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A B S T R A C T

Criticality assessments of raw materials are inherently based on multiple criteria, which justifies the use of multi-
criteria decision analysis (MCDA) to aid the interpretation of the data by providing a comprehensive evaluation.
A structured and transparent selection procedure is firstly introduced in this paper to choose eight supply risk
assessment criteria to evaluate the security of supply for thirty-one raw materials used in automotive manu-
facturing. A synergic combination of MCDA methods is then proposed for the classification of raw materials in
risk classes according to the supply risk criteria. Risk classes are recommended following from a robustness
analysis based on stochastic and optimisation MCDA methods where risk levels assigned to the raw materials are
firstly visualised on a relative frequency basis. The sorting of the raw materials is also refined by narrowing down
the best and worst plausible classes when justifiable constraints on criteria weights are accounted for in the
modeling. For example, the robustness analysis suggests that rare earth elements and tellurium have a high
eventuality of supply chain disruption, closely followed by indium, germanium and boron. Conversely, the
results suggest that the risk of supply disruption for iron, copper, zinc and aluminium is mostly medium-low or
low. The proposed step-wise decision support approach can be used as a complementary tool to the existing life
cycle assessment methods for a more comprehensive assessment of the short-term availability of natural re-
sources.

1. Introduction

An uninterrupted supply of raw materials, free from disturbances
and bottlenecks that may lead to volatility in commodity pricing and
markets, is a requirement for sustainable economic development.
Erdmann and Graedel (2011) Sectors that rely heavily on raw materials
(e.g. construction, manufacturing, and transport) are extremely vul-
nerable to any physical shortage or increasing prices of these materials.
Schneider et al. (2014) As such, the need for a systematic quantification
and assessment of the risks and impacts related to the increasing de-
pletion of natural resources is currently more important than ever
(Rørbech et al., 2014).

The methods applied to assessment of the potential consequences
associated with resource use frequently come from life cycle assessment
(LCA) literature (Rørbech et al., 2014; Klinglmair et al., 2014). How-
ever, existing LCA models focus exclusively on the mid- to long-term
geologic and economic finiteness of resources. They ignore other
technological, geopolitical, regulatory and social risk factors (e.g. wars,
market imbalances, governmental interventions or restrictions to
mining due to environmental degradation) that may lead to supply
disruptions and increasing commodity prices in the short term
(Erdmann and Graedel, 2011; Schneider et al., 2014; Drielsma et al.,
2016). Consideration of these additional risk factors in the evaluation of
resource depletion impacts has recently emerged as a new research field
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and is known as ‘minerals criticality assessment’ (Drielsma et al., 2016;
Helbig et al., 2016). The European Commission (EC) classes a raw
material as critical when it faces high risks with regard to access to it,
e.g. high supply risk or high environmental risks, and it is of high
economic importance. EC (2010) Material criticality is determined by
plotting the likelihood of supply disruption (the supply risk) against the
vulnerability due to supply disruption, which can be interpreted as a
measure of the economic importance of a raw material with con-
sideration of potential direct substitution (Glöser et al., 2015).

Despite relevant contributions from, for example, the US National
Research Council (Eggert et al., 2008), Yale University (Graedel et al.,
2012; Nassar et al., 2012) and EC (EC, 2010, 2014, 2017; Chapman
et al., 2013), minerals criticality assessment remains a new area of re-
search with no widely agreed methodology developed to date (Glöser
et al., 2015; Achzet and Helbig, 2013). The observed criticality studies
differ with respect to (1) system under study (e.g. economy, country,
company or technology), (2) criticality dimensions, (3) the choice of
assessment criteria and indicators, (4) indicators weightings and ag-
gregation method, (5) criticality assessment method (e.g. criticality
index, criticality matrix or 3-dimensional vectors), (6) the reliance on
quantitative data from third parties or expert judgement; and, (7) the
degree to which the assessments are forward looking (or not) (Erdmann
and Graedel, 2011; Achzet and Helbig, 2013).

While the choice of criticality dimensions, assessment criteria and
weightings is subjective and associated with individual judgement, a
consistent aggregation of criticality indicators into meaningful indices
requires clear-cut methodological requirements (Böhringer and
Jochem, 2007; Merad et al., 2004).

Criticality assessments are inherently based on multiple criteria,
which calls for the use of multi-criteria decision analysis (MCDA) to
provide a comprehensive evaluation. This evaluation can be provided
in the form of a ranking, scoring or classification of raw materials by
accounting for the evaluation criteria in an integrated manner.

