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نْسَانَ مَا لمَْ یعَْل عَلَّمَ                               .Taught man that which he knew notمَ الإِْ
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Summary 

 

Resting state fMRI aims at establishing the functional relationship between two 

spatially distinct brain regions based on temporal correlation of the respective signals. 

The method has been applied to study functional connectivity (FC) across species and 

was found of special value for studies in mice fMRI studies due to its experimental 

simplicity, which allowed eliminating confounds typically observed in stimulus-

evoked fMRI studies. Yet, analysis of fMRI data in animals face a number of 

problems. First, fMRI studies in mice typically require the use of anaesthetics, which 

are known to alter responses to stimuli or functional networks at rest. Proper 

interpretation of fMRI data collected in animals under anaesthesia animals requires 

investigation of the effects of these drugs on brain processing per se. Second, since 

fMRI analysis tools have been typically developed for processing of human fMRI 

data, translation to animals including mice may be challenging due to anatomical and 

physiological differences across species. It therefore appears appropriate to evaluate 

several state of the art analysis tools for human fMRI for their potential use in mice 

fMRI. 

 

In the first study, we have used Dual Regression analysis Network Modelling to 

test its feasibility in mouse resting-state fMRI analysis to investigate effects of two 

commonly used anaesthetics, isoflurane and medetomidine, on rs-fMRI derived 

functional networks, and in particular to study to what extent anaesthesia affected 

the interaction within and between brain networks. The analysis revealed both 

similarities and specific differences in network patterns of the two groups. Under 

isoflurane anaesthesia, intra- and interhemispheric cortical interactions have been 

predominantly observed, with only minor interactions involving subcortical 

structures. In particular, cortico—thalamic connectivity appeared significantly 

attenuated in line with previous observations. In contrast, medetomidine 

anesthetized mice displayed significant subcortical functional connectivity 

including interactions between cortical and thalamic ICA components. Combining 

the two anaesthetic drugs at low dose resulted in network interactions that by large 

constituted the superposition of the interactions observed for each of the two agents 

alone. In conclusion, the study revealed that with suitable adaptations the DR based 



	

network modelling can be used for analyzing mouse fMRI data and the results are 

comparable to those obtained with classical seed based analysis. 

 

In a second study, we investigated whether the method was sensitive enough to detect 

changes in FC in mouse brain in response to varying the dose dependent effects of 

isoflurane using resting state fMRI. Stationary FC analysis was complemented by 

analysis of dynamic functional connectivity (dFC), i.e. looking for short-term changes 

in the interaction of brain functional networks. Stationary network analysis using FSL 

Nets revealed that increasing isoflurane dose led to a reduction of functional 

connectivity between the bilateral homotopic cortical regions as well as between 

cortical and thalamic areas. In addition, dFC analysis revealed a dominance of 

functional states (dFS) exhibiting pronounced modular structure in mice anaesthetized 

with a low dose of isoflurane, while at high isoflurane levels dFS showing widespread 

unstructured correlation displayed highest weights. This indicates that spatial 

segregation across brain functional networks is lost upon increasing dose of the 

anaesthetic drug. In conclusion, by combining the results of stationary and dynamic 

FC analysis of mouse resting-state fMRI data we found that increasing isoflurane 

levels led to loss of modular network organization, which includes the loss of strong 

bilateral interactions between homotopic brain areas. 

 

In a third study, we evaluated to what extent machine learning methods could be 

applied for unsupervised classification of subjects according to their resting-state 

fMRI derived FC pattern. Features extracted from stationary as well as dynamic 

functional connectivity analysis derived from mice exposed to the anaesthetic 

isoflurane at different doses were subjected to machine learning algorithms for both 

support vector machines (SVM) and deep belief networks (DBN). The results show 

that we were able to successfully classify, i.e. assignments to group above chance 

level, between anaesthetic doses using features extracted from stationary and dynamic 

functional connectivity analysis. Not surprisingly, the classification accuracy increased 

when comparing extreme groups, e.g. lowest and highest dose of isoflurane. The 

features extracted from dFC analysis were found to be more discriminative with regard 

to the different anaesthetic doses than those derived from stationary FC.  This 

illustrates the potential of using dFC features. A major limitation regarding the use of 

machine learning in the context of our study was small sample size (N=12 per group), 



	

which led to an accuracy of less than 70% for most comparisons. In conclusion, 

classification based on machine learning tools yielded results that were clearly above 

chance levels though classification accuracy was likely compromised by the small size 

of the training data sets. Future studies are needed to assess the value of machine 

learning in mouse fMRI. 

 

Finally, we applied the Random Forest (RF) classification to detect differences in the 

pharmacological MRI (phMRI) response of rats to treatment with an analgesic drug 

(buprenorphine) at two doses as compared to control (saline). RF analysis was able to 

identify drug effects based on differential phMRI responses in the hippocampus, 

amygdala, nucleus accumbens, superior colliculus, and the lateral and posterior 

thalamus for drug versus saline. These structures have high levels of mu opioid 

receptors associated to the drug response. In addition, these regions are involved in 

aversive signalling, which is inhibited by mu opioids. In conclusion, the results 

demonstrate that buprenorphine mediated phMRI responses comprise characteristic 

features that allow a supervised differentiation from placebo treated rats as well as the 

proper allocation to the respective drug dose group using the RF method. 

 

In this thesis, network analysis methods originally developed for analysis of human 

fMRI data have been applied for processing of mouse fMRI data. Networks identified 

were found biologically meaningful as were the within and between network 

interactions. In particular, dFC analysis appears an attractive approach yielding insight 

into network interactions that appear indicative of specific condition. Classification 

attempts revealed that machine learning approaches work in principle, though 

accuracy is largely compromised by the typical small size of data sets available in 

animal fMRI. In this context, the establishment of open-access databases, where 

researches can deposit their original data, may become attractive. 

 

 

 

 

 

 

 

 



	

Zusammenfassung 

 

Funktionelles MRI im Ruhezustand zielt darauf ab, die funktionelle Beziehung 

zwischen zwei räumlich getrennten Hirnregionen auf Grundlage der zeitlichen 

Korrelation der jeweiligen Signale zu etablieren. Das Verfahren wurde angewendet, 

um die funktionelle Konnektivität (FK) in verschiedenen Spezies zu untersuchen und 

wurde aufgrund der guten experimentellen Durchführbarkeit für Studien in Mäuse als 

besonders wertvoll befunden, da typische experimentelle Limitationen welche in 

stimulus-evozierten fMRI-Studien auftreten überwunden werden können. Allerdings 

steht die Analyse der fMRI-Daten bei Tieren vor einer Reihe von Problemen. Zum 

einen erfordern fMRI-Studien an Mäusen typischerweise die Verwendung von 

Anästhetika, von denen bekannt ist, dass sie Reaktionen auf Stimuli oder funktionelle 

Netzwerke in Ruhe beeinflussen. Daher erfordert die korrekte Interpretation von 

fMRI-Daten, die bei Tieren unter Anästhesie gesammelt wurden, die Untersuchung 

der Wechselwirkungen dieser Medikamente auf die Gehirnverarbeitung per se. Zum 

anderen sind fMRI-Analysetools typischerweise für die Verarbeitung von 

menschlichen fMRI-Daten entwickelt worden, daher kann die Translation auf Tiere, 

einschließlich Mäusen, aufgrund anatomischer und physiologischer Unterschiede 

zwischen den Spezies eine Herausforderung darstellen. Es erscheint daher angebracht, 

Analysewerkzeuge die für menschliche fMRI-Daten entwickelt wurden,  auf ihre 

Eignung zur Analyse von Maus fMRI-Daten zu evaluieren. 

 

In einer ersten Studie haben wir „Dual Regression Analysis Network Modeling“ 

verwendet, um ihre Eignung zur Analyse von Maus fMRI-Daten zu untersuchen, um 

die Effekte von zwei häufig verwendeten Anästhetika, Isofluran und Medetomidin, auf 

funktionelle Netzwerke zu untersuchen. Insbesondere wurde untersucht, inwiefern die 

Anästhesie die Interaktion innerhalb und zwischen verschiedenen Hirnnetzwerken 

beeinträchtigt. Die Analyse ergab sowohl Ähnlichkeiten als auch spezifische 

Unterschiede in den Netzwerkmustern der beiden Gruppen. Unter Isoflurananästhesie 

wurden überwiegend intra- und interhemisphärische kortikale Wechselwirkungen 

beobachtet, während Interaktionen mit subkortikalen Strukturen nur schwach 

ausgeprägt waren. Insbesondere wurde die kortiko-thalamische Konnektivität deutlich 

gedämpft, was im Einklang mit vorhergehenden Studien steht. Im Gegensatz dazu 

zeigten Mäuse unter Medetomidinanästhesie signifikante funktionelle Interaktionen 

mit subkortikalen Strukturen, einschließlich der Wechselwirkung zwischen kortikalen 



	

und thalamischen funktionell unabhängigen Komponenten. Die Kombination beider 

Anästhesien in geringer Dosis führte zu Netzwerkinteraktionen, welche die 

Überlagerung der isoliert beobachteten Wechselwirkungen darstellt. 

Zusammenfassend ergab die Studie, dass mit geeigneten Anpassungen die DR-basierte 

Netzwerkmodellierung zur Analyse von Maus fMRI-Daten verwendet werden kann 

und die Ergebnisse vergleichbar sind mit denen der klassischen „Seed-based“-

Analyse.    

 

In einer zweiten Studie untersuchten wir, ob die Methode sensitiv genug ist, um 

Veränderungen der FK im Maushirn als Antwort auf Veränderungen der 

dosisabhängigen Wirkung von Isofluran nachzuweisen. Die statische FK-Analyse 

wurde durch Analyse der dynamischen funktionellen Konnektivität (dFK) ergänzt, d.h. 

um dynamische Veränderungen in der Interaktion von funktionellen Netzwerken über 

die Zeit zu finden. Die statische Netzwerkanalyse unter Verwendung von FSL Nets 

ergab, dass eine erhöhte Isofluran-Dosis zu einer Verminderung der funktionellen 

Konnektivität zwischen homotopen, kortikalen Regionen sowie zwischen kortikalen 

und thalamischen Regionen führte. Zusätzlich zeigte die dFC-Analyse eine Dominanz 

dynamisch funktionelle Zustände (dFZ), die eine ausgeprägte modulare Struktur in 

Mäusen mit einer geringen Isofluran-Dosis zeigten während bei hohen Isofluran-

Dosen die am stärksten gewichteten dFZ eine weitgehend unstrukturierte Korrelation 

zeigten. Dies zeigt, dass die räumliche Segregation in funktionellen Netzwerken des 

Gehirns bei steigender Dosis des Anästhetikums verloren geht. Durch die 

Kombination der Ergebnisse einer statischen und dynamischen FK-Analyse von Maus 

fMRI-Daten im Ruhezustand lässt sich zusammenfassend feststellen, dass erhöhte 

Isofluran-Dosen zum Verlust der modularen Netzwerkorganisation führen, was den 

Verlust starker bilateraler Wechselwirkungen zwischen homotopischen Hirnarealen 

mit sich bringt.  

 

In einer dritten Studie wurde untersucht, inwiefern maschinelle Lernmethoden für die 

automatische Klassifikation von Probanden anhand von Ruhezustand fMRI 

abgeleiteter FK-Muster angewendet werden können. Merkmale welche aus statisch 

sowie dynamisch funktioneller Konnektivitätsanalyse in Mäusen abgeleitet wurden, 

die dem Anästhetikum Isofluran in verschiedenen Dosen ausgesetzt waren, 

wurden mittels maschinellen Lernalgorithmen wie Support-Vektor-Maschinen (SVM) 

und „Deep Belief Networks“ (DBN) in die verschiedenen Gruppen klassifiziert. Die 



	

Ergebnisse zeigten dass wir in der Lage sind anhand dieser Daten Subjekte den 

unterschiedlichen Anästhesie-Gruppen zuzuweisen mit einer Erfolgsquote über dem 

Zufallsniveau. Es überraschte nicht, daß die Klassifikationsgenauigkeit stieg beim 

Vergleich von Extremgruppen, z.B. Niedrigste und höchste Dosis von Isofluran. Dabei 

erwiesen sich Merkmale der dFK-Analyse als robuster für die Klassifizierung in die 

verschiedenen Gruppen als jene, die von der statischen FK-Analyse stammen. Dies 

illustriert das Potenzial der Verwendung von dFK-Merkmalen. Eine wesentliche 

Einschränkung hinsichtlich des Einsatzes von maschinellem Lernen im Rahmen 

unserer Studie war eine geringe Stichprobengröße (N = 12 pro Gruppe), wodurch die 

Genauigkeit der Klassifikationen unter 70% lag für die meisten Gruppenvergleiche. 

Zusammenfassend kann gesagt werden dass Klassifizierung mittels maschinellen 

Lernalgorithmen Resultate klar über dem Zufallsniveau lieferte, wobei die 

Genauigkeit der Klassifizierung sicherlich durch die kleine Gruppengrösse des 

Trainings-Datensatzes kompromittiert wurde. Demzufolge sind weitere Studien nötig 

um den Wert maschineller Lernalgorithmen zur Analyse von Maus fMRI-Daten zu 

evaluieren.  
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Aims of the thesis 

Resting state connectivity has gained immense popularity for studying brain networks 

using fMRI. However fMRI analysis tools are typically developed for humans. Due to 

inter-species differences, increased susceptibility to magnetic inhomogeneity at large 

magnetic field strengths leading to images distortion and intra-voxel dephasing (signal 

voids), as well as differences in basic physiology (respiration frequency, heart rate, 

blood pressure), the application of these analysis tools to analyse small animal fMRI 

data is not straightforward and requires adaptations. Similarly, machine-learning tools 

have been largely restricted to application in human fMRI data. Furthermore, a major 

difference between human and animal (rodent) fMRI is the use of anaesthesia, which 

is common in small animal fMRI studies despite their known intrinsic effects on brain 

activity, but rarely used in human studies, unless the purpose of the study is to 

investigate the effects of an anaesthetic drug on brain function/networks. In animal 

studies, anaesthesia is essential for immobilizing the animal during data acquisition. It 

is therefore important to assess and understand the alterations in brain activity 

patterns/network induced by the anaesthetic drug. We aimed to relate functional 

changes as derived from MRI to clinical, behavioural measures of anaesthesia depth 

such as loss of sensation, analgesia, muscle relaxation, and loss of consciousness, as a 

function of anaesthesia depth (dose of the anaesthetic drug). A prerequisite for such 

studies are reliable tools for analysing fMRI, and in particular resting-state fMRI data, 

that yield semi-quantitative information on brain networks and changes in interactions 

strength when types or dose of the anaesthetic agent is altered.  

The aim of this thesis was to evaluate the suitability of several state of the art fMRI 

analysis tools originally developed for the analysis of human fMRI data for processing 

of resting-state fMRI data of mice exposed to different anaesthesia regimens. 

Specifically, we applied  

1) dual regression and network analysis for identifying major brain network 

modules and studying within and between network interactions 

2) dynamic functional connectivity analysis for probing the hidden information on 

network interactions not apparent from conventional stationary resting-state 

fMRI analysis, and  

3) machine learning tools in classifying resting-sate fMRI data obtained for 

different anaesthesia regimes.  
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1. Introduction 

 

In the past few decades, neuroscience community has made rapid scientific progress in 

understanding the brain function. Before the advent of non-invasive neuroimaging 

techniques, neuropsychology played a major role in increasing our understanding of 

the brain function by examining patients with known brain injuries. Several patients 

have been reported in the literature that suffered specific kinds of brain damage due to 

lesions or injury. The disabilities in such patients gave indications of the specific 

cognitive functions of the damaged brain regions. For example patient HM [1; 2] 

whose hippocampi, parahippocampal cortices, entorhinal cortices, piriform cortices, 

and amygdalae were surgically resected in an attempt to cure his epilepsy, helped 

neuroscientists understanding how these particular areas in the brain may be linked in 

the memory[3] formation process. Similarly patient Tan had a lesion affecting his 

frontal part of the brain, specifically posterior inferior frontal gyrus. The clinical 

phenotype associated to this specific lesion was loss of speaking ability also called as 

the cognitive deficit of aphasia, which allowed linking this specific cognitive ability of 

speaking to the brain regions affected [4; 5]. This also proved that the speech function 

in the brain in localised. However despite such interesting and important results, this 

approach is rather limited since specific brain deficits are rarely found without other 

deficits. This limitation motivated the advent the non-invasive methods to determine 

brain functions of specific brain areas.  

 

Communication between human brain nerve cells were first recorded at the scalp in 

1924 through a technique called Electroencephalography (EEG). Though the EEG 

signals measured at the scalp are the result of the activity from a large number of 

neurons, EEG allows distinguishing between different frequency patterns with 

precision. Delta, theta, alpha and beta rhythms in EEG have characteristic amplitude, 

size and frequency. EEG also allows high temporal resolution in the order of 1 ms, 

however the EEG has a poor spatial resolution due to the signal collected at the scalp 

(around 5 to 9 cm) [6; 7; 8]. This made EEG an ideal technique to investigate the fast 

occurring neuronal activity in specific brain areas. However for understanding the 

interaction between different brain regions, EEG is not an optimal tool due to its lack 

of spatial resolution [8].  

It is beyond the scope of the thesis to review all methods suggested or applied to 

derive the functional topology of the human brain. Instead we will focus on 
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approaches that are related to functional neuroimaging[9].  Blood flow in the brain 

regions is shown to relate with the brain function by observing the local pulsations of 

the subjects under a task [9]. The first quantitative method for measuring whole brain 

blood flow and metabolism in humans was developed in 1946 when Kety and Schmidt 

measured the arterial-venous concentration of nitrous oxide, to quantitatively measure 

cerebral blood flow (CBF) [10; 11]. The advent of X ray Computed Tomography (CT) 

by Hounsfield marked a major breakthrough in neuroimaging. CT quickly became 

popular for the identification of problematic brain tissues and replaced dangerous 

clinical practices for example pneumoencephalography. However CT was limited to 

image the brain anatomy only and was not useful for understanding the brain 

functional principles.  Nevertheless, the basic principle of CT image reconstruction has 

been transferred to other modalities that are more sensitive to changes in metabolism 

and blood flow (providing energy substrates and removing waste products) 

intrinsically associated with neural activity. Among those positron emission 

tomography (PET), first suggested in 1951 [9; 12] is attractive as it uses radionuclides 

such as 18F or 11C that could be readily introduced into metabolic precursors and 

might thus provide relevant information on local metabolic activity. Among the 

precursors, [18F]-2-fluoro-2-deoxy-glucose (FDG), proposed as a measure of cerebral 

metabolic rate of glucose (CMRglu), takes an important role, and was for a long time 

the only PET tracer approved for clinical use [13]. FDG is based on the method 

proposed by Sokoloff et al [9; 14], who has used 14C labelled 2-deoxyglucose (DG) to 

measure local CMRglu using autoradiographic techniques. They found increased DG 

activity in brain areas that displayed increased activity. This approach was translated 

in vivo, and FDG PET has become a standard method to assess the glucose utilization 

in various tissues including the brain. Validation studies in animals have revealed that 

the approach is sensitive to changes in neural activity [15]. A shortcoming of FDG-

PET is slow kinetics, i.e. changes in activity have to be analysed over a period of 40 to 

45 min. Therefore measurements of activity induced changes in cerebral blood flow 

using 15O-H2O, was suggested as an alternative. Here the limitations are, that an on-

site cyclotron is required for such experiments as the half-life of 150 is only of the 

order of 2 min. It is not surprising the PET based blood flow measurements were to be 

replaced by alternative methods not dependent on an exogenous tracer, in particular 

magnetic resonance imaging based measurements. 
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In 1973, Paul Lauterbur recorded the first nuclear magnetic resonance image 

((N)MRI) exploiting the intrinsic magnetic properties of the hydrogen nuclei in the 

water molecule, which constitute 70 to 80% of the tissue composition. Four years 

later, in 1977, the first human MRI scan was acquired. However, MRI techniques 

during those years were rather limited and mechanisms determining image contrast 

mechanisms hardly investigated. As a result, only anatomical information on the brain 

could be recorded though it was readily recognized that the multiparametric 

dependence of image contrast rendered the method rather versatile.  

In 1990 Ogawa et al. [16] observed that the signal intensity in MR images depended 

on the degree of blood oxygenation (blood oxygenation level dependent (BOLD) 

contrast). While oxygenized haemoglobin is diamagnetic, deoxygenized haemoglobin 

is paramagnetic and hence an intrinsic contrast agent. Its efficiency depends on the 

ratio of oxy- versus deoxyhaemoglobin, i.e. on the oxygen saturation of blood. This 

rapidly led to the development of functional MRI (fMRI), which is based on the 

assumption that the increased metabolic activity of the activated brain areas should 

lead to alterations in BOLD contrast. In 1992, three independent research groups 

demonstrated proof of principle: Kwong et al [17] and Ogawa et al [16] revealed  

specific signal changes in the visual cortex upon visual stimulation and Bandettini and 

colleagues in motor cortex during a finger tapping task[18].  It took several years until 

useful quantitative models explaining the changes in MRI contrast were first suggested 

[19; 20], though many issue still remain and need further clarification.  

With the introduction of fMRI neuroscience community received a powerful tool for 

studying brain function under a wide range of conditions. An important advantage of 

BOLD fMRI is the fact that the method is based on an intrinsic contrast, and does not 

depend on the administration of contrast agent as in MRI bolus tracking, or radioactive 

compounds, as used with PET.  

 

In the following we will focus our discussion on fMRI techniques. Before doing so 

below we give a brief summary of the principle of MRI and its progress in the past 

years. 
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1.1 Basic Principle of MRI 

The principle of MRI is based on the magnetic moment associated with the motion of 

charged particles. MRI uses the principle that each nucleus with an odd number of 

protons and/or neutrons has a particular nuclear spin, to which a magnetic moment is 

associated that can be polarised by applying the magnetic field. Our body is mainly 

comprised of water, and therefore the most abundant nuclei in our bodies are hydrogen 

nuclei, with a nuclear spin of I = ½.  According to quantum mechanics theory, such a 

system exists in a state, which constitutes a linear combination of the two spin 

eigenstates mI = ½ or mI = -½. Under the effect of an externally applied magnetic field 

B0, the spins of the hydrogen nuclei will align either parallel or antiparallel to the 

direction of the magnetic field with a slight predominance of the   mI = ½ state 

(parallel to the field), which is energetically slightly more favourable. This leads to a 

net polarization of the sample corresponding to the vector sum of all spin vectors. The 

energy difference between the parallel or anti parallel state is given by  

 

!" =  !! ∙ ℏ ∙ !! 

 

where !! is the gyromagnetic ratio, ħ is the Dirac constant (ħ = h/ 2π) and B0 is the 

magnetic field strength. Incase of hydrogen,  !!= 42.6 MHz/Tesla 

The frequency at which resonance is achieved is called Larmor frequency and is given 

by  

!!  =  !! ∙ !! 

 

which for typical magnetic field strength of several Teslas is in the radiofrequency 

domain. 

 

A time dependent radiofrequency magnetic field (B1) with components perpendicular 

to the main magnetic field is applied to deflect the net magnetization from its 

equilibrium position and generates magnetization components transverse to B0, 

referred to as transverse magnetization. . The transverse magnetization vector 

precesses around the main field B0 at the Larmor frequency.  

A receiver coil measures the voltage induced by the precessing transverse component 

of the net magnetization the induced voltage constituting the MRI signal. Once the 

electromagnetic field B1 is turned off by turning off the radiofrequency radiation, the 

nuclei return to their original state. The signal behaviour is captured by two relaxation 
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processes: Longitudinal magnetisation R1=1/T1 (T1 being the longitudinal relaxation 

time) is the rate at which the average magnetization returns to its original state aligned 

along the magnetic field, and transverse magnetisation R2=1/T2 (T2 being the 

longitudinal relaxation time) is the rate at which transverse components vanishes due 

to loss of phase coherence. Relaxation parameters are the most important source of 

contrast among tissues as they depend on both tissue composition and microstructure.  

 

We know that precession speed depends on the gyromagnetic ratio and the strength of 

the magnetic field. However even within a tissue, each proton experiences a different 

magnetic field strength and therefore precesses at slightly different rate, which results 

in getting them out of synchronisation. This is called as dephasing and the rate of 

dephasing is termed as T2*, process is called as free induction decay or FID. Similar 

to T1 recovery, T2* decay is also an exponential process. It is also important to realise 

the difference between T2 and T2*. While T2 is determined by the interactions of 

neighbouring spins, which is of stochastic nature due to Brownian motion, T2* is in 

addition governed by variations in local magnetic susceptibility, which is an intrinsic 

characteristic of tissue and deterministic in nature. As a result T2*≤T2.   

 

1.1.1 Spatial encoding in MRI 

Spatial encoding in MRI is performed through frequency and phase encoding. As the 

resonance frequency is directly dependent on the magnetic field B0, changing the value 

of B0 can alter it. This is achieved by applying a magnetic field gradient, say in the x 

direction, which renders the resonance frequency dependent on the location x, i.e.  

 

     ! ! = !! ∙ (!! + !! ∙ !) 
 

Hence the location ! is encoded by the frequency value ! ! . Encoding in the second 

dimension (and eventually third dimension for full 3D imaging) has to be separated in 

time for proper allocation of frequencies in two (three) dimensions. The most 

frequently applied approach, spin-warp imaging, uses a constant encoding time !! in 

order to keep effects due to relaxation constant. As a result of phase encoding the 

signals at the beginning of the readout period carry a signal phase that depends on its 

location in the phase encoding direction (say y-direction), i.e. 
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    ! !; ! = !! ∙ (!! + !!(!) ∙ !) ∙ !! 

 

As a single phase value is not sufficient to derive the frequency information required 

for spatial encoding in the second dimension, the acquisition has to be repeated using a 

different gradient value !!(! + 1), yielding a phase values ! !; ! + 1 . For full data 

domain coverage in the phase-encoding direction, the amplitude of the applied 

magnetic field gradient has to be incremented from −!!,!"# to +!!,!"# in steps !", 
the values of which have to be chosen to be in line with the sampling theorem and the 

desired nominal resolution.  

Finally, a cross sectional slice is selected by combining frequency encoding with 

frequency selective excitation. By simultaneous application of a frequency selective 

radiofrequency pulse !! − ∆!
! < ! < !! + ∆!

!  and a magnetic field gradient 

perpendicular to the slice selected (slice selection gradient), only the magnetic nuclei 

with resonance frequencies in this frequency domain, will contribute to the signal. 

Here, !! defines the central frequency of the slice and ∆! the slice width. 

 

Below we briefly discuss the common experimental paradigms used for image 

acquisition in MR systems. 

 

1.1.2 Spin Echoes 

The FID is dependent on T2* and thus susceptible to the magnetic field 

inhomogeneity. Hahn [21] introduced the so-called spin-echo sequence, which consists 

of an excitation pulse (typically 90o) followed by a refocusing pulse (180o) applied 

after a time delay TE/2. This then leads to an spin echo signal that occurs exactly at 

the time TE, the echo time.  

This can be rationalized considering three stages. The 90o pulse flips the magnetization 

from the z-axis (direction of B0) into the transverse plane. Following the pulse, the 

individual magnetization vectors precess around the static magnetic field at slightly 

different frequencies due to difference in local magnetic susceptibility. Hence they 

will get out of phase and the overall signal decays (FID). After a time TE/2 an 180o 

refocusing pulse is applied, which mirrors the magnetization vectors in the transverse 

plane (for example from !!" !  to !!" −!  if the pulse is applied around the y-axis. 

Following this pulse, the vectors precess again around the static field, and the 

magnetization vectors that have experienced the largest phase shift during the first 
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precession period will catch up with the slower precessing vectors for a spin echo that 

occurs exactly at TE. While this experiment refocuses static variations in magnetic 

susceptibility it cannot account for any stochastic processes due to molecular motion. 

As a result the echo amplitude is reduced by a factor exp − !"
!! , i.e the signal is 

determined by the transverse relaxation time T2. Combining spin-echo acquisition 

with the previously described encoding principles will generate so-called T2-weighted 

images. 

 

1.1.3 Gradient Echoes 

An echo can also be generated by gradient reversal. Basically, the transverse 

magnetization is dephased during a period !! by applying a magnetic field gradient 

!! in the readout direction, leading to a phase shift !! = !! ∙ (∆!!(!)+ !! ∙ !) ∙ !!, 

where ∆!!(!) accounts for the deviation of the static magnetic field from its nominal 

value due to local differences in magnetic susceptibility. During the readout phase the 

gradient !!  is applied and the magnetization vectors experience a phase shift 

!! = !! ∙ (∆!!(!)+ !! ∙ !) ∙ !!, hence the total phase shift experienced is ! = !! +
!! . The values becomes minimal when the condition !! ∙ !! = !! ∙ !!  is fulfilled 

(gradient-recalled echo). Note that even under these conditions, there is a remaining 

phase shift of !! = !! ∙ ∆!! ! ∙ (!! + !!) = !! ∙ ∆!! ! ∙ !"  , hence the echo 

amplitude is reduced by a factor determined by the local magnetic susceptibility and 

therefore retains T2* dephasing. Gradient echoes constitute building blocks of fast 

MRI sequences, in fast low angle shot MRI (FLASH), the repetition delay between 

subsequent excitation pulses is chosen such that !" ≪ !1. To account for incomplete 

relaxation, excitation pulse angles are reduced to values ! < 90!. The maximal signal 

is obtained at the so-called Ernst angle. Very fast acquisition protocols are based on 

multiple gradient reversals to generate an echo train, with each echo individually phase 

encoded. This echo planar imaging experiment, introduced as early as 1977 by 

Mansfield [22], allows the acquisition of complete image with a single excitation 

pulse, and constitutes the backbone of most fMRI protocols currently in use. 
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1.2. Functional magnetic resonance imaging 

 

1.2.1 The BOLD effects and principle of fMRI  

Functional MRI aims to identify the brain activity on different parts of the brain 

repeatedly simultaneously, thus producing a method to observe brain activity over 

time. In 1990, Ogawa and colleagues [16] performed an experiment to demonstrate 

that in vivo changes in blood oxygenation can be detected using MRI using the fact 

that oxygenated hemoglobin is diamagnetic while deoxygenated hemoglobin is 

paramagnetic and acts as an intrinsic contrast agent. Hence, the overall effect on the 

MRI signal depends on the ratio oxy-/deoxy-hemoglobin. Active neurons need energy, 

which is supplied in the form of nutrients and oxygen from blood. This leads to a local 

increase of cerebral blood flow, which is larger than the increase in metabolic way due 

to the fact that extraction efficiency decreases when flow rates are higher. As a result, 

the venous blood in the active brain area is better oxygenated which leads to an 

increase in the relaxation time T2* (and T2), which translates into a net signal increase 

when using gradient-echo (spin-echo) pulse sequences. The fMRI signal is hence a 

hemodynamic signal that depends on the integrity of neurovascular coupling. 

 

Though the temporal resolution of fMRI is limited by the hemodynamic response 

function, it is especially useful for analysing whole brain connectivity analysis, since it 

provides whole brain coverage.  In classical fMRI experiments neural activity is 

triggered by an event, for example a cognitive task or a sensory input. The 

experimental paradigm in which BOLD response is determined during a particular task 

is called as task-based-fMRI. Under these conditions, activated brain areas are 

identified by comparing BOLD signal intensity during the activated to that at baseline 

conditions.  

 

1.2.2 Resting state fMRI  

Resting state functional connectivity analysis is a method to understand the function of 

brain at rest in the absence of any explicit task. Biswal and colleagues found [23] that 

this spontaneous brain activity present is reflected in the transient fluctuation of the 

BOLD baseline signal, the so-called resting state fMRI (rs-fMRI) signal.  Analyses of 

the temporal coherence of these fluctuations allows identifying brain regions that 

display a high degree of synchronicity, which therefore are believed to be functionally 

connected. The concept of rs fMRI was first introduced by Biswal et al. [23; 24], 



	 10	

however did not gain popularity until Raichle and coworkers identified the so-called 

default mode network (DMN) [25; 26], consisting of brain areas that are consistently 

active and highly correlated with each other during rest. Regions included in the DMN 

have been known to be involved in different functions including self-awareness and 

theory of mind, etc. This includes posterior cingulate cortex (PCC), precuneus, medial 

prefrontal cortex and angular gyrus. Typically, during a task DMN regions display 

anti-correlation with task related regions, in which activity, and hence the BOLD 

signal, increases.  In the meantime, rs-fMRI has become an established tool in clinical 

and experimental neuroscience and has been consistently applied across species for 

network identification. The approach is of particular interest for examining functional 

connectivity and brain networks in order to find alterations in brain connectivity in 

neurological or psychiatric disorders.  

