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Abstract

In this note we introduce a new class of boundary kernels for distribution function estimation which

shows itself to be especially performing when the classical kernel distribution function estimator suffers

from severe boundary problems.
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1 Introduction

Given X1, . . . , Xn independent copies of an absolutely continuous real random variable with unknown

density and distribution functions f and F , respectively, the classical kernel estimator of F introduced by

authors such as Tiago de Oliveira (1963), Nadaraya (1964) or Watson and Leadbetter (1964), is defined,

for x ∈ R, by

F̄nh(x) =
1

n

n
∑

i=1

K̄

(

x−Xi

h

)

, (1)

where, for u ∈ R,

K̄(u) =

∫ u

−∞

K(v)dv,

with K a kernel on R, that is, a bounded and symmetric probability density function with support [−1, 1]

and h = hn a sequence of strictly positive real numbers converging to zero when n goes to infinity. For

some recent references on this classical estimator see Giné and Nickl (2009), Chacón and Rodŕıguez-Casal

(2010), Mason and Swanepoel (2011) and Chacón, Monfort and Tenreiro (2014).

If the support of f is known to be the finite interval [a, b], that is, a = inf{x :F (x) > 0} > −∞ and

b = sup{x :F (x) < 1} < +∞, the previous kernel estimator suffers from boundary problems if F ′
+(a) > 0 or

F ′
−(b) > 0. This question is addressed in Tenreiro (2013) who extend to the distribution function estimation

framework the approach followed in nonparametric regression and density function estimation by authors

such as Gasser and Müller (1979), Rice (1984), Gasser et al. (1985) and Müller (1991). Especially, the

author considers the boundary modified kernel distribution function estimator given by

F̃nh(x) =



















0, x ≤ a

1

n

n
∑

i=1

K̄x,h

(

x−Xi

h

)

, a < x < b

1, x ≥ b,

(2)

where 0 < h ≤ (b− a)/2 and

K̄x,h(u) =











K̄L(u; (x− a)/h), a < x < a+ h

K̄(u), a+ h ≤ x ≤ b− h

K̄R(u; (b− x)/h), b− h < x < b,

with

K̄L(u;α) =

∫ u

−∞

KL(v;α)dv and K̄R(u;α) = 1−

∫ +∞

u

KR(v;α)dv,

where KL(·;α) and KR(·;α) are, respectively, left and right boundary kernels for α ∈ ]0, 1[, that is, their

supports are contained in the intervals [−1, α] and [−α, 1], respectively, and |µ0,ℓ|(α) =
∫

|Kℓ(u;α)| du <∞

for all α ∈ ]0, 1[ and ℓ = L,R (here and bellow integrals without integration limits are meant over the whole

real line).

For ease of presentation, from now on we assume that the right boundary kernel KR is given by

KR(u;α) = KL(−u;α), the reason why only the left boundary kernel is mentioned from now on. By

assuming that KL(·;α) is a second order kernel, that is,

µ0,L(α) = 1, µ1,L(α) = 0 and µ2,L(α) 6= 0, for all α ∈ ]0, 1[, (3)

where we denote

µk,L(α) =

∫

ukKL(u;α) du, for k ∈ N,



3

Tenreiro (2013) shows that the previous estimator is free of boundary problems and that the theoretical

advantage of using boundary kernels is compatible with the natural property of getting a proper distribution

function estimate. In fact, it is easy to see that the kernel distribution function estimator based on each

one of the second order left boundary kernels

KL
1 (u;α) = (2K̄(α)− 1)−1K(u)I(−α ≤ u ≤ α), (4)

where we assume that K is such that
∫ α

0
K(u)du > 0 for all α > 0, and

KL
2 (u;α) = K(u/α)/α, (5)

is, with probability one, a continuous probability distribution function (see Tenreiro, 2013, Examples 2.2

and 2.3). Additionally, it is shown that the Chung-Smirnov law of iterated logarithm is valid for the new

estimator, and an asymptotic expansion for its mean integrated squared error is presented, from which the

choice of h is discussed (see Tenreiro, 2013, Theorems 3.2, 4.1 and 4.2).

