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ABSTRACT: Developing methods that can detect compartmentation of metabolic pathways in intact tissues may be
important for understanding energy demand and supply. In this study, we investigated compartmentation of glycolysis and
glycogenolysis in the isolated perfused rat heart using '*C NMR isotopomer analysis. Rat hearts previously depleted of
myocardial glycogen were perfused with 5.5 mm [U-'Clglucose plus 50 mU/mL insulin until newly synthesized glycogen
recovered to new steady-state levels (~60% of pre-depleted values). After a short wash-out period, the perfusate glucose
was then switched to [1-'*C]glucose, and glycolysis and glycogenolysis were stimulated by addition of glucagon (1 pg/ml).
A '>C NMR multiplet analysis of the methyl resonance of lactate provided an estimate of pyruvate derived from glucose vs
glycogen while a multiplet analysis of the C4 resonance of glutamate provided an estimate of acetyl-CoA derived from
glycolytic pyruvate vs glycogenolytic pyruvate. These two indices were not equivalent and their difference was further
magnified in the presence of insulin during the stimulation phase. These combined observations are consistent with
functional compartmentation of glycolytic and glycogenolytic enzymes that allows pyruvate generated by these two
processes to be distinguished at the level of lactate and acetyl-CoA. Copyright © 2004 John Wiley & Sons, Ltd.
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INTRODUCTION

Experimental evidence has been accumulating for func-
tional organization of enzymes within the cytosol of
cells.! One example of possible functional compartmen-
tation came from the early work of Mowbray and
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Ottaway,z’5 who first presented evidence for multiple,
metabolic pools of pyruvate. Most early evidence for
compartmentation came from differences in '*C specific
activities of alanine vs lactate, metabolites that share
pyruvate as a 3-carbon precursor.6 Because of differences
in activity and regulation of alanine transaminase vs
lactate dehydrogenase, it is not unusual to find differen-
tial alanine- and lactate-specific activities prior to meta-
bolic steady state,” but significant differences between
the specific activities of these two metabolites at meta-
bolic steady state has often been used as evidence for
functional compartmentation of pyruvate.8 Peuhkurinen
et al.’ proposed that one pool of pyruvate in the myocyte
is associated more closely with glycolysis and tissue
lactate, while a second ‘peripheral’ pool is in close
communication with extracellular pyruvate and mito-
chondrial pyruvate. Tissue alanine is thought to be a
better reflection of the second pyruvate pool than the
first.® This phenomenon was reevaluated in more recent
3C NMR studies of the heart.®'*'® Hardin and
Kushmerick'®> demonstrated in smooth skeletal muscle
that glycolytic intermediates derived from glucose do not
fully mix with glycolytic intermediates derived from
glycogen during simultaneous stimulation of both glyco-
lysis and glycogenolysis. Furthermore, they observed that
pyruvate derived from glycogen is oxidized in the citric
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acid cycle in preference to pyruvate derived from glu-
cose. Zhao et al.,13 using '"H NMR to monitor °C
enrichment of alanine and lactate in isolated perfused
rat hearts, observed differential labeling of these two
metabolites (as reported by others), but also reported
differences in NMR detectability of lactate and alanine
that depended on perfusion conditions (glucose vs pyr-
uvate perfused hearts). This differential NMR visibility
suggested for the first time that compartmental pools of
lactate and alanine in myocytes may exist in different
physical microenvironments, clearly providing further
evidence for functional organization of the cytosol.
More recently, Chatham and Forder’ presented evidence
for a non-exchanging pool of lactate and suggested that
much of the earlier evidence for two separate pyruvate
pools could be explained by two pools of lactate, one
highly-sequestered, tightly-bound pool and another that
is free and in rapid exchange with tissue pyruvate.

The idea of compartmentation of glycolysis and gly-
cogenolysis in the heart is also evident in recent studies of
regulation of carbohydrate metabolism in the perfused rat
heart.'”** Goodwin et al.'®* reported preferential oxi-
dation of glycogen vs exogenous glucose in isolated
working rat heart and suggested that glycolysis from
glycogen is better coupled to pyruvate oxidation. In the
current study, we investigated further the extent to which
glycolytic intermediates mix during simultaneous stimu-
lation of glycolysis and glycogenolysis in isolated per-
fused rat hearts using different '*C labeling patterns in
glycogen and exogenous glucose. Our data demonstrate
that the metabolic fate of pyruvate and the extent of
mixing of intermediates along these parallel pathways are
different in hearts stimulated by glucagon alone vs hearts
stimulated by both glucagon and insulin.

