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Abstract

Differences in morphological or ecological traits expressed by exotic species between their native and non-native ranges are
often interpreted as evidence for adaptation to new conditions in the non-native ranges. In turn this adaptation is often
hypothesized to contribute to the successful invasion of these species. There is good evidence for rapid evolution by many
exotic invasives, but the extent to which these evolutionary changes actually drive invasiveness is unclear. One approach to
resolving the relationship between adaptive responses and successful invasion is to compare traits between populations
from the native and non-native ranges for both exotic invaders and congeners that are exotic but not invasive. We
compared a suite of morphological traits that are commonly tested in the literature in the context of invasion for three very
closely related species of Centaurea, all of which are sympatric in the same native and non-native ranges in Europe and
North America. Of these, C. solstitialis is highly invasive whereas C. calcitrapa and C. sulphurea are not. For all three species,
plants from non-native populations showed similar shifts in key traits that have been identified in other studies as important
putative adaptive responses to post-introduction invasion. For example, for all three species plants from populations in non-
native ranges were (i) larger and (ii) produced seeds that germinated at higher rates. In fact, the non-invasive C. calcitrapa
showed the strongest trait shift between ranges. Centaurea solstitialis was the only species for which plants from the non-
native range increased allocation to defensive spines, and allocated proportionally less resources to reproduction, patterns
contrary to what would be predicted by theory and other empirical studies to enhance invasion. Our results suggest caution
when interpreting the commonly observed increase in size and reproductive capacity as factors that cause exotics to
become invaders.
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Introduction

Many exotic organisms become much more abundant and have

greater impact on other species in their non-native than in their

native ranges [1], [2]. Many of these invasive species have been

shown to evolve different trait expression in their non-native

ranges [3–5]. These changes can be due to adaptation, genetic

drift, hybridization and/or founder effects [6] and have the

potential to contribute substantially to invasion. However, whether

these changes cause invasive success is speculative. An opportunity

to explore the causal link between morphological changes and

invasion is to compare shifts expressed by exotic invasive species to

those of exotic congeners that naturalize in their new habitats

without becoming unusually abundant or having strong impacts

[7], [8].

Comparing the traits of exotic species that differ in their ability

to invade may help to understand the mechanisms that promote

invasion [9–11]; but there have been fewer studies focusing on

differences among exotic invasive and exotic non-invasive species

[12–18]. Thus the combination of both approaches: 1) the study of

exotic invasive and exotic non-invasive species, and 2) studying

them in both their native and non-native ranges, has a great deal

of potential to shed light on traits that might be important for

invasive success and, perhaps more importantly, which adaptive

trait shifts between native and non-native ranges may contribute

the most to an exotic species evolving in a way to become more

invasive [19].

A substantial body of literature shows a strong and general

tendency for plants from populations in their non-native ranges to

increase in size, germination rate, and reproductive output when

compared with their native ranges [4–6], [20–25]. In turn, a less

common response is the loss of herbivore defensive capacity by

plants in non-native ranges [26–28], but when this occurs it is

interpreted in the context of tradeoffs (the hypothesis of evolution

of increased competitive ability, EICA) [20]. These evolutionary

tradeoffs provide a major hypothesis for how exotic species might

transform into invaders; however, to our knowledge there have
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been only a few works comparing inter-regional trait shifts among

invasive and non-invasive congeners [16], [29].

We compared trait shifts for a set of three very closely related

species: Centaurea solstitialis, C. calcitrapa, and C. sulphurea. All three

species have highly overlapping ranges both within their native

range of Spain and within their non-native range of California. To

explore trait changes for these three congeners, we grew plants in

common greenhouse conditions and asked the following questions:

1) is the invasive C. solstitialis inherently larger, more fecund, or

better defended than the two non-invasive congeners, 2) have

important trait shifts between the native and non-native ranges

occurred only for the invasive C. solstitialis?

Materials and Methods

Centaurea solstitialis, C. calcitrapa, and C. sulphurea, are closely

related within the Jacea group of the Centaurea phylogeny [30].

These three species have overlapping distributions in their native

ranges in Spain and also in their non-native ranges in California.