MCDA is a process whose scope is to support decision makers (DMs)
in structuring, understanding and solving a problem so that an in-
formed decision can be recommended (Roy, 1996). It is emerging as a
valuable strategy to carry out complex assessments due to its ability to
effectively handle different types of information, include stakeholders’
values and provide a transparent interpretation of the results (Cinelli
et al., 2014; Balteiro-Dias et al., 2017). It has been widely used to
support sustainability-related decision making (Diaz-Balteiro et al.,
2017; Dias et al., 2015) and case studies have also emerged to evaluate
criticality of raw materials (Schneider et al., 2014; Nassar et al., 2012;
Bauer et al., 2011). The most used MCDA method in this area is the
weighted sum approach (Erdmann and Graedel, 2011; Achzet and
Helbig, 2013).

To date, the effect of uncertainties in data sets and variations in
criteria weights have not been adequately addressed and the literature
suggests that more research should be conducted to fill these research
gaps and provide examples of robust assessments (Erdmann and
Graedel, 2011; Glöser et al., 2015; Achzet and Helbig, 2013). This ar-
ticle is a response to this call by presenting the use of ELimination and
Choice Expressing Reality (ELECTRE)-based methods to provide a
classification system for the supply risk of raw materials, one of di-
mensions that determine a material's criticality (together with en-
vironmental implications and vulnerability to supply restriction)
(Graedel et al., 2012). ELECTRE methods exhibit appealing advantages
in comparison with other methods, such as weighted sum (Figueira
et al., 2016): the weights of the criteria represent their “voting power”
and are independent of their measurement scales, they are non-com-
pensatory (they do not require trade-off rates), they allow performing
sophisticated modeling through indifference, preference and veto
thresholds and can accommodate any criteria without the need for any
transformation.

In this paper we propose two novel contributions:

1. The development of an approach to assess the supply risk of raw
materials;

2. The proposal of a synergistic use of MCDA methods to assign a risk
class to each material by means of the integrated use of methods for
ELECTRE-TRI based on algorithms for stochastic analysis (i.e.
SMAA-TRI, Stochastic Multicriteria Acceptability Analysis for
ELECTRE TRI) (Tervonen and Lahdelma, 2007) and optimisation
(i.e. IRIS, Interactive Robustness analysis and parameters' Inference
for multicriteria Sorting problems) (Dias et al., 2002).

To the best of the authors’ knowledge, this is the first study of its
kind to propose a classification system for raw materials criticality
based on a synergistic use of classification methods, or based on driving
robust conclusions from a set of weighting vectors.

The methodology adopted to select the evaluation criteria and in-
dicators is presented in Section 2 together with the identification
strategy of relevant MCDA methods. Section 3 presents the supply risk
matrix and the robust classifications of the materials in risk levels. The
results are presented in Section 4 demonstrating how the approach
proposed in this paper can enhance the decision support potential of
individual supply risk criteria and transparently inform DMs.

2. Materials and methods

2.1. Sample minerals and evaluation criteria

Sample minerals selected for this study are metals and metalloids
used in automotive manufacturing. The automotive context in this
paper derives from the fact that this research received support from a
major British car manufacturer. Thirty-one minerals were selected
based on the analysis of materials used to manufacture a diesel-hybrid
vehicle, the most complex car in the company's range. The evaluation
criteria selected in this study focus exclusively on supply risks (like-
lihood of supply disruption) associated with increased depletion of raw
materials.

General guidelines to aid the assessment criteria selection process
were proposed in the literature (Akadiri and Olomolaiye, 2012) and
practically applied in the context of sustainable development. Akadiri
et al. (2013); Cinelli et al., 2016; Jasiński et al., 2016 These guidelines
are largely in line with the recommendations of the Organisation for
Economic Co-operation and Development (OECD) and the European
Commission Joint Research Centre (EC-JRC) for the construction and
use of composite indicators. OECD (2008) The assessment criteria se-
lected should be transparent (the selection process should be clear and
understandable), comprehensive (i.e. they should measure each ele-
ment of a multidimensional concept), applicable across a range of al-
ternative options to ensure comparability and practical in the sense of
the tools, time and resources available for analysis (Akadiri and
Olomolaiye, 2012; Akadiri et al., 2013; Cinelli et al., 2016; Jasiński
et al., 2016)