MATERIALS AND METHODS
Materials

D,0, 99.9%, [1-'3C]- and [U-'3C] glucose were purchased
from Cambridge Isotope Laboratories Inc. (Andover, MA,
USA). All other chemicals were from Sigma (St Louis,
MO, USA) and of the highest purity available.

Heart preparation

The study was performed under a protocol approved by
the Animal Care and Use Committee at the University of
Texas at Dallas. Male Sprague—-Dawley rats weighing
200-220g were injected with isoproterenol (5 mg/kg)
subcutaneously 1 h before heart removal to deplete myo-
cardial glycogen.”’24 Hearts were then rapidly excised
and perfused using standard Langendorff techniques with
a modified Krebs—Henseleit bicarbonate (KHB) buffer
that contained (mm): NaCl (118), KCI1 (4.6), NaHCO;3

Copyright © 2004 John Wiley & Sons, Ltd.

(25.3), CaCl, (1.2), MgSO4 (1.16). The buffer was
bubbled continuously with 95% O0,-5% CO,.

Perfusion protocols

Hearts were attached to an all glass perfusion apparatus
that fitted into the 51 mm bore of a standard vertical bore
magnet and monitored by '*C NMR. Initially the KHB
perfusate was supplemented with 5.5 mm [U-'*C]glucose
plus 50mU/ml insulin and perfusion was maintained
until newly synthesized glycogen recovered to steady-
state levels (~60% of the pre-depleted value). After
~50min, a comparison of the glycogen C1 and glucose
C173 resonances indicated that [U-">C] glycogen had risen
to 18.1 2.3 umol glycogen/gww (n =4). This value was
in good agreement with glycogen determined enzymati-
cally in freeze-clamped tissue, indicating that essentially
all of the replenished glycogen was enriched with '*C and
that it was 100% NMR visible.”” Hearts were then
perfused for 5 min with KHB buffer lacking glucose and
insulin to wash excess [U-">C] glucose from the NMR tube
and perfusion lines. When the [U-13C) glucose resonances
were no longer detectable by 3C NMR, the perfusate was
switched to one containing 5.5mm [1-"*C]glucose plus
2mMm dichloroacetic acid to fully stimulate PDH activity
(group I hearts, n=6) and S0 mU/ml of insulin (group II
hearts, n = 6). After equilibration for an additional 10 min,
1 pg/ml of glucagon was added to stimulate glycolysis and
glycogenolysis.26 Additional glucagon (0.1-0.5 pg/ml)
was administered as necessary to maintain heart rate above
baseline values (230+11bpm without insulin and
240+ 11 bpm with insulin). The perfusions were termi-
nated when the intensity of the [U-">C]glycogen '*C NMR
signal decreased by ~50%. In all hearts this required a
perfusion time on the order of 50 min, a period of time that
is sufficient for the TCA cycle reactions to reach metabolic
and isotopic steady state.”” Thus, any labeling present in
glutamate that originated during the initial perfusion with
[U-"*Clglucose (yielding C4D45 or C4Q multiplets) is
completely depleted during subsequent perfusion with
[1-°C) glucose.

Tissue extracts

At the conclusion of each NMR experiment, hearts were
freeze-clamped with aluminum tongs pre-cooled in liquid
nitrogen. The frozen hearts were pulverized to a fine
powder under liquid nitrogen using a pestle and mortar.
This powder was homogeneized with 3.6% cold perchlo-
ric acid and, after thawing, the homogenate was centri-
fuged at 15000 rpm for 15 min at 5°C. The supernatant
was neutralized (~pH 7.4) using a minimum volume of
KOH. This solution was centrifuged at 15000 rpm for
20min at 5°C and the resulting supernatant was freeze-
dried, dissolved in 600pl 99.9% D,O, pH adjusted
(pD~7.0), filtered through a 5mm filter, and the clear
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solution was transferred into a 5 mm NMR tube for °C
NMR analysis.

Tissue glycogen

Glycogen from freeze-clamped tissue was isolated using
published procedures®® and quantified using standard
enzymatic methods.” Hearts from control animals
(n=3) contained 30.1 +-3.2 pmol glycogen/gww while
hearts from animals treated with isoproterenol 1 h prior to
sacrifice (n = 3) contained 3.5 £ 0.3 pmol glycogen/gww.
Perfusion of glycogen depleted hearts with 5.5 mm
[U-"*Clglucose for approximately 1h restored glycogen
levels to 18.1 =2.3 umol glycogen/gww (n=4). All
glycogen levels were in good agreement with values
reported in previous studies."