Centaurea solstitialis has been introduced into California since at

least 1824 [31]. Although Southern Europe is generally accepted

as C. solstitialis native region, Prodan [as cited in 31] discussed that

East Mediterranean and Caucasus are in fact the original source,

while Western Mediterranean areas (like Spain) could have been

colonized later. C. calcitrapa’s introduction in California is thought

to be about 1896 [32], [33] and for C. sulphurea at least 1923 [15],

[34]. While C. solstitialis is likely to have experienced multiple

introductions into California [35–37] and recent genetic analyses

[38] show that, when compared with other regions in the native

range (Hungary, Romania, Turkey and Georgia), Spanish

populations have a genetic structure which is most similar to that

of California and Argentina, thus confirming previous papers

pointing to the importance of Spanish origin introductions on

Californian plants [39], [40]. All populations studied occurred in

or nearby roadsides in highly disturbed areas subjected to

Mediterranean climate. Two of these neo-allopatric species, C.

solstitialis and C. calcitrapa, occur over broad native (Southern

Europe) and nonnative ranges (Americas, Australia), whereas C.

sulphurea has a highly restricted native range in Spain and

Morocco, and occurs as only a few populations in California

[14], [29]. Centaurea solstitialis is much less common in Spain than

C. calcitrapa [30] but C. solstitialis has become an aggressive invader

in California, while C. calcitrapa has not. Based on herbarium

records and our observations, Centaurea sulphurea is not common in

either range (www.gbif.org). All three species inhabit the same

ruderal habitats, are winter annuals (although C. calcitrapa can

occasionally be bi-annual), form basal rosettes, and develop single

bolting flower stems from the rosette. All three species also form

large spines on their capitula, providing a common trait for which

to compare allocation to defense.

In the summer of 2009, we collected seeds from fifteen different

individuals from each of 45 different populations across the

distributional range of the three species in Spain and California,

USA (hereafter, ‘‘regions’’; see Table S1). We sampled eight C.

solstitialis populations from Spain and 11 populations from

California, 10 C. calcitrapa populations from Spain and nine from

California, and four C. sulphurea populations from Spain and three

from California. No permissions were required for seed collection.

The study species are considered weeds both in the native and

non-native ranges and seed sampling was done on roadsides. We

confirm that the field studies did not involve endangered or

protected species. In January 2010, three seeds, randomly selected

from each individual mother plant regardless of their achene type

(pappus/non-pappus), were sown in each 2.2 L pot in a 50:50 mix

of 20–30 grit sand and local soil from natural grasslands near

Missoula, Montana (total N = 675 plants). After germination, and

before seedlings could experience any competitive effect on each

other, exceeding seedlings were manually removed so that only

one plant remained in each pot. Germination rates were sufficient

to reach the intended number of replicates. All plants survived

until the end of the experiment. A small proportion (3%) of C.

calcitrapa plants did not reach reproductive state (it is occasionally

biennial); such plants were evenly distributed among experimental

groups; data from these plants was not used for the analyses. Plants

were randomly mixed in a common garden greenhouse experi-

ment with a temperature range of 10–35uC, watered every 1–2

days, and fertilized biweekly with 100 mL of 1.16 g L21 Scotts

Miracle-Gro (15:30:15 + micronutrients). Plants were grown until

they flowered in a pollinator-excluded greenhouse, and we

measured several variables during the germination and growth

period: germination rate, rosette diameter, number of capitula,

and spine length. Rosette diameter was measured, in mm, 30 and

90 days after sowing in order to calculate relative growth rates. We

also manually cross pollinated plants by rubbing receptive capitula

from two different individuals from the same natural population

with each other. Since C. solstitialis is self-incompatible [29], crosses

were randomly made between individuals within populations in

order to obtain a seed-set from one flower per individual. Plants

were harvested after capitula maturation (July, 2010), which was

similar for all three study species. Harvested plants were dried for

48h at 70uC and weighed.

Data were analyzed with the statistical software R 2.15.2 [41]

by means of linear mixed-effects models after Laird and Ware [42]

but allowing for nested random effects of population. Species and

regions (Spain or California) were fixed factors for each individual

test, and the interaction between the two fixed factors was also

studied. Tukey post-hoc tests were used by using R package

‘‘multcomp’’ and accounting with population as a nested random

factor. Variables were transformed for normality when necessary.

Results

For all populations and ranges combined, individuals of the

non-invasive C. calcitrapa produced greater total mass than either of

the other two species, C. sosltitialis was intermediate in total mass,

and C. sulphurea was the smallest (Fig. 1A; Fspecies = 15.46; df = 2,41

P,0.001; Tables S2, S3). The rosette relative growth rates (RGR)

of C. solstitialis and C. calcitrapa were greater than those of C.

sulphurea (Fig. 1B; Fspecies = 43.32; df = 2,39 P,0.001).

