0 axis, and the analytic
transition, present at μB ¼ 0, will turn into a first-order
phase transition.
Now let us focus on the CEP for the strange quark. As we

had already seen in Fig. 2 (bottom right panel), the
magnetic field induces multiple first-order phase transitions
for the strange quark, and thus the existence of multiple
CEPs. In Fig. 7 is shown two CEP branches for each model
[red for GsðeBÞ and orange for G0

s]. For both models, the
CEP appearing at lower μB remains up to eB ∼ 1 GeV2,
while the CEP at higher μB disappears from the phase
diagram at eB ∼ 0.4 GeV2 (a similar behavior was already
found for the light sector [40]). The CEPs located at lower
μB show a different behavior between models: while it
moves towards lower μB in both models, at high magnetic
fields T increases monotonously with B for G0

s and is a
decreasing function for the GsðeBÞ model. With increasing
B, the CEP’s location for the GsðeBÞ model (red) shows

some similarity with the CEP of the light quarks (blue) by
moving to lower μB. For the G0

s model (orange) the CEP
goes to lower values of μB but higher T.

D. The isentropic trajectories

Finally, we analyze how the isentropic trajectories on the
T-μB plane [53] and, in particular, near the CEPs are
affected by the presence of an external magnetic field
for both models, i.e., G0

s and GsðeBÞ. The interest in the
isentropic trajectories relies on the hydrodynamical expan-
sion of a HIC fireball that nearly follows trajectories of
constant entropy. New insights about the QCD phase
diagram can thus be obtained by investigating these
possible paths for the hydrodynamic evolution of a thermal
medium created in the collisions and by studying the
properties of matter under these conditions.
We plot in Fig. 8 several isentropic trajectories s=ρB for

both models and different magnetic field values on the T-μB
plane. For the sake of comparability, the following scenar-
ios have been selected in each panel: eB ¼ 0 (top left),
eB ¼ 0.3 GeV2 for the G0

s model (top right), eB ¼
0.3 GeV2 for the GsðeBÞ model (bottom left), and finally

FIG. 8. QCD phase diagram in the T-μq plane: the thick blue (green) lines represent the first-order phase transition (binodal) while the
thin blue (green) lines display the spinodal boundaries for the light (strange) quarks. The isentropic trajectories for several values of s=ρB
are shown in red and black. The following scenarios are considered: theG0

s ¼ GsðeBÞmodel for eB ¼ 0 (top left panel), theG0
s model for

eB ¼ 0.3 GeV2 (top right panel), the GsðeBÞ model for eB ¼ 0.3 GeV2 (bottom left panel), and the GsðeBÞ model for eB ¼ 0.6 GeV2

(bottom right panel). The different scales in the μB-axis allow us to clearly differentiate among the different isentropic trajectories.
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eB ¼ 0.6 GeV2 for the GsðeBÞmodel (bottom right). For a
clear distinction among the different isentropic trajectories,
we have restricted the study to the range of μB values on
which the binodals (metastable boundaries) occur in each
case. From all possible isentropic lines (constant s=ρB) we
have restricted ourselves to two sets: (i) trajectories with
higher values of s=ρB represented by red lines that pass
close to the CEP of the light quarks; (ii) trajectories with
s=ρB ≤ 1 displayed in black lines that go through the first-
order phase transition line and, at larger μB, pass near the
CEPs connected with the strange sector.
In the following we discuss the behavior of the isentropic

lines as temperature increases. At zero temperature, all
isentropic trajectories begin at the same μB value, i.e.,
μi ¼ Mi, which increases with B (see Fig. 8). The temper-
ature of the isentropic path s=ρB takes a finite value as soon
as ρB becomes finite.
For low values of the entropy per particle, a special

pattern arises among the calculated isentropic trajectories
(black lines): they are enclosed within the spinodal boun-
dary, which in the T-ρ plane encloses the unstable and

metastable regions limited by the binodals. Eventually, as
the chemical potential further increases, the isentropic line
leaves this region and proceeds towards the high μB chiral
restored phase, keeping the temperatures approximately
constant for B ¼ 0, but showing a decrease, or eventually,
for the lower s=ρB values, still an increase followed by a
decrease for eB ¼ 0.3, 0.6 GeV2. As we will discuss later,
this is due to the onset of the strange quark, that is pushed to
lower values of μB and ρB at finite B.
For higher s=ρB values (red lines), however, as the

temperature increases from T ¼ 0 the trajectories cross the
spinodal region entering the stable low density and chiral
broken phase, moving towards the CEP, where a kink
occurs in the T-μB plane, and then move to higher μB (chiral
restored phase) always with increasing temperature. As we
will discuss later, this kink is not present in the T-ρB plan
(see Fig. 9) and is a feature of the presence of the CEP in the
T-μB plane.
A different and interesting aspect is the trajectories’

behavior near the strange quark CEPs, to which they are
attracted. Even though there is no focusing effect on the