Following this set of guidelines, the supply risk assessment criteria
were first identified based on the review of existing raw materials cri-
ticality studies (see Table S1 in Supplementary information for a sum-
mary). These criteria were then organised into six main areas of con-
cern (geological, technological, economic, geopolitical, regulatory and
social) (Graedel et al., 2012) to form a theoretical framework for the
comprehensive supply risk assessment. Finally, all criteria were as-
sessed against four attributes to evaluate whether a specific criterion is
suitable to be used in the overall supply risk evaluation (OECD, 2008).
These attributes were:

• applicability (the degree to which an indicator allows compar-
ability of alternative options);

• relevance (the degree to which an indicator covers and contributes
to the required topic and concept);

• accessibility of the data (the degree to which the data can be
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accessed for use); and

• credibility of the data (whether the data originate from or were
produced by authoritative and credible institutions).

Table 1 compares all criteria against these four attributes, with an X
indicating a negative assessment and √ indicating a positive assessment
of a criterion. Only those criteria which were assessed positively against
all four attributes were considered in the construction of the supply risk
composite index. The remaining criteria are either still immature,
lacking in credible data or are not relevant in the context of what is
being measured. For example, the geological availability measure is
considered credible and is used by eleven criticality assessment studies
but was dismissed by the EC as an inadequate indicator of raw materials
criticality. The timescales associated with geological availability were
deemed to be too long to have any relevant impact on the materials
criticality assessment. EC (2014)

The demand growth indicator was not used in this work for similar
reasons. Many critical materials will experience a supply surplus in the
near future despite a high growth in demand for them (Chapman et al.,
2013). However, this may change in the long run as rising demand
leads to the supply of these resources becoming increasingly depleted.
Hence, beyond the scope of this work, a combination of long-term
forecasts of the raw materials’ likely demand and supply conditions and
geological assessment should extend the criticality analysis to provide a
forward-looking view of the future availability of raw materials and the
threat of them becoming scarce (Chapman etal., 2013; EC, 2014).

Policy Potential Index (PPI) is a promising indicator that measures
the policy attractiveness of a country to exploration investments and
thus the potential for expanding minerals production in the future;
however, the lack of data for all countries prevents it from being ap-
plied to all minerals (Chapman et al., 2013). Import dependency suffers
similar limitation as the PPI indicator. Although data are generally
available for the major metals from trade ministries or via databases

(e.g. the United Nations Commodity Trade Statistics Database), for
scarcer metals, such information is not widely available in public da-
tabases (Graedel et al., 2012), making comparability of alternative
options and minerals difficult. There are also supply risk criteria that
have not been previously considered in any criticality assessment study
but which offer potential for use in the future. For instance, the Ex-
tractive Industries Transparency Initiative (EITI) is a potential measure
of revenue transparency and accountability in the extractive sector,
while Registration, Evaluation, Authorisation and Restriction of Che-
micals (REACH) legislation can identify raw materials whose use in the
future may be banned or restricted due to the carcinogenic, mutagenic
or toxic substances that may be derived from them (Chapman et al.,
2013). It should be noted that with the availability of more data, there
would be no restriction to including these criteria to expand the supply
risk assessment proposed in this article.

2.2. Supply risk indicators and discriminatory performance levels

Assessment criteria are measured via indicators (Foxon et al., 2002),
which, for this study, were determined for the eight selected criteria of
recyclability, substitutability, co-production, historical price volatility,
country concentration of production, governance stability, environ-
mental standards and subeconomic stability. Furthermore, ranges were
defined to denote the supply risk levels for each indicator and thus the
overall risk for a mineral. Schneider et al. (2014); Glöser et al. (2015)
Both the supply risk indicators and their accompanying ranges were
determined based on best practice and recommendations from au-
thoritative institutions and are summarised in Tables S2 and S3 in
Supplementary information.

According to Table S3, classifications based on a single indicator use
profiles to define intervals associated with risk levels. The most
common case is to define four risk levels, ranging from high, high-
medium medium-low to low risk. These four risk levels are also used in

Table 1
The initial framework of the supply risk composite index.