The non-invasive C. calcitrapa produced the highest number of

capitula per plant, followed by C. solstitialis and then by C. sulphurea

(Fig. 2A; Fspecies = 43.84; df = 2,42; P,0.001; Tukey’s post hoc

P,0.001 for all species pairs). The number of seeds per capitulum

was higher for C. sulphurea while C.calcitrapa and C. solstitialis did not

differ (Fig. 2B; Fspecies = 78.14; df = 2,3212; P,0.001; Table 1).

There were no significant differences among species for seed

germination rates (Fig. 2C; Fspecies = 1.85; df = 2,45; P = 0.168).

Centaurea solstitialis seed-set is lower than previously reported [43],

which could be due to natural variability within the species, or to a

lower pollination efficiency of our manual treatment than that of

natural insect pollinators. In any case, and since our tests compare

data obtained from identical treatments, our results are informa-

tive at the comparative level.

Across all populations and ranges C. calcitrapa had longer spines

than either of the two congeners, C. sosltitialis was intermediate,

and C. sulphurea produced the smallest spines (Fig. 2D; Fspe-

cies = 278.07; df = 2,39; P,0.001; Tukey’s post hoc P,0.001 for all

species pairs).

Invasive and Non-Invasive Show Similar Trait Shift
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For all three species, individual plants grown from seed collected

in the non-native ranges produced more total biomass than plants

grown from seed collected in the native region (Fregion = 4.07;

df = 1,41; P = 0.051), but the largest shift in this trait was expressed

by the non-invasive C. calcitrapa (Fig. 1A, Table 1). Centaurea

calcitrapa was the only species to show an inter-regional shift in

rosette RGR, with plants from California growing faster than

plants from Spain (Fig. 1B, Table 1; Fregion = 3.91; df = 1,39;

P = 0.055, Fspecies x region = 3.79; df = 2,39; P = 0.031; Tukey’s post

hoc P = 0.007). We found no differences in the number of capitula

per plant between native and non-native regions for any of the

three species (Fig. 2A; Fregion = 0.49; df = 1,41; P = 0.487). Centaurea

sulphurea was the only species that showed a shift in the number of

seeds per capitulum between regions, with Californian plants

producing fewer seeds per capitulum than Spanish plants (Fig. 2B,

Table 1; Fregion = 78.13; df = 2,3212; P = 0.005; Fspecies x region =

0.057). Seeds produced by plants of all species from the non-native

range had higher germination rates, with the average increase

across the three species of 61% when compared to the native

region (Fig. 2C, Table 1; Fregion = 22.90; df = 1,45; P,0.001).

Centaurea sulphurea experienced the highest change in germination

rate between ranges followed by C. solstitialis (P = 0.006; P = 0.002).

Centaurea solstitialis plants from California were the only species that

demonstrated an increase in spine length in the non-native range,

with Californian plants producing spines that were 21% longer

than their conspecifics from the native range (Fig. 2D; Fregion =

8.86; df = 1,39; P = 0.005; Fspecies x region = 4.39; df = 2,39; P = 0.019).

Discussion

In general, traits related to growth, fecundity, and defense that

we measured were not inherently greater in value for the exotic

invasive C. solstitialis than for non-invasive congeners. More

importantly, the length of spines on the calyces was the only trait

for which C. solstitialis demonstrated a greater increase in the non-

native range than the other congeners. Thus the most important

interpretation of our results is that, for these species and traits, we

found no evidence that the invasive species exhibited any stronger

shifts in key traits than very similar but non-invasive exotic

congeners.

Our results are consistent with a large body of literature

demonstrating substantial differences in morphology or size for

plants from populations in the native and non-native ranges. For

example, an increase in size for plants in the non-native ranges has

been widely documented and overall, invasive species tend to have

higher values also for leaf-area allocation, shoot allocation, growth

rate, physiology, and fitness [5], [6], [19], [20], [22], [23], [43–

45]. Seed and seedling size has been demonstrated to differ

between native and non-native ranges of C. solstitialis, but not for

the non-invasive C. calcitrapa or C. sulphurea [16]. However seedling

size only differed when C. solstitialis was grown in competition with

the European native grass Bromus hordeaceus, when Californian

individuals grew more than their Spanish counterparts, but not

when in competition with the American native Poa secunda, thus

showing that individuals from the non-native range present

increased competitive ability under certain circumstances [16].