NMR spectroscopy

Broadband proton decoupled '*C NMR spectra of intact
hearts were collected on a 500 MHz Bruker GN spectro-
meter using a 18 mm '’C/'H probe. The hearts were
positioned on the center of an 18 mm OD thin-walled
NMR tube (Wilmad) and bathed in KHB perfusate. The
temperature was maintained at 37°C by controlling both
the perfusate temperature (using a water bath) and the air
surrounding the 18 mm tube using a variable temperature
accessory. 3C NMR spectra were collected every 5 min
using a 45° pulse and a 1 s delay between pulses. A total
of 16000 data points were collected to cover a sweep-

perfusion
time (min) /u

50 e JU\W -

width of 28 000 Hz. Efficient broadband proton decou-
pling was achieved using WALTZ decoupling30 at two
power levels (low during the 1s delay and high during
acquisition). Shimming was performed on the **Na free
induction decay (FID) after tuning the '>C coil to **Na
(132 MHz). Typical Z3Na line widths on the intact heart
were 18-20Hz. High-resolution '>C NMR spectra of
heart perchloric extracts were collected on the same
spectrometer using a 5Smm broadband NMR probe.
Each ">C spectrum consisted of 65000 data points cover-
ing a sweep-width of 28 000 Hz. Before Fourier transfor-
mation the FID’s were zero-filled to 128 000 points and
multiplied by a 0.5 Hz exponential.

Data analysis

Data are presented as mean =+ standard deviation (SD).
13C NMR multiplet analysis was made using the decon-
volution routine of the PC-based NMR program NUTS™
(Acorn NMR; Fremont, CA, USA). For each heart both
the lactate C3 and the glutamate C4 resonances were
fitted three times.

RESULTS

Perfusion of glycogen depleted hearts with 5.5 mm
[U-"*Clglucose and 50 mU/ml insulin resulted in partial
replenishment of myocardial glycogen (~60% of pre-
depleted levels). Figure 1 shows a stacked plot of B¢
NMR spectra collected every 5 min for a total duration of
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Figure 1. 125.7 MHz '>C NMR spectra of an |so|ated perfused rat heart showing
the production of [U-"3Clglycogen from [U-'3C]glucose over time. The reso-
nances of interest are: glycogen C1 at 100.5 ppm (a); glucose C1/3 (b) and CTa (c)
at 97.0 and 93.1ppm, respectively; glutamate C2 at 55.5ppm (d), C4 at
34.2 ppm (e) and C3 at 27.8 ppm (f). Other resonances include all other carbons
from both [U-"3C]glucose and synthesized [U-"3C]glycogen
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50min. The C1 glycogen resonance (100.5ppm) was
clearly differentiated from the C13 (97.0 ppm) and Cla
(93.1 ppm) resonances of [U-13C]glucose. The C2
(55.5ppm), C4 (34.2 ppm) and C3 (27.8 ppm) resonances
of glutamate were also visible, showing that some
[U-C) glucose produced [U—ISC]pyruvate via glycolysis
which then entered the citric acid cycle (TCA cycle). At
the end of the 50 min perfusion period, the [U-">C]glyco-
gen replenished hearts were perfused for 5min with a
glucose-free KHB buffer to eliminate all '>’C NMR
signals arising from [U-">C]glucose. This was followed
by switching to a KHB buffer containing 5.5 mMm
[1—13C]glucose and 2mMm dichloroacetate (to fully acti-
vate pyruvate dehydrogenase®'). Hearts were equilibrated
with this mixture for an additional 10 min before adding
1 pg/ml of glucagon to stimulate both glycolysis and
glycogenolysis.26 Upon stimulation by glucagon, the
average heart rate (HR) increased from 236+ 11 to
268+ 16bpm and the '*C signal of [U-'"*C]glycogen
decreased progressively while both [3-'*Cllactate (de-
rived from glucose) and [U-'3CJlactate (derived from
glycogen) increased with time (not shown). Samples of
perfusate (1-2 ml) were withdrawn during this period for
later NMR analysis and the hearts were freeze-clamped
after the glycogen signal intensity had decreased by
~50% (corresponding to approximately 50 min of perfu-
sion). A sample '>C NMR spectrum of a group I heart
extract (no insulin) is shown in Fig. 2. The lactate methyl
resonance centered at 20.7 ppm consisted of a singlet (S)
reflecting lactate derived from exogenous [1-'"*Clglucose
and a doublet (D) reflecting lactate derived from