 

Figure 1 shows the difference between resting state fMRI (a) and task-based fMRI (b). 

Figure 1(a) shows the time series extracted from a single voxel, a measure for the 

spontaneous activity in this voxel, which is then correlated with the time series 

extracted from other regions. The value of the correlation coefficient is a measure for 

the degree of connection between two voxels (regions-of-interest; ROIs). Figure 1(b) 

shows the example of a task based fMRI data, where the task is represented by “ON”, 

and baseline or no-task is represented by ‘OFF’ state. The activations in the brain 

regions associated with the task are calculated by fitting a general linear model (GLM) 

on the ON – OFF (task-baseline) states, that makes inferences about the effects of 

interest by decomposing the data in to effects and error and performs statistics using 

estimates of those effects and error.  

 

 

 

 

 

 

 

         (a)           (b) 

Figure 1: Resting-state fMRI and task based fMRI. (a) BOLD signal intensity as a 

function of time from a single voxel in absence of a task. Such temporal profiles are 

compared between pairs of voxels (ROIs) across the brain. The value of the correlation 
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coefficient is a measure for the degree of functional connection between these voxels 

(ROIs). (b) Task-based fMRI using an experimental paradigm comprising two states 

(on/off). The BOLD intensity extracted from a specific ROI is plotted as a function of 

time. Using the theoretical paradigm (eventually convolved with the hemodynamic 

response function; see text) as a correlator, activated areas may be identified on the 

basis of the correlation coefficients. Adapted from Fox et al. [26]. 

 

As already mentioned, fMRI measures changes in blood oxygenation levels and hence 

is an indirect measure of neuronal activity. As a consequence, the BOLD signal is 

influenced by physiological parameters like heart rate, blood pressure, breathing, 

baseline blood oxygenation, fluctuations of which may affect the baseline fluctuations 

in the BOLD signal. Because of these potential confounds (noise sources), the concept 

of analyzing the synchronicity (and amplitudes) of BOLD fluctuations at ‘rest’ has 

been criticized [27; 28; 29]. Nevertheless, functional, or rather metabolic connectivity 

has also been demonstrated on the basis of measurements of glucose metabolism using 

PET, a readout that is independent of the integrity and stability of neurovascular 

coupling. Electroencephalographic (EEG) and magnetoencephalographic (MEG) 

recordings have confirmed networks inferred from rs-fMRI data, indicating a neuronal 

basis of these signals. Resting state fMRI has also been criticized for using the term 

“rest”, because the mammalian brain is continuously functioning and is never truly at 

rest. The term paradigm-free would be probably more appropriate. 

There are many potential clinical applications of functional connectivity analysis at 

rest, for example for studying brain plasticity in response to physiological or 

pathological alterations. Profound changes in functional networks have been reported 

for patients suffering from Alzheimer’s disease and risk populations [30; 31; 32; 33], 

psychiatric disorders [34; 35], chronic pain [36], etc.  Resting state fMRI is also 

attractive for animal studies for both mechanistic purposes and as models of human 

disease. Since animals are typically anesthetized while imaged, rs-fMRI provides a 

natural way to explore the brain networks of these animals without disturbing the 

intrinsic functional connectivity. This method is also of great value to explore 

differences in brain pathologies and other cognitive disorders. 

 

 



	 12	

1.3. Analysis methods for rs-fMRI  

 

1.3.1 Seed based correlation analysis 

Seed based correlation analysis or ROI analysis is the simplest of the fMRI analysis 

methods. It is based on the principle of cross-correlation and is implemented by 

estimating the Pearson correlation coefficient between two time series vectors. These 

time series vectors may be either generated from any voxel in the brain or by 

averaging the time series from an anatomically constrained ROI. Figure 2 shows the 

seed in the brain region and its functionally connected regions as found through 

correlation analysis. 

 

 

 

 

 

 

 

 

Figure 2: Figure showing the z correlation in Angular, SPL and IPL when seed (in 

yellow) was placed in the left precuneus cortex. The activations (in blue) indicate the 

connectivity in the regions with respect to the seed as indicated in yellow. Adapted 

from Martucci et al [37] 

 

In order to compare across the population, the Pearson correlation values are usually 

normalized using Fisher’s z score transformations. Z-scores transformation converts 

the correlation values !(!) into a normal distribution 

 

! ! =  0.5 ln(!!! !
!!! ! ) 

To assess the significance of the correlations between each pair of regions in each 

seed, statistics are performed on the z-transformed correlation coefficients.  

 

Figure 3 illustrates the individual processing steps in the ROI based correlation 

analysis. Instead of defining individual ROIs, whole brain parcellation can be 

performed to obtain whole brain connectivity matrix. 
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Figure 3: Processing steps for ROI based correlation based on whole brain 

parcellation. From left to right: raw data set consisting of ! sequentially acquired 

image volumes; definition of ! ROIs; extraction of time series for each of the !-ROIs; 

functional !×! connectivity maps. Adapted from Wen and Hsieh [38] 

 

Initially, seed based correlation analysis has been widely used for analysing rs-fMRI 

data. Strong functional connectivity between the homotopic regions across the two 

brain hemispheres has been observed consistently in the normal population. In 

patients, impaired functional connectivity between distinct brain ROIs has been 

reported [39; 40; 41; 42]. Analysis of the ROIs affected may shine light on the 

underlying mechanisms leading to the symptoms of the brain disease. 

 

There has also been considerable criticism in the literature on use of pre-defined ROIs. 

If the ROIs have been taken from an atlas, then they disregard individual variability 

among the population. For example, the precise size and location of subdivisions of 

thalamus of an atlas might be different from the study group due to pathology or age. 

If ROIs are defined separately for each study then there is a risk of including 

operator’s bias in ROI definitions. These critics encourage the use of data driven 

approaches to identify spatial maps by analysing the specific data independent of 

operator bias. 

 

1.3.2 ICA analysis 

ICA analysis has also been widely applied in the fMRI data analysis[43; 44; 45; 46]. 

The theory of the ICA analysis is that it recovers independent source signals from 

mixtures with unknown mixing coefficients [47]. In case of fMRI, ICA can be applied 

either in the spatial or temporal domain to the fMRI data, which are represented as a 

!!×!!  matrix consisting of !!  rows (!!  number of voxels) and !!  columns (!! 
number of sample time points). In spatial ICA it is assumed that the !! columns of the 
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fMRI data matrix are statistically independent processes, whereas in temporal ICA the 

!!  rows of fMRI data matrix are considered independent. Spatial versus temporal 

independence has been thoroughly discussed by Friston and Calhoun  [48; 49; 50].  

ICA analysis can be used to remove noise from the signal, as well as to construct 

group IC maps that may be used as an alternative to defining ROIs. [43; 51; 52] 

described a method to reduce noise using ICA analysis. There are several methods in 

the literature that aim at determining spatial maps from fMRI data. [43; 53] described 

a method using probabilistic ICA that estimates spatial IC maps from a group of fMRI 

data that has been including in FSL’s MELODIC package. [43; 44; 53] discuss this 

approach in detail. fMRI data from different subjects and all groups are input in a 

concatenated fashion in to the ICA algorithm, which then estimates the spatial IC 

maps that can be used for further analysis.  The advantage of using ICA analysis is that 

it determines components comprising of activation clusters or attributed to artifacts 

without any explicit time series model being specified [43]. 

 

 

1.3.3 Dual regression 

Dual regression is a state-of-the-art method for identifying brain activation patterns 

from resting state fMRI (rsfMRI) data. As rs-fMRI does not involve an explicit 

experimental paradigm, it is not possible to relate brain activity to a design-based 

model function using e.g. a GLM approach.  

 

Dual regression generates subject-specific spatial maps from the set of spatial maps in 

the group-average analysis [54; 55]. The goal of dual regression analysis is to derive 

subject-specific networks corresponding to ICA group components. The algorithm 

comprise of three steps. First, the concatenated multiple fMRI data sets are 

decomposed into IC maps by applying ICA analysis. The model order of the ICA 

analysis is estimated using the Laplace approximation to the Bayesian evidence for a 

probabilistic principal component model.  In mathematical terms we can write [56], 

 

! = ! ∙ !+ ! ,                         (1) 

 

with the matrix ! = !!"  representing the group averaged fMRI volumes recorded at 

time points 1 ≤ ! ≤ ! and ! indicating the individual voxels (1 ≤ ! ≤ !!), the rows of 
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matrix ! = (!!") indicate the contributions of the 1 ≤ ! ≤ ! independent components 

to the fMRI BOLD volume at time point i, the rows of matrix  ! = (!!") each spatial 

IC, and the matrix ! = (!!") the noise contribution. 

 

The second step is to perform the spatial regression to obtain subject specific time 

series. The full set of group-ICA spatial maps (!) is used in a linear model fit (spatial 

regression) against the individual fMRI data sets (!!), resulting in matrices describing 

temporal dynamics for each component and subject (!!). In other words, group ICA 

maps are used as spatial regressor in order to find the time series associated with the 

voxels in that map. This can be formulated as  

 

!! = ! ∙ !! + !!         (2) 

where ! is the scan number (1 ≤ ! ≤ !!) and tilde indicates transposed.  

 

The third step is to perform temporal regression to obtain subject specific spatial maps 

!!, which means that the individual time-course matrices !! are used in a linear model 

fit (temporal regression) against the associated fMRI data set !!  to estimate subject-

specific spatial maps. The time series found by spatial regression is used as a temporal 

regressor to find the full set of voxels associated with that time series,   

 

!! = !! ∙ !! + !!.          (3) 

 

Hence, the result of the dual regression algorithm are a subject-specific spatial maps 

!! based on the group averaged spatial map !. The procedure has been discussed in 

detail [54; 56]. 

These individual component maps are concatenated across subjects into single 4D 

files. Statistical significance testing is performed by applying nonparametric 

permutation testing (typically 5,000 permutations) [57]. This results in spatial maps 

characterizing the between-subject/group differences. 
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1.3.4 Dynamic functional connectivity analysis 

 

Typically when extracting information on FC on the basis of rs-fMRI data, the whole 

time series is used to compute correlation values, assuming that the functional 

networks are stationary in time. That essentially means that information on 

events/interactions that occur at a shorter time scale is averaged out. Yet, neural 

processing occurs at a much shorter time scale and EEG studies led to the 

identification of microstates that involve network rearrangements in the millisecond 

time domain [58; 59]. Dynamic functional connectivity (dFC) analysis [60] is a 

concept that aims at estimating the FC changes over relatively short time intervals 

constituting a small fraction of the full time series recorded.  Limiting factors when 

using fMRI data are the low-pass temporal filtering imposed by the hemodynamic 

response function and the sequential nature of MRI data acquisition, which limits the 

time required to capture an image volume to one or a few seconds. Despite these 

limitations, dFC has been suggested as a more accurate representation of functional 

brain networks since brain networks are dynamic. There have been many algorithms 

proposed in the literature to estimate dFC from resting state fMRI data. Sliding 

window based correlation analysis is a simple method to define a window of duration 

!, for which a conventional FC analysis is carried out. The window must comprise a 

sufficient number of sample points to allow for a meaningful correlation analysis, yet 

should not be too long in order to still capture dynamic aspects. The window is then 

shifted by an increment ∆! (typically one sampling point), while maintaining its length 

! and the FC analysis is carried out again. Repeating this procedure several times 

allows monitoring the changes in FC networks over time. These resulting correlation 

matrices are then z-transformed and are called as dFC matrices !!(!!; !) . This 

procedure is illustrated in Figure 4. 
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  !!(!)           !!(!!; !)               !!(!!!; !) 
 

Figure 4: Static FC matrix !!(!) is obtained for each subject ! by computing the 

coefficients of correlation between the whole time series of duration ! for all pairs of 

regions (voxels) ! and !. dFC is estimated by carrying out the analogous analysis for 

time windows of duration ! separately, the starting point of which are incremented by 

∆!, yielding correlation matrices !!(!!; !) with 1 ≤ ! ≤ !! , !! = (! − !)/∆! being 

the number of windows. Adapted from [61]. 

 

Typically dFC had been used for analysing resting state fMRI data, however in 2010 

Sakoglu et. al. applied dFC technique to the task related fMRI data [62]. They 

developed an approach that uses spatial ICA to estimate correlations between 

windowed time-courses of different brain networks (components). After estimating the 

spatial ICAs, they used the method developed by Calhoun and colleagues 

(http://mialab.mrn.org/software) based on the maximal lagged correlation approach 

[62] for estimating both stationary and dFC. The dFC was estimated by applying the 

window size of 64 time points. 

 

Algorithm 

We used the algorithm developed by Leonardi et al for estimating the dFC states. 

Feasibility of this algorithm has been demonstrated in few recent studies [63; 64; 65]. 

 

Sliding-window correlation between the time series x and y using the formula  

 

!!"(!)  =  !"##(![!, ! +  !],![!, ! + !]),      (4) 

 

where ! was the window length in TRs and the window was shifted by ∆! for each 



	 18	

estimation. The coefficients of correlation were computed according to Pearson 

correlation as given in eq. (5)  

 

!!" =  !!!   ( !!!)
(!! !)!  ∑(!! !)! ,         (5) 

 

where ! is the coefficient of correlation between ! and !. 

 

The correlation coefficient computed were then z-transformed according to  

 

 !!" ! = atanh (!!"(!))                                                                         (6) 

 

The dFC analysis is carried out for each subject individually. . The resulting 

correlation matrices for each window were vectorized yielding a ! ! !!  matrix!! for 

each subject and condition !(1 ≤ ! ≤ !!), with ! being the number of pair-wise 

correlations and !! = (! − !)/∆! the number of windows. The matrix !! was row-

wise de-meaned to solely address the fluctuations of connectivity over time regardless 

of their mean value (Leonardi et al., 2013). This has been discussed further in 

Grandjean et al. (2017) with a detailed comparison of with and without this de-

meaning step. The matrix !! − !!  after demeaning then represents the 

increase/decrease in correlation strengths with respect to the mean (stationary FC). 

The !! subject and condition-specific matrices !! − !! were then concatenated into a 

data matrix !′ of dimension ! times the product !! ∙ !! 
 

!′(!× !!∙!! ) = !! − !! … !!! − !!! = !′! … !′!!∙!!                                   (7) 

 

with !! being vectors of length !. 

 

1. Estimation of eigenconnectivities 

The matrix !’ describing the dynamic functional connectivity for a group of !! subject 

(or subjects times conditions) can be reduced, e.g. by principle component analysis 

(PCA), with a few PCs accounting for most of the variation across in the data matrix 

!’. Leonardo et al. (2013) derived such components by estimating the eigenvectors 

and eigenvalues of !’ according to  
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!! ∙ !! = ! ∙ ! ∙ !         (8) 

 

 

with ! being a unitary matrix containing the orthonormal eigenvectors as columns and 

Λ being a diagonal matrix Λ!" = !!" ∙ !!  comprising the eigenvalues !! (Fig. 5).  The 

eigenvectors, i.e. the columns of !, were termed eigenconnectivities.  

 

 

 

 

 

 

 

 

 

 

Figure 5: Schematics illustrating the dFC method. (from Leonardi et al 2013, 

reproduced with permission). (a) Dynamic FC between ! brain regions was computed 

as sliding window correlations between the activities of all regions for each subject. 

(b) The upper triangular part of each correlation matrix !!(!!; !) of dimension !×! 

was unfolded and concatenated across time to form a dynamic FC matrix !!  of 

dimension !×!!, ! being the number of pairwise correlations and !! the number of 

time windows The mean correlation value across time was subtracted from all 

connectivity pairs (i.e., row-wise centering) yielding the matrix !! − !! . (c) The 

dynamic FC matrices were concatenated across subjects to form a matrix ′, for which 

eigenvalues !! and eigenvectors (columns of unitary matrix !) were computed, so-

called eigenconnectivities. Eigenconnectivities can be visualized after rearranging the 

eigenvectors of dimension !×1  them into a matrix of dimension !×!  and 

symmetrizing, representing a indicating the interaction matrix corresponding to a 

specific eigenvalue in the basis of the brain regions . (d) The weight matrix !! 

containing the time dependent weights of each eigenconnectivity and subjectwas 

calculated by projecting the demeaned dynamic subject-specific FC matrix !! − !! 
onto a few eigenconnectivities, accounting for the major part of variation in the data. 
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Other algorithms may be used to estimate eigenconnectivities. For example, Grandjean 

et al. (2017) estimated eigenconnectivities based on dictionary learning algorithm. 

Dictionary learning algorithm aims to find the sparse representation of the input data 

and has been shown to produce good results in the fields of image classification and 

processing [66; 67]. In this work, we used dictionary-learning algorithm to estimate 

eigenconnectivities. Figure 6 shows that functional correlation matrices can be 

transformed in to dFC states by applying dictionary learning algorithm over it 

 

 

 

 

 

 

 

Figure 6: Functional correlation matrices estimates for each window and different 

subjects are concatenated in order to apply dictionary-learning algorithm for the 

estimation of dynamic functional states, or atoms; also referred to as the basic building 

blocks of dFC. Adopted from Leonardi et al 2013. 

 

Dictionary learning algorithm involves the generation of a dictionary with  

 

!(!×!) = !! …!!         (9) 

 

with ! !-dimensional column vectors as simple building blocks, the atoms,  capturing 

whole-brain connectivity to a large extent, and a coefficient matrix of the concatenated 

subjects. 

 

!!×(!!∙!!) = !! …!!!∙!! .       (10) 

 

The columns of the concatenated coefficient matrix describe the approximation of the 

set of signals in !! − !!  to combine these atoms. Like the number of IC components 

in ICA analysis, ! can be chosen arbitrarily, but following other papers we generated 

M=20 atoms. 
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Cost function minimization was implemented using a sparsity-enforcing algorithm 

giving ! and ! as outputs. 

 

! !,! = 1
!! ∙ !!

!! !!. !.
!!∙!!

!!!
!! −! ∙!! !

! ≤ !                                           (11) 

 

In the above equation cost function tries to minimize the squared distance between !! 
and the product of ! and !! and upper bounding it with a regularization parameter ! 

 

In order to retrieve easily interpretable atoms, we required them to be energy-bounded 

and positive by imposing the set of constraints 

 

! ≜ ! ∈ ℝ!×!!. !.∀! = 1,… ,!,∀! = 1,… ,!, !! ∙ !! ≤ 1,!!" ≥ 0                 (12) 

 

The first part of the equation shows ! ∈ ℝ!×!  that the dictionary atoms belongs to the 

real numbers with the matrix dimension of K (number of pairwise correlation) times M 

(number of atoms estimated). Furthermore, eq. (12) states that the atoms are energy-

bounded, !! ≤ 1,  and positive, !!" ≥ 0. 

 

 

Dictionary learning was performed 100 times (or folds; 400 iterations for the first fold, 

200 for the subsequent ones). The obtained atoms were matched to the first fold using 

the Hungarian algorithm (Kuhn, 2010), with spatial correlation as the similarity 

metric. In order to get robust results, the fold instances exhibiting similarity above the 

median value across all folds were averaged for each atom 

Animal-specific time-dependent contributions of atoms were obtained by back-

projection of the dictionary onto the original dFC dataset using least-square fitting. 
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1.3.5 Network Modelling 

Network modelling allows estimating interacting brain networks from fMRI time 

series data. Typically, functional connectivity (FC) between the brain regions is 

estimated using Pearson correlation given by 

 

!!" =  !!!   ( !!!)
(!! !)!  ∑(!! !)! ,         (13) 

 

where ! is the coefficient of correlation between ! and !. This covariance constitutes 

the simplest measure of pairwise similarity between two time-series is covariance and 

is commonly referred to refer to as full correlation. Smith and colleagues argued [68] 

that partial correlation analysis is more suited for analysing (FC) in the brain, since 

partial correlation refers to the normalized correlation between the time series 

measured for two brain regions, after each has been adjusted by regressing out all 

other time-series in the data, i.e. the interaction with all other regions (network nodes). 

Partial correlation attempts to distinguish direct from indirect connections, which is 

relevant as direct functional connection are considered representing effective 

connectivity between nodes (Friston, 1994)  

 

Mathematically, partial correlation estimates regress the effects of all the other nodes 

of the networks from the correlation coefficients. Partial correlation between two 

regions is given as below 

 

!!"   =  !"## ! ,!  !  ]       (14) 

 

!!" is the partial correlation between the time series of regions ! and !. Contributions 

of all other nodes ! ≠ !,! were regressed out beforehand from the time series !,!. 

 

As we know that the pearson correlation can be calculated as follows 

!!" =  !!!   ( !!!)
(!! !)!  ∑(!! !)!       (15) 

where ! and ! are sample means of random variables !! and !! 

 

To remove indirect effects, we can calculate the second order correlation between !! 

and !! by removing the effects of a node set Z ⊆ (V − {!! , !!}). This second order 
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correlation is called the partial correlation !!,!.!  controlled the node set Z. Therefore 

the partial correlation estimation can be written as:  

 

!!,! =  !!.!! ! !!.!  !!.!! ! !!.!!!!!

!!.!! ! !!.!
!!!!!  !!.!! ! !!.!

!!!!!
     (16) 

where !!.!!  is a set of the residuals of the linear regression with !! as the response 

variable and Z as the predictor variable set. So is !!.!! . This means that the partial 

correlation is a sampled full correlation when the controlling factors are regressed out 

 

Figure 7 illustrates the difference between full and partial correlation for a simple 

network comprising 3 nodes and two edges.  

 

 

 

 

 

 

 

 

 

 

Figure 7: The true network is assumed to comprise three nodes A, B, C and two edges 

(A-B, B-C). This is correctly inferred by partial correlation analysis, while full 

covariance analysis (Pearson correlation) would also predict A_C to be a network 

edge.  Hence partial correlation allows eliminating unwanted spurious edges for the 

network analysis [68]. 

 

There are many different toolboxes available to estimate the brain networks from 

fMRI data [68; 69; 70; 71; 72; 73] including the one developed by Smith et al. (FSL 

Nets) that performs network modeling from fMRI time series data based on taking 

spatial ICs, i.e. the output from stage 1 of dual regression analysis, as input. These 

group IC spatial maps are then regressed from each subject to generate subject-specific 

time courses which are preprocessed further, by removing outliers and bad 

components, followed by partial correlation estimation between all pairs of time series. 
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This generates a correlation matrix (network) of weights/connections, which is 

subdivided in to modules using hierarchical clustering. Afterwards statistical tests are 

performed to find group differences through a design matrix and randomized 

permutations method [74].  

 

The networks obtained can help identifying differences among groups. Analysis, 

elements (edges) from the network matrix displaying the highest p-values for group 

differences may be used as fingerprint for differentiation and may hint a 

neurophysiological cause underlying the relevant response. As shown in Figure 8, the 

boxplots summarizes the distribution of the correlation values (connections strengths) 

in the groups. This allows interpreting the cause of the significant group difference. 

For example, it can be found that whether one of the connections was higher or lower 

than the other and whether any of the connections was not present in either of the 

group, allowing a simplistic interpretation of the connectivity changes between the 

groups. 

 

 

 

 

 

 

 

 

Figure 8: Boxplots showing the change in correlation value between the groups. The 

correlation estimated between the regions was close to zero in group A, while the 

regions are anti correlated in group B. 

 

1.3.6 Effective connectivity analysis 

Integration of segregated brain areas can be characterized in terms of functional 

connectivity using correlation analysis of the time series extracted from the regions. 

Functional connectivity is typically inferred on the basis of correlation between the 

brain regions. However, this approach just tells what is connected with what, but is not 

suitable for studying distributed neuronal processing in the brain. For such studies, 
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analysis of the effective connectivity has been suggested as an approach for studying 

the influence of one neural system over the other.  

Functional connectivity can be quantified with statistical measures such as 

correlations, coherence etc. however effective connectivity determines the model 

parameters that best explains the observed dependencies (functional connectivity). 

Effective connectivity explicitly requires definition of models to select the best model, 

that mean effective connectivity estimation can essentially be reduced to model 

comparison. 

In 2003 Friston et al. [75] proposed a method to reduce the “neuronal” evolution 

function to the most simple and generic form possible, i.e., a bilinear interaction 

between neuronal states !  and inputs ! . They proposed to estimate effective 

connectivity [71; 76; 77] by fitting the neuronal model convolved with so-called 

“Balloon model”, [19], an extension of hemodynamic response function, to the 

observed fMRI data. Then the deconvolution of the BOLD signal is performed to 

estimate neuronal response. This procedure is called dynamic causal modelling (DCM) 

as it attempts to infer causality between neuronal networks. Figure 7 shows the basic 

DCM model. 

In order to estimate effective connectivity, several models are compared against each 

other to find the best fit to the experimental data (observed fMRI signal). Model 

comparison in effective connectivity plays an important role by selecting one of the 

several models, that best explains the cause of the observed fMRI data. Each 

alternative causal model represents distributed brain responses and therefore represents 

as many alternative hypotheses.  
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Figure 7: Figure shows a basic DCM model and its corresponding neuronal state 

equation.[71; 75; 77] 

There have been numerous studies that use DCM to estimate the effective connectivity 

in humans as well as in other species [71; 78; 79; 80; 81; 82; 83; 84]. Due to the higher 

temporal resolution of local field potential (LFP) to infer on sequel of neuronal events, 

results of DCM have been validated by simultaneously recording the local LFP 

measurements that verified the ability of DCM to infer on synaptic processes. Razi et 

al [85] showed that functional connectivity can be derived from the effective 

connectivity, whereas the opposite is not true. 

 

 

1.3.7 Machine learning 

 

Typically fMRI analysis use linear regression models with several assumptions in a 

so-called mass univariate approach. This approach assumes that each voxel in the 

brain is independent of the other voxels, and therefore neglects the basic principles of 

brain functions that neurons interact with each other through synaptic connections and 

the activity in brain voxels is dependent on many other voxels through a complex 

underlying function. Machine learning allows inference over distributed patterns of 

activity in fMRI data. Machine learning as a multivariate approach addresses the 

shortcomings of mass univariate approaches by disregarding the independence 

assumption over voxels, and takes in to account the inter dependence of voxels over 

each other. While typical functional connectivity analysis methods can be considered 

as encoding models to predict brain activity from experimental context, machine-

learning models are often termed as decoding models to predict experimental context 

from brain activity.  

 

In typical machine learning classification analysis, the fMRI data is the observed brain 

activity. The patterns are learned from the brain activity to differentiate between two 

or several classes. Then an entirely new dataset consisting of the same or similar 

classes are used to validate the model. The high accuracy on the unseen test data 

reflects the higher ability to distinguish between different samples based on their 

neuroimaging features.  
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There have been several potential applications of applying machine learning 

algorithms to the fMRI data. One important application is in the diagnosis of different 

neurological disorders. Recent studies have also shown potential of machine learning 

algorithms for treatment response prediction. Other than that, FSL FIX algorithm used 

machine learning to learn the noise patterns in IC estimations, in order to remove noise 

at the single subject level.  

 

Machine learning algorithms typically require low dimensional features with large 

number of samples to learn the features properly. However fMRI data is high 

dimensional in nature (>10000 voxels) and the data samples are typically small in 

number (<200 samples/subjects). Therefore it is challenging to apply machine-learning 

algorithms to the fMRI data because of the intrinsic need of machine learning 

algorithms of large number of samples and small number of features, without 

overfitting the data.  Several dimensionality reduction algorithms have been proposed 

in the literature [86; 87] that aims to minimize the dimensionality of the data to avoid 

overfitting. Appropriate feature selection methods for neuroscience data have been 

discussed in [88]. Many of the machine learning algorithms also face the “black box” 

issue, where it is not exactly clear what have the algorithms learned. This makes them 

prone to finding spurious associations.  

 

Feature selection for machine learning consists of various methods. The common goal 

of these methods is to find patterns that enable the accurate discrimination of cognitive 

states. For dimensionality reduction, several techniques are used among which 

Principle Component Analysis (PCA) and Independent Component Analysis (ICA), 

identifying features that explain the largest fraction of variability in the data, are the 

most common ones. Another strategy is the use of searchlight maps [89]. This method 

takes the average of the neighboring voxels, to encode similar information. It uses 

searchlight spheres comprised of spatially adjacent voxels to extract brain states. The 

spheres in the searchlight are used as features after averaging the voxels contained 

within each of them. The size of the spheres is iteratively changed in order to achieve 

better accuracy by the classifier. A more biologically inspired approach is the use 

anatomical regions instead of the spheres for generating feature vectors. This approach 

is useful as it also combines our knowledge of the brain anatomy. The brain is 

parcellated in to several anatomical regions and then each region is represented via its 

mean time series or first eigenvector after applying PCA. These eigenvectors are then 
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used to estimate the correlation matrix, which is fed in to the classification algorithm 

as feature maps. Several studies have utilized this approach [90; 91; 92]. However, the 

approach is dependent on the accuracy of the anatomical maps. Brain regions vary 

across subjects and therefore anatomical maps drawn on one subject will not perfectly 

match with the anatomical regions of other subjects. Furthermore operators’ bias is 

introduced in the definition of anatomical regions. Some of these issues can be easily 

addressed by automatization of the procedure by using ICA components extracted 

from the dataset. Estimating ICA maps after concatenating the complete training 

dataset would generate dataset-specific spatial maps, and therefore a more accurate 

representation of the functional regions in the dataset.  

 

Recently Broderson et. al. [93; 94] reported a method called generative embedding 

that uses effective connectivity estimated from DCM as features for the classifier. This 

procedure captures the network interactions at the neuronal levels and therefore 

transforms a high dimensional matrix to a low dimensional neuronal network model. 

They used SVM to successfully classify schizophrenic subjects from the control 

group. Similar attempts on using the network interactions as feature vectors in 

classification algorithms have also been reported in [95] where the results from 

network modeling using partial correlation are used as features for machine learning 

algorithms. 

 

Among the many machine-learning algorithm, SVM is considered one of the simplest 

machine learning algorithm that identifies a separating hyper plane that maximizes the 

margin between the classes. Given a set of data points from two classes, the hyper 

plane that represents the largest separation between the classes or that maximizes the 

distance from it to the nearest data point on each side is called maximum-margin hyper 

plane.  

 

SVM is a linear classifier that means it is capable of finding a hyperplane if the feature 

space is linearly separable. However most of the real world data is non linear in nature. 

In order to address this issue, an extension of SVM has been proposed in the literature 

with the use of kernels to find the separating hyper-plane. The idea of the kernels is to 

apply a nonlinear transformation to the input non linear feature space that may identify 

a hyper plane that linearly separates the classes in the transformed space.  
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Random Forest (RF) is a decision tree based classifier that performs random selection 

of features and uses bagging to construct decision trees with controlled variance. 

Random Forest algorithm construct a multitude of decision trees during training and 

predicts the label of the output class by counting the votes of the individual decision 

trees. This gives a probabilistic result unlike SVM that is gives binary classification 

output without any probability. Random Forests have been extensively used for 

classifying biological data, and it can be argued that it performs better than SVM for 

classification problems with large feature vectors. However Random Forest also tends 

to over fit the training data, therefore the validation procedure should be performed 

properly to avoid any inflated accuracies. 

 

Neural networks are brain inspired machine learning algorithms, which aim to model 

mathematical representations of information processing via neurons. There are 

different layers defined in a neural network, where in the simplest case, first layer in 

the input layer, the second layer is made of activation units, outputting non-linear 

transformations and the third layer produces the classification prediction. Figure 8 

shows the schematic of a simple two layer neural network. 