FIG. 9. QCD phase diagram in the T-ρB plane: the thick blue (green) lines represent binodal boundaries, while the thin blue (green)
lines display the spinodal boundaries for the light (strange) quarks. The isentropic trajectories for several values of s=ρB are shown in red
and black. The following scenarios are considered: the G0

s ¼ GsðeBÞ model for eB ¼ 0 (top left panel), the G0
s model for eB ¼

0.3 GeV2 (top right panel), the GsðeBÞ model for eB ¼ 0.3 GeV2 (bottom left panel), and the GsðeBÞ model for eB ¼ 0.6 GeV2

(bottom right panel). The different scales in the ρB-axis allow us to clearly differentiate among the different isentropic trajectories.
The baryonic density ρB is represented in units of saturation density, ρ0 ¼ 0.16 fm3.
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isentropic trajectories towards the CEP for the light quarks
(see the red curves in Fig. 8), the CEPs related with the
strange quark show a contrasting effect. This behavior
allows the prediction of other new CEPs if lower values of
B are analyzed: looking at the bottom left panel of Fig. 8,
the bend present near μB ¼ 1350 MeV signals that a CEP
would emerge if we decrease the magnetic field strength.
The isentropes are quite affected by the growth of the
spinodal region (related with the strengthening of the first-
order transition due to the magnetic field), particularly for
the light sector, and are pushed to higher T in the transition
region. The explanation for this behavior will be more
clearly discussed looking to the phase diagram in a T-ρB
plane as will be done in the following.
Finally, the shape of the isentropes also allows the

perception of the spinodal region. Taking the line with
s=ρB ¼ 1 for eB ¼ 0 at the lower temperatures (upper left
panel) we see that this isentropic is bound by the spinodal
lines of the light sector. For finite B the same effect is
present. However, looking at Fig. 8, we find a loop structure
for the s=ρB ¼ 0.1 and s=ρB ¼ 0.25 lines inside the

spinodal region for the light sector (blue region). This is
not related with the existence of a second first-order
transition for the light sector but with the onset of the
up quark (as we will see in Fig. 10).
Additional insight can be attained by analyzing the T-ρB

diagrams. The results are shown in Figs. 9 and 10 (with the
same configuration of Fig. 8). These phase diagrams show
the density range of both unstable and metastable regions.
In Fig. 9, the behavior of the trajectories with higher s=ρB
values (red lines) agrees for all scenarios: in the range
of lower ρB values, the required entropy per baryon is
accomplished by a sudden increase of temperature. For
s=ρB ≤ 1 (black lines) and B ≠ 0, the isentropic trajectories
show a nonmonotonic behavior in the T-ρB plane. This can
be understood as follows: the entropy abruptly increases
when new degrees of freedom appear, such as a new quark
species. Thus, to keep s=ρB fixed, a suddenly decrease of
temperature is needed to compensate this abrupt increase in
entropy. This can be seen in Fig. 10, where we have plotted
the isentropic line with s=ρB ¼ 0.25, the quark masses (Mi
with full colored lines), and quark densities (ρi with dashed

FIG. 10. QCD phase diagram in the T-ρB plane: the thick gray lines represent the binodal boundaries, while the thin gray lines display
the spinodal boundaries for the light and strange quarks. The isentropic trajectory for s=ρB ¼ 0.25 is shown as a black solid line.
The masses (solid lines) and densities (dashed lines) for each quark (up in red, down in blue, and strange in green) are also displayed.
The following scenarios are considered: theG0

s ¼ GsðeBÞmodel for eB ¼ 0 (top left panel), theG0
s model for eB ¼ 0.3 GeV2 (top right