[U-13C]glycogen. Note that the S component reflects
only half of the lactate derived from [1—13C]g1ucose
because a single molecule of [1-13C]glucose produces
one [3-"*C]lactate and one unenriched lactate. Thus, the
lactate resonance area ratio, 2*S/D, directly reports the
ratio of lactate produced from glucose vs lactate pro-
duced from glycogen during the stimulation phase. We
refer to this ratio throughout the text as the ‘lactate
index’. Note that this index could potentially underesti-
mate the contribution of glycogen to lactate formation
owing to the ~20% of unenriched glycogen remaining in
the tissue prior to replenishment of glycogen with
[U-13C]g1ucose.

The glutamate C4 resonance centered at 34.2 ppm
directly reports the distribution of '*C in acetyl-CoA
entering the TCA cycle. As shown in Fig. 2, the C4
resonance has four multiplet components, a singlet (S),
two doublets with differing '*C—">C couplings (D34 and
D45), and a doublet-of-doublets or quartet (Q). As shown
in numerous publications,’*>* C4S and C4D34 arise
only from entry into the TCA cycle of [2-'*Clacetyl-
CoA, while C4D45 and C4Q arise only from entry of
[1,2—13C]acetyl—CoA. Thus, the areas of these C4 multi-
plets report the relative amount of [3-'*C]pyruvate (de-
rived from [1—13C]glucose) Vs [U-13C]pyruvate (derived
from [U-">Clglycogen) that entered the TCA cycle dur-
ing this same stimulation period. Hereafter, we refer to
the glutamate C4 resonance area ratio, 2*(S -+ D34)/
(D45 4+ Q), as the ‘glutamate index’. As before, factor 2
accounts for the fact that only half of the acetyl-CoA
units derived from exogenous [1-'*C]glucose are labeled
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Figure 2. A 125.7 MHz '3C NMR spectrum from the extract of a rat heart perfused with
insulin present only during the glycogen synthesis. The insets show the expanded
resonances of lactate C3 (20.7 ppm) and glutamate C4 (34.2 ppm). The glutamate index
[2*(S + D34)/D45 + Q] was significantly greater than the lactate index: [2*S/D] (p < 0.05)
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Table 1. Summary of heart rates and lactate and glutamate indices from group I hearts. Insulin was absent during

the stimulation phase

Animal no. Heart rate Heart rate Lactate index Lactate index Glutamate index
(bpm) baseline (bpm) stimulated (extracts) (perfusate) (extracts)
1 230+ 10 270 4+20 3.124+0.15 3.48+0.17 3.72+0.18
2 230+10 270 £ 20 3.16+0.15 3.504+0.17 3.80£0.19
3 240+ 10 2604+ 10 3.524+0.17 3.86+£0.19 4.344+0.21
4 240+ 10 260 420 3.464+0.17 3.804+0.19 4.22+0.21
5 250+10 270 +20 3.38+0.16 3.70+0.18 4.10+0.20
6 230420 280410 3.584+0.17 3.824+0.19 424 +0.21
Average 23611 268 £ 16 3.36%°+0.16 3.68°+£0.18 4.06° +£0.20

% A paired t-test of the extract lactate index vs the perfusate lactate index (¢, = —18.53, one-tail fepjica = 2.57 and P(T < 1) =4.26 X 107%) showed

significant differences (p =0.05).

°A paired r-test between lactate index in extracts and glutamate index in extracts (p =0.05) with g, = —10.37, one-tail 7.;jca=2.57 and
P(T <t)=0.00014 showed that glutamate index was significantly greater than lactate index.