Supply risk
components

Supply risk criteria Potential source of data Attributes sought

Applicability Relevance Accessibility Credibility

Geological risk Reserve availability US Geological Survey (USGS) (USGS) √ X √ √
Mine capacity utilisation Various sources X X X X

Technological risk Co-production Yale University (Nassar et al., 2015) √ √ √ √
Recyclability United Nations Environmental Programme (UNEP)

(Graedel et al., 2011), Oakdene Hollins and
Fraunhofer ISI (Chapman et al., 2013)

√ √ √ √

Market substitutability Oakdene Hollins and Fraunhofer ISI (Chapman et al.,
2013)

√ √ √ √

Economic Demand growth Oakdene Hollins and Fraunhofer ISI (Chapman et al.,
2013)

√ X √ √

Historical price volatility USGS (USGS) √ √ √ √
Market balance Various sources X √ X X
Minerals production cost Various sources X √ X X
Investment in mining Various sources X √ X X
Stock keeping Various sources X √ X X

Geopolitical Global supply concentration USGS for country concentration (USGS), no data for
company concentration

√ √ √ √

Governance stability The World Bank (The World Bank, 2016) √ √ √ √
Import dependence Local geological surveys or statistical agencies X √ X √
Climate change vulnerability German Advisory Council on Climate Change (WBGU

and Climate change, 2007)
X X √ √

Regulatory Environmental standards Yale University (Hsu et al., 2016) √ √ √ √
Attractiveness of a country for
exploration of resources (Policy
Potential Index)

The Fraser Institute (Jackson and Green, 2015) X √ √ √

Trade barriers Various sources X √ X X
Social Subeconomic stability United Nations Development Programme (UNDP)

(Jahan et al., 2015)
√ √ √ √

Press coverage – number of articles
published

Various sources X X X X
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the multi-criteria classification models developed in this work, re-
quiring to set ranges defining four classes on each remaining indicator
(Table S4 in Supplementary information). No reliable discriminatory
ranges were found for the environmental standards indicator. To cope
with this limitation, a four-point scale was built based on the percen-
tiles of the distribution of the indicator across all countries (OECD,
2008). Based on this approach, the countries with the highest EPI
(above the 75th percentile) received a low risk-class profile, those with
an EPI between the 50th and 75th percentiles have a medium-low risk-
class profile, an EPI between the 25th and 50th percentiles gives a high-
medium risk-class profile and a country with an EPI below the 25th
percentile received a high risk-class profile.

2.3. Classification of minerals into supply risk classes

The identification of the overall supply risk of the minerals is dif-
ficult when looking at the performance on each criterion independently
(see Fig. 3). In fact, for each mineral, some criteria score well (or
poorly) whereas some others do not and consequently it is not possible
to define whether they can be assigned a high, medium-high, medium-
low or low risk class.

In order to solve this challenge, MCDA methods were applied in this
research as they can account for the performance of the minerals si-
multaneously and provide an integrated supply risk evaluation. The
procedure for the selection of the MCDA methods and the respective
outputs is presented in Fig. 1. It included two phases which are briefly
presented below.

2.3.1. Phase 1 of the decision aiding process
Evaluation criteria are identified in a justifiable and traceable

manner as described in Section 2.1, but their relative importance is not
set in the relevant literature (unless assumptions are made as explained
in Phase 2 below). Consequently, the MCDA method needs to be able to
handle missing information on the weights of the criteria.

As described in Section 2.2, ranges of performance for allotment to a

certain class were determined for each indicator, which implies the
introduction of threshold values (i.e. profiles) distinguishing classes of
performance (see Table S4).

Regarding the desired capability of the method, a robust classifi-
cation to preference-ordered classes that takes into account the un-
certainty in the input information has been a recurrent call in the lit-
erature (Glöser et al., 2015; Achzet and Helbig, 2013).

As a consequence of these modeling needs, the most suitable MCDA
method to emerge was SMAA-TRI (Tervonen et al., 2009a), which has
already been used in decision-making problems with similar char-
acteristics (Tervonen et al., 2009b; Cinelli et al., 2017). It is an ap-
proach based on an algorithm called ELECTRE TRI that allows for the
assignement of raw material to risk class on a percentage basis resulting
from 10,000 Monte-Carlo simulations of random criteria weights. De-
tails on the SMAA-TRI working procedure can be found in Tervonen
et al. (2009c) and (Tervonen, 2014).

2.3.2. Phase 2 of decision aiding process
The second modeling phase modified the preference information by

adding constraints on the weights of the criteria. By accounting for the
fact that an institution as authoritative as the EU decided to consider
four (i.e. recyclability, substitutability, country concentration, govern-
ance stability) out of the eight criteria in their framework. EC (2014)
Consequently, the four criteria selected by the EU can be seen as having
a higher importance than the others and thus higher weight, leading to
the weights constraints w1, w2, w5, w6> w3, w4, w7, w8 (see upper-
right part of Fig. 1).