 

 

 

 

 

 

 

 

 

 

Figure 8: A simple feed forward neural network is shown. The first layer is the input 

layer, also called the visible layer, followed by the middle layer also called as the 

hidden layer. Inputs are transformed to the hidden using a weighting function W. 

Neural network output is generated at the output layer. From Quiza and Davim [96]. 

Reproduced with permission. 

 

Recently Hinton and colleagues tested neural networks with several layers, also called 

as deep learning that has outperformed state of the arts methods to learn complex data 
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structures. However the proper use of deep learning requires optimization of several 

parameters, like number of units, layers and types of activation functions etc., which 

makes it non trivial. Recent developments using deep learning have been described in 

[97]. 

 

 

 

1.4. fMRI for small animals 

1.4.1 Increasing sensitivity in small animal imaging 

MRI offers high spatial resolution (of the order of the 10 um) however its temporal 

resolution is low (of the order of 1 sec.) relative to other techniques used in 

neuroscience for example EEG, which has a high temporal resolution (of the order of 1 

ms) and low spatial resolution (of the order of 1 cm). Furthermore MRI has inherently 

low signal to noise ratio (SNR), which is dependent on the low degree of polarization 

and hence the low number of nuclei contributing to the signal. This is of particular 

relevance when imaging small animals, e.g. rodents and mice, as demands on spatial 

resolution are high and the signal is proportional to the dimension of the volume 

element. SNR can be increased by either increasing the signal, by decreasing the noise, 

or both [98]. High field magnets provide a solution to this by increasing the maximum 

achievable signal, however it comes with its own challenges. At high magnetic field 

strengths, images acquired contain artifacts due to magnetic inhomogeneity, forming 

another challenge to increase SNR. An alternative is the use of cryogenic coils 

operated at 20K to reduce the thermal noise component from the image, thus 

increasing the SNR. However this technique is only meaningful for small volumes 

since in large volumes sample noise dominates over electronic noise, while in small 

volumes both noise components are comparable.  Therefore high field strength 

magnets combined with cryogenic coils, provide a solution for acquiring high 

resolution MR images in small animals, however this technique cannot be used in 

human MRI because in human MRI sample noise is larger than the electronic noise 

due to large size of the sample. 
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1.4.2 Effects of anesthesia 

fMRI in small animal imaging plays an important role in evaluating the mechanistic 

aspects underlying neurovascular coupling and the BOLD signal. It is used as a non-

invasive and hence translatable tool for characterization of the brain functional 

reorganization in response to a pharmacological challenge or to a pathological 

condition. Similar to humans, rs-fMRI has been extensively used to characterize 

functional networks in the rodent brain. Reproducible resting state networks have been 

demonstrated that include brain regions involved in auditory processing, motor 

function, and executive functioning etc. [99; 100]. Default mode network (DMN) has 

also been detected in rats [101; 102] similar to the human DMN [25; 26; 103].   

 

While there are some reports of awake rat studies, the vast majority of rodent fMRI 

studies involve the use of anaesthesia. The use of anaesthetics in fMRI studies is even 

more common in mice than in rats, since it is more difficult to train mice for lying still 

in the magnet while being awake than rats. It is well known that anesthesia alters 

responses to stimuli or functional networks at rest and despite the frequent use of 

anaesthetics in small animal fMRI studies; the effects of anaesthetics have not yet been 

completely understood. The effects of anaesthesia on functional connectivity in the rat 

and mouse brain have been investigated by several groups [31; 70; 104; 105; 106; 107; 

108; 109]. In 2015 Grandjean et. al. [110] compared the effect of four different 

anaesthetics on functional connectivity in the mouse brain using seed-based analysis 

and reported characteristic changes depending on the type of anaesthetic used. They 

found that functional connectivity patterns under medetomidine differed from those 

observed for animals under isoflurane, propofol or urethane anaesthesia.  

 

Anaesthesia adds to the bias in the experimental measurements since the anaesthetics 

are known to affect the underlying neuronal signals, the physiological baseline, a 

critical determinant when measuring the hemodynamic response, as well as the 

efficiency of neurovascular coupling.  

 

In order to evaluate the effects of anaesthetics on both the neuronal and neurovascular 

signal, electrophysiological recordings were measured in parallel with fMRI in rats 

under anaesthesia [105; 111; 112; 113; 114]. The results indicate that the local BOLD 

fluctuations and electrophysiological recordings show similar signals under several 
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anaesthetics, including isoflurane. This indicates that though anaesthetics may affect 

the neurovascular coupling, functional connectivity can still be reliably inferred. 

However since different anaesthetic regimens are known to affect different networks, 

it is important to select the anaesthetics based on the networks to be studied in order to 

minimize their interference with the underlying local neuronal signals. 
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Abstract 

fMRI studies in mice typically require the use of anesthetics. Yet, it is known that 

anesthesia alters responses to stimuli or functional networks at rest. In this work, we 

have used Dual Regression analysis Network Modeling to investigate the effects of 

two commonly used anesthetics, isoflurane and medetomidine, on rs-fMRI derived 

functional networks, and in particular to what extent anesthesia affected the interaction 

within and between these networks.  

Experimental data have been used from a previous study [1]. We applied multivariate 

ICA analysis and Dual Regression to infer the differences in functional connectivity 

between isoflurane and medetomidine. Further network analysis was performed to 

investigate within- and between-network connectivity differences between these 

anesthetic regimens. The results revealed five major networks in the mouse brain: 

lateral cortical, associative cortical, default mode, subcortical, and thalamic network. 

The anesthesia regime had a profound effect both on within- and between-network 

interactions. Under isoflurane anesthesia predominantly intra- and inter-cortical 

interactions have been observed, with only minor interactions involving subcortical 

structures and in particular attenuated cortico—thalamic connectivity. In contrast, 

medetomidine anesthetized mice displayed subcortical functional connectivity 

including interactions between cortical and thalamic ICA components. Combining the 

two anesthetics at low dose resulted in network interaction that constituted the 

superposition of the interaction observed for each anesthetic alone.  

The study demonstrated that network modeling is a promising tool for analyzing the 

brain functional architecture in mice and comparing alterations therein caused by 
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different physiological or pathological states. Understanding the differential effects of 

anesthetics on brain networks and their interaction is essential when interpreting fMRI 

data recorded under specific physiological and pathological conditions.   

 

2.1 Introduction 

Analyzing adaptations of brain networks is becoming increasingly important for 

characterizing physiological or pathological states, or evaluating responses to 

therapeutic interventions. Parallel to the Human Connectome Project [2] there are 

considerable efforts to elucidate structural and functional connectivity also in rodents 

triggered by the expectation that rodent studies might provide valuable translational 

insight into mechanisms underlying FC and how these are altered during pathology. In 

functional magnetic resonance imaging (fMRI), functional connectivity across brain 

regions can be inferred from the temporal correlation of fluctuations in the baseline 

fMRI signal, i.e. under stimulus-free conditions. Several techniques have been 

suggested for analyzing resting state fMRI (rs-fMRI) data including seed-based 

analysis or dual regression. Seed-based analysis is straightforward, yet as univariate 

method considers each voxel independently, which implies that the approach considers 

only one effect at a time [3]. Seed-based analysis faces concerns related to the inherent 

biases of experimenter selection of seed regions [4]. In addition, any network not 

associated to these seeds cannot be identified. The quality of seed-based analysis 

depends critically on the seed selection, which should be optimally adapted to the 

anatomical or functional brain areas.  Therefore, regions are typically derived from a 

neuroanatomical atlas, which however may not be optimally adapted to the 

structural/functional unit for a specific subject due to anatomical variability and/or 

imperfect registration of the image data set to the atlas-based template. ICA and seed-

based are complementary approaches that have pros and cons. Seed based analysis 

allows selection of fine-grained functional units; however, the use of fine-grained 

seeds is susceptible to errors related to registration. Also, it has been shown that biases 

inherent in the seed selection can result in a large variability in the results [4; 5], which 

becomes crucial during network estimation. Nevertheless, if there is a strong prior 

hypothesis with regard to the involvement of specific brain regions, seed based 

analysis using adapted seed masks are of great value. In contrast, regions derived from 

the ICA analysis are not subject to any anatomical constraints, which imply that given 
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the limitations in sensitivity and intrinsic spatial resolution, they may not be ideally 

matched to structural/functional units as derived from a high-resolution brain atlas. 

Careful inspection of ICA results and removal of noise components becomes essential. 

Typically, ICA components are allocated to structural units in a post-hoc manner 

according to the best fit. ICA analysis does typically not produce fine-grained 

functional maps rendering them more robust against registration errors, at the expense 

of fine structure information. In the absence of a hypothesis, ICA analysis appears 

appropriate as it is purely data driven. 

Dual Regression (DR) in combination with probabilistic independent component 

analysis (ICA) constitutes a multivariate approach for analyzing rs-fMRI data [6] with 

spatial ICA maps being fed as input in to the DR pipeline. The DR approach [5; 6] 

first regresses the z-normalized group-IC spatial maps against the subject-specific 4D 

resampled datasets to give a set of subject-specific, variance normalized time courses 

for each component separately, and then – at a second-level of regression – these time-

courses are regressed against the same 4D dataset to calculate a subject-specific set of 

spatial maps. The use of multivariate methods allows the simultaneous consideration 

of effects from all brain regions, i.e., the brain is treated as a fully connected network, 

or set of networks. ICA has been shown to produce reliable and comparable results 

both at the individual subject and the group level [7; 8]. For in-depth network analysis, 

between-network interactions can also be considered by a comprehensive analysis of 

all ICA components[9]. Graph theoretical approaches could be used to further analyze 

DR derived network information in order to structure them according to clusters (sub 

networks), nodes and edges. While frequently applied to human fMRI data, use of 

such approaches in small animal fMRI is still rather limited [10; 11]. Network-based 

approaches have also been recently applied to mouse and rat rs-fMRI data, including 

prior parcellation into ICA components [12; 13] 

 

Both medetomidine and isoflurane have been used in longitudinal fMRI experiments 

in rodents yielding robust BOLD response to external stimuli [14; 15; 16; 17]. As 

these agents involve different modes of actions, which affect both central and 

peripheral responses it is not surprising that fMRI responses were found to depend on 

the specific anesthetic used [17; 18]. Their differential effect is also reflected by 

anesthetic specific functional connectivity patterns [1; 18]. In particular, it has been 

reported that medetomidine, while yielding rather stable results in rats, decreases inter-
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hemispheric FC in mice [19; 20; 21]. In general, the optimal choice of anesthetic will 

depend on the specific problem to be addressed, i.e. should have minimal interference 

with the processes to be studied. The combination of complementary anesthetics may 

have synergistic effects and allow reducing the dose of the individual agents and 

thereby unwanted biochemical/physiological side effects [1; 16]. 

In this study we evaluated the use of DR followed by graph theory based network 

analysis for detecting differences in mouse functional networks with respect to 

anesthesia-induced differences in physiological state. We analyzed the effects of two 

commonly used anesthetics and their combination, which have been shown to affect 

functional connectivity patterns in a drug-dependent manner [1]. In particular, we 

focused on obtaining detailed interactions among networks and sub-networks of 

mouse brain functional architecture. We analyzed blood-oxygen level-dependent 

(BOLD) rs-fMRI data in terms of interacting fMRI networks by using partial 

correlation, which is thought to more closely represent brain functional principles than 

simple correlation of time courses extracted from individual seeds [5; 9].   

 

2.2 Materials and methods 

2.2.1 Imaging 

Animals, preparation and anesthesia 

The analysis is based on rs-fMRI data collected in an earlier study; we refer to 

Grandjean et al. [1], where experimental details have been described. In brief, female 

C57BL/6 mice of 10 to 15 weeks of age have been used for the study. For the rs-fMRI 

data collection mice had been intubated and artificially ventilated with an 80% air 20% 

oxygen mixture using a small animal ventilator (CWE, Ardmore, USA). Three groups 

of mice subject to different anesthesia protocols were studied: group 1 (N=11) 

received 1% isoflurane administered via the ventilation mixture; group 2 (N=13) an 

initial i.v bolus injection of 0.1 mg/kg medetomidine hydrochloride followed by a 

continuous infusion at a rate of 0.2mg/kg/h of the drug; and group 3 (N=8) received 

the combination of isoflurane and medetomidine with half the doses administered in 

groups 1 and 2, respectively. Rs-fMRI data have been acquired using a Bruker Biospec 

94/30 small animal MR system (Bruker BioSpin MRI, Ettlingen, Germany) operating 

at 400 MHz (9.4 T) equipped with a four-element receive-only cryogenic phased array 
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coil (Bruker BioSpin AG, Fällanden, Switzerland). Detailed acquisition parameters are 

given in Grandjean et. al. [1]. For the current study, data have been downloaded from 

the central.xnat.org repository (Project ID: fMRI_ane_mouse;[1]). BOLD fMRI 

experimental data were acquired using a gradient-echo echo-planar imaging (GE-EPI) 

sequence: FOV = 23.7 x14 mm2, MD = 90 x 60, yielding an in-plane voxel dimension 

of 263 x 233 µm, flip angle (FA) = 90°, bandwidth = 300 kHz, TR =1000 ms, TE = 10 

ms, NA = 1, yielding a temporal resolution of 1 s, with interleaved acquisition of 

slices. The duration of the image time series was 6 min. Mice were paralyzed in order 

to facilitate artificial ventilation and to eliminate motion artifacts during data 

acquisition. We analyzed reflexes and flinching behavior in non-paralyzed animals and 

did not detect any differences between animals anesthetized with either anesthetic nor 

did we detect any indication of pain.  

2.2.2 Data processing and statistical analysis 

Preprocessing 

All the preprocessing was performed using FSL’s recommended preprocessing 

pipeline from FMRIB's Software Library (FSL version 5). Preprocessing included 

motion correction, removal of non-brain structures, high pass temporal filtering with 

sigma = 75.0s, pre-whitening and global spatial smoothing using a filter with a 0.2 mm 

kernel. After the pre-processing the functional scans were aligned to the high-

resolution template EPI scan using non-linear registration with 7 degrees of freedom 

as implemented in FLIRT, followed by nonlinear (FNIRT) warping [22; 23] 

 

a) ICA Analysis and Dual Regression 

We used FSL’s MELODIC software for probabilistic independent component analysis 

[24]. The multi-session temporal ICA concatenated (Concat-ICA) approach, as 

recommended for resting state data analysis [25; 26], allowed the inputting of all 

subjects from all the groups in a temporally concatenated fashion for the ICA analysis. 

Concat-ICA yielded different components without the need for specifying any explicit 

time series model.  

A total of 70 independent components (IC maps) were extracted from each analysis 

group. A mixture model approach was used to perform the inference on estimated 

maps. An alternative hypothesis test based on fitting a Gaussian/gamma mixture 
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model to the distribution of voxel intensities within spatial maps [26] was used to 

threshold the IC maps. Out of the 70 independent components (IC maps) in each 

group, only 17 components on average were selected for each comparison, while the 

components that overlapped with vascular structures and ventricles were excluded 

from further analysis, however these components were still included as the regressors 

of no interest in the DR analysis. Similarly, components concentrated within the 

regions at the brain surface, which are prone to be affected by motion-related artifacts, 

were also excluded. Supplementary Figure 1 shows the removed ICA components. 

We used DR (FSL 5.0.2.2) for between-subject analysis allowing for voxel-wise 

comparisons of rs-fMRI data [6; 27]. We used unpaired t-tests to test for differences 

between anesthetic regimen conditions. Specifically, the design matrix was subject to 

[1 -1] contrasts to identify brain regions and networks displaying greater FC in one 

anesthetic condition relative to another. 

Non-parametric permutation based inference analysis [28] was performed with 

subject-specific component spatial maps concatenated across subjects and submitted to 

voxel-wise between-subject analysis testing for effects of anesthetics on FC using 

FSL-randomise [29]. FSL’s general linear model (GLM) was used to define contrasts 

based on unpaired t-test, testing for anesthesia effects among different groups. For 

each analysis we ran 5000 randomized permutations in line with the FSL default 

recommendations, while threshold-free cluster enhancement [30] was used for 

statistical inference to validate the likelihood of extended areas of signal, which also 

takes in to account information from neighboring voxels. TFCE enhances cluster-like 

structures but the image remains fundamentally voxelized. This cluster enhancement 

renders TFCE more sensitive than voxel-wise thresholding [30]. Correction for 

multiple comparisons across space was applied assuming an overall significance of a 

(p<0.05) using permutation testing and TFCE. Bonferroni correction (p≤0.05/17) was 

applied separately to each analysis depending on the number of components of 

interest[31]. 

 

b) Network modeling 

FSLNets (FSL, 5.0.2.2) has been used for network modeling of rs-fMRI data.  The 

data processing pipeline is depicted in Suppl. Figure 2. Different network matrix 

calculation methods have been applied. Full correlation (FC) estimates both direct and 

indirect connections, while partial correlation (PC) only estimates direct connections. 
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We used L1 partial correlation method for Partial Correlation (PC) analysis, which 

yielded direct connections only [9]. The PC matrices of the BOLD time courses of 

each component from dual regression were then clustered to form a dendrogram. 

These clusters were then used as input in to the GLM analysis and run through FSL-

randomise [29]to perform 5000 permutations to test for statistical significance. Edges, 

i.e. connections between network nodes showing statistically significant differences 

between the groups under consideration were obtained from GLM analysis. These 

significant network edges were then used to calculate network box plots (Suppl. Table 

1 summarizes the values obtained through box plots.) that take into account each edge 

and provide more information on differences in connectivity values between the 

groups. FSLNets was corrected for multiple comparisons with false discovery rate 

(FDR) using the same unpaired t-test design matrix as used previously for DR 

analysis. 

 

2.3 Results 

2.3.1 Dual Regression confirmed results of seed-based analysis and identified 

additional components 

Of the 70 components derived from ICA, an average of 17 components (range 16-18) 

were retained for further analyses after discarding components at the brain surface and 

those involving vascular structures or ventricles. The number varied across individual 

analyses as a different number of components had to be discarded according to our 

selection criteria. Apart from auditory cortices, which appeared strictly lateralized, 

ICA derived components typically comprised bilateral homotopic brain areas (Figure 

1, Table 1).  
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Figure 1: ICA derived components were grouped into the lateral cortical network 

(LCN), associative cortical network (ACN), default mode network (DMN), subcortical 

network (SuCN), and the thalamic network (ThN).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Regions identified in selected ICA components.  
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DR revealed differences in functional connectivity between isoflurane- and 

medetomidine-anestethised mice (Figure 2). Cortical areas display major difference 

between the two anesthetics, with mice under medetomidine anesthesia displaying 

only very weak intercortical functional connectivity.  

 

 

 

Figure 2: Results of Dual Regression analysis for eight components derived from ICA 

(red color overlay). The reference of the components to anatomical structures is 

indicated in the figure. Bonferroni corrected DR results showing the regions whose co-

activation with the ICA components (as shown in the figure) was significantly higher 

(green color) or lower (blue color) in isoflurane as compared to medetomidine-

anesthetized mice.  

 

The comparison of DR using probabilistic ICA based temporal concatenation with 

seed-based analysis using ICA informed seed selection revealed obvious similarities. 

Supplementary Fig. 3 shows the comparison of seed based with the ICA derived 

components. By definition the outcome of seed-based analysis is confined to network 

components associated with the selected seed region, typically revealing functional 

connectivity between homotopic regions. It is therefore not surprising that the model-

free DR approach revealed additional anatomical regions as part of networks that 

displayed profound group differences when compared to the results of seed-based 

analysis. The previous study reports seed selection to include three sensory regions, 

the anterior (ant-), medial (med-), and posterior (post-) parietal cortex in addition to 
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components in the cingulate cortex, ventral and dorsal striatum, and limbic areas [1]. 

Data driven ICA also identified these regions as relevant components, but also 

additional regions including the olfactory tubercle, globus pallidus and amygdala, 

though among additional regions found only components involving the amygdala 

reached the significance level to be included in the results of the DR analysis.  

 

2.3.2 Between-network connectivity analysis using Network Modeling 

Performing a between-network analysis on the basis of the DR results as described in 

FSLNets implies comparing consecutively the time series of network X as derived 

from ICA with the averaged time series of each of the other networks. In contrast, the 

seed-based approach compares a single time series signal from region X separately 

with the temporal signals from other regions. Hence, seed-based analysis is limited to 

the analysis of ‘within-network’ connectivity, while DR-based FSLNets allows 

modeling of connectivity between network components in addition. This allowed 

grouping of individual components into functional networks (Table 1). ICAs were 

grouped together based on the FSLNets derived hierarchical clustering. We used a 

similar nomenclature as used by [12] in order to keep the uniformity of reported 

networks. Five major networks have been identified: the default mode network (DMN) 

comprising cingulate cortex and hippocampus, the lateral cortical network (LCN) with 

somatosensory, secondary somatosensory, motor, and insular cortices, the associative 

cortical network (ACN) including auditory cortex, the subcortical network (SuCN) 

with piriform cortex, ventral striatum, and amygdala, and the thalamic network (ThN) 

comprising dorsal and ventral thalami.  

The strengths of the connectivity between different network components was analyzed 

using network box plots as illustrated for the connectivity between S1-vTh and S2-vTh 

under isoflurane- vs. medetomidine-anesthesized mice (Figure 3). Thalamocortical 

interaction is completely suppressed in isoflurane-anesthetized animals, whereas under 

medetomidine anesthesia a weak negative thalamocortical correlation is observed. 

Analogous analyses have been carried out for all possible interactions among ICA 

components and for all anesthetic regimens, and the results displayed in the form of 

interaction matrices highlighting interactions found to be significant (Figure 4a; Suppl. 

Table 1 shows the connectivity values under different anesthetics between the selected 

ICA components obtained through boxplots). 
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Figure 3: Cortico-thalamic connectivity differences in isoflurane vs. medetomidine 

anesthetized mice. Connectivity strength is shown for the network between (a) 

somatosensory cortex (S1) and ventral thalamus (vTh) and (b) between secondary 

somatosensory cortex (S2) and ventral thalamus (vTh). Under isoflurane anesthesia 

these connectivities are largely suppressed, while a significant negative correlation has 

been found for medetomidine anesthetized mice. 

 

 

Figure 4: Functional networks and their interaction as derived from DR analysis: (a) 

Matrices displaying within- and between-network interactions under the various 
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anesthesia regimens. Matrices have been structured according to the five functional 

networks identified. Colors indicate significant interactions observed under isoflurane 

(blue) or medetomidine anesthesia (red). For the group receiving the combination 

anesthesia, elements are indicated in different colors depending on whether they 

apparently arise from the isoflurane group (blue), from the medetomidine group (red), 

from both groups (blue/red) or were observed in the combination group exclusively 

(green). Positive correlations are indicated by dark colors, while light colors represent 

negative correlations. Gray blocks indicate the absence of any significant interaction. 

Significant group differences (with Bonferroni correction) in connectivity have been 

observed for all the interactions displayed.  (b) Within- and between-network 

interactions detected in isoflurane (blue lines), medetomidine (red lines) and 

medetomidine/ isoflurane anesthetized mice. In isoflurane/medetomidine anesthetized 

mice network interactions, blue lines represent interactions observed in mice under 

isoflurane anesthesia only, red under medetomidine only, and violet represents 

interactions observed for both anesthesia regimes. The width of the lines in the figure 

indicates the strength of the connectivity. 

Mice under isoflurane anesthesia displayed strong connectivity among LCN 

components, which was found to be less pronounced in medetomidine-anesthetized 

animals. In contrast the occurrence of interactions involving subcortical structures was 

a characteristic for medetomidine anesthesia. This included inter-thalamic connectivity 

as well as networks involving thalamocortical connections, both of which did not 

display significant functional connectivity under isoflurane anesthesia (Figure 4b). On 

the other hand, DMN-cortical connectivity was preserved under isoflurane anesthesia 

but not under medetomidine (Figure 4a, middle panel). Given the complementary 

nature of networks observed under these two anesthetics, Grandjean et al. [1] 

suggested the combination of the two as potentially attractive regimen.  

The network interaction patterns observed when using the combination 

medetomidine/isoflurane can be largely represented as the superposition of the 

network interaction patterns obtained for each anesthetic alone (Figure 4a, 4b), with 

some deviations. All connections between cortical and subcortical structures observed 

under medetomidine were preserved for the combination regime except some 

interactions within the thalamic and the subcortical network. Also, the combination 

anesthesia displayed the strong intra-cortical networks observed for isoflurane but not 

for medetomidine. As Grandjean et al. [1] included propofol and urethane anesthetized 
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mice in their study, the corresponding results of the network analysis for these two 

anesthetics have been compared to that obtained for isoflurane anesthetized animals 

(Supplementary Figure 4). 

The schemes described in Figure 4b capture the differential nature of network 

interaction only at a high level. When analyzing the interactions within and between 

modules in more detail, additional differences among the various anesthesia regimens 

become apparent (Figure 4a). For example, while both isoflurane and medetomidine 

anesthetized mice display within-LCN interactions the nature of these interactions is 

different: for the isoflurane group significant interactions between ICA components 

S1-S2, S1-M1, S1-Ins, S2-M1, M1-Ins were observed, while for medetomidine only 

two of these interactions (S1-S2, S2-M1) were found to be significant. For the 

combination regime medetomidine/isoflurane all interactions observed under 

isoflurane alone were found significant with the exception of S1-Ins. The connectivity 

within SuCN was found absent for isoflurane anesthetized mice, but was found under 

medetomidine or medetomidine/isoflurane anesthesia. Inter-thalamic network 

interactions have been observed in medetomidine but not in isoflurane and 

medetomidine/isoflurane anesthetized animals. Apart from inter-thalamic network 

connectivity, all the other interactions involving the thalamic network found under 

medetomidine were preserved in the combination regime. Similarly, the DMN was 

also found to be more functionally connected to other networks in medetomidine and 

medetomidine/isoflurane combination regime than in isoflurane only. Some 

connectivity patterns have been observed exclusively in the medetomidine/isoflurane 

combination regime, such as the connection between ventral striatum and piriform 

cortex.  

2.4 Discussion  

The vast majority of rodent fMRI studies involve the use of anesthesia, which 

inevitably interferes with brain function and may confound effects of interest unrelated 

to the anesthetic effects. Hence, understanding the effects imposed by the anesthetic 

regimen is essential for proper analysis of fMRI data, in particular information on 

functional connectivity across the brain. It may allow identifying anesthesia-specific 

network signatures, which might then be accounted for during further data analysis. 

The effect of anesthesia on functional connectivity in the rat and mouse brain has been 

investigated by several groups [10; 17; 19; 20; 32; 33; 34; 35]. Grandjean et. al. [1] 
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compared the effect of four different anesthetics on functional connectivity in the 

mouse brain using seed-based analysis and reported characteristic changes depending 

on the type of anesthetic used. In particular, functional connectivity patterns recorded 

under medetomidine differed from those observed for animals under isoflurane, 

propofol or urethane anesthesia. The current study using DR analysis confirmed these 

results for isoflurane and medetomidine and identified additional nodes/ brain regions 

to be included in the anesthesia-specific signature. DR based network analysis 

including the analysis of between-network interactions is arguably a more 

comprehensive depiction of 'systems-level' activity/connectivity in the brain, in 

particular with networks derived from a data-driven approach such as ICA, and thus 

might unveil new knowledge about brain systems where prior hypotheses are unclear. 

Functional connectivity between nodes could be either direct or indirect, i.e. relayed 

via another node. While correlation is a mere measure of functional connectivity, 

irrespective of its nature, PC analysis reveals direct connectivity exclusively [9]. While 

Grandjean et al. [1] have used FC analysis to identify regions displaying temporal 

signal profiles with high correlation to a seed region, in this work we employed PC 

measures to focus primarily on networks based on ‘direct’ functional connectivity. An 

objective of network analysis is to identify nodes connected by direct connectivity 

(edges) and eliminate spurious edge effects due to an indirect third region in-between. 

It is important to note that direct connectivity does not imply monosynaptic 

connections. In fact, the structural correlate for direct FC can be both monosynaptic 

and polysynaptic. Our results reveal interesting within- and between-network 

interactions showing preserved intra- and inter-cortical interactions under isoflurane, 

subcortical interactions under medetomidine and superposition of these interactions 

under the combined anesthetics regimen.  

DR and network analysis have mostly been applied to human studies so far with an 

exception of few recent reports in small animal rsfMRI [10; 11]. On the other hand, 

the mouse brain and in particular its cortical organization is considerably simpler and 

less subject to inter-individual variability, which should add consistency to the data. In 

fact, DR yielded reasonable, neurobiologically plausible results for mouse rs-fMRI 

data. For example, this is illustrated by the fact that even for deep-lying small 

structures such as the amygdala or the ventral striatum (nucleus accumbens), 

statistically significant results have been obtained across groups.   
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The network interactions observed in mice receiving the medetomidine/isoflurane 

combination anesthesia can be largely composed as a superposition of networks found 

under the isoflurane or medetomidine alone, with some deviations. There are, 

nevertheless, a few aspects of the different group results that deserve special attention. 

DMN-ThN connectivity has been described as a structural connection in mice [36]. In 

this study, we observed the functional links DMN-ThN and LCN-ThN in 

medetomidine, but not in isoflurane anesthetized mice (Figure 3), which clearly 

highlights the potential confounds linked to the use of anesthesia in functional brain 

imaging studies. The anesthesia-specific connectivity pattern might arise from the 

different molecular modes of action of the two anesthetics or differential effects on the 

cerebrovasculature. Isoflurane is an anesthetic, while medetomidine is a sedative with 

analgetic activity. The two compounds have different molecular modes of action 

interacting with either the GABAergic (isoflurane) or the a2 adrenergic system 

(medetomidine). A striking observation is the loss of cortico thalamic FC in isoflurane 

and to a certain degree also in medetomidine anesthetized mice. This may reflect the 

anesthetic efficacy of these drugs as loss of frontal-thalamic connectivity has been 

associated with loss of consciousness in humans [37] and rats [38]. The latter study 

demonstrated decreasing strength of this connection upon increasing the dose of the 

anesthetic. Along these lines, it has been demonstrated that light sedation with 

halothane [39] or medetomidine [21] preserved cortico-thalamic functional 

connectivity to some extent. Hence the observed differences in isoflurane and 

medetomidine anesthetized mice may reflect differences in anesthesia depth, i.e. the 

brain state. On the other hand, differences in the pharmacological mode of action and 

physiological activity (e.g. effects on the vascular tone) of isoflurane on medetomidine 

are likely to contribute to the differential responses. In addition, the two compounds 

exert rather opposing effects on the cerebrovascular system, isoflurane acting as 

vasodilator and medetomidine as vasoconstrictor, which may affect the translation of 

spontaneous neuronal activity into the BOLD signal assessed by fMRI. Interestingly, 

combining the two anesthetics at a low dose retained the interactions between DMN-

ThN and LCN-ThN observed with medetomidine along with the intercortical 

interactions observed with isoflurane anesthesia, and thus constitutes an attractive 

anesthesia regimen for fMRI investigations in mice. Along similar lines, interactions 

within the SuCN between piriform cortex and amygdala were reliably detected in 

medetomidine and medetomidine/isoflurane anaesthetized mice, but not under 

isoflurane only. This functional connectivity pattern is supported by the observation of 
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structural connections between these regions [36]. The existence of a structural 

connectivity does not warrant functional connectivity as illustrated by the differential 

functional connectivity patterns for the different anesthetics. For example intracortical 

connectivity was found to be profoundly reduced in medetomidine as compared to 

isoflurane-anesthetized mice. This connectivity was found to be in part recovered 

when using the combination anesthesia, though the interaction remained weaker, in 

that a significant connectivity between LCN and ACN could not be detected anymore.  