Table 2. Summary of heart rates and lactate and glutamate indices in group Il hearts. Insulin was present during

the stimulation period

Animal no. Heart rate Heart rate Lactate index Lactate index Glutamate
(bpm) baseline (bpm) stimulated (extracts) (perfusate) index (extracts)

1 240+ 10 32010 9.28 £0.46 9.88 £0.49 5.66 £0.28

2 230+ 10 320410 9.90 +£0.49 10.0 +0.50 5.9240.29

3 230£10 31010 8.46 +0.42 8.90 +0.44 4.604+0.23

4 250+ 10 320430 9.82 +0.49 9.96 +0.49 5.824+0.29

5 240+ 10 340 £20 11.8£0.59 12.1 £0.60 6.40+0.32

6 250+10 330420 8.48 £0.42 8.84 £0.44 4.40+0.22

Average 240+ 10 323 £20 9.60 & 0.48*P 9.94 £+ 0.49% 5.46 +0.26°

# A paired r-test of two samples: lactate index in extracts and lactate index in perfusate with fy, = —4.39, one tail f.jicq=2.01 and

P(T <t)=0.00387 showed that there was a significant statistical difference between lactate index in extracts and in perfusates and that lactate
index in extracts was significantly lower than lactate index in the perfusate (p =0.05).

> A paired #-test between lactate index in extracts and glutamate index in extracts (p=0.05) with #y, =17.95, one-tail 7. =2.57 and
P(T<1)=4.94 x 10° showed that the glutamate index was significantly lower than the lactate index (p = 0.05).

in carbon 2. As with the lactate index, the glutamate
index could potentially underestimate the glycogen con-
tribution owing to unlabeled glucose units remaining in
the glycogen core.

A summary of '>*C NMR data from group I hearts is
presented in Table 1. The lactate index reports that ~ 3.4-
fold more lactate was derived from [1—13C]g1ucose than
from [U-"?Clglycogen during the 50min stimulation
period. In comparison, the glutamate index reported
that ~4.1 more acetyl-CoA was derived from [3-'*C]pyr-
uvate than from [U-'"’C]pyruvate. The glutamate index
was significantly higher (p =0.05) than the lactate index
(either tissue or perfusate lactate). Furthermore, the
lactate index derived from spectra of lactate perfusate
(3.68 :0.18) was significantly greater (p =0.05) than
lactate index measured in spectra of extracts
(3.36 - 0.16). This demonstrates that there is preferential
export of lactate derived from [1—13C]glucose vs lactate
derived from [U-'">C]glycogen under these conditions.

The same protocol was repeated with insulin present
(50 mU/ml) during the stimulation phase (group II). In
this case, glucagon significantly increased both the heart
rate and lactate production (Table 2). A 3C NMR
spectrum of a group II heart extract is shown in Fig. 3.
The tissue lactate index reported by this spectrum in-

Copyright © 2004 John Wiley & Sons, Ltd.

dicated that ~9.6-fold more lactate was derived from
exogenous [1—13C]g1ucose than from endogenous
[U-"*C]glycogen. Also, a comparison of spectra from
perfusate lactate vs extract lactate showed that group II
hearts, like group I hearts, exported more lactate derived
from [1—13C]gluc0se than lactate derived from
[U-13C]glycogen. Thus, even though lactate production
from exogenous [1—13C]glucose was increased nearly 3-
fold in the presence of insulin, there was a small but
significant preference for export of glycolytic lactate.
An analysis of glutamate multiplets for group II hearts
reported a glutamate index of 5.46 +0.26, a value that
was significantly higher than that measured in hearts
stimulated by glucagon alone (group I hearts). This
indicates that the pool of pyruvate entering the mitochon-
dria was substantially different from the pool involved in
formation of lactate. The observation that the glutamate
index is smaller than either lactate index by nearly a factor
of two (5.46 vs 9.60 or 9.94) shows that pyruvate derived
from [U-'?Clglycogen was, under these conditions,
preferentially oxidized over pyruvate derived from
[1—13C] glucose. Also, the fact that the differential between
the lactate and glutamate indices was even larger in this
group of hearts shows that there is less mixing of pyruvate
from the two glycolytic sources when insulin is present.

NMR Biomed. 2004;17:51-59
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Figure 3. A 125.7 MHz '3C NMR spectrum from the extract of a rat heart perfused with
insulin present throughout the whole perfusion protocol. The insets show the expanded
resonances of lactate C3 (20.7 ppm) and glutamate C4 (34.2 ppm). The glutamate index
[2*(S + D34)/D45 + Q] was significantly smaller than the lactate index: [2*S/D] (p < 0.05)