The selection of the relevant MCDA method was refined by con-
sidering that DM can deem a certain minimum number of criteria (in
this case 75%) as sufficient to grant a class, without requiring all the
criteria to be in favour for it or a better one (Domingues et al., 2015).
What is more, knowing the weights of the criteria that lead to a class
represented another requirement for the identification of the method,
as it can add transparency to the decision recommendation.

This modeling context resulted in the selection of IRIS as a suitable

Fig. 1. The methodological procedure for the classification of minerals into supply risk classes.
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MCDA method (Dias and Mousseau, 2003). IRIS uses an optimisation-
based algorithm to provide a range of risk classes together with the
values of the criteria weights that drive each classification. IRIS oper-
ates with the ELECTRE TRI method as SMAA-TRI. Details on its working
procedure can be found in Dias et al. (2002) and Dias and Mousseau
(2003).

2.3.3. How does the classification algorithm work?
The models developed in this case study operate with an algorithm

named ELECTRE-TRI (Roy, 1991), which sorts the raw materials into
risk classes (Ci). This method compares the score for each criterion (gj)
with respect to class profiles (Prh), which distinguish between a high
(C1), high-medium (C2), medium-low (C3) and low (C4) risk class (see
Fig. 2). Every Ci is defined by two profiles, a lower bound and an upper
bound. For example, in the case of C1 in Fig. 1, Pr0 is the lower bound

profile and Pr1 is the upper bound profile.
The performance of each criterion for every material is compared

with the Prh from the worst to the best to evaluate whether such per-
formance is at least as good as the profile (in MCDA terms the verb
outrank is used). For each criterion in which the raw material equals or
overcomes the Prh, the respective weight of the criterion is added to a
index named concordance (c(a , Pr )i h ). A threshold value denoted λ is
used to drive the classification. Starting with h=1, if c(a , Pr )i h (which
can be also expressed as the cumulative weight of the criteria that equal
or overcome the Prh) does not reach λ , the minimum cumulative weight
of the criteria to grant a better classification, the raw material is allotted
to class Ch (C1 in Fig. 2). If c(a , Pr )i h reaches or exceeds λ, the mineral
can be assigned to a better class and it is compared with the next profile

+Prh 1. The process goes on until we reach a profile Prh such that c(a , Pr )i h

is lower than λ or when we reach the best class.
For instance, in Fig. 2, criteria scores for g2 to g7 are at least as good

as Pr1, the upper profile of C1. The sum of the weights of these agreeing
criteria is w2 +w3 +…+w7. In case where w2 +w3 +…+w7 < λ
then the material belongs to class C1, meaning that the criteria in
support of C2 are not enough to grant such class. In the opposite case,
where w2 +w3 +…+w7 ≥ λ , the raw material can be classified to C2.
As it clearly appears from this simple example, the classification pro-
cedure of ELECTRE-TRI is driven by the weight of the criteria that are in
support of each Ci.

In order to account for the hesitation of DMs in face of uncertainty
or imprecision in the values of the criteria and profiles, indifference and
preference thresholds (Diaz-Balteiro et al., 2017) were used, which
could be extrapolated from the available relevant literature (see Table
S4 in Supplementary information). These account for the fact that the
difference in performance between each criterion gj and Prh can be
considered insignificant if these performances are very close to each
other. In practical terms, a criterion value slightly worse than Prh might
still warrant the support (or the partial support) of that criterion to the
hypothesis that the raw material outranks Prh.

Fig. 2. Example of raw materials scoring in simplified ELECTE-TRI model (C1

= high risk, C2 = high-medium risk, C2 = medium-low risk, and C4 = low risk
are a set of risk classes; Prh are risk class profiles; gj are the criteria used in the
classification; the direction of the arrows represents improved performance).

Fig. 3. Supply risk matrix indicating the ranges of criteria values discerning between the allotment to each class and values for the selected sample materials (gj =
criterion; Ci = risk classes; *: the arrow ‘up’ signifies that the greater the value on the list of possible values, the better it is, and the arrow ‘down’ indicates the
opposite).
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3. Results and discussion

3.1. Supply risk matrix and values

The supply risk matrix containing the eight supply risk assessment
criteria and the risk-level profiles determined for each criterion is
presented in Fig. 3. A ‘high’ risk profile (red colour) indicates that a raw
material performs extremely poorly in the corresponding (column)
criterion and there is thus an increased risk of a supply disruption for
this material. This dependence works conversely if a mineral is classi-
fied as being in a ‘low’ risk profile (green colour).