Germination rates have been tested much less, but Hierro et al.

[40] found higher germination rates for seeds produced on C.

solstitialis plants from the non-native range of California than

plants from the native range of Turkey in a common garden;

Ridenour et al. [5] found that the mean germination rate of C.

stoebe from non-native North American populations was 81%

higher than that of native European populations. Kudoh et al. [46]

observed patterns consistent with adaptation to fall germination

for invasive strains of Cardamine hirsuta. These results indicate that

exotic plants may experience strong selective pressure in their non-

native ranges and respond to this pressure rapidly; a rapid

accumulation of ecological adaptations which has been found to

lead to incipient degrees of reproductive isolation between native

Figure 1. Total plant biomass (g; mean ± SE) (A); relative growth rate of rosette diameter (mm mm21 day21; mean ± SE) (B) for each
species from each region. Different letters indicate statistically significant differences (P#0.05).
doi:10.1371/journal.pone.0082281.g001

Invasive and Non-Invasive Show Similar Trait Shift
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and non-native ranges of introduced species [29]. However, our

results for these Centaurea congeners suggest caution in interpreting

these apparent adaptive responses as drivers of invasion. Both exotic

invasive and non-invasive congeners exhibited substantial trait

shifts, potentially very important for local adaptation but, in view

of our results, not necessarily key to the dramatic biogeographic

shifts in abundance and impact manifest by C. solstitialis but not C.

calcitrapa or C. sulphurea.

Invasive species often grow much faster than the native species

they exclude [16], [18], [47–49]. Graebner et al. [16] found that,

when in competition with native grass species, the relative growth

rate (RGR) of C. solstitialis biomass, from seed to seedling, was

greater than that of C. calcitrapa or C. sulphurea, but there was no

difference in this trait between the native and non-native ranges

for any of the three congeners. Here, we also found that the overall

RGR of C. solstitialis rosettes was 11% greater than that of C.

calcitrapa and 42% greater than that of C. sulphurea, but that only C.

calcitrapa showed evidence for evolving higher RGR in the non-

native range. Perhaps these inherently rapid growth rates were

critical for the early success of C. solstitialis relative to its congeners.

Centaurea solstitialis was intermediate in spine length, but the only

species to produce significantly larger spines in California than in

Spain. Increased spine length could simply be correlated with an

increase in total biomass, but spine length augmented 21% in non-

native populations; whereas biomass increased 10%. Given that C.

solstitialis in California often occurs with domestic livestock,

perhaps this strong generalist herbivore pressure is a more

important selective force in the non-native range of California.

Indeed, cows, sheep and goats have been described as effective

grazers of C. solstitialis and have been effectively used as a control

agent in California [50], [51].

Figure 2. Number of capitula per plant (mean ± SE) (A); Number of seeds per capitulum (mean ± SE) (B); Germination percentage
(mean ± SE) (C); Spine length (mm; mean ± SE) (D) for each species and region. Different letters indicate statistically significant differences
(P#0.05).
doi:10.1371/journal.pone.0082281.g002

Invasive and Non-Invasive Show Similar Trait Shift
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Time since introduction is an important variable when studying

biological invasions, and time lags of more than 50 years between

introduction and invasion are common [52], [53]. Several

multispecies studies found a positive relationship between the

capacity to spread of exotic plants and the time since their

introduction in the non-native areas [54–56]. The cause of the lags

is partly inherent to the dynamics of population growth and range

expansion [57], [58] but frequently it is also related to the need to

accumulate sufficient genetic diversity via repeated introductions;

or to develop key adaptations to the non-native range which are

crucial for invasive success [19], [52], [57]. This has generated a

phenomena called ‘‘invasion debt’’, a hypothesis suggesting that

past human activities involving the introduction of exotic species

will have a future impact on ecosystems after a time lag since date

of introduction [59–61]. The three species considered in this study

differ in time since introduction, from 189 years for the invasive C.

solstitialis, to 117 years and 90 years for the non-invasive C.

calcitrapa and C. sulphurea, respectively. Interestingly, our results

show that these three closely related species show a similar amount

of trait-shifts, suggesting that trait-shifts can happen very rapidly

after introduction although, visibly, they do not necessarily lead to

invasive success at the same speed.