A careful analysis of the asymptotic expansions presented in Tenreiro (2013, p. 171, 178) for the local

bias and the integrated squared bias of estimator (1), suggests that the previous properties may still be

valid for all the boundary kernels satisfying the less restricted condition

α (1− µ0,L(α)) + µ1,L(α) = 0, for all α ∈ ]0, 1[, (6)

which is in particular fulfilled by the left boundary kernel

KL
3 (u;α) = αK(u)I(−1 ≤ u ≤ α)

/

(αµ0,α(K)− µ1,α(K)), (7)

where we denote µk,α(K) =
∫ α

−1 u
kK(u) du, for k ∈ N (see Figure 1). This observation motivated the

present note, which is organized as follows. In Section 2 we describe the global and boundary behaviour of

F̃nh to the broad class of boundary kernels satisfying assumption (6). In Section 3 we refine the previous

analysis by describing the asymptotic behaviour of the bias and variance of F̃nh(x) at the extreme boundary

region, that is, for x taking the form x = a + αh, where α = αn converges to zero as n tends to infinity.

This local analysis enables us to identify different orders of convergence to zero for the mean square error

of the estimators associates to boundary kernels KL
1 and KL

2 and to boundary kernel KL
3 , which indicate

that this latter boundary kernel can be especially performing when the classical kernel estimator suffers

from severe boundary problems. In Section 4 we present some exact finite sample comparisons between

the estimators based on the previous boundary kernels. The proofs of all results are deferred to Section 5.

2 Global and boundary behaviour

In this section we describe the global and boundary behaviour of the boundary modified kernel distribution

function estimator F̃nh defined by (2). As mentioned before, for each one of the families of boundary kernels

(4) and (5), F̃nh is, under general conditions on K, a continuous probability distribution function (with

probability one). It is not hard to see that this is also true for the new family of boundary kernels (7)

whenever K is continuous on ]− 1, 1[.

2.1 Global behaviour

A classical measure of a distribution function estimator performance is the supremum distance between

such an estimator and the underlying distribution function F . Next we extend Theorems 3.1 and 3.2 of
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Figure 1: Left boundary kernels KL
q (u;α) (left column) and K̄L

q (u;α) (right column) for q = 1, 2, 3 and

α = 0.2, 0.4, 0.6, 1, where K is the Epanechnikov kernel K(t) = 3
4 (1− t2)I(|t| ≤ 1).

Tenreiro (2013) by establishing the almost complete uniform convergence and the Chung-Smirnov law of

iterated logarithm for kernel estimator (2). These properties have been first obtained for estimator (1) by

Nadaraya (1964), Winter (1973, 1979) and Yamato (1973). We denote by || · || the supremum norm.

Theorem 1. If KL(u;α) satisfies

sup
α∈ ]0,1[

|µ0,L|(α) <∞, (8)
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we have

||F̃nh − F || → 0 almost completely.

Additionally, if F is Lipschitz on [a, b] and

(n/ log logn)1/2h→ 0, (9)

then F̃nh has the Chung-Smirnov property, i.e.,

lim sup
n→∞

(2n/ log logn)1/2||F̃nh − F || ≤ 1 almost surely.

The same is true under the less restrictive condition

(n/ log logn)1/2h2 → 0, (10)

whenever KL satisfies (6) and F ′ is Lipschitz on [a, b].

If the restriction of F to the interval [a, b] is twice continuously differentiable, it can be proved that

the expansion of the mean integrated squared error of the estimator F̃nh given in Theorem 2.4 of Tenreiro

(2013) is also valid for the boundary modified kernel estimator (2) when the left boundary kernel satisfies

condition (6) with
∫ 1

0
|µ0,L|(α)

2dα <∞. The asymptotically optimal bandwidth, in the sense of minimising

the main terms of that expansion, is given by

h0 = δ(K)

(
∫

F ′′(x)2dx

)−1/3

n−1/3, (11)

where δ(K) =
(∫

uB(u) du
)1/3 (∫

u2K(u)du
)−2/3

and B(u) = 2K̄(u)K(u). This optimal bandwidth satis-

fies condition (10) but not condition (9).