Mice under medetomidine anesthesia displayed anti-correlated functional connectivity 

between cortical structures and thalamus. There have been mixed reports on cortico-

thalamic functional connectivity under anesthesia and it is widely debated in the 

literature. The preservation of thalamocortical activity under anesthesia has been 

reported previously in animals as well in humans [40; 41]. Boveroux et al. [42] 

reported similar anti-correlation during their study of propofol-induced 

unconsciousness in humans. An anti-correlated pattern of thalamus and cortical was 

also found in a study of rats with limbic seizures [43], in line with our results. On the 

other hand, some studies have shown no cortico-thalamic interaction during sedation 

[1; 44; 45; 46; 47; 48], while other studies have revealed diminished but detectable 

thalamo-cortical connectivity [49; 50]. It appears that the cortico-thalamic interaction 

is modulated by the type and depth of anesthesia, similar to response in other brain 

regions such as the frontal cortex displaying decreased activity in propofol and 

sevoflurane anesthesia in humans [51], a region differentially affected by anesthetics 

also in our study. Furthermore in [5], authors reported that DR outperforms seed based 

analysis. Despite putting the seeds in the same areas identified by ICA, the authors 

were not able to replicate the results from DR, while their results from DR analysis 

had been independently verified in a separate group of subjects. This might explain the 

inability to detect statistically significant cortico-thalamic interaction in medetomidine 

anesthetized mice in the previous study using seed based analysis. 

The results get even more complex when analyzing the interactions at the level of the 

individual ICAs that constitute a network. While for all anesthetic regimen tested, 

connections between the major networks have been observed – with the exception of 

ACN, for which interactions have been only detected under isoflurane anesthesia – 

there is considerable variability regarding the network components responsible for 

these interactions. These differences may again reflect anesthesia specific connectivity 

patterns. Alternatively, the differences found for the various anesthesia regimens may 
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also arise from limitations in the statistical approaches, which – due to the small 

dimensions and correspondingly low SNR typically encountered in mouse fMRI – 

may lead to a significant finding for one but not for another anesthesia regime. An 

important limitation in fMRI studies assessing functional connectivity in anesthetized 

rodents is that data cannot be referred to the conscious baseline state. As a results, 

anesthesia induced changes in functional connectivity cannot be characterized. 

Nonetheless, FC pattern observed in anesthetized rodents have been found to 

correspond to patterns observed in awake humans [35]. In addition, analysis of 

functional connectivity patterns under different anesthetics may help to identify 

anesthesia induced alterations in rs-fMRI patterns in mice. 

Despite these limitations, the results obtained in this study are consistent with previous 

findings in humans and other species [52; 53]. The modulatory effects of anesthetics 

on functional connectivity between the brain regions highlights the importance of 

analyzing fMRI responses  to pharmacological or physiological intervention at the 

level of brain networks rather than analyzing changes in isolated brain regions, a 

holistic approach that is gaining increasing attention in the neuroscience community. 

In conclusion, we have used DR in combination with data-driven ICA analysis to 

study the effects of different anesthetic regimen on brain functional networks in the 

mouse. Five basic networks have been identified, which display within- and between-

network interactions that depend on the anesthetic used. While medetomidine 

preserves most of the intra- and inter-network connectivities, except those involving 

the ACN, the intra- and inter-cortical network interactions (LCN-LCN, LCN-ACN) 

are better retained in isoflurane-anesthetized mice. An important result is that the 

network interactions observed under the combination anesthesia 

medetomidine/isoflurane largely constitute the superposition of the interactions found 

for each anesthetic alone. Understanding the differential effects of anesthetics on brain 

functional networks in animals is relevant when analyzing changes induced by 

physiological stress or pathological conditions. Deeper understanding of the effect of 

an anesthetic on large-scale brain networks is also relevant for clinical research, as it 

may help with achieving safer yet maximally effective anesthetic protocols with 

minimum side effects. 
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2.5 Supplementary Material 

Suppl. Table 1: Connectivity values between selected ICA components under 

isoflurane, medetomidine and medetomidine/isoflurane combined anesthetic regimens. 

The values were obtained from network box plots using unpaired t-test design matrix. 

Figures 4(a) and 4(b) displaying the network interaction matrix and graphs, 

respectively, is based on the quantitative information from these box plots. 

 isoflurane medetomidine med/iso 

S1 – S2 -3.0 0.2 0.6 

S1 – M1 0.3 0 2.4 

S1 – Ins -1.2 0 0 

S2 – M1 -1.1 -2 0.8 

M1 – Ins 1.0 0 -2 

Au – S1 0.5 0 0 

Au – S2 0.4 0 0 

Au – M1 0.8 0 0 

Cg – S2 1.5 1.3 1.1 

Cg – M1 1.2 0 0.7 

Amg – M1 1.4 -1.3 0.5 

Piri – S1 0 0.4 0 

Piri – Ins 0 1.8 0.1 

vTh – S1 0 -0.7 0 

vTh – S2 0 -2.1 -0.4 

Au-vStr 0.6 0 0.5 

Cg – HPC 0 0.9 0.7 

HPC – Piri 0 -1.2 0 

HPC - Amg 0 -1.5 1.4 
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HPC – dTh 0 2.5 0.3 

HPC - vTh 0 1.9 0.2 

Cg - Amg 0 0 0.5 

Cg – vTh 0 0 0.7 

Amg – dTh -1.1 0.1 1.3 

Piri – Amg 0 2.7 0.5 

Amg – vTh 0 2.3 0 

vStr – dTh 0 2.8 0 

vStr – vTh 0 2.6 0 

Piri – vStr 0 0 0.8 

dTh – vTh 0 2 0 

 

 
Supplementary Figure 1: Examples of ICA components removed from further 

analysis as they mainly represent vascular structures, ventricles, tissue interfaces or 

could not be clearly assigned to anatomical structures (see labels in figure). 
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Supplementary Figure 2: Analysis Flowchart. The partial correlation matrix (1) is 

clustered in a subsequent step using hierarchical clustering algorithm (2) The input for 

hierarchical clustering were the time series in to hierarchical clustering, i.e. clustering 

is according to the functional similarity. Application of unpaired t-test yields enabled 

the identification of networks that displayed significant differences under the two 

anesthetic conditions A and B (3) as represented by network matrices containing 

corrected p-values for each contrast (A>B, A<B). For convenience, 1-p values are 

displayed. Elements below the diagonal are the 1-p values, elements above the 

diagonal indicate significance of the two-group t-test at corrected-p<0.05. The left 

matrix represents interaction with A>B and right matrix with B<A. The anatomical 

location of interacting networks components displaying significant differences is 

shown in (4), with red bars indicating positive and blue bars indicating negative 

correlation. The width of the bar indicates the strength of the correlation. The box plot 

(5) indicates the correlation coefficient for one specific network in condition A and B 

showing that the specific interaction was significant under A but not B. 
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Supplementary Figure 3: ICA derived components illustrating somatosensory cortex, 

ventral striatum, limbic areas, cingulate cortex and thalamus. For comparison with 

analogous seed-based regions the reader is referred to the Grandjean et. al. [1], Fig1. 

 

 

 
Supplementary Figure 4: Comparison of functional networks found for urethane- 

and propofol-anesthetized mice compared to that of isoflurane-anesthetized animals. 

There is a striking similarity of the network maps for the three anesthetics. 

Nevertheless, there are few differences, e.g. some of the interactions appear weakened 

in urethane- and propofol- compared to isoflurane-anesthetized mice. 
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Abstract 

Effects of anesthetics on brain functional networks are not fully understood. In this 

work, we investigated functional brain networks derived from resting-state fMRI data 

obtained under different doses of isoflurane in mice using stationary and dynamic 

functional connectivity (dFC) analysis. Stationary network analysis using FSL Nets 

revealed a clear modular structure of functional networks, which could be segregated 

into a lateral cortical, an associative cortical, the default mode network, a subcortical 

network, and a thalamic network. Increasing isoflurane dose led to a loss of functional 

connectivity between the bilateral cortical regions. In addition, dFC analysis revealed a 

dominance of dynamic functional states (dFS) exhibiting pronounced modular 

structure in mice anesthetized with a low dose of isoflurane, while at high isoflurane 

levels dFS showing widespread unstructured correlation displayed highest weights. 

This indicates that spatial segregation across brain functional networks is lost with 

increasing dose of the anesthetic drug used. This loss might be indicative of a state of 

deep anesthesia. Combining the results of stationary and dynamic FC analysis 

indicates that increasing isoflurane levels leads to loss of modular network 

organization, which includes loss of the strong bilateral interactions between 

homotopic brain areas. 

 

3.1 Introduction 

Characteristics of general anesthesia are loss of sensation and analgesia, loss of muscle 

control (muscle relaxation) and eventually loss of consciousness. These effects are 

caused by a temporary change in the brain activity state induced by the anesthetic 

drug, i.e. changes in local activity pattern and in the activity of functional networks 

that depend both on the type and the concentration of the anesthetic. How these effects 
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on the concerted neural activity across the brain translate into the physiological 

characteristics of anesthesia, e.g. what kind of network changes relate to analgesia or 

loss of consciousness, is currently not known.  EEG has been extensively used for 

assessing direct neural effects of anesthetic drugs [1; 2; 3], important for guiding their 

administration. Yet, spatial resolution of EEG recordings is poor and information 

regarding the interference of pharmacological interventions including anesthesia with 

distributed cerebral processing (functional networks) is problematic to extract.  

Analysis of brain function in the absence of a specific stimulation paradigm using 

functional magnetic resonance imaging (so-called resting-state fMRI, rs-fMRI) has 

gained tremendous momentum in recent years as it allows identifying functional 

networks on the basis of the temporal correlation of the signal across brain regions [4; 

5]. Typically correlation analysis compares signal fluctuations over time intervals of 

several minutes, which allows identifying ‘stationary’ coherent clusters, which are 

considered to constitute functional networks. More recently, it has been found that 

these stationary networks represent temporal integrals of dynamic processes occurring 

at a much faster time scale. A number of approaches have been suggested to study the 

dynamic aspects of functional connectivity (dFC). For example, Leonardi et al. [6; 7] 

have described a dFC algorithm with time varying windows using a dictionary 

learning approach, which yielded a number of robust dynamic functional states (dFS), 

the contributions of which to the overall activity fluctuate in the course of a rs-fMRI 

time series. The method has been recently transferred to mouse rs-fMRI [8] These 

authors could identify highly structured dFS reflecting interactions within and across 

major cerebral networks in the mouse, which fluctuate over time warranting the 

involvement of many brain areas in information processing. dFC analysis has the 

potential to reveal important insights that might remain hidden when analyzing 

stationary FC.  

Changes in functional network imposed by anesthesia have been investigated both in 

humans and animals [9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20]. A recent study 

described dose dependent effects of isoflurane on the stationary cerebral cortical 

networks in rats [21]. The authors reported that at isoflurane doses higher than 1.5% 

interhemispheric cortical FC strength was found decreased or completely suppressed, 

though there was no information to what extent dFSs were affected. The latter point 

was addressed in a study using macaque monkeys [22], in which high isoflurane levels 

were found to decrease the number of dFSs. However, the authors did not investigate 
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the changes in the relative weights of dFS in response to alterations in the level of 

isoflurane.  

In this paper, we investigated effects of increasing the isoflurane dose on the 

functional networks in mice considering both stationary as well as dynamic aspects. In 

particular, we were interested whether increasing the isoflurane dose affected the 

nature of the dFS, and whether the individual dFS showed a differential sensitivity to 

anesthesia depth. Mice are attractive in this context as the wide range of genetically 

engineered strains may allow investigating mechanistic aspects underlying the various 

physiological characteristics of anesthesia such as analgesia, muscle relaxation, loss of 

consciousness.  

 

3.2 Methods 

3.2.1 Animals, preparation, and anesthesia 

The experiments were performed in compliance with Swiss laws on animal protection 

and approved by the Veterinary Office of the Canton of Zurich. Female C57BL/6 mice 

(Janvier, Le Genest-St Isle, France) between 10 and 15 weeks old were studied. All 

mice were initially anesthetized with isoflurane in a 20% O2 / 80% air mixture: 3.5% 

for induction, 2% for endotracheal intubation and during set-up on the animal bed. 

Throughout the duration of the experiment, animals were mechanically ventilated 

using a small animal ventilator (CWE, Ardmore, USA) with a 20% O2 / 80% air 

mixture at a rate of 80 breaths/min, a respiration cycle of 25% inhalation, 75% 

exhalation, and an inspiration volume of 1.8 ml/min. The head was placed with the 

animal's incisors secured over a bite bar and fixated by ear bars, ophthalmic ointment 

was applied to the eyes, and a rectal temperature probe was inserted to keep the animal 

at 36.5 ± 0.5 °C by means of a warm-water circuit integrated into the animal holder 

(Bruker Biospin GmbH, Ettlingen, Germany). The tail vein was cannulated for 

intravenous (i.v.) administration of anesthetics and the neuromuscular blocking agent 

pancuronium bromide (Sigma-Aldrich, Steinheim, Germany).  

Two independent set of studies were performed to evaluate the effects of isoflurane in 

a dose dependent manner.  

Group 1 (Dose-escalation in individual mice): Twelve animals were used in the 

experiment. Isoflurane (Abbott, Cham, Switzerland) was sequentially increased from 

1.1% to 1.3%, 1.5% and 2.0% in a 20% O2 / 80% air mixture for each individual 

mouse. After each incremental increase of isoflurane concentration, there was a 10 
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min interval for equilibration before the fMRI data acquisition was started. Mice 

remained in the MR scanner throughout the duration of the experiment. 

Group 2 (Single dose for each mouse): Isoflurane was administered in a 20% O2 / 80% 

air mixture at a single defined dose per mouse in order to avoid any accumulation 

effects. Doses used were 1.1% (N=10 mice), 1.2% (N=19), and 1.5% (N=18). 

Each animal received an i.v. bolus injection of 0.5 mg/kg pancuronium bromide 

dissolved in saline (0.5 mg/3 ml) followed by a continuous infusion of 0.5 mg/kg/h of 

pancuronium bromide corresponding to an infusion rate of the solution of 3 ml/kg/h.  

Animal preparation, anesthesia protocols, and the conditions during resting-state 

measurements were identical for the fMRI experiments and for the assessment of 

systemic physiological parameters. Approximately 20 min were used for animal 

preparation, and a further 20 min for preparatory MRI scans. Subsequently, rs-fMRI 

data sets of 6 min duration each were acquired. After the experiments, time for 

recovery from anesthesia and pancuronium bromide administration was provided for 

all the animals. 

 

3.2.2 fMRI 

MRI/fMRI experiments were carried out using a Bruker Biospec 94/30 small animal 

MR system (Bruker BioSpin MRI, Ettlingen, Germany) operating at 400 MHz (9.4 T). 

A four-element receive-only cryogenic phased array coil (Bruker BioSpin AG, 

Faellanden, Switzerland) was used in combination with a linearly polarized room 

temperature volume resonator for transmission (Bruker BioSpin MRI, Ettlingen, 

Germany). Anatomical images acquired in the sagittal and horizontal direction allowed 

exact positioning of 12 adjacent coronal slices of 0.5 mm slice thickness, which were 

used for the rs-fMRI scans. A gradient-echo echo-planar imaging (GE-EPI) sequence 

has been used for rs-fMRI data acquisition with field of view=16x7 mm2, matrix 

dimensions=80x35, TR=1 s, TE=12 ms, flip angle=60 degrees. The time series 

acquired was of 360 s length. 

3.2.3 Measurement of systemic physiological parameters 

For physiological parameter measurement, the left hind limb of the mouse was shaved 

and a fiberoptic pulse oximeter (MouseOx, STARR Life Science, Oakmont, USA) 

fixed to the flank in order to record heart rate (in beats per minute, bpm), pulse 

distention (in µm), and oxygen saturation (in %). 
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3.2.4 Data Processing 

All the pre-processing was performed using tools from FMRIB's Software Library 

(FSL version 5). FSL’s recommended pre processing pipeline was used. Motion 

correction, removal of non-brain structures, high pass temporal filtering with sigma = 

75.0 s; pre-whitening and global spatial smoothing of 0.2 mm was applied as part of 

the pre-processing.  

After the pre-processing, the functional scans were aligned to the high-resolution 

anatomical QBI (Queensland Brain Institute) template using linear affine and 

nonlinear diffeomorphic transformation registration as implemented in ANTs (ANTs. 

v 1.9; http://picsl.upenn.edu/ANTS/).  

We used FSL’s MELODIC for probabilistic independent component analysis [23]. 

The multi-session temporal ICA concatenated approach, as recommended for rs-fMRI 

data analysis, allowed to input all subjects from all the groups in a temporally 

concatenated fashion for the ICA analysis. ConcatICA yielded different activations 

and artifact components without the need of specifying any explicit time series model.  

A total of 50 independent components (IC maps) were extracted and the mixture 

model approach was applied on these estimated maps to perform for inference 

analysis. An alternative hypothesis test based on fitting a Gaussian/gamma mixture 

model to the distribution of voxel intensities within spatial maps [24; 25] was used to 

threshold the IC maps. A threshold of 0.5 (p < 0.5) was selected for the alternative 

hypothesis in order to assign equal 'cost' to false-positives and false-negatives. Out of 

the 50 independent components (IC maps), only 25 numbers of components were 

selected, while the components that overlapped with vascular structures and ventricles 

were excluded from further analysis. Similarly, regions at the brain surface, which are 

prone to be affected by the motion artifacts due to e.g. breathing, were excluded.  

Dual Regression (FSL 5.0.2.2) was used for between-subject analysis allowing for 

voxel-wise comparisons of rs-fMRI [26; 27]. Dual regression is a technique that first 

regresses z-score group-IC maps (group spatial maps) into subject specific 4D 

resampled datasets to give a set of subject-specific variance normalized time courses 

for each component separately, and then regresses these time-courses into the same 4D 

dataset to get a subject-specific set of spatial maps. We used dual regression to 

generate the subject specific set of spatial maps from IC components. 

Non-parametric permutation based inference [28] was performed with the subject-
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specific component spatial maps concatenated across subjects for each analysis and 

submitted to voxel-wise between-subject analysis to test for effects of anesthetics dose 

dependency on functional connectivity using FSL-randomise [29]. Contrasts were set 

up using FSL’s general linear model (GLM) and 5000 randomized permutations were 

run as the FSL default setting. We used threshold-free cluster enhancement [30] for 

statistical inference to validate the likelihood of extended areas of signal, which also 

takes into account information from neighboring voxels and combines the quality of 

both conventional cluster-based as well as voxel-based thresholding [30]. Correction 

for multiple comparisons across space was applied assuming an overall significance of 

! (p<0.05) using permutation testing and TFCE. Bonferroni correction was applied 

separately to each analysis depending on the number of components of interest.  

FSL Nets (FSLNets v0.6) was used for estimating the network model of rs-fMRI data. 

The partial correlation matrices of the BOLD signal time courses of each component 

from dual regression were then clustered to form a dendrogram. These clusters were 

used as input in to the GLM analysis and rsun through FSL-randomise [29] to perform 

5000 permutations to test for statistical significance. Edges, i.e. connections between 

network nodes showing statistically significant differences between the groups under 

consideration were obtained from GLM analysis. These significant network edges 

were then used to calculate the network box plots that take into account each edge and 

provide more information on difference in connectivity values between the groups. We 

applied FDR with multiple corrections method using the same unpaired t-test design 

matrix as used previously for DR analysis. 

 

3.2.5 Dynamic Functional Connectivity analysis 

Dynamic functional connectivity networks were evaluated using the dictionary 

learning approach [6; 7; 31]. Time courses were extracted from the ICA maps and fed 

into the dFC algorithm. Simple building blocks (referred as ‘atoms’) of whole brain 

connectivity were estimated using dictionary learning algorithm [31] with 30 folds 

each made of 200 iterations. Building blocks (atoms) were estimated for all anesthetic 

doses and all grouped together in a concatenated fashion, similar to ICA concatenation 

approach, and then were further regressed from the building blocks estimated from 

each anesthetic dose, similar to the dual regression approach. Atoms estimated were 

energy bounded. The algorithm was run iteratively many folds and matched to the first 

fold using Hungarian algorithm with spatial correlation as similarity measure in order 
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to produce robust dictionary learning atoms or dynamic functional connectivity states 

(dFS). The patterns extracted from the algorithm explained more than 50% of the 

variance in the sliding window correlation matrix. The atoms generated by the 

algorithm are the transient states of functional connectivity and therefore it is 

important to perform statistical tests in order to find group differences. In order to 

compare the transient states across different doses, we fixed their sequence to assure 

comparability across the study. A two-sample t-test was performed to statistically 

validate the results of the dynamic functional connectivity analysis. 

 

 

3.3 Results 

3.3.1 Static functional connectivity 

Dual regression and network analysis using FSL Nets revealed static functional 

connectivity between homotopic regions in the two hemispheres. Network analysis 

performed for selected ICs using FSL Nets revealed a significant loss of functional 

connectivity between the homotopic regions of the two hemispheres upon increasing 

the dose of isoflurane (Fig. 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Loss of FC between ICs upon increasing isoflurane dose. (a) Loss of 

connectivity between bilateral homotopic regions in individual animals upon 

increasing dose of isoflurane (group 1) for three selected cortical ICs. Overlay images 

show cortical regions of interest; diagrams changes in z-values, with boxplots 



	 76	

indicating mean and the standard deviation (mean±SD) and green lines show changes 

in individual mice. The animals were kept in the MR scanner as isoflurane dose was 

increased. The p-values for each comparison are given in Suppl. Table 1. (b) Changes 

in individuals when exposing each animal to a single dose of isoflurane (group 2). (c) 

Absence of connectivity between cingulate cortex and thalamus upon increasing the 

isoflurane dose in individual mice of group 1.  (d) Loss of connectivity between 

cingulate cortex and thalamus in individuals when exposing each animal to a single 

isoflurane dose (group 2). (a)-(d) Labels at abscissa indicate isoflurane concentration 

(in %). All results have been corrected statistically using randomized permutations.  

 

While this decrease affected all cortical regions, there were quantitative differences 

depending on the homotopic regions evaluated. For example, the dynamic range for 

the decrease in z-transformed partial correlation values for the interhemispheric 

homotopic connectivity was higher for the somatosensory area representing the upper 

limb (S1-UL) as compared to forelimb motor M1 cortex (M1-FL), which again was 

higher than in the somatosensory barrel field (S1-BF). For the highest isoflurane dose, 

negative z-values have been obtained for S1-UL and S1-BF, but not for M1-FL. The z-

transformed partial correlation values have been corrected using randomised 

permutations for multiple corrections. No significant cortico-thalamic interaction 

could be identified at any of the isoflurane doses (for details see Supplementary 

Material).(Fig. 1c,d).  

 

Full stationary FCs using the full-length time series were computed for each isoflurane 

dose The resulting stationary FC matrix is organized according to brain networks as 

defined in [32; 33] with odd lines/columns comprising ICs located in the left 

hemisphere and even rows/columns comprising ICs in the right hemisphere. The 

matrix includes the lateral cortical network (LCN: including somatosensory S1, 

secondary somatosensory cortex S2 and motor M1 cortex), the associative cortical 

network (ACN: including limb cortex limb and auditory cortex Au), default-mode 

network (DMN: including prefrontal cortex PFC and cingulate cortex Cg), sub-cortical 

network (SuCN: including piriform cortex Piri, striatum Str, ventral amygdala vAmg, 

lateral amygdala lAmg and globus pallidus GP) and thalamic network (ThN: including 

dorsal thalamus dTh and ventral thalamus vTh). The brain regions corresponding to 

the ICs in the matrix are shown in Fig. 2. Significant within-network interactions for 
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LCN and ACN as well as between-network interactions LCN-ACN were observed for 

an anesthesia doses between 1.1 and 1.5% isoflurane (Figure 3). At the 2.0% 

isoflurane only minimal residual FC have been observed. At all isoflurane levels there 

was no obvious FC involving the thalamic networks.  

 

 

 

 

 

 

 

 

 

 

Figure 2: Allocation of ICs to functional modules. The 25 ICs that have been 

identified; have been attributed to the modules defined in [32; 33], i.e. lateral cortical 

network (LCN), associated cortical network (ACN), default mode network (DMN), 

subcortical network (SuCN) and thalamic network (ThN).  

 

 

 

 

 

 

 

 

 

 

Figure 3: Loss of connectivity between ICs upon increasing isoflurane dose. Full 

correlations between the time series were computed for each isoflurane dose to obtain 

a stationary functional connectivity matrix. The matrix is organized according to brain 

networks as defined in [32; 33] with odd rows/columns displaying ICs in left and even 

rows/columns in right hemisphere. Significant within and between interactions are 

found for LCN-ACN for isoflurane levels between 1.1 and 1.5%. This modular 

structure is not seen for 2% isoflurane. Modules are color coded as (bars on left side 
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and top of correlation matrix): LCN = blue, ACN = green, DMN = yellow, SuCN = 

orange, thalamus = red. The colour bar indicates the z-transformed correlation values. 

 

3.3.2 Dynamic functional connectivity analysis 

Dictionary learning was used [6; 7; 8; 31] for evaluating dynamic aspects in functional 

connectivity. The atoms (dFS) were estimated by concatenating the results obtained 

from all groups and then those atoms were used as regressor for analysing rs-fMRI 

data sets for each individual anesthesia dose, similar to the procedure applied in ICA 

analysis and dual regression. Window length was set at 40 seconds. Since TR = 1 sec 

for our data, that means window length = 40 TRs. The step size was set at 1 TR. We 

set the number of components to keep at K=20. Number of dictionary learning folds 

were set at 30. Maximum number of restarts allowed for getting convergence was set 

at 5. We used least square projection method of least fitting for the dictionary learning 

backfitting. Twenty atoms explaining approximately 50% of the variability have been 

considered for the analysis (Suppl. Fig. 1), some of them exhibiting remarkable 

structure reflecting functional modules (Suppl. Fig. 2). For example dFS #1 reflects 

the interaction of LCN with the SuCN, DMN and ThN as well as DMN with SuCN 

and ThN, while dFS #9 captures the connectivity between components of the thalamus 

and cortical and DMN components. Similarly, dFS #10 predominantly reflects FC 

between LCN/SuCN and the other networks identified including ACN, and dFS #14 

captures the interaction of DMN with other networks. The structure of the several dFS 

reveals distinct interactions within and between the networks identified (Suppl. Fig. 2).  

We then applied the dFC algorithm separately to analyse rs-fMRI data obtained for the 

highest and the lowest isoflurane dose to identify the dFSs accounting for most of the 

variability in each case (Fig. 4). While the most relevant dFSs obtained at 1.1% 

isoflurane exhibited some structure (ACN-ACN and ACN-LCN; ACN/LCN-DMN; 

ACN/LCN-DMN and ACN/LCN-SuCN; ACN/LCN-SuCN and ACN/LCN-Thal 

connectivity), this was not the case for dFSs obtained at 2.0% isoflurane, which were 

found to be largely unstructured.    
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Figure 4: Change in most relevant dynamic functional states upon increasing 

isoflurane dose from 1.1 to 2%. The figure shows the four dFS obtained for mice 

anesthetized at 1.1% (upper row) and 2.0% isoflurane (lower row) associated with the 

highest weight. Modules are colour coded as: LCN = blue, ACN = green, DMN = 

yellow, SuCN = orange, thalamus = red. The colour bar indicates the z-transformed 

correlation values. 

 

For analysis of dose-dependent effects the order of the atoms was kept fixed to allow 

for comparisons across groups. There was a significant decrease in weight for two of 

the atoms only when comparing results obtained at 1.1% isoflurane with all other 

doses individually: dFS #6 reflecting the interaction ACN/LCN with SuCN, and dFS 

#10 showing a decrease in weights of SuCN-ACN and SuCN-DMN networks with the 

increased dose of anesthetic (Fig. 5). 

 

 

 

 

 

 

 

Figure 5: Significant decrease in weight of dFSs as a function of isoflurane dose. 

Results of dFC analysis for isoflurane doses of 1.1%, 1,3%, 1.5% and 2.0% (group 1). 
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dFS #6 and dFS #10 revealed significant decrease in weight between the lowest 

isoflurane dose (1.1%) and all other doses tested (FDR corrected, * p<0.01). These 

dFSs describe interactions between LCN-ACN, LCN-SuCN, LCN-DMN, LCN-ThN, 

SuCN-ACN and SuCN-DMN. The bar graphs show the mean absolute sum of dFS 

fluctuations. 

 

Fig. 6 shows the significant dFSs when comparing mice anesthetized at 1.1% and 

2.0%. Increasing the anesthesia dose led to decreased weights of dFS displaying 

modular structures as shown in Fig. 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Significant decrease in weight of dFSs comparing lowest and highest 

isoflurane dose. dFC for isoflurane doses of 1.1% and 2.0% (group 1 ). dFS #2, dFS 

#6, dFS #9, dFS #10, dFS #14 and dFS #15 displayed a significant decrease upon 

increasing the isoflurane dose from 1.1% to 2.0% (* p<0.01, **p<0.001, FDR 

corrected). The bar graph shows mean absolute sum of dFS fluctuations. dFS #2 and 

dFS #14 represent the interactions of DMN with other networks, dFS #6 of both LCN 

and ACN with other networks, dFS #9 of SuCN and ThN with other networks, dFS 

#10 among all the networks except ThN, and finally dFS #15 within and between LCN 

and ACN.  
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3.3.3 Physiological measurements 

Anesthesia has profound effects on respiration and cardiovascular output. As animals 

were mechanically ventilated respiratory depression upon increasing the anesthesia 

level could be avoided as reflected by the stability of the blood oxygen saturation (Fig. 

7a). Nevertheless, there was a dose dependent effect on the cardiovascular parameters 

heart rate (Fig. 7b) and pulse distention (Fig. 7c), a measure of vessel pulsatility, and 

thus related to blood pressure. Both parameters significantly decreased as a function of 

the isoflurane dose. 

 

 

 

 

 

 

 

 

Figure 7: Change in peripheral hemodynamic parameters as a function of 

isoflurane dose. (a) Blood oxygen saturation stayed constant irrespective of isoflurane 

dose indicating stable respiratory condition in the artificially ventilated mice. (b) Heart 

rate dropped significantly upon increasing the isoflurane dose. (c) Similarly, there was 

a substantial decrease in pulse distention as the anesthesia level was increased. All 

values are given as mean±SD. 

 

In order to identify potential effects of alterations in systemic physiological parameters 

on FC and dFS, we carried out a statistical analysis testing for significant group 

differences using heart rate or pulse distention values as correlator. We did not find 

any significant effects on FC. The detailed analysis has been described in 

Supplementary Material.  
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3.4 Discussion 

Analysis of stationary FC, i.e. FC patterns integrated over time intervals of several 

minutes, in humans, monkeys, and rodents, has revealed significant anesthesia-induced 

alterations when compared to the awake state [34; 35; 36; 37; 38]. Nevertheless, this 

‘static’ network view will be inherently incomplete as brain activity states are known 

to fluctuate at a much shorter time scale [39; 40] and the characterization of these 

dynamic functional states may constitute an important aspect for understanding 

anesthesia effects.  

There are two major reasons for studying effects of anesthesia in mice. Firstly, the 

large majority of fMRI studies in rodents including mice use anesthesia in order to 

minimize confounding contributions due to physiological stress and motion. This leads 

to biased activity patterns as anesthesia inherently interferes with brain function, 

which is reflected by reports demonstrating anesthetic-specific effects on brain 

networks [14; 41; 42]. In addition, the effect on brain activity states does not just 

depend on the nature of the anesthetic drug but also on its dose, which determines 

anesthesia depth. Understanding these influences is essential for proper interpretation 

of results. Secondly, the possibility to modulate anesthesia effects on functional brain 

states by targeted pharmacological or genetic interventions may reveal mechanistic 

aspects on the anesthetics mode of action.  

Isoflurane has emerged as attractive anesthetic for fMRI studies as it allows 

maintaining stable anesthesia condition suitable for functional imaging studies in 

rodents [35; 43; 44] and non-human primates [38; 45].  Nevertheless, isoflurane at 

higher doses leads to increases in cerebral blood flow thereby affecting neurovascular 

coupling as well as the hemodynamic baseline state, which will modulate fMRI 

readouts [46]. Also, its interference with the GABA neurotransmitter system may be 

limiting when studying GABAergic processing. Anesthetics such as medetomidine, an 

a-adrenergic agent, have been suggested as alternative [47]; however their suitability is 

subject to other limitations. Medetomidine is vasoconstrictive and may lead to side 

effects such as convulsion. The combined use of medetomidine and isoflurane at low 

dose allows controlling confounding side effects to a large extent, while combining 

beneficial aspects of the two drugs [14]. Though combination anesthesia is 

increasingly used in functional imaging studies, it is important to understand the 

effects of each compound individually in order to analyze potential synergistic or 
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antagonistic interactions. We therefore focused in the current work on characterizing 

effects of isoflurane on static and dynamic functional states in relation to its dose.  