Thirty-one metals and metalloids used in automotive manufacturing
were assessed against the supply risk matrix, with each mineral as-
signed a risk category according to its performance on each supply risk
criterion (indicator). Fig. 3 summarises the results for all thirty-one
minerals and mineral groups by indicating the performance as well as
the resultant risk category within each supply risk assessment criterion.
In order to obtain a single HHI, WGI, EPI and HDI score for a particular
mineral, the scores for each country were weight-averaged by the an-
nual mining production of that country. This is in line with the ap-
proach proposed by Yale University and the EC (Graedel et al., 2012;
EC, 2014). The underlying data behind the reported performance and
production volumes for all raw materials were submitted in the form of
an Excel file in Supplementary information.

The results in Fig. 3 demonstrate that apart from, for example, REEs,
Ta and Cu, there is large variability in the distribution of risk-level
profiles across minerals. This complicates matters if the aim is to assign
a single risk-level profile to a mineral based on all eight assessment
criteria. The next section demonstrates the possibility of obtaining ro-
bust classifications of the materials in their risk-level profiles based on a
synergistic use of SMAA-TRI and IRIS classification methods.

3.2. Supply risk classes via SMAA-TRI and IRIS

The results of the risk class allocations of the raw materials are
shown in Fig. 4, illustrating the synergistic contribution of the SMAA-
TRI and IRIS methods. The classes are colour-coded from left to right
and ordered from the highest risk, C1, to the lowest risk, C4. This easily
allows DMs to distinguish between the most and least critical materials.
Each material is characterised with the share of classifications (CAI –
Class Acceptability Indices) based on SMAA-TRI, which can range be-
tween 0% and 100% for each risk class (Ci). For different raw material
and class combinations, these percentages indicate the proportion of
the simulations (using randomly values for the weights and random
values for the threshold λ) that place a given raw material in a given
class. For each row in Fig. 4, the overall sum of the CAI for the corre-
sponding raw material's potential classifications is always 100%. For
instance, the first row of Fig. 4, indicates that REE is in class C1 for
approximately 75% of the simulations and in C2 for approximately 25%
of the simulations (the exact values are provided in the Supplementary
information, Excel sheets). CAI can be more concentrated on one Ci,
such as in the case of Co and Cr, whose CAI are 99% C2 and 85% C3,
respectively. In other cases, CAI can be more widespread among the
classes. An example is Li, with 19% C1, 55% C2, 17% C3 and 9% C4.
These differences in classifications are due to the combined effect of
scoring of the raw materials on the eight criteria, their relation to the
Prh and thresholds and the use of a range for λ. (for a detailed ex-
planation of how SMAA-TRI leads to the specific CAI percentages dis-
played in Fig. 4 see Supporting information Section S1) The more
widespread the CAI are, the more the risk classification of the material
depends on fixing the criteria weights and λ (subjectively, by a DM).

The SMAA-TRI results clearly show the distinction between those
materials for which the classification is more robust than others,
meaning that the uncertain modeling parameters (i.e. weights and λ
value) have a lower effect on the variability of the sorting.
Classifications that show more than 50% of the CAI for one class can be

considered more robust than other classifications where this does not
arise. This occurs for 26 out of 31 materials (i.e. REE, Te, In, Ge, B, Mn,
Graphite, V, Li, Co, Si, Mg, Sb, Ta, Ag, Pb, Au, Ti, W, Fe, Sn, Ni, Cr, Cu,
Al, Zn). Let us note that the models do not aim at advancing one single
deterministic classification based on a single run of the input data.
Rather, we consider a wide range of possible combinations of weights
and preferences of the DM (through λ values between 0.65 and 0.85)
for assignment to a certain class, leading to a probabilistic outcome.
Consequently, the DM can clearly see some potential classifications
which are more robust than another ones and make a more informed
choice, knowing that the evaluation is robust according to multiple
models settings.