2.2 Boundary behaviour

In the next result we present asymptotic expansions for the bias and variance of F̃nh(x) with x in the

boundary support region. They extend the corresponding expansions presented in Tenreiro (2013, p. 174)

for second order boundary kernels. We will restrict our attention to the left boundary region ]a, a+h[, but

similar results are valid for the right boundary region ]b− h, b[.

Theorem 2. If KL(u;α) satisfies conditions (6) and (8), and the restriction of F to the interval [a, b] is

twice continuously differentiable, we have:

a)

sup
x∈ ]a,a+h[

∣

∣

∣

∣

EF̃nh(x) − F (x)−
h2

2
F ′′(x)µL

(

(x− a)/h
)

∣

∣

∣

∣

= o(h2),

where

µL(α) = µ2,L(α) − αµ1,L(α), α ∈ ]0, 1[.

b)

sup
x∈ ]a,a+h[

∣

∣

∣

∣

VarF̃nh(x)−
F (x)

(

1− F (x)
)

n

+
h

n
F ′(x)ν1,L

(

(x − a)/h
)

−
h2

2n
F ′′(x)ν2,L

(

(x− a)/h
)

∣

∣

∣

∣

= o(n−1h2),
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Figure 2: Functions µL (top), ν1,L (left bottom) and ν∗2,L (right bottom) for the left boundary kernels KL
q ,

with q = 1, 2, 3, where K is the Epanechnikov kernel.

where

ν1,L(α) = m1,L(α) + α(1 − µ0,L(α)
2)

and

ν2,L(α) = m2,L(α) + α2(1− µ0,L(α)
2),

with mk,L(α) =
∫

ukBL(u;α) du, for k = 1, 2, and BL(u;α) = 2K̄L(u;α)KL(u;α), for α ∈ ]0, 1[. Addi-

tionally, if F ′
+(a) = 0 the previous expansion takes the form

sup
x∈ ]a,a+h[

∣

∣

∣

∣

VarF̃nh(x) −
F (x)

(

1− F (x)
)

n
−
h2

2n
F ′′(x)ν∗2,L

(

(x− a)/h
)

∣

∣

∣

∣

= o(n−1h2),

where

ν∗2,L(α) = ν2,L(α) − 2αν1,L(α).

For all boundary kernels satisfying (6) it can be shown that

ν1,L(α) =

∫ α

−1

K̄L(u;α)
(

1− K̄L(u;α)
)

du,

from which we deduce that ν1,L(α) > 0 for all α ∈ ]0, 1[, whenever the boundary kernel family satisfies

0 ≤ K̄L(u;α) ≤ 1, for all u ∈ R and α ∈ ]0, 1[. Therefore, and similarly to what has been pointed out by

other authors (see Azzalini, 1981, Tenreiro, 2013), we conclude that the kernel estimator F̃nh presents a local
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variance smaller than the variance of the empirical distribution function estimator whenever F ′
+(a) > 0.

The same conclusion is valid in the case F ′
+(a) = 0 whenever the boundary kernel family satisfies

ν∗2,L(α) = 2

∫

(α − u)K̄L(u;α)2du− α2 < 0, for all α ∈ ]0, 1[.

In order to undertake a first asymptotic comparison between the boundary kernels KL
q given by (4), (5)

and (7), we plot in Figure 2 the functions µL, ν1,L and ν∗2,L which are the coefficients of the most significant

terms depending on the kernel in the expansions of the local variance and bias of estimator F̃nh(x) for x in

the left boundary region. We take for K the Bartlett or Epanechnikov kernel K(t) = 3
4 (1 − t2)I(|t| ≤ 1),

but similar conclusions are valid for other polynomial kernels such as the uniform (in this case KL
1 = KL

2 ),

the biweight or the triweight kernels (for the definition of these kernels see Wand and Jones, 1995, p. 31). In

particular, the left boundary kernels KL
q associated to all these kernels satisfy ν1,L(α) > 0 and ν∗2,L(α) < 0

for all α ∈ ]0, 1[.