DISCUSSION

This study tested the hypothesis that intermediates of the
glycolytic and glycogenolytic pathways are not fully
mixed in a perfused rat heart during hormonal stimulation
of these pathways. Using a protocol similar to that used
by Hardin and Kushmerick'” in a '*C NMR study of hog
carotid artery smooth muscle, myocardial glycogen was
first depleted (~90%) then replenished with [U-"*C]glu-
cose to ~60% of pre-depleted levels prior to stimulation
of both glycolysis and glycogenolysis using glucagon
(group 1) or glucagon plus insulin (group II). In group I
hearts, the glutamate and lactate indices determined by
3C NMR indicated that the pyruvate feeding the TCA
cycle is not equivalent to the pyruvate feeding into
lactate. As in the smooth muscle study,'” this provided
evidence that glycolysis and glycogenolysis are function-
ally compartmentalized and pyruvate derived from these
two processes does not completely mix in heart tissue.
Incomplete mixing of two pyruvate pools supports the
concept of two separate organized glycolytic pathways,
one fed by glucose-6-phosphate (G6P) generated from
endogenous glycogen and the other fed by G6P generated
from exogenous glucose.35 In group I hearts, pyruvate
derived from exogenous glucose was oxidized in slight
preference over pyruvate derived from endogenous gly-
cogen. This result is opposite to that found in smooth
muscle.” Their conclusion was based upon the observa-
tion that insignificant [3-13C]lactate was detected in the
3C NMR spectrum of hog carotid smooth muscle even

Copyright © 2004 John Wiley & Sons, Ltd.

though glycogen preloaded with [1-'°Clglucose was
broken down during a prolonged contraction period.
These authors presumed that absence of a [3-3C]lactate
signal in the spectrum of the intact tissue was due to
oxidation of the majority of [3-'*C]pyruvate produced
from glycogen in the citric acid cycle.

Recent reports have demonstrated that a non-exchan-
ging pool of lactate can exist in the myocardium.”® In
such studies, similarities were found between the '*C-
fractional enrichment of perfusate lactate and tissue
alanine, as measured by 'H NMR, and the 13C_fractional
enrichment of acetyl-CoA, as measured by the 3C NMR
spectrum of glutamate, but all three values were signifi-
cantly higher than the '*C-fractional enrichment of tissue
lactate as measured by 'H NMR. These differences were
attributed to the presence of a ‘metabolically inactive or
less active’ pool of tissue lactate that exchanges slowly
with a ‘metabolically active’ pool of tissue lactate. Upon
freeze-clamping the tissue, any sequestered pool of
lactate would be released and hence detected in the 'H
NMR spectrum of tissue lactate. In our experiments, we
compared the contribution of [1-"’C]glucose vs
[U-13C]g1ycogen to tissue and perfusate lactate by B¢
NMR so the spectrum in this case would be insensitive to
any non-exchanging, metabolically inactive pool of tissue
lactate. Nevertheless, our observation that the tissue and
perfusate lactate indices differed in both experiments
(stimulation by glucagon alone vs glucagon plus insulin)
indicates that the myocardium can distinguish lactate
derived from the two carbohydrate sources.

NMR Biomed. 2004;17:51-59
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In group II hearts, insulin was present throughout the
experiment. In this case, a greater difference between
the lactate and glutamate indices was observed, indicat-
ing even less mixing of glycolytic and glycogenolytic
intermediates had occurred. The contribution of glycoly-
tic/glycogenolytic pyruvate to oxidative metabolism was
greater in this experiment, but this was largely deter-
mined by the enhanced glycolytic flux (compared with
glycogenolytic flux) induced by insulin. However, the
fact that the cytosolic glycolytic/glycogenolytic pyruvate
ratio (as reported by tissue lactate) was 9.60 £ 0.46 while
the mitochondrial glycolytic/glycogenolytic pyruvate ra-
tio (as reported by glutamate) was only 5.46 £0.26
indicates there was a rather dramatic switch in preference
for oxidation of pyruvate derived from glycogen in the
presence of insulin. We considered the possibility that the
high lactate index was due to contribution from natural
abundance *C signal, but the singlet in the lactate C2
was negligible, indicating an insignificant natural abun-
dance contribution. These results therefore suggest a
biological effect of insulin. Horowitz and Pearson®®
have shown that the activity of diffusive substrates in
the cytosol of oocytes is altered by changes in either the
molecular freedom or location of water and that this
process is modulated by insulin. Such a mechanism could
be responsible for the influence of insulin on the ex-
change or mixing of glycolytic and glycogenolytic inter-
mediates we observed here.