Furthermore, there are materials where the usefulness of a fre-
quency-based visualisation of the results is even more apparent, and
this occurs where a high percentage (e.g. ≥ 80%) of the Monte Carlo
iterations support a certain class. In this regard, a nominal indication of
a recommended class (e.g. possible classes are C1 and C2) can be mis-
leading as a risk-averse DM might be inclined to select the worst from
among the possible classes. However, when a high proportion of the
CAI recommends a better class (e.g. 10% C1 and 90% C2), the DM may
accept this sorting, understanding that the combined effect of the un-
certain information can only in limited instances support the worst
classification of the raw material. This is the case for Co (C2 for 99% of
CAI), Ta (C2 for 83% of CAI), Au (C3 for 83% of CAI), Cr (C3 for 85% of
CAI) and Zn (C3 for 85% of CAI).

As presented in Section 2.3, Phase 2 of the decision aiding proce-
dure refines the modeling. Firstly, information on the weights of the
criteria can be introduced based on the work of the EU, leading to the
constraint w1, w2, w5, w6> w3, w4, w7, w8. In addition, it is possible to
assume that DMs might accept three quarters of the criteria to be suf-
ficient to justify a classification and would also like to know the actual
weights assigned to the criteria. These modeling settings can be im-
plemented with IRIS software and the results are shown in Fig. 4 with
the ‡ and * symbols. Symbol ‡ indicates the worst possible class if a DM
accepts that a coalition of six criteria is sufficient to grant the classifi-
cation (meaning that 75% of the criteria place the raw material in that
class, or better). Symbol * , when present, indicates the cases where
fewer than six criteria are able to trigger a better classification, while
still respecting the constrain that w1, w2, w5, w6> w3, w4, w7, w8.

For each raw material, different values for the criteria weights
might lead to the same classification. For any given material-class pair
that might occur, IRIS yields a representative combination of weights
that leads to classify that raw material in that class. This combination is
chosen, among other possible ones, by selecting the one that is farther
away from violating any of the constraints. The specific weights that
IRIS model calculates for each possible material classification are re-
ported in the Supplementary information, Excel sheets.

This setting leads to a more definitive differentiation of the mate-
rials because the available variability of the models parameters was
restrained. It can be seen that the classification becomes more detailed:
the number of possible recommended classes decrease between one and
three when compared with the SMAA-TRI results. This step-wise ap-
proach can be used as a means to drive the decision-making process
towards a more thought-through procedure.

For example, based on SMAA-TRI, there is a 15% and 30% chance of
Nb being allocated to C1 and C2 respectively, a 47% chance of it being
allocated to C3 and only a 8% chance of it going to C4. Hence, it can be
assumed that there is a large probability of Nb being allocated to either
class C1, C2 or C3 if weights are missing (i.e. SMAA-TRI results).
However, by imposing certain constraints on the results (i.e. weights
and criteria coalition), C3 is a class with at least 75% of the criteria in its
favour (i.e. IRIS results), which could be considered sufficiently robust
by a DM to perform an informed choice.

As far as the IRIS sortings are concerned, the high risk class (C1) is
assigned when there are less than six criteria supporting a better class,
and their combined weight is (for some of the accepted weight vectors)
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insufficient to reach the λ. In cases where this happens (i.e. for REE, Te,
In, Ge, B), then C1 is recommended.

The high-medium risk class, C2, is assigned when there are at least
six criteria that support the classification. For example, C2 is assigned
for Be, PGMs and Li since there are at least six criteria that have a
cumulative weight ≥ λ and that are at least as good as Pr1. In some
cases, there can be multiple potential classifications provided by IRIS
where the weight vectors of the criteria are such that fewer than six
criteria have enough combined weight to support the sorting and thus a
lower risk classification is recommended, such as in the case of REE
(C2), Be (C3 and C4), PGMs (C3) and Li (C3) (raw materials with * in
Fig. 4).

Further considerations emerge with materials where there is an
even spread of CAI involving up to all of the available classes, such as in
the case of Li, Nb and Ti. This happens because (i) such materials have
criteria that score in each class, (ii) a wide variability of weight vectors
is accepted and (iii) λ ranges between 0.65 and 0.85. This modeling
setting thus allows various combinations of weight vectors of the cri-
teria that can (or not) have a sufficient cumulative weight to overcome
λ in the SMAA-TRI simulations. It is especially in such cases that IRIS
sortings can help with the interpretation of the results. Knowing that at
least six criteria are in support of a certain classification and overcome
λ enriches the decision-supporting potential, proposing at least C2 for
Li, C3 for Nb and C3 for Ti.