From the plots we also conclude that the boundary kernel KL
2 has, uniformly over the boundary region,

the lowest asymptotic bias but also the biggest asymptotic variance among the considered boundary kernels.

In the case F ′
+(a) > 0, the lowest asymptotic variance is obtained by the boundary kernel KL

3 , which also

has the biggest asymptotic bias among the considered boundary kernels. In the case F ′
+(a) = 0 we see

that the three considered kernels present similar asymptotic variances with a small advantage for kernel

KL
3 . Taking into account the bias behaviour, we conclude that the estimator based on kernel KL

2 can be

specially performing when F ′
+(a) = 0. We postpone to Section 4 the analysis of the combined effect of bias

and variance which depends on the underlying distribution F , especially throughout F ′(x) and F ′′(x).

3 Extreme boundary behaviour

As we have seen in the previous section, although the estimators based on the considered classes of boundary

kernels present different behaviours in the boundary region, the order of convergence to zero of the mean

square error does not reflect those differences. In fact, under the conditions of Theorem 2 with h = Cn−1/3,

for C > 0, we always have

MSEF̃nh(x) = O
(

n−4/3
)

,

for x = a+ αh, for some fixed α ∈ ]0, 1[, whenever F ′
+(a) > 0.

Next we extend the previous analysis to the extreme boundary region. More precisely, we describe

the asymptotic behaviour of the bias and variance of F̃nh(x) when x takes the form x = a + αh, where

α = αn converges to zero as n tends to infinity. As a consequence of this analysis, we will be able to

identify different rates of convergence to zero for the mean square error of the estimators associate to

boundary kernels KL
1 and KL

2 , and to KL
3 . For k = 0, 1, . . . and α ∈ ]0, 1[, we will write |µk,L|(α) :=

∫

|u|k|KL(u;α)|du ≤ |µ0,L|(α).

Theorem 3. Under the conditions of Theorem 2, for x = a+ αnh, with αn → 0 as n→ ∞, we have:

a)

EF̃nh(x)− F (x) =
h2

2
F ′′(x)µL(αn) + o

(

h2|µ2,L|(αn)
)

+ o
(

h2α2
n

)

.

b)

VarF̃nh(x) =
F (x)

(

1− F (x)
)

n
−
h

n
F ′(x)ν1,L(αn) +

h2

2n
F ′′(x)ν2,L(αn)

+ o
(

n−1h2|µ2,L|(αn)
)

+ o
(

n−1h2α2
n

)

.
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Additionally, if F ′
+(a) = 0 the previous expansion takes the form

VarF̃nh(x) =
F (x)

(

1− F (x)
)

n
+
h2

2n
F ′′(x)ν∗2,L(αn)

+ o
(

n−1h2|µ1,L|(αn)
)

+ o
(

n−1h2|µ2,L|(αn)
)

+ o
(

n−1h2α2
n

)

.

From the previous expansions we see that the mean square error convergence rate of F̃nh(x), for x is in

the extreme boundary region, depends on the behaviour of µL(α), ν1,L(α) and ν
∗
2,L(α) for α close to zero.

For each one of the considered boundary kernel families KL
q , for q = 1, 2, 3, we can obtain the expansions

µL(α) =











1
3α

2 + o
(

α2
)

, for KL
1

∫

u2K(u)duα2, for KL
2

Cα+ o(α), for KL
3

, ν1,L(α) =











1
3α+ o(α), for KL

1
∫

uB(u)duα, for KL
2

α− C1α
2 + o(α2), for KL

3

and

ν∗2,L(α) =











− 1
3α

2 + o(α2), for KL
1

−
∫

(2u− u2)B(u)duα2, for KL
2

−(1− C2)α
2 + o(α2), for KL

3 ,

where 0 <
∫

uB(u)du < 1 for a general kernel K, C =
∫ 1

0 u
2K(u)du

/ ∫ 1

0 uK(u)du, Ck =
∫ 1

0 u
kB(−u)du

/

( ∫ 1

0
uK(u)du

)2
, for k = 1, 2, and K is assumed to be differentiable on a right neighbourhood of the

origin with K(0) 6= 0 (these additional assumptions on K are exclusively used to derive the previous

expansions for the boundary kernel family KL
1 ). In particular, taking for K the Epanechnikov kernel we

get
∫

u2K(u)du = 1/5,
∫

uB(u)du = 9/35,
∫

(2u − u2)B(u)du = 11/35, C = 8/15, C1 = 176/105, and

C2 = 17/45.