Two alternative models might be used to describe
simultaneous flow of glucose-6-phosphate (G6P) derived
from glucose versus glycogen to pyruvate in the rat heart
(Fig. 4). In model I, all G6P, regardless of origin, enters a
single glycolytic pathway and this would result in a single
pool of pyruvate. It is also assumed that all glycolytic

1‘3C]Glucose [u-ﬂc]Glymgen

Pyruvate < Lactate

Mitochondria

TCA
o-KG & Glutamate

[1- 'GC]Glucosa

intermediates between G6P and pyruvate fully mix along
this pathway. Note that this model does not require any
particular organization of glycolytic enzymes as repre-
sented by the ‘pipe column’ of Fig. 4 (i.e. the enzymes
could be randomly distributed throughout the cytosol).
Nevertheless, the single pool of pyruvate generated from
glucose and glycogen would either produce lactate or
acetyl-CoA for subsequent oxidation in the TCA cycle.
In this model, under steady-state metabolic conditions,
the tissue lactate, perfusate lactate and glutamate indices
would be equal.

In model II, the cytosol has two functionally organized
glycolytic pathways, one of which converts G6P derived
from glucose into pyruvate and another that converts G6P
derived from glycogen into pyruvate. In this model, it is
assumed that none of the glycolytic intermediates be-
tween G6P and pyruvate mix and that two separate pools
of pyruvate are generated, perhaps destined for different
metabolic fates. This would ultimately be reported by the
spectra of lactate and glutamate. It is important to point
out, however, that functional compartmentation of two
separate, organized ‘pipes’ of glycolytic enzymes does
not necessarily insure unequal lactate and glutamate
indices. Thus, the unequal indices measured here using
two different stimulation protocols (glucagon =+ insulin)
does lend support to model II, but the fact that pyruvate
derived from both glucose and glycogen does appear in
tissue lactate, perfusate lactate, and tissue glutamate
under all circumstances indicates that mixing of glyco-
Iytic intermediates does occur to some extent, at least at
the level of pyruvate.

The increase in the lactate and glutamate indices
observed for the glucagon + insulin perfused hearts could
also be the result of an increase in glycogen turnover in
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Figure 4. Schematic models for functional compartmentation of glycolytic and
glycogenolytic intermediates in the perfused rat heart

Copyright © 2004 John Wiley & Sons, Ltd.

NMR Biomed. 2004;17:51-59



58 N. ANOUSIS ET AL.

the presence of insulin.?® An increased glycogen turnover
would promote the synthesis of [1-'*C]glycogen from
exogenous [1-'">Clglucose, which could subsequently
generate [3-'°C]lactate via glycogenolysis and thereby
increase both the lactate and glutamate indices. An
increased glycogen turnover causes an overestimation
of glycolytic flux since all [1—13C]glucosyl units in this
experiment are assumed as being directly derived from
exogenous [1-"*C]glucose provided in the perfusate and
not from newly synthesized [1-'>Clglycogen. Goodwin
et al.*® found that only 7.5% of exogenous glucose taken
into heart tissue was directed toward glycogen synthesis
when perfused with 10 mU/mL insulin. They also report
that the rate of glycogen synthesis is low compared with
glycolytic flux. This suggests that any correction to the
lactate and glutamate indices due to glycogen turnover
would be small and insufficient to alter the conclusions
described above.

The small differences between perfusate and tissue
lactate indices could be attributed to a relatively small
pool of lactate not in complete exchange with a major
cytosolic pool. In recent work by Chatham et al.}
evidence was presented for the existence of two separate
pathways for lactate uptake and release in the perfused
heart. Lactate generated via glycolysis reportedly ac-
counts for most of the released lactate whereas exogenous
lactate was preferentially oxidized. The existence of two
separate intracellular pyruvate pools was also postulated
for explaining the intermediary metabolism in pancreatic
[-cells.>” Here, one pyruvate pool is involved in carbox-
ylation/decarboxylation exchanges with TCA intermedi-
ates (probably OAA and malate), while another
functionally separate pyruvate pool provides acetyl-
CoA for entry into the TCA cycle.

The idea of functional metabolic compartmentation is
often invoked in the current literature, yet experimental
tools capable of probing its existence in intact tissues
are few. The results presented in this work using B¢
tracers and '*C NMR are consistent with the existence of
intracellular compartmentation of pyruvate®® and/or
other glycolytic intermediates but one cannot rule out
the possibility that these observations are at least in
part due to tissue heterogeneity.>® The extent to which
this contributes to the results reported here could be
tested by performing future experiments on isolated
myocytes.
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