There are two hypotheses regarding anesthesia effects on brain function. The first 

hypothesis suggests anesthesia to disrupt functional networks of the brain such that 

individual brain regions become increasingly disconnected. Decreased functional 

connectivity within and across brain networks would impair information processing, 

which might be associated with loss of consciousness [10; 48]. The second hypothesis 

suggests anesthesia to synchronize activity across large brain networks. This loss of 

spatial segregation might prevent structured information processing and thus lead to 

loss of consciousness [35; 38; 49].  

The result of stationary FC analysis reveals loss of connectivity between homotopic 

areas within the two hemispheres, which is in agreement with the first hypothesis. This 

is also revealed by dynamic network analysis, which indicates reduced weight of dFSs 

that exhibit pronounced modular structure upon increasing the isoflurane dose. On the 

other hand, the contributions of dFS that lack modular structure and rather display 

widespread synchronization across cortical and subcortical areas become dominant at 

an isoflurane dose of 2%. This is in line with the notion, that topological segregation is 

lost with increasing anesthesia depth, corresponding to the second hypothesis and in 

line with earlier studies in rats [42; 50] and mice [14]. Apparently, this widespread 

synchronization is averaged out when considering long integration intervals (stationary 

FC) and we observe loss of homotopic correlation as the prominent feature.  

An interesting observation is that mice under all isoflurane levels displayed absence of 

cortico-thalamic FC. This is in contrast to several studies reporting absence of cortico-

thalamic interaction during sedation [14; 17; 19; 20; 42; 50; 51], while other studies 

have revealed diminished but detectable thalamo-cortical FC [15; 16]. However there 

had been varying reports regarding the cortico-thalamic connectivity. For example, 

Boveroux et al. [13] found thalamo-cortical functional anti-correlation when studying 

propofol-induced unconsciousness in humans. Also in rats, anti-correlated FC between 

thalamus and cortex has been found [52]. These apparent discrepancies might indicate 

that the thalamo-cortical interaction is dependent on the type and depth of anesthesia. 

An important aspect to be considered when analyzing the hemodynamic readout 

constituting the fMRI signal is the stability of the physiological state of the subject. 

Physiological parameter recordings revealed constant and physiological oxygen 
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saturation values throughout the experiment irrespective of the anesthetic doses used. 

This is to be expected as mice have been artificially ventilated at constant tidal 

volumes with a defined amount of oxygen provided via the respiration gas and allowed 

avoiding potential effects due to respiratory depression induced by anesthesia. 

Measurements of heart rate and pulse distention showed an overall decline with 

increasing dose of anesthesia indicative of reduced cardiac output. Since fMRI is an 

indirect measure of cerebral activation, which depends on the cerebrovascular baseline 

state, changes in blood pressure might affect the amplitude of the BOLD signal 

fluctuations and thereby potentially also the correlation analysis. This has also been 

reported previously in [53] and may be considered a drawback of studying anesthesia-

related effects using fMRI.  

Apart from potential impact due to alteration in the physiological state, fMRI is 

hampered by its inherently low temporal resolution due to (i) the temporal 

characteristic of the hemodynamic response acting as strong temporal low-pass filter, 

and (ii) the sequential nature of MRI data sampling. Sampling rates are of the order of 

seconds, which puts a lower limit to a sampling interval in dynamic FC analysis of the 

order of 15 to 20 s, which is long compared to changes in microstates as reported on 

the basis of EEG measurements [7; 31]. Changes occurring at sub-second time scales 

will be missed. Similarly the effect of the window length on dFS has also been widely 

discussed. Shakil et al. [54] showed that clustering based on the sliding window 

correlation did not reliably reflect the underlying state transitions unless the window 

length was comparable to the state duration. However, here we have utilized the 

algorithm that uses dictionary-learning approach, which has been shown to reliably 

estimate the dFS with changing window lengths within a range of 15 to 50 s [7; 31; 55; 

56; 57]. We verified our results in two separate studies using a slightly different 

experimental design: one group with individual animals measured at a defined 

isoflurane dose and a second group with dose-escalation in individual animals. We 

hence refrained from combining them. Both studies yielded the same results 

demonstrating the robustness of the findings, though we are aware that larger group 

sizes might have revealed additional statistically changes in brain networks in response 

to increasing anesthesia depth. Our results refer strictly to isoflurane and it is not 

obvious to what extent the findings regarding specific networks can be generalized to 

other anesthetic drugs, which have different modes of action and thus affect different 

brain networks [14]. Nevertheless, there may be some general principles: Grandjean 
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et. al. [14] using stationary rs-fMRI demonstrated widespread cortical synchronization 

in mice exposed to high levels of urethane, i.e. loss of modular structure. This is 

analogous to the patterns observed under 2% of isoflurane and might indicate that loss 

of functional segregation is in fact an indicator of deep anesthesia, irrespective of the 

agent used. 

In summary, we applied stationary and dynamic FC analysis to examine dose 

dependent effects of isoflurane anesthesia on functional networks in mice. We found 

that while stationary FC analysis with increasing dose of anesthetic revealed loss of 

functional connectivity between homotopic brain regions, dynamic FC analysis 

revealed loss of spatial segregation across some of the brain functional networks, 

which might reflect a state of deep anesthesia. Dynamic functional network analysis 

revealed significant interactions among functional networks that were not apparent 

from the conventional stationary analysis. 
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3.5 Supplementary Material 

3.5.1 Supplementary Table 

  S1B left - S1B right M1 left - M1 right S1 left - S1 right 

1.1 vs 1.3 0.972 0.998 0.91 

1.1 vs 1.5 0.92 0.93 0.9 

1.1 vs 2.0 0.999 0.999 0.999 

1.3 vs 1.5 0.89 0.89 0.9 

1.3 vs 2.0 0.998 0.999 0.92 

1.5 vs 2.0 0.999 0.999 0.93 

Suppl. Table 1: Corresponding p values of all the comparisons shown in Fig. 1a 

 

3.5.2 Supplementary Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Suppl. Fig. 1: Twenty dFS states derived from dictionary learning dFC analysis. 

The majority of dFSs presents a high degree of (modular) structure and revealed 

network interactions that were masked in the stationary FC analysis. Modules are 

colour coded as (column at left and row at top of matrices): LCN = blue, ACN = 

green, DMN = yellow, SuCN = orange, thalamus = red. 
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Suppl. Fig. 2: Selected dFS of mouse brain obtained by concatenating data from 

all anaesthetic doses tested. Atoms (dFSs) generated from the dictionary learning 

dFC analysis show a high degree of structure. Line drawings indicate dominant 

network interactions. Modules are colour coded as (column at left and row at top of 

matrices): LCN = blue, ACN = green, DMN = yellow, SuCN = orange, thalamus = 

red. 

 

 

3.5.3 Supplementary Note 

3.5.3.1. Analysis of mean amplitude values of thalamus and cortex 

The connectivity between thalamus and cortex was found to be absent in all the doses 

of isoflurane 
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In order to determine the basis of low connectivity values between thalamus and 

cortex at higher doses of anesthesia (isoflurane), we analysed the mean amplitude 

values of thalamus and cortex at varying levels of isoflurane. 

The following regions-of-interest and their corresponding time series were used. 

Component   #1                         # 52                              # 1                        # 61 

 

 

 

 

All the time series were mean centered. 

 

 

a) Component number 52 

Left thalamus: Over all mean of all the 4 doses = 4.6956 

Individual mean per dose 

Dose 1.1%: absolute mean=4.8240 

 

 

 

 

Dose 1.3%: absolute mean=4.6143 

 
Dose 1.5%: absolute mean=4.7647 
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Dose 2.0%:  absolute mean=4.5794 

 

 

 

 

 

 

b) Component number 61 

Right thalamus: overall mean of all the 4 doses: 4.4938 

  

Individual mean per dose 

Dose 1.1%:  absolute mean=4.8862 

 

 

 

 

 

 

 

Dose 1.3%:  absolute mean=4.4130 

 
 

Dose 1.5: absolute mean=4.4812 
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Dose 2.0%:  absolute mean=4.1948 

 

 

 

 

 

 

 

c) Prefrontal cortex / Cingulate cortex 

Component number 1 

PFC/Cg: overall absolute mean of all the 4 doses: 6.0138 

  

 

Individual mean per dose 

Dose 1.1%: absolute mean= 7.2420 

 

 

 

 

 

 

 

Dose 1.3%: absolute mean=3.9848 
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Dose 1.5%: absolute mean=5.9087 

 

 

 

 

 

 

 

Dose 2.0%: absolute mean=6.9197 

 

 

 

 

 

 

 

Summarised results 

1. Left thalamus 

Dose 1.1 1.3 1.5 2.0 

mean 4.8240 4.6143 4.7647 4.5794 

Std 3.7422 3.4224 3.5204 3.4871 

 

2. Right thalamus 

Dose 1.1 1.3 1.5 2.0 

mean 4.8862 4.4130 4.4812 4.1948 

Std 3.7583 3.4008 3.4880 3.1392 

 

 

2. PFC/Cg 

Dose 1.1 1.3 1.5 2.0 

mean 7.2420 3.9848 5.9087 6.9197 

Std 11.4408 3.2196 6.5113 4.9898 
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The data suggests that both thalamus and cingulate cortex showed consistent variations 

over time at all doses. That implies that there was not enough evidence that the 

absence of correlation between thalamus and cortex is due to the inactivity of either of 

the regions. However we notice that the change in thalamus was smaller compared to 

the change in cortex with increase in doses.  

 

 

3.5.3.2. Analysing if there is any group effect based on pulse distention and heart 

rate 

We used the dual regression dr2*.* files which were the group-concatenated maps per 

IC. We divided each of these IC files in to group wise pairs 

Group 1 = subject 1 – 12 

Group 2 = subject 13 – 24 

Group 3 = subject 25 – 36 

Group 4 = subject 37 – 48 

 

IC1 à Group 1, Group 2, Group 3, Group 4 

. 

. 

. 

IC100 à Group 1, Group 2, Group 3, Group 4 

 

 

 

a) Pulse Distention (PD) 

Dose (%) 1.1 1.3 1.5 2 

PD 17 15 12 6.2 

 

The mean value is: 12.5 

Based on this, we calculated the difference from mean to the individual values. 

The design matrix that fits, approximates to 

5 3 -1 -7 
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We multiplied each group with its corresponding multiplicative factor. 

IC1 à Group 1 x 5, Group 2 x 3, Group 3 x -1, Group 4 x -7 

. 

. 

. 

IC100 à Group 1 x 5, Group 2 x 3, Group 3 x -1, Group 4 x -7 

 

Then we concatenate the group-wise ICs 

Group 1 x 5 à IC1 . . . IC100 

Group 2 x 3 à IC1 . . . IC100 

Group 3 x -1 à IC1 . . . IC100 

Group 4 x -7 à IC1 . . . IC100 

Finally we combined them according to their effect (positive or negative) 

Positive effect: Group 1 x 5 + Group 2 x 3 à IC1 . . . IC100 

Negative effect: Group 3 x -1 + Group 4 x -7 à IC1 . . . IC100 

 

 

Then we use the design matrix of two-sample t test to estimate the significant 

differences using randomised permutation 

Design matrix used was: 1 -1  

Where 1 was for positive effect and -1 for negative effect 

We ran 5000 randomised permutations to determine the significance. We did not find 

a significant effect of pulse distention on functional connectivity across the groups. 

 

 

b) Heart Rate (HR) 

Dose (%) 1.1 1.3 1.5 2 

HR(bpm) 560 540 530 500 

 

The mean value is: 532.5 

Based on this, we calculated the difference from mean to the individual values. 

The design matrix that fits, approximates to 

16 4 1 -21 

 

We multiplied each group with its corresponding multiplicative factor. 
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IC1 à Group 1 x 16, Group 2 x 4, Group 3 x 1, Group 4 x -21 

. 

. 

. 

IC100 à Group 1 x 16, Group 2 x 4, Group 3 x 1, Group 4 x -21 

Then we concatenate the group-wise ICs 

Group 1 x 16 à IC1 . . . IC100 

Group 2 x 4 à IC1 . . . IC100 

 

Group 3 x 1 à IC1 . . . IC100 

Group 4 x -21 à IC1 . . . IC100 

 

Finally we combined them according to their effect (positive or negative) 

Positive effect: Group 1 x 16 + Group 2 x 4 Group 3 x 1 à IC1 . . . IC100 

Negative effect: Group 4 x -21 à IC1 . . . IC100 

Then we use the design matrix of two-sample t test to estimate the significant 

differences using randomised permutation 

Design matrix used was: 1 -1  

Where 1 was for positive effect and -1 for negative effect 

We ran 5000 randomised permutations to determine the significance. We did not find 

a significant effect of heart rate on functional connectivity across the groups. 
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4. Dynamic effective connectivity using spectral DCM applied to resting state 

mice fMRI data 

 

 

Abstract 

 

DCM estimates effective connectivity [1; 2; 3] by fitting the neuronal model 

convolved with the hemodynamic response function to the observed fMRI data. 

Similar to dynamic functional connectivity [4; 5], the temporal variation of effective 

connectivity i.e. dynamic effective connectivity can be estimated. Knowing the 

temporal changes of the neuronal model using DCM might allow us inferring the 

changes in factors underlying functional connectivity, which we observe by correlating 

the time series extracted from different regions in the brain [6]. Effective connectivity 

estimates the interaction between the regions at the neuronal level. However 

traditionally, DCMs have only been estimated for static case so far. By estimating 

different DCMs at different time points of the time series, we could potentially model 

the temporal evolution of effective connectivity. In this study we applied a fully 

connected DCM model to the resting state fMRI data of mice. The time series data 

were then splitted in two halves to evaluate the effective connectivity for two time 

intervals. The results showed that at 2.0% isoflurane there are only few network 

connections between different brain regions. Furthermore dynamic effective 

connectivity revealed extra network connectivity and augmented strengths of the 

network that were not apparent from static effective connectivity analysis using full 

time series. 

 

4.1 Introduction 

Functional connectivity refers to the interactions between two spatially distant regions 

in the brain. This has been extensively studied in neuroimaging studies to understand 

the workings of the normal brain as well as to identify the changes in the brain due to a 

certain condition. In 1995, Biswal and colleagues reported the presence of functional 

connectivity among certain brain region even in the absence of any explicit task [7]. 

Analyses of the temporal coherence of these fluctuations allows identifying brain 

regions that display a high degree of synchronicity, which therefore are believed to be 

functionally connected. Since then there have been several analysis methods 

developed in order to extract more meaningful information of the brain networks from 
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these resting state fMRI signals. Resting state fMRI is also attractive for animal 

studies for both mechanistic purposes and as models of human disease. Since animals 

are typically anesthetized while imaged, rs-fMRI provides a natural way to explore the 

brain networks of these animals without disturbing the intrinsic functional 

connectivity. This method is also of great value to explore differences in brain 

pathologies and other cognitive disorders. rs-fMRI has become an established tool in 

clinical and experimental neuroscience and has been consistently applied across 

species for network identification. The approach is of particular interest for examining 

functional connectivity and brain networks in order to find alterations in brain 

connectivity in neurological or psychiatric disorders.  

 

 

4.1.1 Dynamic functional connectivity 

Typically when extracting information on FC on the basis of rs-fMRI data, the whole 

time series is used to compute correlation values, assuming that the functional 

networks are stationary in time. That essentially means that information on 

events/interactions that occur at a shorter time scale is averaged out. Yet, neural 

processing occurs at a much shorter time scale and EEG studies led to the 

identification of microstates that involve network rearrangements in the millisecond 

time domain [8; 9]. Dynamic functional connectivity (dFC) analysis [5] is a concept 

that aims at estimating the FC changes over relatively short time intervals constituting 

a small fraction of the full time series recorded.  Limiting factors when using fMRI 

data are the low-pass temporal filtering imposed by the hemodynamic response 

function and the sequential nature of MRI data acquisition, which limits the time 

required to capture an image volume to one or a few seconds. Despite these 

limitations, dFC has been suggested as a more accurate representation of functional 

brain networks since brain networks are dynamic. There have been many algorithms 

proposed in the literature to estimate dFC from resting state fMRI data. Sliding 

window based correlation analysis is a simple method to define a window of duration 

!, for which a conventional FC analysis is carried out. The window must comprise a 

sufficient number of sample points to allow for a meaningful correlation analysis, yet 

should not be too long in order to still capture dynamic aspects. The window is then 

shifted by an increment ∆! (typically one sampling point), while maintaining its length 

! and the FC analysis is carried out again. Repeating this procedure several times 

allows monitoring the changes in FC networks over time. These resulting correlation 
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matrices are then z-transformed and are called as dFC matrices !!(!!; !) . This 

procedure is illustrated in Figure 1. 

 

 

 

 

 

 

 

 

 

  !!(!)           !!(!!; !)               !!(!!!; !) 
 

Figure 1: Static FC matrix !!(!) is obtained for each subject ! by computing the 

coefficients of correlation between the whole time series of duration � for all pairs of 

regions (voxels) ! and !. dFC is estimated by carrying out the analogous analysis for 

time windows of duration ! separately, the starting point of which are incremented by 

∆!, yielding correlation matrices !!(!!; !) with 1 ≤ ! ≤ !! , !! = (! − !)/∆! being 

the number of windows. Adapted from [10]. 

 

4.1.2 Effective connectivity 

Effective connectivity refers to the influence that one neural system exerts over 

another. That means, unlike functional connectivity which is based on the correlation 

between time series, and therefore explains the neurophysiological relationship 

between distant brain regions, effective connectivity aims to identify the relationship 

between the neurons, that means the relationships between distant brain regions at the 

neuronal level.  

 

There have been several methods in the literature that’s aims to effective connectivity. 

Granger causality [11; 12; 13; 14] and other Vector Autoregressive Modeling based 

methods, use temporal precedence for inferring causality in BOLD time series 

however it is regarded as directed functional connectivity rather than effective 

connectivity since model selection criterion in these methods make inferences about 

the autoregressive processes rather than causal neuronal coupling. Furthermore 
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Granger causality also ignores hemodynamic convolution [15; 16; 17; 18]. Similarly 

Structural Equation Modeling is another approach to infer effective connectivity that 

we can only apply to models of low complexity.  SEM can only analyze steady-state 

brain connectivity patterns therefore it is not suitable for studying dynamic changes in 

the fMRI signal. Another method that has been consistently used in the literature is 

dynamic causal modeling, that infers causal neuronal relationship in the network and 

produces consistent results, some of which have been validated by simultaneously 

recording the local field potential (LFP) in animals. 

  

4.1.3 Dynamic Causal Modeling (DCM) for estimating effective connectivity 

In 2003 Friston et al. [19] proposed a method to reduce the “neuronal” evolution 

function to the most simple and generic form possible, i.e., a bilinear interaction 

between neuronal states !  and inputs ! . They proposed to estimate effective 

connectivity [1; 2; 3] by fitting the neuronal model convolved with so-called “Balloon 

model”, [20], an extension of hemodynamic response function, to the observed fMRI 

data. Then the deconvolution of the BOLD signal is performed to estimate neuronal 

response. This procedure is called dynamic causal modelling (DCM) as it attempts to 

infer causality between neuronal networks. Figure 2 shows the basic DCM model. 

In order to estimate effective connectivity, several models are compared against each 

other to find the best fit to the experimental data (observed fMRI signal). Model 

comparison in effective connectivity plays an important role by selecting one of the 

several models, that best explains the cause of the observed fMRI data. Each 

alternative causal model represents distributed brain responses and therefore represents 

as many alternative hypotheses.  
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Figure 2: Figure shows a basic DCM model and its corresponding neuronal state 

equation.[1; 3; 19] 

There have been numerous studies that use DCM to estimate the effective connectivity 

in humans as well as in other species [1; 21; 22; 23; 24; 25; 26; 27]. Due to the higher 

temporal resolution of local field potential (LFP) to infer on sequel of neuronal events, 

results of DCM have been validated by simultaneously recording the local LFP 

measurements that verified the ability of DCM to infer on synaptic processes. Razi et 

al [6] showed that functional connectivity can be derived from the effective 

connectivity, whereas the opposite is not true. 

 

4.1.4 DCM for resting state fMRI 

Typical DCM models cannot be specified without any driving inputs [1; 3; 25]. 

Resting state fMRI data has no driving inputs and therefore it had been challenging to 

apply DCM to resting state fMRI data. However recently there were two methods 

proposed to overcome this limitation. First approach is to include stochastic terms in 

the model [28; 29] and therefore is called stochastic DCM (sDCM). Stochastic DCM 

estimates time-dependent fluctuations in neuronal states producing observable fMRI 

data.  

 

In case of stochastic DCM, a stochastic term is added to the ordinary differential 

equations used in standard DCM in order to model endogenous neuronal fluctuations. 

Therefore the stochastic generative model for the resting state fMRI time series can be 

written as: 

 

! ! = !  ! ! .! ! ,! +  ! (!)       (1) 

 

where ẋ(t) is the rate of change of the neuronal states x(t), θ are unknown parameters 

(i.e. the effective connectivity) and v(t) is the stochastic process, modelling the random 

neuronal fluctuations that drive the resting state activity. 

 

Using linearity assumptions, eq (1) can be written in generalised coordinates of 

motion, which can be further written in a simpler form for resting state activity as 

below 
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! ! ! = ! ! ! + !! ! + ! !         (2) 

 

where A is the Jacobian describing the behaviour – i.e. the effective connectivity – of 

the system near its stationary point in the absence of the fluctuations v(t). The linear 

dynamical system shown in eq (2) has quasi-deterministic behavior as shown by [28; 

29] and is insensitive to initial conditions. 

 

The second approach does not treat neuronal fluctuations as a stochastic noise rather 

evaluates the time-invariant parameters of their cross spectra, replacing the original 

time series with its second-order statistics (i.e., cross spectra), under stationarity 

assumptions [6; 25; 30]. Since this approach makes prediction in the frequency domain 

and is based on cross spectra features, it is called spectral DCM (spDCM) [6]. Spectral 

DCM has been found superior to stochastic DCM since spectral DCM was found more 

accurate and sensitive to group differences as well as it does not require estimation of 

hidden states as in the case of stochastic DCM. 

 

Spectral DCM is based upon a deterministic model that estimates the time-invariant 

parameters of their cross spectra. In spectral DCM, the original time series is replaced 

by second order statistics (i.e., cross spectra), which means we estimate the covariance 

of the random fluctuations instead of estimating the time varying hidden states. This 

scale free form of the state noise has been suggested in the previous work on neuronal 

activity 

 

!! !,! =  !!  !!!!         (3) 

 

!!  !,! =  !!  !!!!         (4) 

 

where, {α, β} ⊂ θ are the parameters that control the amplitudes and exponents of the 

spectral density of the neural fluctuations.  

 

Using the model parameters, θ ⊇ {A, C, α, β}, the expected cross spectra is generated 

as follows 

! ! =  ! !   !(!)+ !(!)         (5) 

! ! =  !! !  exp(! !! !)        (6) 
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!! !,! = ! ! ! !! !,! +  !!  !,!        (7) 

 

where K(ω) is the Fourier transform of the system's (first order) Volterra kernels κ(t), 

which are a function of the Jacobian or effective connectivity. Variational Laplace 

procedures can be used to estimate the unknown quantities ψ = {φ, θ, σ} of this 

equation [31; 32]. 

 

Given the consistency and validation of DCM results for estimating effective 

connectivity, we use DCM in this work. Moreover since spectral DCM has been 

shown to perform better than other DCM invariants for resting state data, we use 

spectral DCM for estimating effective connectivity in this work. 

 

4.1.5 Dynamic effective connectivity 

We propose to combine the two techniques by estimating effective connectivity over 

small windows of the resting state time series. Neuronal networks are dynamic in 

nature, and by estimating effective connectivity over short time windows, we can 

identify those changes at the neuronal network level that may have been averaged out 

in a typical estimation of effective connectivity through DCM using the whole resting 

state time series. The figure below presents the conceptual working of this technique. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The estimation of dynamic effective connectivity over sliding time windows 

has been shown. The underlying neuronal model may change over the sliding 

windows.. 
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4.2 Materials and method 

4.2.1 Animals, preparation, and anesthesia 

The experiments were performed in compliance with Swiss laws on animal protection 

and approved by the Veterinary Office of the Canton of Zurich. Female C57BL/6 mice 

(Janvier, Le Genest-St Isle, France) between 10 and 15 weeks old were studied. All 

mice were initially anesthetized with isoflurane in a 20% O2 / 80% air mixture: 3.5% 

for induction, 2% for endotracheal intubation and during set-up on the animal bed. 

Throughout the duration of the experiment, animals were mechanically ventilated 

using a small animal ventilator (CWE, Ardmore, USA) with a 20% O2 / 80% air 

mixture at a rate of 80 breaths/min, a respiration cycle of 25% inhalation, 75% 

exhalation, and an inspiration volume of 1.8 ml/min. The head was placed with the 

animal's incisors secured over a bite bar and fixated by ear bars, ophthalmic ointment 

was applied to the eyes, and a rectal temperature probe was inserted to keep the animal 

at 36.5 ± 0.5 °C by means of a warm-water circuit integrated into the animal holder 

(Bruker Biospin GmbH, Ettlingen, Germany). The tail vein was cannulated for 

intravenous (i.v.) administration of anesthetics and the neuromuscular blocking agent 

pancuronium bromide (Sigma-Aldrich, Steinheim, Germany).  

Twelve animals were used in the experiment. Isoflurane (Abbott, Cham, Switzerland) 

dose of 2.0% was used in a 20% O2 / 80% air mixture for each individual mouse. After 

giving isoflurane, there was a 10 min interval for equilibration before the fMRI data 

acquisition was started. Mice remained in the MR scanner throughout the duration of 

the experiment. For this work, we have only considered the neuroimaging data of the 

mice under 2.0% isoflurane. 

 

4.2.2 fMRI 

MRI/fMRI experiments were carried out using a Bruker Biospec 94/30 small animal 

MR system (Bruker BioSpin MRI, Ettlingen, Germany) operating at 400 MHz (9.4 T). 

A four-element receive-only cryogenic phased array coil (Bruker BioSpin AG, 

Faellanden, Switzerland) was used in combination with a linearly polarized room 

temperature volume resonator for transmission (Bruker BioSpin MRI, Ettlingen, 

Germany). Anatomical images acquired in the sagittal and horizontal direction allowed 

exact positioning of 12 adjacent coronal slices of 0.5 mm slice thickness, which were 

used for the rs-fMRI scans. A gradient-echo echo-planar imaging (GE-EPI) sequence 

has been used for rs-fMRI data acquisition with field of view=16x7 mm2, matrix 
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dimensions=80x35, TR=1 s, TE=12 ms, flip angle=60 degrees. The time series 

acquired was of 360 s length. 

 

4.2.3 Data Pre-processing 

All the pre-processing was performed using tools from FMRIB's Software Library 

(FSL version 5). FSL’s recommended pre processing pipeline was used. Motion 

correction, removal of non-brain structures, high pass temporal filtering with sigma = 

75.0 s; pre-whitening and global spatial smoothing of 0.2 mm was applied as part of 

the pre-processing. After the pre-processing, the functional scans were aligned to the 

high-resolution anatomical QBI (Queensland Brain Institute) template using linear 

affine and nonlinear diffeomorphic transformation registration as implemented in 

ANTs (ANTs. v 1.9; http://picsl.upenn.edu/ANTS/).  

We used FSL’s MELODIC for probabilistic independent component analysis [33]. 

The multi-session temporal ICA concatenated approach, as recommended for rs-fMRI 

data analysis, allowed to input all subjects from all the groups in a temporally 

concatenated fashion for the ICA analysis. ConcatICA yielded different activations 

and artifact components without the need of specifying any explicit time series model.  

These results were used for Dual Regression and Network Modeling [34] of the brain 

networks using FSLNets. Based on the networks that were found significant, we 

identified 8 ICA components as shown in Figure 1. These ICs were then fed in to the 

dynamic causal modeling (DCM) framework in the SPM toolbox. In order to estimate 

the temporal evolution of effective connectivity networks, we divided the time series 

of 360s (360 volumes with 1 volume/s) in two blocks (0-180s, 161-340s), and ran 

DCM framework together with nested Bayesian Model Selection separately for each 

half of the time series for all subjects. We then applied a fully connected spectral 

DCM [6; 25] to the resting state fMRI data, and compared it against a nested models 

using parametric empirical bayes (PEB) framework [35; 36]. Connection strengths 

were identified by inspecting the parameter estimates and posterior expectations as 

stored in DCM.Ep.  

 

4.2.4 Dynamic Effectiive Connectivity analysis 

Dynamic effective connectivity analysis was performed by estimating effective 

connectivity over short time windows.  
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4.2.4.1 Generation of sliding window signals 

We applied an square wave to the original time series, resulting in shortening the time 

series with keeping the data where square window was at its peak and removing the 

data where the square window was at its bottom. This method truncates the original 

time series in to smaller size. Since for DCM estimation, a larger time series is 

recommended, we used square wave of size 180 seconds. It can we described 

mathematically as follows 

 

! ! =   
1,             !  < !

    0,     ! < ! ≤  !!  !       (8) 

This rectangular window is then multiplied with the experimental data time series to 

generate windowing effects. The same procedure was repeated for the other half of the 

rectangular window, which were generated by moving the rectangular window in x-

axis (time axis) by 170 seconds, keeping the length of the window constant. 

Figure 4 shows the rectangular window and after it is multiplied to the original fMRI 

time series. The result is a truncated time series of length equal to the rectangular 

window, that is 180 seconds.  

 

 

 

 

 

 

 

Figure 4: Rectangular window signal and its multiplication to the original fMRI time 

series. 

 

For future work, we also suggest applying Gaussian window function to generate 

sliding windows. A Gaussian window may be implemented by calculating the 

coefficients of a Gaussian window. 

! ! =  !!
!
!(! !

(!!!)/!)
! = !

!!!
!!!   

where –(N – 1)/2 ≤ n ≤ (N – 1)/2 and α is inversely proportional to the standard 

deviation, σ, of a Gaussian random variable. The exact correspondence with the 

standard deviation of a Gaussian probability density function is σ = (N – 1)/(2α). 
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The width of the Gaussian window can be set to a pre determined length from the 

literature, for example 50 sec, and an offset value equal to the last value on the discreet 

Gaussian curve can be used at the starting and ending points. The Gaussian curves thus 

generated would be padded with these offset values to make the length of this time 

series equal to that of the experimental data time series. This Gaussian window time 

series will then be multiplied with the experimental data time series to generate 

windowing effects. The same procedure will be repeated for multiple Gaussian 

windows which were generated by moving the Gaussian window in x-axis (time axis), 

keeping the length of the window constant  

Supplementary figure 1 shows the generation of Gaussian windows and its application 

to the experimental fMRI signal.  

 

4.2.4.2 Estimation of dynamic effective connectivity  

Time courses were extracted from the selected ICA maps (n=8) and then fed in to the 

window generation functions, discussed above, to estimate input signals for the DCM 

analysis[6], which was used to estimate effective connectivity.  

Fully connected DCMs of 8 regions of interest were estimated separately for each time 

window, as well as for full time series. All these DCMs were then used in the PEB 

framekwork for estimating group level connectivity strengths. 

We applied nested PEB[35; 36] models, which compared all the possible models from 

a fully connected network. 

 

 

4.3 Results 

We used the following brain regions as selected from IC components for further 

analysis 

 

 

 

 

 

 

 

Figure 5: ICs of brain regions selected through FSL Nets analysis 
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The DCM was used to estimate nested models that mean to test all possible models by 

switching on and off different connections and run under Bayesian model selection to 

select the best model. The connection strengths were found by estimating the values of 

matrix A. Supplementary figure 2 shows the model space and Bayesian model 

reduction and supplementary figure 3 shows the estimation of DCM parameters with 

strong evidence. 