From Theorem 3 we conclude that different rates of convergence for the bias are obtained for kernels

KL
1 and KL

2 and for kernel KL
3 . In fact, the bias convergence rate to zero for kernels KL

1 and KL
2 is faster

than for kernel KL
3 . More precisely, we have

EF̃nh(x) − F (x) =
h2

2
F ′′
+(a)µL(αn)(1 + o(1)) =

{

O
(

h2α2
n

)

, for KL
1 and KL

2

O
(

h2αn

)

, for KL
3 .

In relation to the variance of the estimator, its convergence rate to zero for kernel KL
3 is faster than for

kernels KL
1 and KL

2 whenever F ′
+(a) > 0. In fact, in this case we have

VarF̃nh(x) =
h

n
F ′
+(a)

(

αn − ν1,L(αn)
)

(1 + o(1)) =

{

O
(

n−1hαn

)

, for KL
1 and KL

2

O
(

n−1hα2
n

)

, for KL
3 .

Finally, if F ′
+(a) = 0 we have

VarF̃nh(x) =
h2

2n
F ′′
+(a)

(

α2
n + ν∗2,L(αn)

)

(1 + o(1)) = O
(

n−1h2α2
n

)

,

and the variance convergence rate to zero is the same for the three families of estimators.

As a consequence of the previous expansions, we summarize in the following theorem the different orders

of convergence we can observe for the mean square error of F̃nh(x) when x is in the extreme boundary

region and h has the order of convergence of the asymptotically optimal bandwidth (11). We conclude

that the mean square error convergence rate to zero for kernel KL
3 is faster than for kernels KL

1 and KL
2

whenever F ′
+(a) > 0, and the inverse situation occurs whenever F ′

+(a) = 0. This result suggests that

the new class of boundary kernels KL
3 can be especially performing when the classical kernel distribution

function estimator suffers from boundary problems.
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Theorem 4. Under the conditions of Theorem 3, let x be such that x = a+αnh, with αn → 0 as n→ ∞,

and take h = Cn−1/3, with C > 0.

a) If F ′
+(a) > 0 we have

MSEF̃nh(x) =

{

O
(

n−4/3αn

)

, for KL
1 and KL

2

O
(

n−4/3α2
n

)

, for KL
3 .

b) If F ′
+(a) = 0 we have

MSEF̃nh(x) =

{

O
(

n−4/3α2
n(n

−1/3 + α2
n)
)

, for KL
1 and KL

2

O
(

n−4/3α2
n

)

, for KL
3 .

4 Exact finite sample comparisons

In this section we compare the boundary performance of the kernel estimator F̃nh when we take for KL one

of the left boundary kernels given by (4), (5) and (7), respectively. For that, we use as test distributions

some beta mixtures of the form wB(1, 2) + (1 − w)B(2, b), where w ∈ [0, 1] and the shape parameter

b is such that b ≥ 2. Four values of w = 0, 0.25, 0.5, 0.75 are considered, which lead to distributions

with F ′
+(0) = 0, 0.5, 1, 1.5, respectively. For each one of the previous weights w, two values for the shape

parameter b are taken in order to get a second order derivative F ′′
+(0) equal to 6 and 30. As the results

observed for the test distributions with F ′′
+(0) equal to 6 or 30 were quite similar, we will focus our comments

on the results obtained for the test distributions with F ′′
+(0) = 6 whose probability densities are shown in

Figure 3.