A number of studies have attempted to elucidate the key traits

that drive invasions [18], [62–64]. These efforts however, have led

to the conclusion that the important traits may differ among

species, and even among sites for the same invasive species. For

instance, Hierro et al. [40] studied germination patterns for C.

sosltitialis, and found differences not only between native and non-

native ranges, but also between populations from the non-native

ranges of Argentina and California. Previous studies [16] with the

species system used in the present work found competitive

advantages related to seed and seedling size of C. solstitialis under

certain circumstances; however, both studies considered different

variables under different conditions, and the absence of signifi-

cance for some of the studied variables does not preclude the

possibility of some key variable not being considered.

Multispecies comparisons have been fruitful, but tend to

compare invasive species with natives within the invaded region

[18], [65], [66]. The trait differences detected so far between

native and non-native species could be due in part more to their

different geographic origins, and the likelihood of being transport

than to actually advantageous traits [66]. Traits have been

compared among several naturalized invasive and non-invasive

species. For instance Muth and Pigliucci [15] compared Crepis and

Centaurea in their non-native range, and found that invasiveness

corresponded well with species-specific trait interactions and

introduction histories. This approach does not explain if the

differentiating traits are acquired after introduction or were

present in the native range, thus studies involving individuals from

both the native and the non-native ranges are necessary [19]. Our

results do not preclude that a unique and synergistic combination

of local adaptations drive invasion success. However, since we

found that non-invasive species show some of the same trait shifts

between native and non-native regions as an invasive species, our

results suggest caution in assuming that shifts in traits thought to

be important to invasion actually cause the invasive success of a

particular species.

Supporting Information

Table S1 Location of Centaurea populations for each of
the species from each of the studied regions. Latitude and

longitude coordinates are datum WGS84.

(DOCX)

Table S2 Statistical results for the Linear Mixed Models
for each studied trait and factor. Significant differences are

in bold.
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Table S3 Tukey’s post-hoc p-values following Linear
Mixed Models for species to species comparisons for
each trait. Significant differences are in bold, n/a: not

applicable.
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4. Maron JL, Vilà M, Bommarco R, Elmendorf S, Beardsley P (2004) Rapid

evolution of an invasive plant. Ecol Monogr 74: 261–280.

5. Ridenour WM, Vivanco JM, Feng Y, Horiuchi JI, Callaway RM (2008) No

evidence for trade-offs: Centaurea plants from America are better competitors and

defenders. Ecol Monogr 78: 369–386.

6. Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, et al. (2005)

Phenotypic and genetic differentiation between native and introduced plant

populations. Oecologia 144: 1–11.

7. Williamson MH, Fitter A (1996) The characters of successful invaders. Biol

Conserv 78: 163–170.

8. Hierro JL, Maron JL, Callaway RM (2005) A biogeographical approach to plant

invasions: the importance of studying exotics in their introduced and native

range. J Ecol 93: 5–15.

Table 1. Percent increase in the mean trait value for plants
from the non-native range, compared to mean of the trait
from the native range.

Trait C. sulphurea C. calcitrapa C. solstitialis

Biomass 8%a 19%b 10%

Rosette RGR 26%a 36%bc 26%c

Capitula per plant 1%a 3%b 215%c

Seeds per capitula 220%a 216% b 22%b

Germination rate 123%a 24%a 63%a

Spine length 22%a 2%b 21% c

Numbers in bold indicate significance levels for inter-regional differences
(P#0.05) and different letters indicate significant differences among species
(P#0.05).
doi:10.1371/journal.pone.0082281.t001

Invasive and Non-Invasive Show Similar Trait Shift

PLOS ONE | www.plosone.org 5 December 2013 | Volume 8 | Issue 12 | e82281



9. Nijs I, Milbau ANN, Seidlova L (2004) New Methodologies for Analyzing and

Predicting Alien Plant Invasions from Species and Ecosystem Traits1. Weed
Technol 18: 1240–1245.

10. Hamilton MA, Murray BR, Cadotte MW, Hose GC, Baker AC, et al. (2005)

Life history correlates of plant invasiveness at regional and continental scales.
Ecology Lett 8: 1066–1074.

11. Milbau A, Stout JC (2008) Factors associated with alien plants transitioning from
casual, to naturalized, to invasive. Conserv Biol 22: 308–317.
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54. Pyšek P, Sádlo J, Mandák B, Jarošı́k V (2003) Czech alien flora and the historical

pattern of its formation: what came first to Central Europe? Oecologia 135: 122–

130.
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