panel), the GsðeBÞ model for eB ¼ 0.3 GeV2 (bottom left panel), and the GsðeBÞ model for eB ¼ 0.6 GeV2 (bottom right panel).
The different scales in the ρB-axis allow us to clearly differentiate among the different isentropic trajectories. The baryonic density ρB is
represented in units of saturation density, ρ0 ¼ 0.16 fm3.
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lines) for all scenarios. For instance, looking at the GsðeBÞ
model results for eB ¼ 0.6 GeV2 (right bottom panel), we
conclude that in the range of densities ρB ≈ 1.5ρ0 − 2.2ρ0
the temperature of the isentropic line decreases, and that the
temperature also decreases at ρB ≈ 7.0ρ0. The reason is
because at ρB ≈ 1.5ρ0 the density of the up quark becomes
finite and at ρB ≈ 7.0ρ0 the strange quark density takes a
nonzero value. The same pattern is present for all scenarios.
Other less dramatic effects are related with the partial
restoration of the chiral symmetry of the strange quark that
occurs in several steps: a further decrease of Ms gives rise
to an increase of the strange quark density, and therefore a
more equal distribution of ρB among all quark flavors, but
consequently a decrease of T to keep s=ρB constant.
The change of the properties of matter along the

isentropes in the presence of a strong magnetic field will
give rise to signatures of B that could be identified. These
could be (a) a much higher abundance of π0 pions at low
densities than the corresponding charged pions due to the
late onset of the u-quarks or (b) the detection of a large
amount of strange mesons. These features, however,
require special matter conditions obtained from the HIC,
namely, large densities and moderate temperatures.

IV. CONCLUSIONS

We have studied the magnetized phase diagram for
(2þ 1)-flavor quark matter within the PNJL model.
Besides the usual PNJL model with constant scalar cou-
pling, we have also considered a magnetic field dependent
coupling, which reproduces the IMC effect at μB ¼ 0.
The computed phase diagrams show that the nature of

the deconfinement transition is quite insensitive to the
external magnetic field strength for both models, preserving
the analytic nature throughout the phase diagram. The
quark condensates show, however, a distinct behavior
between models. For the light quarks, the constant scalar
coupling model gives rise to a region of broken chiral
symmetry that increases with B, while for the magnetic
field dependent coupling model it decreases with B. The
strange quark shows multiple first-order phase transitions at
low temperatures, giving rise to multiple CEPs on the phase
diagram. Therefore, the chiral symmetry on the strange
sector is partially restored through multiple phase transi-
tions. The magnetic field induces a complex pattern of
phase transitions not only for the strange quark, but also for
the light quarks. At higher temperatures, the strange quark
undergoes an analytic transition whose behavior and
location are weakly model dependent.

We have analyzed the quark phase transitions through
the phase-separation boundaries (binodals) and instability
boundaries (spinodals). For all flavors and within both
models, the results show that the spinodal region grows
with increasing B. However, the spinodal section associated
with the strange quark is smaller and is located at higher
baryonic densities.
We have studied how the multiple CEPs’ locations vary

when the magnetic field strength is increased. Due to the
occurrence of multiple first-order phase transitions, in both
light and strange quarks, multiple CEPs emerge in the
phase diagram. For the strange quark, we have calculated
the location of the two CEPs that appear at lower μB values.
While the first CEP (at lower μB) remains in the phase
diagram up to eB ∼ 1 GeV2, the second CEP (at higher μB)
disappears at eB ∼ 0.4 GeV2. The location of the first CEP
depends on the model: while, at lower B, it moves towards
lower μB values in both models, at higher B it increases
monotonically with B for G0

s and decreases for GsðeBÞ.
The isentropic trajectories in the T-μB and T-ρB planes

for both models and magnetic fields were calculated. The
isentropes are affected by the growth of the spinodal region,
particularly for the light sector, and are pushed to higher
temperatures in the transition region, for large values of the
entropy per baryon. Among the calculated values, it was
shown that the temperature along the isentropic lines for
s=ρB ≤ 1 clearly indicates the appearance of new degrees
of freedom or the (partial) restoration of chiral symmetry by
decreasing with ρB instead of increasing as at B ¼ 0. It is
expected that the production of mesons during the HIC
reflects the composition of matter at a given density and,
therefore, may act as signatures of the presence of an
intense magnetic field. The CEPs related to the strange
quark transitions show a focusing effect, which is explained
by the appearance of strangeness in matter. The focusing
effect that occurs at larger densities was attributed to
the partial restoration of the chiral symmetry for the strange
quark.
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