For each one of these test distributions we present in Figure 4 the exact variance, V(x), square bias,

B(x)2, and mean square error, MSE(x) = V(x) + B(x)2, of F̃nh(x), for x = αh and α ∈ ]0, 1[, where

nV(x) := nVarF̃nh(αh) =

∫

F ((α− u)h)BL(u;α)du−
(

EF̃nh(αh)
)2

and

B(x) := EF̃nh(αh)− F (αh) =

∫

F ((α − u)h)KL(u;α) du− F (αh)

(on these expressions see Section 5 below). For comparative purposes the mean square error of the sample

distribution function estimator is also included in the graphics. We have considered the sample size n = 100.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Figure 3: Beta mixture test densities wB(1, 2) + (1− w)B(2, b) with F ′
+(0) = 0, 0.5, 1, 1.5 and F ′′

+(0) = 6.
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Figure 4: B(αh)2 (�), V(αh) (•) and MSE(αh) (N), for KL
q , q = 1, 2, 3, with K the Epanechnikov kernel,

and for the sample distribution function Fn, where F is the beta mixture distributions shown in Figure 3.

The sample size is n = 100.

Similar pictures were generated for other sample sizes but they are not included here to save space. As

before, we have taken for K the Epanechnikov kernel but the same conclusions apply to other kernels as

the biweight or triweight kernels. The global bandwidth h that determines the boundary region was always

taken equal to the asymptotically optimal bandwidth h0 given by (11).

From the graphics we conclude that the boundary behaviour of the kernel estimator based on the

boundary kernels KL
q , for q = 1, 2, 3, is dominated by the magnitude of the underlying density f = F ′ over

the boundary region. As predicted by the asymptotic theory previously exposed, the kernel estimator based

on the boundary kernel KL
3 presents the lowest variance among the considered boundary kernel estimators

for all the test distributions. The reduced bias shown by this estimator for distributions with large values

of F ′
+(0) explains its superior mean square error performance in relation to both boundary kernels KL

1 and

KL
2 . The graphics obtained for the test distributions with F ′′

+(0) = 30 (but not shown here) also reveal

that this advantage over the second order boundary kernels KL
1 and KL

2 is bigger for small than for large

values of F ′′
+(0)

2, which is in accordance with the asymptotic expansion for the bias presented in Theorem

2. When the underlying density is such that F ′
+(0) = 0, in which case the classical kernel estimator does

not suffer from boundary problems, we see that the boundary kernels KL
1 and KL

2 perform similarly being

both better than KL
3 . The large bias presented by the kernel estimator based on the boundary kernel KL

3

explains the poor mean square error results obtained for this estimator. Finally, for intermediate values of
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F ′
+(0) the three considered left boundary kernels have shown a similar performance.

Based on this evidence, we conclude that none of the considered boundary kernels is the best over

the considered set of test distributions. The kernel estimator based on the new boundary kernel KL
3

has shown to be especially performing when the classical kernel estimator suffers from severe boundary

problems. However, it may present a large bias otherwise, being outperformed by the estimators based on

the boundary kernels KL
1 and KL

2 . These findings agree with the asymptotic based conclusions gathered

in Theorem 4.

5 Proofs

Proof of Theorem 1: This proof follows closely the lines of the proofs of Theorems 3.1 and 3.2 of Tenreiro

(2013) the reason way the details are omitted. However, in order to deal with boundary kernels for which

µ0,L(α) = 0 for some α ∈ ]0, 1[, the following integration by parts formula, that generalizes Lemma 6.1 of

Tenreiro (2013), is needed.

Lemma 1. If Φ is a probability distribution function and Ψ(u) =
∫ u

−∞
ψ(v)dv where ψ is a Lebesgue

integrable function, then
∫

ΦdΨ +
∫

ΨdΦ =
∫

ψ(v)dv.

Proof: If
∫

ψ(v)dv 6= 0, define ψ0 = ψ/
∫

ψ(v)dv and use Lemma 6.1 of Tenreiro (2013) with ψ = ψ0.