 

The DCM estimations of the parameter A with strong evidence (P>=0.95) is 

summarized in the table below for all windows.  

 

        

  Window length (in sec) 

Brain regions 1- 340 sec 1 - 180 sec 160 - 340 sec 

Ins1 - Ins2 0.038 -- -- 

Ins1 - PFC 0.038 -- 0.045 

Ins1 - Amg1 -- 0.038 -- 

PFC - PFC -0.085 -0.09 -0.087 

S1-S1 -0.088 -0.1 -- 

Th1 - Th1 -0.08 -0.083 -0.086 

Th2 - Th2 -0.083 -0.1 -0.093 

Amg1 - Amg1 -0.081 -0.102 -0.09 

Amg2 - Amg2 -0.096 -0.11 -0.11 

Ins1 - Ins1 -0.085 -0.105 -0.1 

Ins2 - Ins2 -0.086 -0.1 -0.11 

 

Table 1: The table shows the parameter estimations of DCM connection strengths with 

P>=0.95 for different windows of the time series. The negative values are showing the 

inhibitory self-connections. 
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4.4 Discussion 

 

Time varying DCMs may allow us to capture the effect of transient network patterns 

under different brain states. In comparison to dynamic functional connectivity 

analysis, dynamic effective connectivity yields information on the directionality of 

connections within the network. Dynamic DCMs, as shown in this work, may help 

identifying group differences based on the estimated time-varying network patterns. 

 

We estimated temporal variations of DCMs by estimating effective connectivity at 

different time points. Table 1 shows the brain networks through final models selected 

under normal procedure (using full time series length) as well as during estimating the 

temporal evolution of DCMs. The changes in the estimated model parameters reflect 

the change in dynamic effective connectivity over time. The results show differences 

in effective connectivity networks because of changes in posterior expectations as 

calculated by DCM.Ep. In this case, the DCMs estimated from time point 181-360 

seconds had a lower excitatory influence between insula (Ins) and amygdala (Amg) as 

selected by the random effects analysis using Bayesian model selection with p > 0.95.  

 

The results showed that the neuronal connection strengths between different brain 

regions as estimated from DCM were low when considering the full time series. Some 

connections were also missing in the full time series analysis for example between 

Ins1 and Amg1 which was present in the time window of 1-180 sec however was 

missing from 160-340 sec as well when considering the full time series 1-340 sec. The 

inhibitory self-connections, negative values in the table, ensure that this connection 

decays and the system reaches stability. 
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4.5 Supplementary material 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 1 

(a) Generation of Gaussian window with shift 40 seconds and length 50 seconds, 

as well as multiple Gaussian windows that were generated each with a shift of 

10 seconds. (b) Application of the Gaussian window of length 50 second and 

shift 40 second as shown above, to the original fMRI time series. Signal in blue 

is the original fMRI time series, and the signal in red is the final multiplied 

signal that is obtained by multiplying the Gaussian window with the original 

fMRI time series. 

 

 

 

 

 

 

 

 

 

 

 



	 115	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 2: Figure showing the model space and bayesian model 

reduction to estimate DCM parameters at group level. 
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Supplementary Figure 3: Estimated DCM parameters with strong evidence using the 

whole time series (1-340 sec.) 
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5. Deep learning classification and support vector machines (SVM) to classify 

animals according to anaesthesia regimes on the basis of stationary and dynamic 

functional connectivity data 

 

 

Abstract 

Single subject machine learning classification using fMRI data is challenging due to 

the high dimensionality and low information content in the fMRI data. This also holds 

when classifying subjects according to the dose of a drug received, as group 

differences are in general small and given the inter-subject variability intrinsically 

difficult to detect. In resting state fMRI, information derived from stationary 

functional connectivity analysis has been used as features in machine learning 

algorithms. Recently, methods for studying dynamic functional connectivity have been 

introduced, i.e. the connectivity information on shorter time scales assuming that brain 

networks and their interaction varies over time. In this work we fed features extracted 

from stationary as well as dynamic functional connectivity analysis derived from mice 

exposed to the anaesthetic isoflurane at different doses to machine learning algorithms 

for both support vector machines (SVM) and deep belief networks (DBN). The results 

show that we were able to successfully classify between anaesthetic doses using 

features extracted from static and dynamic functional connectivity analysis. The 

features extracted from dynamic functional connectivity analysis were found to be 

more discriminative to different anaesthetic doses.  This shows the potential for the 

use of features based on dynamic functional connectivity analysis. A major limitation 

regarding the use of machine learning in the context of our study was small sample 

size (N=12 per group), which led to an accuracy of less than 70% for most 

comparisons. 
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5.1 Introduction 

The use of machine learning methods for classification of subjects in to specific 

groups, for example corresponding to a specific disease state, has gained rapid 

popularity in the recent years [1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11]. Machine learning is a 

statistical approach for identifying differentiating features from ‘training’ data and 

using these features for assigning subjects, whose data were not contained in the 

training data set, to classes/groups. Ideally, machine learning algorithms expect a 

training data set with a high number of samples and a low number of features, in order 

to effectively learn the data patterns. Features that contain more information and are 

more distinctive among the classes are considered better.  

 

fMRI offers high spatial resolution to study human and animal brain function non-

invasively. Typically, fMRI analysis uses linear regression models with several 

assumptions in a so-called mass univariate approach. This approach assumes that each 

voxel in the brain is independent of the other voxels, and therefore neglects the basic 

principles of brain functions that neurons interact with each other through synaptic 

connections and the activity in brain voxels is dependent on many other voxels 

through a complex underlying function. Machine learning as a multivariate approach 

addresses the shortcomings of mass univariate approaches by disregarding the 

independence assumption over voxels, and takes in to account the interdependence of 

voxels. While mass univariate models can be considered as encoding models to predict 

brain activity from experimental context, multivariate models are often termed as 

decoding models to predict experimental context from brain activity. In typical 

machine learning classification analysis, the fMRI data is the observed surrogate of 

brain activity. Comparing training data with known assignment to two or several 

classes, machine learning approaches search for patterns (features) that enable 

maximal discrimination between theses classes. Then an entirely new dataset 

consisting of the same or similar classes is used for model validation. Given the 

statistical nature of machine learning algorithms a large sample size with data 

characterized by a low number of features (low dimensional feature vector) favor 

proper feature identification. However, fMRI data is high dimensional in nature and 

data samples are typically small in number (<200 samples or subjects). Therefore, 

application of machine learning algorithms to the fMRI data is challenging and bears 

the risk of data overfitting. This may be largely avoided by applying dimensionality 

reduction algorithms [12; 13; 14; 15; 16]  
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Appropriate feature selection for neuroimaging data has been discussed in [2]. Many 

of the machine learning algorithms have to be considered as “black boxes”; it is not 

exactly clear what the algorithms have learned. This makes them prone to finding 

spurious associations. A proper training comprising of neurobiologically relevant 

features covering all the possible data variations and large sample size, and validation 

is required in order to avoid such pitfalls. It has also been argued that only the features 

that are meaningful with regards to neurobiological aspects should be considered 

relevant for enhancing our understanding of the brain function[17; 18]. 

 

Anesthesia has been shown to alter the functional connectivity both in humans and 

animals [19; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29; 30]. Dose dependent effects of 

isoflurane in rats have been thoroughly investigated in [31] and suggests consistent 

changes in functional connectivity with increasing dose of anesthetics. Similarly, we 

have found alterations in functional networks of the mouse brain that depend on the 

dose of isoflurane administered, in particular loss of interhemispheric homotopic 

correlation and modular segregation (Chapter 3 of the thesis). In this work we 

evaluated, whether these changes in resting state patterns were of sufficient 

discriminative power to enable assignment of individual animals to specific isoflurane 

dose groups using machine learning algorithms, in particular Deep Belief Network 

(DBN) and Support Vector Machines (SVM). For feature extraction both stationary 

and dynamic functional connectivity analysis has been used.   

 

5.1.1 Support Vector Machines (SVM) 

SVM is considered one of the famous machine learning algorithm that identifies a 

separating hyperplane that maximizes the margin between the classes. Given a set of 

data points from two classes, the first step is identifying the support vectors, that are 

subset of training samples closest to the data from other group, and then maximizing 

the margin between the support vectors in a linearly separable plane. The problem of 

finding the optimal hyper plane is an optimization problem is solved by iteratively 

moving the hyperplane to maximize the distance between the groups. The hyperplane 

that represents the largest separation between the classes or that maximizes the 

distance from it to the nearest data point on each side, is called maximum-margin 

hyperplane. Figure 1 below shows data points from two groups that are linearly 

separated by a maximum margin hyperplane. 
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Figure 1: SVM separating the hyperplane with maximum margin between the two 

groups. 

 

SVM is a linear classifier; this means SVM is capable of finding a hyperplane if the 

feature space is linearly separable. However, most of the real world data is non-linear 

in nature. In order to address this issue, an extension of SVM has been proposed in the 

literature with the use of kernels e.g. radial basis function to find the separating hyper-

plane [32]. The idea of the kernels is to apply a nonlinear transformation to the 

nonlinear input space, the result of which is a linearized feature space, in which SVM 

aims at identifying a hyperplane that linearly separates the classes in the transformed 

space. This is shown in Figure 2. 

 

 

 

 

 

 

 

 

 

Figure 2:  Non linear SVM transformed the input space in to feature space using a non 

linear kernel. In the feature space, the two classes are linearly separable. 

 

5.1.2 Deep learning 

A Deep Belief Network (DBN) is a deep learning algorithm that consists of many 

layers of Restricted Boltzmann Machines (RBMs).  RBMs are two-layer neural nets 

with the first layer of the RBM being the visible, or input, layer, and the second one 
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being the hidden layer. While each ‘neuron’ in each layer is connected to each neuron 

of the other layer, there is no connection between neurons within the same layer (no 

intra-layer communication, therefore ‘restricted’). Each node (neuron) is a locus of 

computation that processes input, and begins by making stochastic decisions about 

whether to transmit that input or not. A DBN network can be decomposed into a series 

of RBMs, in which in a subsequent step the hidden layer is considered the input layer 

of the next RBM and so forth. A DBN is a generative graphical model neural network 

that can learn a probability distribution over its set of inputs. Fig. 5 shows a neural 

network with two layers. The lower layer ! is connected to the hidden layer ℎ through 

weights !. If the learning error is high, the system adapts, altering the weights in 

order to improve subsequent results. This procedure is expected to capture the high 

level representation of the original data at the output of the last layer [33; 34]. RBM 

uses learning method based on Gibbs sampling, that allows obtaining a sequence of 

observations without direct sampling, and adjusts its weights at each layer to minimize 

the reconstruction error.  

 

 

 

 

 

 

 

 

      !  ℎ 

 

 

Figure 3: A simple feed forward neural network is shown. The first layer is the input 

layer, also called the visible layer, followed by the middle layer also called the hidden 

layer. Inputs are transformed to the hidden using a weighting function W. Neural 

network output is generated at the output layer. From Quiza and Davim [35]. 

Reproduced with permission. 

 

If ! defined as the visible layer and ℎ is defined as the hidden layer as shown in the 

Fig. 3, then probability distribution of the model as indicated in [34] is given by  
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! !, ℎ =  !!!(!,!)!         (1) 

 

where ! and ℎ are stochastic binary variables. The energy function !(!, ℎ) and the 

partition function ! are defined as 

 

! !! , ℎ! =  −!! ∙ !! − !! ∙ ℎ! − ℎ! ∙!!" ∙ !!     (2) 

 

 

! !, ℎ =  !!! !!,!!!,!        (3) 

 

where ! and ! are the biases of the visible layer and the hidden layer respectively. The 

sum over !, ! represents all possible states of the model. 

 

The condition probability of one layer given the other one is: 

! ℎ ! =  ! ℎ!  !)!       (4) 

Notice that if one layer is given, the distribution of the other layer is factorial. Since 

the neurons are binary the probability of a single neuron being on is given by 

 

! ℎ! = 1  !) = !"#$(!! +!!  !)     (5) 

 

Similarly the conditional probability for the visible layer can be found 

 

! !! = 1  ℎ) = !"#$(!! +!!  ℎ)     (6) 

RBM uses a probabilistic version of the normal sigmoid neuron activation function 

with the goal to maximize the log likelihood of the training data i.e. make the model 

generate data like the training data.  

The gradient of the negative log probability of the visible layer with respect to the 

model parameters ! is:  
!
!"  −!"# ! ! =  !!"  (− log !(!, ℎ)! )      (7) 

 

The derivation has been shown in [34] and it is reduced to 
!
!"  −!"# ! ! =  −!! −! ! − !![−! ]     (8) 
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!
!"  −!"# ! ! =  −!! −ℎ ! − !![−ℎ]     (9) 

 

where !! is a function returning the first moment or expectation value.  

 

Model parameters are optimized in a recursive manner, given some state of the  

 

 

!(!) = !(!|ℎ(!!!))        (10) 

↓          

ℎ(!) = !(!(!)|ℎ)        (11) 

↓          

!(!!!) = !(!|ℎ(!))        (12)  

 

 

The complete derivation has been shown in [34]. The superscripts 1 ≤ ! ≤ ! denote 

the number of the iteration. At each iteration the entire layer is updated. The model is 

initialized at some arbitrary state, ! iterations are carried out, ! being a large number. 

The termination criterion used was, either error was smaller than a predefined 

threshold value or the set number of iterations are performed as defined by epochs. In 

order to make this efficient we initialize the model at a training sample, iterate one 

step, and use this as our sample. This is the contrastive divergence algorithm as 

introduced by Hinton et al. [33] with one step (CD-1). The logic is that, as the model 

distribution approaches the training data distribution, initializing the model with a 

training sample may be considered as approximation for model convergence. Finally, 

for computational efficiency, we will use stochastic gradient descent instead of the 

recurrent batch update rule described above. The final algorithm has been shown in 

[34]. 

 

The learning procedure consists of several steps of Gibbs sampling and adjusting the 

weights to minimize reconstruction error. All this procedure is in an unsupervised 

learning fashion (the algorithm is kept unknown about which data point belongs to 

which group), where the training labels are unknown to the algorithm. The output of 

the generative model is then used in a neural network classifier in a supervised 

learning fashion (training labels are known to the algorithm; i.e. the algorithm is 
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informed of which data point belongs to which group) in a procedure called stacking. 

This ensures that the algorithm learns from the labels/outputs and modifies the learned 

layer-wise parameters accordingly. 

 

In deep belief network we train the RBM as described above and then train another 

RBM using the first RBM's hidden layer as the second RBMs visible layer and so on. 

 

 

5.1.3 Dynamic functional connectivity analysis 

Typically when extracting information on FC on the basis of rs-fMRI data, the whole 

time series is used to compute correlation values, assuming that the functional 

networks are stationary in time. That essentially means that information on 

events/interactions that occur at a shorter time scale is averaged out. Yet, neural 

processing occurs at a much shorter time scale and EEG studies led to the 

identification of microstates that involve network rearrangements in the millisecond 

time domain [36; 37]. Dynamic functional connectivity (dFC) analysis [38] is a 

concept that aims at estimating the FC changes over relatively short time intervals 

constituting a small fraction of the full time series recorded.  Limiting factors when 

using fMRI data are the low-pass temporal filtering imposed by the hemodynamic 

response function and the sequential nature of MRI data acquisition, which limits the 

time required to capture an image volume to one or a few seconds. Despite these 

limitations, dFC has been suggested as a more accurate representation of functional 

brain networks since brain networks are dynamic. There have been many algorithms 

proposed in the literature to estimate dFC from resting state fMRI data. Sliding 

window based correlation analysis is a simple method to define a window of duration 

!, for which a conventional FC analysis is carried out. The window must comprise a 

sufficient number of sample points to allow for a meaningful correlation analysis, yet 

should not be too long in order to still capture dynamic aspects. The window is then 

shifted by an increment ∆! (typically one sampling point), while maintaining its length 

! and the FC analysis is carried out again. Repeating this procedure several times 

allows monitoring the changes in FC networks over time. These resulting correlation 

matrices are then z-transformed and are called as dFC matrices !!(!!; !) . This 

procedure is illustrated in Figure 4. 
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  !!(!)           !!(!!; !)               !!(!!!; !) 
 

Figure 4: Static FC matrix !!(�) is obtained for each subject ! by computing the 

coefficients of correlation between the whole time series of duration ! for all pairs of 

regions (voxels) ! and !. dFC is estimated by carrying out the analogous analysis for 

time windows of duration � separately, the starting point of which are incremented by 

∆!, yielding correlation matrices !!(!!; !) with 1 ≤ ! ≤ !! , !! = (! − !)/∆! being 

the number of windows. Adapted from [39]. 

 

Typically dFC had been used for analysing resting state fMRI data, however in 2010 

Sakoglu et. al. applied dFC technique to the task related fMRI data [40]. They 

developed an approach that uses spatial ICA to estimate correlations between 

windowed time-courses of different brain networks (components). After estimating the 

spatial ICAs, they used the method developed by Calhoun and colleagues 

(http://mialab.mrn.org/software) based on the maximal lagged correlation approach 

[40] for estimating both stationary and dFC. The dFC was estimated by applying the 

window size of 64 time points. 

 

 

 

Algorithm 

We used the algorithm developed by Leonardi et al for estimating the dFC states. 

Feasibility of this algorithm has been demonstrated in few recent studies [41; 42; 43]. 

 

Sliding-window correlation between the time series x and y using the formula  
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!!"(!)  =  !"##(![!, ! +  !],![!, ! + !]),      (13) 

 

where ! was the window length in TRs and the window was shifted by ∆! for each 

estimation. The coefficients of correlation were computed according to Pearson 

correlation as given in eq. (14)  

!!" =  !!!   ( !!!)
(!! !)!  ∑(!! !)! ,        (14) 

 

where ! is the coefficient of correlation between ! and !. 

 

The correlation coefficient computed were then z-transformed according to  

 

 !!" ! = atanh (!!"(!))                                                                        (15) 

 

The dFC analysis is carried out for each subject individually. The resulting correlation 

matrices for each window were vectorized yielding a ! ! !!  matrix !!  for each 

subject and condition !(1 ≤ ! ≤ !!) , with !  being the number of pair-wise 

correlations and !! = (! − !)/∆! the number of windows. The matrix !! was row-

wise de-meaned to solely address the fluctuations of connectivity over time regardless 

of their mean value [41]. This has been discussed further in Grandjean et al. (2017) 

with a detailed comparison of with and without this de-meaning step. The matrix 

!! − !! after demeaning then represents the increase/decrease in correlation strengths 

with respect to the mean (stationary FC). 

The !! subject and condition-specific matrices !! − !! were then concatenated into a 

data matrix !′ of dimension ! times the product !! ∙ !! 
!′(!× !!∙!! ) = !! − !! … !!! − !!! = !′! … !′!!∙!!                                  (16) 

with !! being vectors of length !. 

 

1. Estimation of eigenconnectivities 

The matrix !’ describing the dynamic functional connectivity for a group of !! subject 

(or subjects times conditions) can be reduced, e.g. by principle component analysis 

(PCA), with a few PCs accounting for most of the variation across in the data matrix 

!’. Leonardo et al. (2013) derived such components by estimating the eigenvectors 

and eigenvalues of !’ according to  
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!! ∙ !! = ! ∙ ! ∙ !        (17) 

 

 

with ! being a unitary matrix containing the orthonormal eigenvectors as columns and 

Λ being a diagonal matrix Λ!" = !!" ∙ !!  comprising the eigenvalues !! (Fig. 5).  The 

eigenvectors, i.e. the columns of !, were termed eigenconnectivities.  

 

 

 

 

 

 

 

 

 

 

Figure 5: Schematics illustrating the dFC method. (from Leonardi et al 2013, 

reproduced with permission). (a) Dynamic FC between ! brain regions was computed 

as sliding window correlations between the activities of all regions for each subject. 

(b) The upper triangular part of each correlation matrix �!(!!; !) of dimension !×! 

was unfolded and concatenated across time to form a dynamic FC matrix !!  of 

dimension !×!!, ! being the number of pairwise correlations and !! the number of 

time windows The mean correlation value across time was subtracted from all 

connectivity pairs (i.e., row-wise centering) yielding the matrix !! − !! . (c) The 

dynamic FC matrices were concatenated across subjects to form a matrix ′, for which 

eigenvalues !! and eigenvectors (columns of unitary matrix !) were computed, so-

called eigenconnectivities. Eigenconnectivities can be visualized after rearranging the 

eigenvectors of dimension !×1  them into a matrix of dimension !×!  and 

symmetrizing, representing a indicating the interaction matrix corresponding to a 

specific eigenvalue in the basis of the brain regions. (d) The weight matrix !! 

containing the time dependent weights of each eigenconnectivity and subjectwas 

calculated by projecting the demeaned dynamic subject-specific FC matrix !! − !! 
onto a few eigenconnectivities, accounting for the major part of variation in the data. 
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Other algorithms may be used to estimate eigenconnectivities. For example, Grandjean 

et al. (2017) estimated eigenconnectivities based on dictionary learning algorithm. 

Dictionary learning algorithm aims to find the sparse representation of the input data 

and has been shown to produce good results in the fields of image classification and 

processing [44; 45]. In this work, we used dictionary-learning algorithm to estimate 

eigenconnectivities. Figure 6 shows that functional correlation matrices can be 

transformed in to dFC states by applying dictionary learning algorithm over it 

 

 

 

 

 

 

 

Figure 6: Functional correlation matrices estimates for each window and different 

subjects are concatenated in order to apply dictionary-learning algorithm for the 

estimation of dynamic functional states, or atoms; also referred to as the basic building 

blocks of dFC. Adopted from Leonardi et al 2013. 

 

Dictionary learning algorithm involves the generation of a dictionary with  

 

!(!×!) = !! …!!         (18) 

 

with ! !-dimensional column vectors as simple building blocks, the atoms,  capturing 

whole-brain connectivity to a large extent, and a coefficient matrix of the concatenated 

subjects. 

 

!!×(!!∙!!) = !! …!!!∙!! .       (19) 

 

The columns of the concatenated coefficient matrix describe the approximation of the 

set of signals in !! − !!  to combine these atoms. Like the number of IC components 

in ICA analysis, ! can be chosen arbitrarily, but following other papers we generated 

M=20 atoms. 

Cost function minimization was implemented using a sparsity-enforcing algorithm 
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giving ! and ! as outputs. 

 

! !,! = 1
!! ∙ !!

!! !!. !.
!!∙!!

!!!
!! −! ∙!! !

! ≤ !                                           (20) 

 

In the above equation cost function tries to minimize the squared distance between !! 
and the product of ! and !! and upper bounding it with a regularization parameter ! 

 

In order to retrieve easily interpretable atoms, we required them to be energy-bounded 

and positive by imposing the set of constraints 

 

! ≜ ! ∈ ℝ!×!!. !.∀! = 1,… ,!,∀! = 1,… ,!, !! ∙ !! ≤ 1,!!" ≥ 0                 (21) 

 

The first part of the equation shows ! ∈ ℝ!×!  that the dictionary atoms belongs to the 

real numbers with the matrix dimension of K (number of pairwise correlation) times M 

(number of atoms estimated). Furthermore, eq. (21) states that the atoms are energy-

bounded, !! ≤ 1,  and positive, !!" ≥ 0. 

 

Dictionary learning was performed 100 times (or folds; 400 iterations for the first fold, 

200 for the subsequent ones). The obtained atoms were matched to the first fold using 

the Hungarian algorithm (Kuhn, 2010), with spatial correlation as the similarity 

metric. In order to get robust results, the fold instances exhibiting similarity above the 

median value across all folds were averaged for each atom 

 

 

Animal-specific time-dependent contributions of atoms were obtained by back-

projection of the dictionary onto the original dFC dataset using least-square fitting. 

 

 

 

 

 

 

 



	 133	

5.2 Method 

5.2.1 Animals, preparation, and anesthesia 

The experiments were performed in compliance with Swiss laws on animal protection 

and approved by the Veterinary Office of the Canton of Zurich. Female C57BL/6 mice 

(Janvier, Le Genest-St Isle, France) between 10 and 15 weeks old were studied. All 

mice were initially anesthetized with isoflurane in a 20% O2 / 80% air mixture: 3.5% 

for induction, 2% for endotracheal intubation and during set-up on the animal bed. 

Throughout the duration of the experiment, animals were mechanically ventilated 

using a small animal ventilator (CWE, Ardmore, USA) with a 20% O2 / 80% air 

mixture at a rate of 80 breaths/min,  a respiration cycle of 25% inhalation, 75% 

exhalation, and an inspiration volume of 1.8 ml/min. The head was placed with the 

animal's incisors secured over a bite bar and fixated by ear bars, ophthalmic ointment 

was applied to the eyes, and a rectal temperature probe was inserted to keep the animal 

at 36.5 ± 0.5 °C by means of a warm-water circuit integrated into the animal holder 

(Bruker Biospin GmbH, Ettlingen, Germany). The tail vein was cannulated for 

intravenous (i.v.) administration of anesthetics and the neuromuscular blocking agent 

pancuronium bromide (Sigma-Aldrich, Steinheim, Germany).  

Two independent set of studies were performed to evaluate the effects of isoflurane in 

a dose dependent manner.  

Group 1 (Dose-escalation in individual mice): Twelve animals were used in the 

experiment. Isoflurane (Abbott, Cham, Switzerland) was sequentially increased from 

1.1% to 1.3%, 1.5% and 2.0% in a 20% O2 / 80% air mixture for each individual 

mouse. After each incremental increase of isoflurane concentration, there was a 10 

min interval for equilibration before the fMRI data acquisition was started. Mice 

remained in the scanner throughout the duration of the experiment. 

Group 2 (Single dose for each mouse): Isoflurane was administered in a 20% O2 / 80% 

air mixture at a single defined dose per mouse in order to avoid any accumulation 

effects. Doses used were 1.1% (N=10 mice) and 1.5% (N=18). 

Each animal received an i.v. bolus injection of 0.5 mg/kg pancuronium bromide 

dissolved in saline (0.5 mg/3 ml) followed by a continuous infusion of 0.5 mg/kg/h of 

pancuronium bromide corresponding to an infusion rate of the solution of 3 ml/kg/h.  

Animal preparation, anesthesia protocols, and the conditions during resting-state 

measurements were identical for the fMRI experiments and for the assessment of 

systemic physiological parameters. Approximately 20 min were used for animal 

preparation, and a further 20 min for preparatory MRI scans. Subsequently, rs-fMRI 
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data sets of 6 min duration each were acquired. After the experiments, time for 

recovery from anesthesia and pancuronium bromide administration was provided for 

all the animals. 

 

5.2.2 fMRI 

MRI/fMRI experiments were carried out using a Bruker Biospec 94/30 small animal 

MR system (Bruker BioSpin MRI, Ettlingen, Germany) operating at 400 MHz (9.4 T). 

A four-element receive-only cryogenic phased array coil (Bruker BioSpin AG, 

Fällanden, Switzerland) was used in combination with a linearly polarized room 

temperature volume resonator for transmission (Bruker BioSpin MRI, Ettlingen, 

Germany). Anatomical images acquired in the sagittal and horizontal direction allowed 

exact positioning of 12 adjacent coronal slices of 0.5 mm slice thickness, which were 

used for the rs-fMRI scans. A gradient-echo echo-planar imaging (GE-EPI) sequence 

has been used for rs-fMRI data acquisition with field of view=16x7 mm2, matrix 

dimensions=80x35, TR=1 s, TE=12 ms, flip angle=60 degrees. The time series 

acquired was of 360 s length. 

 

5.2.3 Data Processing 

All the preprocessing was performed using tools from FMRIB's Software Library 

(FSL version 5). FSL’s recommended pre processing pipeline was used. Motion 

correction, removal of non-brain structures, high pass temporal filtering with sigma = 

75.0s; pre-whitening and global spatial smoothing of 0.2 mm was applied as part of 

the pre-processing.  

After the pre-processing, the functional scans were aligned to the high-resolution 

anatomical QBI (Queensland Brain Institute) template using linear affine and 

nonlinear diffeomorphic transformation registration as implemented in ANTs (ANTs. 

v 1.9; http://picsl.upenn.edu/ANTS/).  

 

ICA analysis allows determining spatial maps from fMRI data by concatenating all the 

subjects from all groups. [46; 47] describes this method using probabilistic ICA. The 

spatial IC maps consists of the representative anatomical regions of the fMRI data and 

can be used for further analysis. We used FSL’s MELODIC for probabilistic 

independent component analysis [47]. The multi-session temporal ICA concatenated 

approach, as recommended for resting state data analysis, allowed to input all subjects 
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from all the groups in a temporally concatenated fashion for the ICA analysis. 

ConcatICA yielded different activations and artifact components without the need of 

specifying any explicit time series model.  

A total of 50 independent components (IC maps) were extracted and the mixture 

model approach was applied on these estimated maps to perform for inference 

analysis. An alternative hypothesis test based on fitting a Gaussian/gamma mixture 

model to the distribution of voxel intensities within spatial maps [46; 48] was used to 

threshold the IC maps. A threshold of 0.5 (p < 0.5) was selected for the alternative 

hypothesis in order to assign equal 'cost' to false-positives and false-negatives. Out of 

the 50 independent components (IC maps), only around 20 numbers of components 

were selected, while the components that overlapped with vascular structures and 

ventricles were excluded from further analysis. Similarly regions at the brain surface, 

which are prone to be affected by the motion artifacts, were excluded.  

 

5.2.4 Dynamic Functional Connectivity analysis 

5.2.4.1 Description of the parameters and hyperparameters 

Window length was set at 40 seconds. Since TR = 1 sec for our data, that means 

window length = 40 TRs. The step size was set at 1 TR. We set the number of 

components to keep at K=20. Number of dictionary learning folds were set at 30. 

Maximum number of restarts allowed for getting convergence was set at 5. We used 

least square projection method of least fitting for the dictionary learning backfitting. 

 

5.2.4.2 Significance analysis for group differences 

Statistical analysis was performed using inhouse MATLAB codes. We used the 

absolute sum of time-dependent contributions of atoms relative to the number of 

sliding-window frames as a response variable. Isoflurane dose (1.1%, 1.3% 1.5% and 

2.0%) was modelled as a fixed effect, and the individual animal intercepts were 

modelled as random effects. A contrast was designed to compare isoflurane dose. 

False discovery rate (FDR) was used to correct for multiple comparisons performed 

across atoms. The initial anesthetic dose (isoflurane 1.1%) was compared against all 

other anesthetic doses (isoflurane 1.3%, 1.5% and 2.0%). Figure 3 shows the atoms 

where significance was achieved in all the 3 comparisons in the same atoms (1.1 vs 

1.3; 1.1 vs 1.5; 1.1 vs 2.0%). Similarly we also compared the two extreme doses 
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(isoflurane 1.1% vs 2.0%) and significant atoms are shown in figure 4 for this 

comparison. 

 

5.2.5 SVM 

We used the MATLAB implementation of SVM with Sequential Minimal 

Optimization solver. We tested different non-linear [49] kernels of SVM, however 

since the best preliminary results on this data were achieved using the linear SVM, we 

used linear SVM in this project. 

 

5.2.6 DBN 

We used the matlab based DBN implementation by Palm [34]. We used the sigmoid 

activation function. We used DBN stacked on a neural network. We used a 66-45-35 

hidden unit DBN that means that we used the following configuration. The first RBM 

has a visible layer of 66 units and 45 hidden units. The second RBM has a visible layer 

of 45 units and 25 hidden units. We used the weights of the DBN to initialise a neural 

network. Number of epochs was set to 500. Batch size was 4 and momentum was put 

as 0.7 

 

5.2.7 Pre-processing of the features 

The two feature generation steps used in this work are discussed below 

 

5.2.7.1 z-correlation 

Each IC map obtained from MELODIC was averaged across the time dimension to 

obtain an averaged time series per IC. Each of these time series was then used to 

calculate the Pearson correlation against all other time series obtained from other IC 

maps. The correlation coefficients were then converted in to z transform. These z-

transformed correlation coefficients were fed in to SVM and DBN as feature vectors 

for classification. 