A potential issue of concern is what we defined as “class dis-
continuity”, which is shown in the case of Au, which can be assigned to
C1 and C3 but not C2 or In, which can be assigned to C1 and C3 but non
C2. Other materials that suffer from this uncertainty are Ge and Mn.
This phenomenon is due to the lack of criteria whose score is in the
“jumped” class and thus support the assignment to it. In the case of Au
for example, g2 supports assignment to C1. Under certain weight vectors
g2 receives such high weight (34% from IRIS software) that the re-
maining coalition of criteria cannot overcome the λ and consequently

the highest risk level (C1) is assigned (see also Fig. 2). This means that
in cases where the DM is willing to accept that g2 has such high weight
(thus high importance) then this is a plausible classification, otherwise
only the better classe (i.e. C3) would be relevant to consider. ELECTRE-
TRI is a non-compensatory method, hence if there are no criteria that
support a certain class, then such class is never considered as a possible
allotment, independently from the performance on the other criteria.

3.3. Comparison of the results with the EC criticality study

Minerals criticality assessment exercises are system-specific, and
hence not necessarily comparable with other studies (Drielsma et al.,
2016; Glöser et al., 2015). For example, the EC criticality assessment
(EC, 2014) relates to materials that are relevant to the European in-
dustry, while this study focuses on metals and metalloids used in au-
tomotive manufacturing. Furthermore, the EC evaluates raw materials
in line with the classical definition of minerals criticality by considering
both the risk with regard to access to a material as well as its economic
importance. This study focuses exclusively on supply risks associated
with increased depletion of raw materials, although there are no re-
strictions to extend the analysis to other criticality dimensions. Despite
these limitations, some comparison between both studies is possible if
one looks at the supply risk dimension only.

The results obtained through a synergetic use of SMAA-TRI and IRIS
are largely aligned with the EU's risk profiles of raw materials, with
minor exceptions. For example, the supply risk of Te is considered by
the EU as relatively low, while this study considers this material as high
risk. This may be because the EU put a strong emphasis on substitut-
ability, which largely drives their results (Chapman et al., 2013) Te is
easily substitutable (risk class C4); however, it performs low in other
criteria (e.g. co-production and historical price volatility), not con-
sidered by the EU in their study. Hence, the weights allocated to the
substitutability criterion, or the weights coalition with other criteria

Fig. 4. Supply risk classification of thirty-one raw materials via SMAA-TRI (share of CAI % for each class) and IRIS (‡ = IRIS sorting with at least six criteria
supporting the classification; * = IRIS sorting in cases where fewer than six criteria trigger the classification).
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(such as environmental standards and subeconomic stability), were not
enough to overcome λ and thus recommend the risk class profile better
than C1 (Te) and C2 (V). These sortings could change if, for example, a
higher weight would be assigned to substitutability than to other cri-
teria, or λ would be lowered to 0.5.

The advantage of the combinatorial use of SMAA-TRI and IRIS is
that it allows to investigate the possible changes in results by ac-
counting for the uncertainty of input parameters, in this case the
weights of assessment criteria. Other MCDA methods either use equal
weighting or need specific weight values (not available in this study),
while SMAA-TRI and IRIS can operate without or with limited in-
formation about the weights of input parameters (assessment criteria).

4. Conclusions

The novel approach proposed in this article to assess the supply risk
of raw materials is structured upon a conjoint use of MCDA classifica-
tion methods; in this case, SMAA-TRI and IRIS. It does not aim to
provide a certain class sorting for the raw materials; instead, it can be
seen as a strategy to guide the decision process, highlighting the
emergence of robust conclusions according to multiple and justifiable
sets of constraints that can be imposed by the DMs on the MCDA
methods. For example, the robustness analysis, considering criteria
weight constraints, determined that the rare earth elements and indium
have a high eventuality of supply chain disruption. Conversely, the risk
of supply disruption for copper, zinc and aluminium is largely medium-
low or low. The proposed step-wise decision support approach can be
used as a complementary tool to the existing life cycle assessment
methods for a more detailed and comprehensive assessment of the
short-term availability of natural resources. Even though the metho-
dology has been applied to thirty-one materials, it is also applicable to
additional ones. Furthermore, more assessment criteria can be in-
corporated in the future (e.g. Policy Potential Index or global supply
concentration at the company level), once they will comply with data
quality and availability. Finally, the current results concern the present
situation and do not consider the future evolution of the raw materials
market. Hence, future work may involve building the long-term sce-
narios for each mineral with the consideration of geological availability
and finiteness of minerals.
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