If
∫

ψ(v)dv = 0, consider ψ+ and ψ−, the positive and the negative parts of ψ, that satisfy
∫

ψ+(v)dv =
∫

ψ−(v)dv = I (say). If I = 0, the stated result is obvious because in this case ψ = 0 a.e.. If I > 0, the

stated result follows from the first part of the proof by taking ψ = ψ+ and ψ = ψ−. �

Proof of Theorem 2: For x ∈ ]a, a+ h[, the expectation of F̃nh(x) is given by

EF̃nh(x) =

∫

K̄L((x− y)/h; (x− a)/h)f(y) dy =

∫

F (x− uh)KL(u; (x− a)/h) du,

(see Tenreiro, 2013, p. 186). By the continuity of the second derivative of F on [a, b] and Taylor’s formula,

we have

F (x− uh) = F (x)− uhF ′(x) + u2h2
∫ 1

0

(1− t)F ′′(x− tuh) dt, (12)

for −1 ≤ u ≤ (x− a)/h , from which we deduce that

EF̃nh(x) − F (x)−
h2

2
F ′′(x)µL((x − a)/h) = A(x, h) +B(x, h), (13)

where

A(x, h) = F (x)
(

µ0,L((x− a)/h)− 1
)

− hF ′(x)µ1,L((x − a)/h) +
h2

2
F ′′(x)((x − a)/h)µ1,L((x − a)/h),

and

B(x, h) = h2
∫∫ 1

0

(1− t)
(

F ′′(x− tuh)− F ′′(x)
)

dt u2KL(u; (x− a)/h) du,

is such that

sup
x∈ ]a,a+h[

|B(x, h)| ≤
h2

2
sup

α∈ ]0,1[

|µ0,L|(α) sup
y,z∈[a,b]: |y−z|≤h

|F ′′(y)− F ′′(z)|. (14)
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On the other hand, taking into account that F (a) = 0 and using condition (6) and the Taylor’s expansion

F (x) = (x− a)F ′(x)−
1

2
(x− a)2F ′′(x)− (x− a)2

∫ 1

0

(1− t)
(

F ′′(x− (x− a)t)− F ′′(x)
)

dt, (15)

we get

A(x, h) = −
(

µ0,L((x − a)/h)− 1
)

(x− a)2
∫ 1

0

(1 − t)
(

F ′′(x − (x− a)t)− F ′′(x)
)

dt,

where

sup
x∈ ]a,a+h[

|A(x, h)| ≤ h2 sup
α∈ ]0,1[

|µ0,L(α) − 1| sup
y,z∈[a,b]: |y−z|≤h

|F ′′(y)− F ′′(z)|. (16)

Part a) of Theorem 2 follows now from (13), (14) and (16), and the fact that

sup
y,z∈[a,b]: |y−z|≤h

|F ′′(y)− F ′′(z)| = o(1).

From Part a), the variance of F̃nh(x) is given by

nVarF̃nh(x) =

∫

K̄L(u; (x− a)/h)2hf(x− uh)du−
(

EF̃nh(x)
)2

(17)

= F (x)(1 − F (x)) + C(x, h) + o
(

h2
)

,

uniformly in x ∈ ]a, a+ h[, where

C(x, h) =

∫

K̄L(u; (x− a)/h)2hf(x− uh)du− F (x) =

∫

F (x − zh)BL(z; (x− a)/h)dz − F (x).

Moreover, using (12) and the fact that
∫

BL(z;α)dz = µ0,L(α)
2, we deduce that

C(x, h) = F (x)
(

µ0,L((x − a)/h)2 − 1
)

− hF ′(x)m1,L((x− a)/h)

+ h2
∫∫ 1

0

(1− t)F ′′(x− tuh)dtu2BL(u; (x− a)/h)du (18)

= F (x)
(

µ0,L((x − a)/h)2 − 1
)

− hF ′(x)m1,L((x− a)/h)

+
h2

2
F ′′(x)m2,L((x − a)/h) + o(h2),

uniformly in x ∈ ]a, a+ h[, as supα∈ ]0,1[

∫

|u2BL(u;α)|du <∞.