 

5.2.7.2 dFC vector 

We used the same IC maps as for calculating z correlations. Dictionary learning was 

used [41; 42; 43] for evaluating dynamic aspects in functional connectivity. The atoms 

(dFS) were estimated by concatenating the results obtained from all groups and then 

used as regressors for analysing rs-fMRI data sets for each individual anaesthesia dose, 

similar to the procedure applied in ICA analysis and dual regression. Twenty atoms 
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explaining approximately 50% of the variability have been considered for the analysis. 

The weights of each atom were concatenated to form the feature vectors. 

 

5.2.8 Validation 

We performed randomised permutations with leave one out cross validation (LOO) on 

‘n’ subjects; that means during each permutation loop one of the subject was randomly 

taken out and LOO algorithm was applied to the remaining ‘n-1’ subjects. The left out 

subject was then mixed in to the group and in the next loop another randomly selected 

subject was taken out and LOO was performed on the remaining ‘n-1’ subjects. This 

procedure was repeated number of times to generate confidence interval for the 

prediction accuracy.  

 

5.3 Results 

Twenty-five IC maps were obtained from the MELODIC and attributed to the modular 

structures based on modules defined in previous work [50; 51] (Fig. 7). 

 

 

 

 

 

 

 

 

Figure 7: Allocation of ICs to functional modules. The 25 ICs that have been 

identified; have been attributed to the modules defined in [50; 51], i.e. lateral cortical 

network (LCN), associated cortical network (ACN), default mode network (DMN), 

subcortical network (SuCN) and thalamic network (ThN).  

 

We used binary classification across all possible pairwise combinations of groups of 

mice exposed to a specific dose of isoflurane. Validation was done using 500 

randomised permutations with LOO cross validation. 

 

5.3.1 Classification results 

DBN and SVM classification results using z-correlation coefficients as well as using 

dFC components as features are summarised in Table 1. Not surprisingly, comparison 
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to the group of mice receiving the highest isoflurane dose yielded the best 

classification results. Interestingly, SVM outperformed DBN in all cases analysed. 

Isoflurane 

dose (%) z correlation dFC 

dose(1) vs 

dose(2) DBN SVM DBN SVM 

1.1 vs 1.3 59±6 66±4 60±5 70±5 

1.1 vs 1.5 61±3 71±5 61±6 80±7 

1.1 vs 2 67±4 78±5 69±5 78±6 

1.3 vs 1.5 50±6 67±8 61±3 59±7 

1.3 vs 2 57±7 76±9 71±5 90±8 

1.5 vs 2 61±4 78±7 59±4 79±5 

Table 1: Accuracy (in %) of classification of mice receiving isoflurane at different 

doses. Accuracy for pairwise comparison of treatment groups with corresponding 

values for standard deviation using DBN and SVM classification algorithms and either 

z correlation coefficients and dynamic functional states (dFS) as the features 

Validation was performed using randomised permutated LOO. 

 

In a second analysis, the training set comprised data from mice of group 1 receiving 

1.1% and 1.5% isoflurane; the trained network was the used to classify an independent 

dataset of group 2 comprising data from mice exposed to 1.1% and 1.5% dose of 

isoflurane (Table 2).  The classification results were largely comparable to those of the 

first study. 

 

 

z correlation dFC 

DBN SVM DBN SVM 

62 65 67 75 

 

Table 2: Accuracy (in %) of classification of mice receiving isoflurane at doses 1.1 

and 1.5%. Rd-fMRI data of mice of group 1 have been used as training data sets. 

While the analysis was carried out for animals from group 2 receiving the same 

isoflurane exposure. Accuracy of classification of test dataset (group 2) is given for 
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DBN and SVM classification algorithms using features based on both static (z 

correlation) and dynamic (dFC) functional connectivity analysis.   

 

5.4 Discussion 

Anaesthesia has been known to affect functional connectivity in rats and mice [19; 20; 

21; 23; 24; 26; 30; 31; 52; 53; 54; 55; 56; 57; 58; 59]. Functional connectivity 

differences between different doses of anaesthetics have also been shown using seed 

based analysis as well as network modelling approaches.  

 

Prediction at the individual subject level using neuroimaging data is a challenging 

problem due to the high dimensionality of fMRI data, low information content in the 

data (high level of undesired information in the signal) and low sample size (small 

number of subjects available for training and testing). With subtle changes in the dose 

of isoflurane and low number of sample (subjects) for training, it becomes even more 

challenging for the machine learning algorithms to identify and learn patterns that may 

reliably allocate a subject to a specific group. 

 

In this work we used SVM and DBN classification algorithms to derive the dose of 

isoflurane administered to a mouse according to features derived from stationary and 

dynamic functional connectivity analysis of resting-state fMRI data. As expected, 

graded changes in anaesthesia level imposed minimal changes in connectivity patterns 

rendering differentiation according to dose level difficult. Nevertheless, we found that 

features based on dynamic functional connectivity can successfully classify mice 

(greater than chance level) according to the dose of isoflurane received, in particular 

when for comparisons between low dose (1.1 to 1.5%) and high dose of isoflurane 

(2%). Dynamic functional connectivity analysis outperformed static functional 

connectivity analysis for most of the classification analysis in this work. This shows 

the potential of the use of features based on dynamic functional connectivity for 

classification problems in neuroimaging. However, though the accuracy at present is 

statistically significant (greater than chance level after randomised permutations), for 

practical applications (e.g. in diagnosis or treatment prediction) it must be improved. 

 

We also found that DBN is outperformed by the linear SVM in our small dataset. 

DBNs are typically trained for large number of training samples in order to learn 

complex underlying functions of the feature space. However in this study, the number 
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of subjects was found to be too small for optimal training of the DBN algorithm.  This 

also shows that for classification problems with small number of samples, linear SVM 

may be a better choice over DBN. For an optimal DBN training, large multi centre 

datasets should be acquired and shared across the research centres.  

 

There are several other limitations of this approach. The classification accuracy could 

have also been further improved by providing more informative features having 

meaningful neurobiological basis. Furthermore, the present method only gives 

classification accuracies as the output, however a more sophisticated approach could 

have given information about the under lying neural mechanisms that were used for 

classification. Generative embedding [17; 18; 60] provides an excellent alternative in 

this case by providing more informative features as well as providing information 

about the underlying neuronal network.  
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Abstract 

The ability to assess brain responses in unsupervised manner based on fMRI measure 

has remained a challenge.  Here we have applied the Random Forest (RF) method to 

detect differences in the pharmacological MRI (phMRI) response in rats to treatment 

with an analgesic drug (buprenorphine) as compared to control (saline). Three groups 

of animals were studied: two groups treated with different doses of the opioid 

buprenorphine, low (LD) and high dose (HD), and one receiving saline.  PhMRI 

responses were evaluated in 45 brain regions and RF analysis was applied to allocate 

rats to the individual treatment groups.  RF analysis was able to identify drug effects 

based on differential phMRI responses in the hippocampus, amygdala, nucleus 

accumbens, superior colliculus and the lateral and posterior thalamus for drug vs. 

saline.  These structures have high levels of mu opioid receptors.  In addition these 

regions are involved in aversive signaling, which is inhibited by mu opioids.  The 

results demonstrate that buprenorphine mediated phMRI responses comprise 

characteristic features that allow a supervised differentiation from placebo treated rats 

as well as the proper allocation to the respective drug dose group using the RF method, 

a method that has been successfully applied in clinical studies. 
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6.1 Introduction 

Optimal dosing is an important process in the evaluation or development of 

pharmaceutical agents.   For CNS drugs, parameters evaluated comprise 

pharmacokinetic readouts such as drug penetration through the blood-brain barrier [1], 

receptor binding, or analysis of drug concentration in cerebro-spinal fluid (CSF) [2]. 

Some of them rely on invasive procedures and are therefore of limited clinical use. In 

addition, they do not provide information on pharmacodynamic efficacy. 

Alternatively, drug dosing may be based on assessing pharmacodynamic responses, 

which for neuroactive drugs may include the analysis of effects on brain circuits using 

objective readouts such as functional magnetic resonance imaging (fMRI).  

fMRI responses constitute an objective measure that can be used in disease diagnosis, 

prognosis, and evaluation of treatment effects [3]; [4]; [5].  Yet, fMRI response 

patterns are complex and often difficult to analyze. In recent years, machine learning 

and pattern recognition have entered the field of neuroimaging [6] based on their 

ability of detecting subtle, non-strictly localized effects, that commonly would escape 

univariate statistical analyses.  Machine learning tools enable pattern recognition 

algorithms to uncover a functional relationship among the brain response patterns, in 

particular by identifying features that allow classification into different groups for 

diagnostic purposes, prognosis, or for the analysis of therapy responses [7]. 

Most analytical approaches concentrate on obtaining general, population-based results. 

While such analyses are important, methods that allow proper allocation of individual 

patients to the respective groups are of critical importance for diagnostic purposes.  

Several approaches are available to solve this problem; using support vector machines 

(e.g. generative embedding [8] or other machine learning techniques [9].  These 

techniques, however, do not discriminate the feature vectors based on their importance 

of classification.   

Here we use Random Forest (RF) as a means of identifying brain regions that display 

differential responses under different pharmacological conditions (high and low doses 

of buprenorphine and saline), which should be suited for diagnosis at the level of the 

individual patient providing classification probabilities.  RF is based on combining 

two independent ideas of random selection of features and bagging to construct 

decision trees with controlled variance. It has been used increasingly in medicine [10]; 

[11]; [12].  A big advantage of using RF is that it adds a confidence label to the 

classification due to its probabilistic nature. This is not the case for many other 
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classification algorithms including SVM: even though SVM has been repeatedly used 

as classification tool in neuroimaging studies, it does not provide a probabilistic 

classification. As a consequence SVM may add labels to a sample even if it is unable 

to properly classify it. In contrast, upon using RF such samples might be identified 

based on their probability values of 0.5 (50%), and thus be labelled correspondingly 

(e.g. as ‘unclassified’) 

RF allows for estimating the importance of feature vectors that are used for its 

classification, thereby providing information regarding the biological basis of the 

classification results.  As RF also generates probabilistic results, it yields a measure of 

confidence in the classification results obtained [13]. The methodology described in 

that paper is unsupervised and thus suited for analysis of experimental data, for which 

modeling the experimental paradigm into the analysis is difficult or not possible. This 

is also the case for the study presented here given the temporal fMRI response to the 

administration of the drug is not known. However, the method is not restricted to 

conditions lacking a model description since differences in brain regions are calculated 

from the data and depend on the power contained within the group to differentiate 

them.  

The goal of this study was to develop a methodological formulation based on RF to 

identify differences in fMRI responses in a region-specific manner in groups treated 

with the drug buprenorphine at different doses and a control (saline) group.  We have 

previously reported the pharmacological effects of buprenorphine vs. saline using 

fMRI evaluation of the drug in rats [14]. Buprenorphine is a semisynthetic opioid 

compound with m and k receptor affinity that has been used in the treatment of opioid-

dependent patients [15] as well as for treatment of pain patients [16]. The drug was 

shown to have similar analgesic effects in rodents and hence, is therefore well suited 

for evaluating a classification scheme that would differentiate drug treatment from 

controls, as well as potentially discriminate different drug doses.  

6.2 Methods 

6.2.1 Imaging 

The study was approved by the Massachusetts General Hospital’s Animal Care and 

Use Committee. Male Sprague-Dawley rats (~300g) were used for these experiments 

with 12 animals injected with 0.04mg/kg (low dose; LD), 12 with 0.1mg/kg (high 

dose; HD) buprenorphine and 13 (controls) with saline.  Solutions were prepared to 
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have a 1ml/kg concentration, for saline a 1ml/kg infusion was administered. For 

imaging, anesthesia was induced with 3% isoflurane for 15 minutes and the rats were 

positioned in the MRI cradle.  A tail vain was placed for drug infusion. The infusion 

scan lasted 25 minutes; after 5 minutes of baseline scanning, the drug/saline was 

infused over a period of 2 minutes. fMRI data were acquired using a 4.7T  Biospec 

scanner (Bruker Biospin Ltd, Billerica)  with a surface coli for transmit/receive. An 

EPI sequence with TR/TE=2.5s/11ms was used, with 12 slices (1.5mm thick, FOV= 

3.0cm, matrix=64x64) recorded. 600 volumes were acquired resulting in an acquisition 

time of 25min.  A short TE was used to reduce susceptibility artifacts while 

maintaining sufficient contrast.  For detailed information the reader is referred to [14]. 

6.2.2 Analysis 

We have proposed a novel approach in this work to find the brain regions that 

differentiate between two different drug states. The pipeline we have proposed is 

shown in Figure 1a and 1b and is discussed below. We used Random Forest to 

differentiate between the drug groups and further identify the most important feature 

components that gives us the brain regions that differ between the groups. The steps 

below describe each processing step that we applied over the data. 
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Figure 1. Flow chart of the proposed processing pipeline. (A) compares PCA, t-SNE, 

and isomaps to find the best suited dimensionality reduction for our experiment. The 

decision was taken by testing for classification and validated using LOO validation (B) 

goes on to apply Random Forest as the classification algorithm followed by the LOO 

validation. 

 

6.2.2.1 Pre-processing  

Pre-processing was carried out utilizing FSL tools [17] adapted for rat brain anatomy 

and included motion correction and spatial smoothing (0.7mm). No high pass filtering 

was applied. Brain extraction was performed using in-house software. Functional data 

were registered to an in-house atlas for group analysis. A Gaussian smoothing kernel 

for functional volume and reference volume was used.  

Region of Interest (ROI) time series extraction: ROIs across the whole brain were 

extracted based on our internal MRI atlas developed from a histological one [18].  In 

total, forty-five structures were used to extract time series.  

6.2.2.2 Dimensionality Reduction 

Time series from predefined ROIs were extracted from the pre-processed data. In 

order to feed these time series into a machine-learning algorithm, it was necessary to 

reduce the dimension of data in an efficient way. We used isomaps as dimensionality 

reduction technique after having carried out a comparison analysis with Locally-

Linear Embedding (LLE), t-Distributed Stochastic Neighbor Embedding (t-SNE) and 

PCA using DELFT implementations. The reduced time data set for a ROI was then 

correlated with that of other ROIs to form a z-correlation matrix. Random forest 

algorithm was applied to the z-correlation maps of the unlabeled data set to identify 

whether there was enough power contained in the dataset to classify the groups 

correctly. Isomaps generated the lowest false classification probabilities when used as 

the dimensionality reduction technique (Figure 2). It is important to realize that the 

result of dimensionality reduction is dependent on the classification result and vice 

versa. 
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Figure 2. The probabilities of classification results. Data below 0.45 probabilities 

presents a false result, while anything greater than 0.55 probability presents the correct 

result. The classification probabilities between 0.45 and 0.55 were considered 

“unclassified” because of the uncertainty in classification results. Dimensionality 

reduction using isomaps clearly presents better results that PCA and t-SNE method as 

shown by the experiments. Probabilities shown here are the result of applying random 

forest for classification using the specific dimensionality reduction technique over the 

individual ROIs. (A) Probabilities showing 11 correct classification using PCA as the 

dimensionality reduction method for the individual ROIs. (B) Probabilities showing 10 

correct classification using t-SNE. (C) Probabilities showing 20 correct classification 

using isomaps. (D) Comparison between full and reduction feature set for prediction: 

Classification probabilities and the predictions using the reduced feature set, that is 

only from the most important 6 features as obtained from the Random Forest variable 

importance graph. 

6.2.2.3 Preprocessing of the feature vectors 

After the dimensionality reduction, we applied a high pass filter to smooth the data. 

Since the data had a lot of undesired small fluctuations, high pass filtering gave us a 

better model of the time series data contained in every region. We also normalized 

each feature (column) to have mean 0 and standard deviation 1. 
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6.2.2.4 Pearson Correlations across all regions and normalization of values. 

Pearson correlation between ROIs was carried out using the dimensionally reduced 

vectors to determine a full connectivity map between all the regions.  Connection 

strengths between two ROIs are expressed by: 

!",! = !"## !,!  

                          = ![(! − !")(! − !")]
!"!#  

Where X=X(t) and Y=Y(t) represent the two time series corresponding to the two 

ROIs. The correlation values were then fitted to a Gaussian curve adopting the Fisher 

z-transformation with the following formula:  

!!,! = 0.5 ∙ log [(1+ !!,!)/(1− !!,!) 
6.2.2.5 Conversion of a matrix in to a vector 

The z scores from the Pearson correlation were passed through another pre-processing 

step. We sequentially converted the complete matrix in to a 1D vector, keeping the 

record of its dimensions so at any time the backtracking can result in the actual brain 

regions and voxel that are of interest. 

6.2.2.6 Classification of groups by Random Forest using the generated feature vectors  

Classification of the groups was done using Random Forest. RF is based on the 

principle of aggregating several binary decision trees built on several bootstrap 

samples drawn uniformly from the learning set. The aggregate of all the tree classifiers 

constitute the final prediction of the Random Forest. Since each tree predicts a class, a 

confidence interval is generated that described the percentage of votes for either class.  

Feature vectors comprising the connectivity values across all brain regions were used 

as input for the classification. In order to evaluate the performance of the classification 

tool, we used the ‘leave-one-out’ (LOO) cross validation technique [19] [20] , thereby 

each and every sample was tested with regard to the classification in an unbiased 

fashion. LOO requires the classification algorithm to run N times, leaving one of the 

subjects each time out, treating it as a test subject and training the classifier on N-1 

other subjects. This assures that each and every of the subject is tested and the results 

neither contain any bias nor any chance sampling. Prediction error and variable 

importance was estimated from the ‘out-of-bag’ sample of observations.  

6.2.2.7 Calculation of importance of feature vectors 

We used the Random Forest library from R [21] to calculate the importance of feature 

vectors in order to find the most important feature vectors for successful classification 
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of groups. This provides a variable importance index for feature vectors using RF 

permutation index as the indicator.   

Random Forest calculates variable importance by estimating out of bag (OOB) error, 

which is the proportion of misclassified data. For each OOB sample we permute at 

random the i-th variable values of the data. The variable importance of the i-th variable 

is the mean increase of the error of a tree. The higher the value, the more important is 

the variable. The Supplementary Figure 1 shows the importance of variables graph in a 

decreasing order. It is clear that first few features in the graph carry more information 

than the rest. To keep the uniformity among the experiments, we selected 10 most 

important features for further processing. The other features carry similar and smaller 

information contents as shown in the figure. As an additional robustness check, we ran 

the algorithm with features from 11-990, however as can be seen from supplementary 

Figure 2, the prediction accuracy is decreased. This indicates that the most important 

information was contained in the 10 most important features as calculated by variable 

importance. 

The most important feature vectors for LD vs. HD group were selected based on the 

analysis of the other two groups that are Saline vs. LD and Saline vs. HD. The 

uncommon correlation pairs between these two groups were selected as the features of 

interest. 

6.2.2.8 Re-evaluation of classification to verify the power contained in the feature 

vectors. 

In order to validate the feature vectors obtained through variable importance index, we 

classified the groups again but this time with a reduced set of features that were the top 

important features as selected by the R library using the variable importance function. 

We restricted ourselves to select 10 most important features out of 990 total features in 

each case. Dimensionality reduction, important feature selection and final 

classification were all done inside the LOO framework. 
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6.3 Results 

Figure 2 depicts the classification results as a function of the dimensionality reduction 

approach used: PCA, t-SNE, and Isomaps. Shown are the probabilities that the 

individual animals are correctly attributed to its group be it saline (control) or high-

dose (HD) group of buprenorphine treatment. Using Isomaps as dimensionality 

reducing technique generated the highest correct classification probabilities (N=20) as 

compared to PCA (N=12) and t-SNE (N=11). Hence, Isomaps was used as the method 

of dimensionality reduction for the whole study.  

Though the classification was successful, we still needed to find the most important 

features (regional connectivities) that made this classification possible. This is 

illustrated in Figure 2(d) depicting the prediction results of a set of selected brain 

regions as indicated from RF variable importance for the comparison control versus 

LD. Figure 2(c) should be compared with Figure 2(d), which shows the analogous 

analysis for ROIs across the whole brain. The results indicate that using specific but 

more informative regions preserves the classification result, and thus proves the 

concept that these regions contain most of the useful information for the classification 

between the two groups. Classification accuracy was evaluated using the LOO method 

(Table 1) 

 

 

 

 

Table 1. Classification accuracy based on leave one out cross validation with all 45 

regions (990 features) considered for the classification. 

 

 

 

 

 

Table 2. Classification accuracy based on leave one out cross validation after selecting 

the top 10 features from the variable importance as indicated by Random Forest. 

 

Similar analyses have been carried out for the HD group. Classification was first 

applied with the complete feature set (990 features), followed by the calculation of 
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important features. These important features were then used for re-classification. The 

accuracy of the classification procedure was evaluated using the LOO method. 

Reducing the number of feature vectors to include the 10 most important ones 

preserves the classification accuracy, proving that the most important information lies 

in the selected feature vectors (Table 2). When comparing LD versus HD, the initial 

classification using all 990 features with leave one out validation generated only 

chance probability. Thus, the lack of significant result also prohibited us from further 

continuing the analysis to find the most important features for classification. To solve 

this problem we used the mutually exclusive method from sets, i.e. we selected the 

anatomical regions which were found among the most important features of Saline vs. 

LD and Saline vs. HD comparisons, however selected only those anatomical regions 

present in one of the two comparisons only. The rationale behind was if it exists in 

only one of the comparisons, it is more likely to be the effect of the dose rather than 

the saline or other mutual effects in the comparison. Once these uncommon correlation 

pairs between these two groups were selected as features of interest, we applied the 

classification algorithm over the reduced feature set as selected from this method, and 

applied LOO cross-validation to obtain classification accuracy of 66.6%. While this 

work-around yielded some reasonable classification results, the results need to be 

handled with care. 

 

Table 3 indicates the brain structures that anchor the classification using the reduced 

set of features. Common structures that discriminate fMRI response of the three 

treatment groups included thalamus, hypothalamus, hippocampus, caudate putamen 

and colliculus. Only the 10 most important features in the classification are listed, 

while few extra regions are also listed with their rank among importance of feature 

vectors, to provide better comparison between Saline vs. LD and Saline vs. HD 

analysis.  
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Table 3. Anatomical structures found important for the classification. 
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6.4 Discussion  

While classification using machine learning approaches have been used for pain states 

on the basis of fMRI data, the approach has been hardly applied for evaluating drug 

efficacy [22].  Here, we have used RF for identifying brain regions displaying 

differential responses in response to treatment with the opioid drug buprenorphine and 

saline in a supervised manner.  A critical step in preprocessing data for the machine 

learning tool is dimensionality reduction based on the experimental data. We have 

found that isomaps yields better classification accuracy compared to PCA or t-SNE 

based reduction methods. A feature of Isomaps is that it considers voxels in their 

context by intrinsic construction of a neighborhood graph based on the geodesic 

distance. Such neighborhood reletionships are important factors when analyzing brain 

functional data, as local networks of connected voxels make up a functional region. 

This might explain why isomaps outperformed other classifiers in our case. 

For the classification, we choose the RF classifier, since based on theoretical 

arguments it should yield optimal classification performance in the sample limit, 

which has been successfully demonstrated to be the case for many biomedical 

classification problems [23]. The explanation of the good performance of RF is related 

to the good quality of each regression tree [24]. One of the big advantages that RF 

offers is that it automatically saves the features that are most critical for the 

classification purpose: these features are related to a relatively small number of 

anatomical regions that apparently play an important role in capturing treatment 

response. It is to our knowledge the first time that such method has been applied for 

analysis of fMRI response to pharmacological stimulation. 

Brain region displaying a differential response in buprenorphine treated rats at either 

dose compared to saline treated controls are listed in Table 2. Regions identified for 

both drug doses upon comparison with saline (HD vs. Saline; LD vs. Saline) have 

been reported to process pain [25].  Additional regions were identified in both groups 

such as the caudate putamen, superior and inferior colliculus.  Interestingly, all regions 

identified for the LD buprenorphine group were also found in the HD group, though 

not necessarily in the same rank order. Regions that show differential responses 

depending on the buprenorphine dose were amygdala, hypothalamus, nucleus 

accumbens, posterior thalamus, and sensorimotor, insular and entorhinal cortices.  

Many of these areas appear as classifiers either in HD vs. saline or LD vs. Saline.  The 

relevance of the classification results is also supported by the notion that essentially all 
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the structures important for classification display high levels of mu opioid receptors. In 

addition they are involved in aversive processing, which might be inhibited by opioids.  

In [14], cingulate cortex, insula, cerebellum and thalamus had been shown as 

important anatomical regions that differentiate between LD vs. HD group using model 

based analysis (GLM) and our data largely agree with their findings. However in our 

results, insula appears in LD vs. Saline and LD vs. HD comparisons but not in HD vs. 

Saline comparison. Amygdala was not reported in the GLM paper, however it appears 

as an important region in our results. Model based approaches are limited by the 

intrinsic nature of the model: i.e. features not comprised in the model cannot be 

extracted from experimental data. However model-free approach such as the RF 

classification is not based on the correspondence of the basic assumptions with the 

actual experimental data. Being data driven it just searches for differences in the 

responses among two (or more groups) irrespective of their actual shape, and thus 

might identify regions that are not detected with GLM or related methods. 

Brain regions of high discriminative power for all three comparisons (LD vs. saline, 

HD, versus saline, LD vs HD) were hippocampus and thalamus, while insula, posterior 

thalamus, amygdala differentiated the LD from the HD group.  What may be important 

in the functionality of these regions that contribute to the differentiation process?  

There may be a number of interrelated processes including (1) opioid receptor 

numbers, (2) function of specific regions in endogenous pain control, and (3) 

connectivity between these regions contributing to whole brain ‘interrogation’ of the 

three conditions.  

Buprenorphine is known to bind to the m and k opioid receptors [14], the 

nociceptin/orphanin receptor [26], and the opioid receptor like (ORL-1) receptor [27]. 

The m-opiod receptors occur with high concentration in cerebral cortex, thalamus, 

striatum (striosomes), amygdala, periaqueductal gray [28], while the k-opioid 

receptors are found in hypothalamus and also periaqueductal gray. In general the 

distribution profiles of the primary opioid receptors – m, d, k - are slightly different 

but also share significant overlap in structures including the amygdala and 

hippocampus. High levels of nocicpetin receptor occur in cortex, hippocampus 

(dentate gyrus), amygdala, hypothalamus and septal nuclei [29], while ORL-1 receptor 

is found predominantly in cortical areas, olfactory regions, limbic structures, and 

thalamus [30]. The regions identified in the RF signature discriminating drug effects 

from vehicles are essentially those outlined by this receptor distribution (Table 2).  
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While it is unclear how the specific regions contribute as a result of their own primary 

function (e.g., anterior insula and awareness) or interactions as a result of 

buprenorphine-receptor activation of neurons with efferent projections, the drug must 

produce alterations in brain circuits that differentiate the three conditions.  The 

amygdala is involved in analgesia, emotion and also decision-making [31].   Of the 

various structures identified, amygdala has probably has the highest binding of all 

three receptor targets of buprenorphine and it is therefore not surprising that it shows a 

strong response to the drug as compared to saline. The hippocampus known to be 

involved in memory formation, spatial orientation and pain modulation, also 

participates in the stress response [32]. This latter response can be diminished by 

opioids, presumably due to its m receptor effects [33], which may explain its 

prominent role as classifier in discriminating the response to drug treatment as 

compared to controls. Nevertheless, it should be remembered that buprenorphine 

interacts with several opioid and opioid-like receptors systems, the effects of which 

might be even counteracting (e.g. ORL-1 activity versus m receptor effects). Hence 

interpreting the occurrence of specific brain areas in the discriminative feature vectors 

in terms of cognitive and emotional effects remains speculative, in particular when 

dealing with anesthetized animals as anesthesia may further modulate the fMRI 

responses to drug administration. On the other hand it is reassuring that regions 

associated with nociceptive processing clearly show up, indicative of the analgesic 

activity of the drug.  

While RF yielded reasonable classification results regarding the nature of structures 

identified, we observed that several of the important regions appear unilaterally only. 

Given the nature of the condition, i.e. a pharmacological stimulus with a systemically 

administered drug, and the more or less symmetrical distribution of its molecular 

targets across the brain, on would have expected that feature vectors display bilaterally 

symmetry.  The question then arises whether this left/right asymmetry is of biological 

origin or whether it is an artifact of the analysis. Finding the most relevant features 

involves inherently a ranking and when maintaining of fixed number of ‘most 

important feature vectors’ also a thresholding. As a consequence, it is well conceivable 

that a structure within one hemisphere may not pass this threshold, leading to an 

apparent laterality. Obviously, this may be accounted for by relaxing the threshold 

criterion, i.e. by maintaining bilaterality if the difference between the two hemispheres 

is within ‘the noise range’. This also became obvious, when analyzing the dose 

dependence of the buprenorphine response. When limiting the number of feature 
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vectors in the analysis to 10, there was the counter-intuitive result that features 

discriminating drug from saline appeared in the LD but not in the HD group. However, 

all LD features were contained in the 17 most important features of the HD group 

indicating that when analyzing the data it is important not to just be restricted to a 

fixed number of features. 

The reasons underlying the failure of typical classification between LD vs. HD can be 

explained in several ways. LD and HD doses were selected based on publications 

indicating minimal and significant analgesic effects on behavioral measures in rats. 

Discrepancies between behavioral outcome and imaging findings are not unusual, as 

the former depend on the specific test paradigm applied and may be confounded by 

processes such as learned behavior or reflexive responses. In contrast imaging 

responses depend on the physiological baseline state, which is affected by the use of 

anesthesia.  Other factors that might explain the lack of a difference between the LD 

and HD group might arise from inter-individual differences in the bioavailability of 

the drug, which would result in larger variability reducing the statistical power in 

discriminating the two states. . Finally there might be a ceiling effect regarding the 

fMRI response. Future studies using expanded dose ranges and larger cohorts should 

clarify this aspect.  

 

6.5 Conclusion 

We have used RF to classify rats based on the fMRI signature in response to systemic 

administration of buprenorphine at to different doses or saline to rats. The regions that 

turned out to be most important for the proper classification of animals were those 

displaying high levels of opioid and opioid-like receptors known to be the 

buprenorphine target, in particular structures associated with nociceptive processing, 

but also the limbic system. Using the LOO approach, the classification accuracy was 

80% for the comparison of drug versus placebo, while there were 66 % of correct 

assignments for the comparison LD versus HD.  RF appears an attractive machine 

learning tool suited for classification of individuals based on their response to a 

neuroactive compound. 
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6.6 Supplementary material 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 1. The figure shows the variable importance map with the top 

features representing more information than the rest. 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 2. The figure shows the classification results for Saline vs. 

HD with features 11 to 990 in the decreasing order of their importance values. The 

classification results with LOO show that the prediction accuracy with top 10 

important features is greater than prediction accuracy with features 11-990 
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7. Discussion 

 

Resting state fMRI provides a method for studying whole brain functional connectivity 

and large-scale brain networks without the need of any explicit task condition [1; 2; 3]. 

This is of great value in small animal imaging, where task based paradigms or 

stimulus-evoked paradigms have been challenging due to their unspecific response 

reported in mice, and limited in their application because of the small choice of 

possible tasks/stimuli (e.g. electrical stimulation, heat stimulation etc.) available in 

anesthetised rodents. It is therefore not surprising that the number of rs-fMRI studies 

in rodents has rapidly increased over the last years. 

fMRI analysis tools are typically developed for human. Due to inter-species 

differences, increased susceptibility to magnetic inhomogeneity at large magnetic field 

strengths leading to image distortion and intra-voxel dephasing (signal voids), as well 

as differences in basic physiology (respiration frequency, heart rate, blood pressure), 

the application of these analysis tools to analyse small animal fMRI data is not 

straightforward and requires adaptations. Similarly, machine-learning tools have been 

largely restricted to application in human fMRI data.  

A major difference between human and animal (rodent) fMRI is the use of 

anaesthesia, which is common in small animal fMRI studies despite their known 

intrinsic effects on brain activity, but rarely used in human studies, unless the purpose 

of the study is to investigate the effects of an anaesthetic drug on brain 

function/networks. In animal studies, anaesthesia is essential for immobilizing the 

animal during data acquisition. Anaesthesia will inevitably affect the results of 

functional brain studies; it is therefore important to assess and understand the 

alterations in brain activity patterns/network induced by the anaesthetic drug. Several 

groups have studied effects of anaesthetics on rodent fMRI data and not surprisingly 

reported differential results based on the agent used [4; 5; 6; 7; 8; 9; 10; 11; 12]. 

Optimized anaesthesia regimes for rodent fMRI studies have been suggested [13], yet 

this likely depends on the question to be addressed. A major issue when analysing the 

effects of anaesthesia is the lack of a valid reference state. Comparison to data 

obtained in the awake state is feasible in humans, but difficult in rats and mice as even 

in trained animals confounds due to stress and arousal responses may not be excluded 

due to the immobilization stress and scanning noise [14]. Even in mice under light 

anaesthesia, stimulus evoked fMRI responses were found severely confounded by 
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arousal related systemic hemodynamic responses [15]. The questions remains, how to 

assess the effect of an anaesthetic on brain activity/brain networks. One approach 

might be to translate results obtained in awake and anaesthetized humans to other 

mammals, for example the use of isoflurane at a specific dose predominantly affects 

brain area X or the functional connection X-Y. Yet, this would not account for 

differences across species; in addition, many of the anaesthetics used in rodents are not 

used in a clinical setting. An alternative strategy might be to relate functional changes 

as derived from MRI to clinical, behavioural measures of anaesthesia depth such as 

loss of sensation, analgesia, muscle relaxation, and loss of consciousness, as a function 

of anaesthesia depth (dose of the anaesthetic drug).  

A prerequisite for such studies are reliable tools for analysing fMRI, and in particular 

resting-state fMRI data, that yield semi-quantitative information on brain networks and 

changes in interactions strength when types or dose of the anaesthetic agent is altered. 

We therefore evaluated several tools originally developed for the analysis of human 

fMRI data: dual regression and network analysis for identifying major brain network 

modules and studying within and between network interactions [16], dynamic 

functional connectivity analysis [17; 18] for probing for hidden information on 

network interactions not apparent from conventional pseudo-stationary resting-state 

fMRI analysis, and finally the use of machine learning tools in classifying resting-sate 

fMRI data obtained for different anaesthesia regimes.  

 

 

7.1 Effects on anaesthetics on mouse functional networks und their interaction 

In a first study we analysed resting-state fMRI patterns for different anaesthetic 

regimens including isoflurane, medetomidine and the combination of the two, and 

studied their effects on brain networks using multivariate methods and network 

modelling. Clearly the tools were able to identify differential effects of the respective 

agents on the brain activity patterns. Mice under low dose isoflurane anaesthesia 

displayed predominantly intra- and inter-cortical interactions with only minor 

interactions involving subcortical structures. In particular cortico-thalamic 

connectivity was found attenuated. In contrast, medetomidine-anesthetized mice 

displayed significant subcortical functional connectivity including interactions 

between cortical and thalamic ICA components, while intracortical networks appeared 

less prominent. Combining the two anaesthetics at low dose resulted in network 
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interactions that constituted the superposition of the interactions observed for each 

anaesthetic alone, though we acknowledge that some interactions were better 

preserved under isoflurane or medetomidine alone rather than under the combination 

anesthesia. As an attractive feature of the isoflurane-meditomidine combination 

anaesthesia showed minimum effects on systemic hemodynamic parameters and 

appears therefore suitable for longitudinal studies. There are mixed reports in literature 

regarding the effects of anaesthetics on cortico-thalamic interactions [19; 20; 21]. Our 

data indicate that cortico-thalamic interaction appears to be modulated by the type and 

depth of anesthesia, since we found loss of cortico-thalamic activity in isoflurane 

anesthetized mice but an anticorrelation pattern in mice under the effect of 

medetomidine and iso-med combination anesthetic regimens.  

In a second study we evaluated the dependence of mouse resting-state fMRI patterns 

on the dose of isoflurane using pseudo-stationary and dynamic functional connectivity 

analysis and found that at higher isoflurane levels spatial segregation among the brain 

regions is lost. Also the functional connectivity between homotopic regions was found 

to be lost at higher dose of isoflurane. 

The optimal choice of anesthesia, the specific regimen as well as the dose, depends on 

the specific brain regions and the specific problem to be studied, in order to minimize 

interference with the processes to be studied. Furthermore, the insight on the effects of 

anesthetics on large scale brain networks may help in optimization of anesthesia 

protocols. 

 

 

7.2 Application of resting-state fMRI analysis tools to mouse data 

Analysis tools for neuroimaging data are typically developed for use in humans. In this 

work we tested the applicability of several state of the arts analysis tools for rodent 

fMRI studies. We also developed machine-learning tools to identify brain regions 

affected by different doses of drugs. 

 

When analysing (mouse) whole brain fMRI data for changes induced by neuroactive 

agents, methods free of operator bias are in general preferred. In this sense, we 

considered ICA superior to a seed based approach. We also adapted a dual regression 

approach for the analysis of rodent resting-state fMRI data. The combination of dual 

regression with ICA analysis provides an alternative to typical resting analysis 

techniques, minimizing operator’s bias. We used partial correlation estimates for the 
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network analysis in order to eliminate spurious edge effects due to an indirect third 

region in-between the two regions. We also performed dFC analysis to determine the 

dose dependent effects of isoflurane. dFC analysis revealed significant interactions 

among functional networks that were not apparent from the conventional stationary FC 

analysis. We also applied machine learning algorithms to analyse rodent fMRI data. 

Our random forest pipeline showed that machine learning algorithms can be used in 

rodent fMRI studies for identifying the brain regions affected by the different doses of 

drugs. Preliminary results using support vector machine (SVM) analysis and deep 

learning analysis indicated huge potential for future use in rodent fMRI studies. In the 

following sections some of these aspects are discussed in more detail. 

 

 

7.3 Use of dual regression, network modelling and dynamic functional 

connectivity in small animal fMRI 

Dual regression and network modelling approaches have been mostly applied for 

analysing human data so far, with the exception of a few reports of applying network 

analysis methods in rats [22; 23]. Dual regression provides an alternative to the GLM 

analysis based on seed based method for analysing resting state fMRI data. In the 

absence of an experimental paradigm, dual regression provides an unbiased and more 

sophisticated approach to find activations in the brain regions associated with the 

effects of interest. Despite that fact that the mouse brain and in particular its cortical 

organization is simpler than human brain and is subject to less inter-individual 

variability, the applicability and the value of these tools to/for small animal imaging 

remains questionable given the biological differences across species and the intrinsic 

differences in raw data quality (SNR values constitute a major challenge in rodent 

fMRI). SNR values reported in mice are below 100 [24] while in humans it may go up 

to more than 250 [25]. Nevertheless the reported SNR values in mice are without 

cryogenic coils and we have observed an increase in SNR values up to 150 with the 

use of cryogenic coils.  

In this work, we applied Dual Regression and Network Modeling for identifying brain 

network differences between different anaesthetics regimens and doses. Dual 

Regression identified the loss of connectivity between homotopic brain regions for 

higher doses of anaesthetics. Furthermore different anaesthetic regimens were found to 

induce different modulatory effects on functional connectivity, which was best studied 
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by determining the fMRI responses at the level of brain networks. We also applied 

dynamic functional connectivity to determine the effects that might have been 

averaged out in the stationary FC analysis. dFC revealed interesting connectivity maps 

showing loss of modular structure of functional connectivity at higher dose of 

anaesthesia. Dual regression, network modelling and dynamic functional connectivity 

revealed reasonable, neurobiologically plausible results for mouse rs-fMRI data. Our 

reported results are statistically significant and in line with our previous findings [13; 

26]. The results were also found to be consistent with other reports in human studies.  

A critical aspect is the intrinsic quality of the raw data, which should display both an 

intrinsic high image SNR and minimize contributions to physiological noise due to 

physiological instability. Combining cryogenic MRI detection [27] with careful mouse 

preparation [13; 15; 28] involving intubation, mechanical ventilation in combination 

with muscle relaxant, constituted critical success factors in this regard. 

 

7.1.3 Machine learning in small animal fMRI 

Machine learning in neuroimaging studies is gaining wide spread recognition. 

However, up to now such analyses are largely limited to their application in human 

fMRI. We successfully applied machine-learning algorithms to mouse fMRI data. In 

human fMRI, prediction of group assignment (labels) can be useful as it can be used to 

diagnose certain neurological disorders; brain areas that contributed the most to the 

classification are of relevance as it extends our biological understanding of which 

areas have been affected by the certain disorder or drug. On the other hand, in a typical 

animal experiment, we know the history of the animal, i.e. we know to what group it 

belongs. However, animal studies should be carried in a blinded fashion, i.e. the 

person carrying out the analysis should not be aware of the treatment. In this sense, the 

use of automated classification tools might constitute an unbiased approach for 

analysing treatment effects.   

To explore the use of machine learning in classifying animals to specific treatment 

groups and in identifying features critical for the differentiation, we used Random 

Forest algorithm to highlight brain regions that played the most important role for 

classifying rats treated with vehicle or the analgesic buprenorphine at two different 

doses. Classification on the basis of the 10 most important features yielded a 20% 

error rate when classifying vehicle versus drug-treated rats, while the error rate 
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increased to 40% when comparing the low and high dose buprenorphine group. 

Reduction of the number of feature vectors to the most important once increased the 

quality of the classification. Nevertheless, there remained a substantial error rate, 

which eventually might be linked to the quality of raw data available. The 

identification of the brain regions through feature importance maps contributed to the 

understanding of buprenorphine effects on the brain.  

In a second study, we have used SVM and DBN, a deep learning algorithm, to allocate 

mice anaesthetized with isoflurane to the appropriate dose group. The study was 

designed for evaluating the potential of deep learning algorithms in neuroimaging 

studies, and the results are promising to be used in future for both human and animal 

imaging studies. The results show that we were able to successfully classify between 

anaesthetic doses using features extracted from static and dynamic functional 

connectivity analysis. The features extracted from dynamic functional connectivity 

analysis were found to be more discriminative to different anaesthetic doses.  This 

shows features based on dynamic functional connectivity analysis are capable of 

identifying subtle changes in mice brains using rs fMRI data. A major limitation 

regarding the use of machine learning in the context of our study was small sample 

size (N=12 per group), which led to an accuracy of less than 70% for most 

comparisons. 

 

7.4 Limitations of animal imaging 

Animals imaging has gained popularity over the years due to their low inter population 

differences, ability to conduct tests on genetically modified mice, as models of human 

diseases and for evaluating novel therapies. Animal studies also provide valuable 

insights into basic mechanisms because of the high structural similarity across 

mammalian brains, similar cell types, same neurotransmitters etc.  With regard to 

functional neuroimaging study the simple topology of animal brain is attractive in this 

context, and results obtained might eventually be translated to the more complex 

human architecture.  

 

While technical limitations (SNR etc) have already been discussed and will not be 

repeated here, there are also conceptual issues regarding fMRI studies in rodents. 
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1) While simplicity of the brain organization is an advantage in some cases, it is 

certainly a disadvantage (complexity is not for nothing). There may be human 

networks not found in the mouse (example is discussion on DMN) 

2) Despite high level of similarity across mammalian brains there are species 

differences at every level (molecules, cells, structures) which may render 

translation nevertheless difficult. 

3) The use of anaesthesia limits our options to study brain functions related to the 

cognitive tasks and emotional tasks etc. 

4) Use of anaesthetics may alter basic physiology, which may be an issue as we 

are measuring a physiological readout  

5) Use of anaesthesia is found to decrease the pulse distention and blood pressure. 

Since fMRI is an indirect measure of cerebral activation, which depends on the 

cerebrovascular baseline state, changes in blood pressure will affect the 

amplitude of the BOLD signal fluctuations and thereby potentially also the 

correlation analysis 

 

 

7.5 Outlook 

We will discuss two aspects in the outlook section: 1. How could we derive markers of 

a state of unconsciousness based on neuroimaging information, and 2. How can we use 

the methods described, in particular the classification techniques, in personalized 

patient care, for example in predicting therapy outcome in patients suffering from 

psychiatric disorders. 

 

7.5.1 EEG-fMRI to identify neuromarkers of unconsciousness in the action of 

anaesthetics 

Anaesthesia is an integral part of essentially all mouse fMRI studies. Though there are 

a few reports of awake rodent studies, their applicability in mice is certainly limited 

due to the difficulty in training mice. Furthermore, awake rodent studies have also 

been criticised for inducing the bias of stress in the animals due to immobilization 

(head fixation) and the high noise level in the scanner. Therefore fMRI studies in mice 

typically use anaesthetics in the experiments, despite the fact that anaesthetics are 

known to alter the functional connectivity. A major observation in our studies was loss 
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of spatial segregation of brain functional modules when increasing the dose of the 

isoflurane. However these findings are based on hemodynamic readouts and 

alterations in cardiac output or efficiency of neurovascular coupling might thus 

influence the results. Hence, confirmation using a technique that measures neural 

activity more intimately is desirable.  Effects of anaesthesia have been widely studied 

using EEG because of its high temporal resolution. However EEG has an intrinsic low 

spatial resolution that limits its usability in studying whole brain connectivity. Hybrid 

EEG-fMRI setups combine the advantages of both systems and we believe that 

anaesthesia can be well studied with such a system. There have been a few attempts in 

this direction [30], however so far none of the studies using such system aimed to 

identify the tipping point of unconsciousness. Furthermore these findings should also 

be replicated in awake rodent studies. We have previously discussed that different 

anaesthetic agents affect different brain areas/networks. On the other hand there must 

be some similarity as most of them lead to the same clinical/physiological result: 

analgesia, muscle relaxation, loss of consciousness. Hence, by comparing the effect of 

different anaesthetic drugs on brain function at different dose levels, it might be 

possible to tease out domains / features that are ultimately associated with the 

physiological/ clinical readouts of anaesthesia. These features might serve as marker 

regions to optimize anaesthesia regimen. Also comparing activity patterns of agents 

known to be merely sedative with agents known to lead to a complete loss of 

consciousness may help identifying responsible brain areas 

 

7.5.2 Optogenetics to control consciousness/unconsciousness 

We have identified connectivity between several important brain regions that play a 

vital role in unconsciousness e.g. the cortico-thalamic interactions. However in order 

to identify their particular role in unconsciousness, these brain connectivities may be 

artificially altered to determine if it changes their conscious condition. Optogenetics is 

a breakthrough technique developed recently to artificially control genetically 

modified light sensitive neurons in the brain by using light. Neurons that are present in 

the anaesthesia-affected regions according to our results may be genetically modified 

to become light sensitive and then their effects on the consciousness can be 

determined. If consciousness can be controlled this way, such a study would become a 

major step in understanding the effects of anaesthesia and altered states of 

consciousness. 



	 174	

 

7.5.3 Psychiatric treatment outcome predictions 

Machine learning in neuroimaging is expected to play an important role in the coming 

years. Recently researchers were able to reconstruct the content of the dream by 

analysing the brain activity during sleep and matching it to the already known 

response to the visual stimuli [31]. In clinical psychology, researchers have used 

machine learning to predict the intrusive moments in PTSD patients [32]. There have 

been several other reports of using machine learning for identifying noise related 

components from the ICs and then regressing those components to improve the signal 

to noise ratio [33; 34; 35]. 

However use of machine learning in clinical neuroimaging has largely been confined 

to the prediction of diagnosis at the single subject level [36; 37; 38; 39; 40]. 

Psychiatrists on the other hand, trust their experience and diagnosis manuals for the 

diagnosis. This led to limited to no use of fMRI data analysis techniques for 

identification of psychiatric disorders in clinical practice.  However an area where the 

psychiatrists require assistance is in selection of alternative treatment options. The 

psychiatrist usually selects one treatment from many alternate treatment choices 

available, and there is little available evidence supporting the selection of one 

treatment over another. This is important because many patients fail to respond to any 

particular treatment. 

By analysing the treatment response using neuroimaging data, machine learning 

algorithms can be trained to predict the treatment response in new subjects. This 

would allow us to suggest personalised medicine for psychiatric patients based on their 

neuroimaging data. Personalized medicine has the potential to optimize patient care 

with fewer treatment trials; by predicting treatment response based on the 

neuroimaging data and thus selecting the optimal treatment. Patients with similar 

symptom profiles may have differing neurobiology that may impact treatment 

effectiveness, and therefore analyzing the patient-specific neuroimaging data would be 

vital in selecting the optimal treatment. This way the best-suited therapy can be given 

to the patients, saving both money and time.  

Prediction of treatment response based on the baseline neuromarkers is an emerging 

research area. There are only a few studies that have attempted to predict the response 

of the treatment in brain disorder patients using neuroimaging data [10; 11; 12; 13], 
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however those studies lack substantial evidence due to very small sample size (less 

than 10 subjects) and unexplained brain basis of treatment efficacy. However in future, 

experiments may be performed with large sample size to predict the alternative 

treatment response using multi modal neuroimaging data. 

Furthermore such prediction algorithms at the level of single subject would require 

definition of highly informative and low level features. fMRI raw data is typically high 

dimensional. Though we have used feature reduction techniques in our work, we 

acknowledge that further progress can be made to identify low-level highly 

informative features. Brodersen et al. [36; 41] suggested the use of weights of DCM 

networks as features for classification in a technique called ‘generative embedding’. 

Future machine learning applications may use the similar feature selection strategy. 

Generative embedding with deep learning algorithms for classification may help 

achieving high level of prediction accuracy at the single subject level. 

7.5.4 Validation studies in fMRI 

fMRI has been widely used in neuroimaging research over the decade. Researchers 

have reported interesting insights in to the brain function under normal conditions as 

well as in different pathological conditions. Similarly cross species functional 

networks have also been identified regularly. However in the absence of the proper 

ground truth, many of these reported results need separate validation studies. Recently 

Eklund et al. [42] reported the incorrect use of statistical tools to analyse fMRI data, 

possibly impacting thousands of publications. This speaks for validating the results in 

independent studies across different research centres. Unfortunately the scientific 

community hails the one who presents the novel findings and the reward for those 

validating the findings is minimum. However the scientific community needs to adapt 

to give proper credit to those validating the previously known scientific results. Since 

fMRI data analysis aims to determine small changes in the blood flow of the brain 

caused by the pathological conditions or due to a specific task, fMRI results need to be 

taken with caution before independent validation studies are performed. Providing the 

data as open access to researchers around the world for validating the results may be 

the first step in this direction. The computational power has increased greatly in the 

last few years and with automatic analysis paradigms, e.g. using nipype, the whole 

analysis paradigms can be scripted to run automatically to validate results from 

previously published work. 



	 176	

7.6 References 

[1] B. Biswal, F.Z. Yetkin, V.M. Haughton, and J.S. Hyde, Functional connectivity in 

the motor cortex of resting human brain using echo-planar MRI. Magn Reson 

Med 34 (1995) 537-41. 

[2] M.E. Raichle, A.M. MacLeod, A.Z. Snyder, W.J. Powers, D.A. Gusnard, and G.L. 

Shulman, A default mode of brain function. Proc Natl Acad Sci U S A 98 

(2001) 676-82. 

[3] J.L. Vincent, G.H. Patel, M.D. Fox, A.Z. Snyder, J.T. Baker, D.C. Van Essen, J.M. 

Zempel, L.H. Snyder, M. Corbetta, and M.E. Raichle, Intrinsic functional 

architecture in the anaesthetized monkey brain. Nature 447 (2007) 83-6. 

[4] D.V. D'Souza, E. Jonckers, A. Bruns, B. Kunnecke, M. von Kienlin, A. Van der 

Linden, T. Mueggler, and M. Verhoye, Preserved modular network 

organization in the sedated rat brain. PLoS One 9 (2014) e106156. 

[5] R.M. Hutchison, S.M. Mirsattari, C.K. Jones, J.S. Gati, and L.S. Leung, Functional 

networks in the anesthetized rat brain revealed by independent component 

analysis of resting-state FMRI. J Neurophysiol 103 (2010) 3398-406. 

[6] Z. Liang, X. Liu, and N. Zhang, Dynamic resting state functional connectivity in 

awake and anesthetized rodents. Neuroimage 104 (2015) 89-99. 

[7] X. Liu, X.H. Zhu, Y. Zhang, and W. Chen, The change of functional connectivity 

specificity in rats under various anesthesia levels and its neural origin. Brain 

Topogr 26 (2013) 363-77. 

[8] K. Masamoto, M. Fukuda, A. Vazquez, and S.G. Kim, Dose-dependent effect of 

isoflurane on neurovascular coupling in rat cerebral cortex. Eur J Neurosci 30 

(2009) 242-50. 

[9] A. Silva, H. Cardoso-Cruz, F. Silva, V. Galhardo, and L. Antunes, Comparison of 

anesthetic depth indexes based on thalamocortical local field potentials in rats. 

Anesthesiology 112 (2010) 355-63. 

[10] K.A. Williams, M. Magnuson, W. Majeed, S.M. LaConte, S.J. Peltier, X. Hu, and 

S.D. Keilholz, Comparison of alpha-chloralose, medetomidine and isoflurane 

anesthesia for functional connectivity mapping in the rat. Magn Reson Imaging 

28 (2010) 995-1003. 

[11] F. Zhao, T. Zhao, L. Zhou, Q. Wu, and X. Hu, BOLD study of stimulation-

induced neural activity and resting-state connectivity in medetomidine-sedated 

rat. Neuroimage 39 (2008) 248-60. 



	 177	

[12] O. Akeju, M.L. Loggia, C. Catana, K.J. Pavone, R. Vazquez, J. Rhee, V. 

Contreras Ramirez, D.B. Chonde, D. Izquierdo-Garcia, G. Arabasz, S. Hsu, K. 

Habeeb, J.M. Hooker, V. Napadow, E.N. Brown, and P.L. Purdon, Disruption 

of thalamic functional connectivity is a neural correlate of dexmedetomidine-

induced unconsciousness. Elife 3 (2014) e04499. 

[13] J. Grandjean, A. Schroeter, I. Batata, and M. Rudin, Optimization of anesthesia 

protocol for resting-state fMRI in mice based on differential effects of 

anesthetics on functional connectivity patterns. Neuroimage 102 Pt 2 (2014) 

838-47. 

[14] J.A. King, T.S. Garelick, M.E. Brevard, W. Chen, T.L. Messenger, T.Q. Duong, 

and C.F. Ferris, Procedure for minimizing stress for fMRI studies in conscious 

rats. J Neurosci Methods 148 (2005) 154-60. 

[15] A. Schroeter, F. Schlegel, A. Seuwen, J. Grandjean, and M. Rudin, Specificity of 

stimulus-evoked fMRI responses in the mouse: the influence of systemic 

physiological changes associated with innocuous stimulation under four 

different anesthetics. Neuroimage 94 (2014) 372-84. 

[16] S.M. Smith, K.L. Miller, G. Salimi-Khorshidi, M. Webster, C.F. Beckmann, T.E. 

Nichols, J.D. Ramsey, and M.W. Woolrich, Network modelling methods for 

FMRI. Neuroimage 54 (2011) 875-91. 

[17] N. Leonardi, W.R. Shirer, M.D. Greicius, and D. Van De Ville, Disentangling 

dynamic networks: Separated and joint expressions of functional connectivity 

patterns in time. Hum Brain Mapp 35 (2014) 5984-95. 

[18] N. Leonardi, and D. Van De Ville, On spurious and real fluctuations of dynamic 

functional connectivity during rest. Neuroimage 104 (2015) 430-6. 

[19] S.P. Kim, E. Hwang, J.H. Kang, S. Kim, and J.H. Choi, Changes in the 

thalamocortical connectivity during anesthesia-induced transitions in 

consciousness. Neuroreport 23 (2012) 294-8. 

[20] X. Liu, K.K. Lauer, B.D. Ward, S.J. Li, and A.G. Hudetz, Differential effects of 

deep sedation with propofol on the specific and nonspecific thalamocortical 

systems: a functional magnetic resonance imaging study. Anesthesiology 118 

(2013) 59-69. 

[21] N.S. White, and M.T. Alkire, Impaired thalamocortical connectivity in humans 

during general-anesthetic-induced unconsciousness. Neuroimage 19 (2003) 

402-11. 



	 178	

[22] A.E. Mechling, N.S. Hubner, H.L. Lee, J. Hennig, D. von Elverfeldt, and L.A. 

Harsan, Fine-grained mapping of mouse brain functional connectivity with 

resting-state fMRI. Neuroimage 96 (2014) 203-15. 

[23] A. Liska, A. Galbusera, A.J. Schwarz, and A. Gozzi, Functional connectivity hubs 

of the mouse brain. Neuroimage 115 (2015) 281-91. 

[24] E. Jonckers, J. Van Audekerke, G. De Visscher, A. Van der Linden, and M. 

Verhoye, Functional connectivity fMRI of the rodent brain: comparison of 

functional connectivity networks in rat and mouse. PLoS One 6 (2011) e18876. 

[25] M. Welvaert, and Y. Rosseel, On the definition of signal-to-noise ratio and 

contrast-to-noise ratio for FMRI data. PLoS One 8 (2013) e77089. 

[26] J. Grandjean, R. Derungs, L. Kulic, T. Welt, M. Henkelman, R.M. Nitsch, and M. 

Rudin, Complex interplay between brain function and structure during cerebral 

amyloidosis in APP transgenic mouse strains revealed by multi-parametric 

MRI comparison. Neuroimage (2016). 

[27] C. Baltes, N. Radzwill, S. Bosshard, D. Marek, and M. Rudin, Micro MRI of the 

mouse brain using a novel 400 MHz cryogenic quadrature RF probe. NMR 

Biomed 22 (2009) 834-42. 

[28] J. Grandjean, and M. Rudin, What can functional connectivity in mice tell us 

about Alzheimer\U+2019\s disease? An investigation with resting-state fMRI 

at 9.4T, ETH-Zürich, Zürich, 2014, pp. 1 Band. 

[29] R. Wang, T. Foniok, J.I. Wamsteeker, M. Qiao, B. Tomanek, R.A. Vivanco, and 

U.I. Tuor, Transient blood pressure changes affect the functional magnetic 

resonance imaging detection of cerebral activation. Neuroimage 31 (2006) 1-

11. 

[30] P.L. Purdon, E.T. Pierce, G. Bonmassar, J. Walsh, P.G. Harrell, J. Kwo, D. 

Deschler, M. Barlow, R.C. Merhar, C. Lamus, C.M. Mullaly, M. Sullivan, S. 

Maginnis, D. Skoniecki, H.A. Higgins, and E.N. Brown, Simultaneous 

electroencephalography and functional magnetic resonance imaging of general 

anesthesia. Ann N Y Acad Sci 1157 (2009) 61-70. 

[31] T. Horikawa, M. Tamaki, Y. Miyawaki, and Y. Kamitani, Neural decoding of 

visual imagery during sleep. Science 340 (2013) 639-42. 

[32] I.A. Clark, K.E. Niehaus, E.P. Duff, M.C. Di Simplicio, G.D. Clifford, S.M. 

Smith, C.E. Mackay, M.W. Woolrich, and E.A. Holmes, First steps in using 

machine learning on fMRI data to predict intrusive memories of traumatic film 

footage. Behav Res Ther 62 (2014) 37-46. 



	 179	

[33] L. Griffanti, G. Salimi-Khorshidi, C.F. Beckmann, E.J. Auerbach, G. Douaud, 

C.E. Sexton, E. Zsoldos, K.P. Ebmeier, N. Filippini, C.E. Mackay, S. Moeller, 

J. Xu, E. Yacoub, G. Baselli, K. Ugurbil, K.L. Miller, and S.M. Smith, ICA-

based artefact removal and accelerated fMRI acquisition for improved resting 

state network imaging. Neuroimage 95 (2014) 232-47. 

[34] G. Salimi-Khorshidi, G. Douaud, C.F. Beckmann, M.F. Glasser, L. Griffanti, and 

S.M. Smith, Automatic denoising of functional MRI data: combining 

independent component analysis and hierarchical fusion of classifiers. 

Neuroimage 90 (2014) 449-68. 

[35] V. Zerbi, J. Grandjean, M. Rudin, and N. Wenderoth, Mapping the mouse brain 

with rs-fMRI: An optimized pipeline for functional network identification. 

Neuroimage 123 (2015) 11-21. 

[36] K.H. Brodersen, L. Deserno, F. Schlagenhauf, Z. Lin, W.D. Penny, J.M. 

Buhmann, and K.E. Stephan, Dissecting psychiatric spectrum disorders by 

generative embedding. Neuroimage Clin 4 (2014) 98-111. 

[37] M. Dyrba, F. Barkhof, A. Fellgiebel, M. Filippi, L. Hausner, K. Hauenstein, T. 

Kirste, S.J. Teipel, and E.s. group, Predicting Prodromal Alzheimer's Disease 

in Subjects with Mild Cognitive Impairment Using Machine Learning 

Classification of Multimodal Multicenter Diffusion-Tensor and Magnetic 

Resonance Imaging Data. J Neuroimaging 25 (2015) 738-47. 

[38] A. Khazaee, A. Ebrahimzadeh, and A. Babajani-Feremi, Application of advanced 

machine learning methods on resting-state fMRI network for identification of 

mild cognitive impairment and Alzheimer's disease. Brain Imaging Behav 10 

(2016) 799-817. 

[39] L.R. Trambaiolli, A.C. Lorena, F.J. Fraga, P.A. Kanda, R. Anghinah, and R. 

Nitrini, Improving Alzheimer's disease diagnosis with machine learning 

techniques. Clin EEG Neurosci 42 (2011) 160-5. 

[40] P. McGuire, J.R. Sato, A. Mechelli, A. Jackowski, R.A. Bressan, and A. Zugman, 

Can neuroimaging be used to predict the onset of psychosis? Lancet Psychiatry 

2 (2015) 1117-22. 

[41] K.H. Brodersen, T.M. Schofield, A.P. Leff, C.S. Ong, E.I. Lomakina, J.M. 

Buhmann, and K.E. Stephan, Generative embedding for model-based 

classification of fMRI data. PLoS Comput Biol 7 (2011) e1002079. 



	 180	

[42] A. Eklund, T.E. Nichols, and H. Knutsson, Cluster failure: Why fMRI inferences 

for spatial extent have inflated false-positive rates. Proc Natl Acad Sci U S A 

113 (2016) 7900-5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 181	

8. Curriculum Vitae  

 

I was born on 3rd October 1985 in Karachi, Pakistan and did my bachelors in Electrical 

Engineering from NED University of Engineering and Technology in Karachi. My 

major in my bachelor studies was Electrical Power System. However, I was very much 

interested in the signal processing area, and was selected for the prestigious Erasmus 

Mundus Masters program (CIMET) with full scholarship in August 2009. During my 

Masters, I spent my semesters in Finland, Spain and Norway and graduated with three 

degrees, Masters in Computer Science from University of Eastern Finland, Finland; 

Masters in Physics from University of Granada, Spain and Masters in Media 

Technology from Gjovik University College (now part of NTNU), Norway. I also had 

the opportunity to do 2 months internship at Heidelberg Collaboratory for Image 

Processing (HCI) under the supervision of Prof. Bernd Jähne and Dr. Markus Jehle. In 

2011, I started my Master Thesis at Light Microscopy Center (LMC) ETH Zurich, 

under the supervision of Prof. Wolf Hardt and Dr. Peter Horvath. My goal was to track 

salmonella flowing in 3D using 2D microscopic images. We modelled point-spread 

function of the microscope through image processing algorithms to obtain depth 

information. That was my first exposure of applying engineering tools to solve 

biological problems and I quickly developed interest in this area. In 2012, I started my 

PhD at Institute of Biomedical Engineering at ETH Zurich under the supervision of 

Prof. Markus Rudin. Since then I am interested in understanding the brain functions by 

applying multivariate and pattern recognition tools to the MRI data. During my PhD, I 

also had the opportunity to spend a few months at PAIN lab, Children’s Hospital 

Boston under the supervision of Prof. David Borsook and Dr. Becerra. 

 

 

 

 

 

 

 

 

 

 

 



	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	
	