Finally, from Taylor’s expansion (15) we get

sup
x∈ ]a,a+h[

∣

∣

∣

∣

C(x, h) + hF ′(x)ν1,L
(

(x− a)/h
)

−
h2

2
F ′′(x)ν2,L

(

(x− a)/h
)

∣

∣

∣

∣

= o(h2),

which concludes the proof. �

Proof of Theorem 3: Part a) follows from (13) where for x = a+ αnh

A(x, h) = −
(

µ0,L(αn)− 1
)

(x− a)2
∫ 1

0

(1 − t)
(

F ′′(x− (x − a)t)− F ′′(x)
)

dt,

and

B(x, h) = h2
∫∫ 1

0

(1− t)
(

F ′′(x− tuh)− F ′′(x)
)

dt u2KL(u;αn) du,
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with

|A(x, h)| ≤ |µ0,L(αn)− 1|h2α2
n sup

y,z∈[a,b]: |y−z|≤h

|F ′′(y)− F ′′(z)|/2 = o
(

h2α2
n

)

,

and

|B(x, h)| ≤ h2|µ2,L|(αn) sup
y,z∈[a,b]: |y−z|≤h

|F ′′(y)− F ′′(z)|/2 = o
(

h2|µ2,L|(αn)
)

.

In order to establish Part b), we start by using (17) and (18) to write

nVarF̃nh(x) = F (x)(1 − F (x)) + C(x, h)−
(

EF̃nh(x) − F (x)
)2

+ 2
(

EF̃nh(x) − F (x)
)

F (x), (19)

with

C(x, h) = F (x)
(

µ0,L(αn)
2 − 1

)

− hF ′(x)m1,L(αn) +
h2

2
F ′′(x)m2,L(αn)

+ h2
∫∫ 1

0

(1 − t)
(

F ′′(x − tzh)− F ′′(x)
)

dtz2BL(z;αn)dz,

and

EF̃nh(x)− F (x) = O
(

h2(|µ2,L|(αn) + α2
n)
)

, (20)

where the latter equality follows from Part a) and conditions (6) and (8).

But

F (x) = hαnF
′(x)−

h2

2
α2
nF

′′(x)− h2α2
n

∫ 1

0

(1− t)
(

F ′′(x− hαnt)− F ′′(x)
)

dt,

which leads to

C(x, h) = −hF ′(x)ν1,L(αn) +
h2

2
F ′′(x)ν2,L(αn)

− h2α2
n

(

µ0,L(αn)
2 − 1

)

∫ 1

0

(1− t)
(

F ′′(x− hαnt)− F ′′(x)
)

dt

+ h2
∫∫ 1

0

(1 − t)
(

F ′′(x − tzh)− F ′′(x)
)

dtz2BL(z;αn)dz

= −hF ′(x)ν1,L(αn) +
h2

2
F ′′(x)ν2,L(αn) + o(h2α2

n) + o
(

h2|µ2,L|(αn)
)

.

Additionally, if F ′(a) = 0, we have

F ′(x) = hαnF
′′(x) + hαn

∫ 1

0

(

F ′′(x+ hαnt)− F ′′(x)
)

dt,

and in this case

C(x, h) =
h2

2
F ′′(x)ν∗2,L(αn) + o

(

h2αn|µ1,L|(αn)
)

+ o(h2α2
n) + o

(

h2|µ2,L|(αn)
)

.

Part b) of Theorem 3 follows now from (19), (20) and the previous expressions for C(x, h). �
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Chacón, J.E., Rodŕıguez-Casal, A. (2010). A note on the universal consistency of the kernel distribution

function estimator. Statist. Probab. Lett. 80, 1414–1419.

Gasser, T., Müller, H.-G. (1979). Kernel estimation of regression functions. In Smoothing techniques for

curve estimation (T. Gasser and M. Rosenblatt, Eds.), Lecture Notes in Mathematics 757, 23–68.

Gasser, T., Müller, H.-G., Mammitzsch, V. (1985). Kernels for nonparametric curve estimation. J. R. Stat.

Soc. Ser. B Stat. Methodol. 47, 238–252.
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