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Abstract

Intensity-modulated radiation therapy (IMRT) is a modern radiotherapy modality that uses a multileaf collimator
to enable the irradiation of the patient with non-uniform maps of radiation from a set of distinct beam irradiation
directions. The aim of IMRT is to eradicate all cancerous cells by irradiating the tumor with a prescribed dose
while simultaneously sparing, as much as possible, the neighboring tissues and organs. The optimal choice of
beam irradiation directions – beam angle optimization (BAO) – can play an important role in IMRT treatment
planning by improving organ sparing and tumor coverage, increasing the treatment plan quality. Typically, the
BAO search is guided by the optimal value of the fluence map optimization (FMO) – the problem of obtaining
the most appropriate radiation intensities for each beam direction. In this paper, a new score to guide the BAO
search is introduced and embedded in a parallel multistart derivative-free optimization framework that is detailed
for the extremely challenging continuous multi-modal BAO problem. For the set of ten clinical nasopharyngeal
tumor cases considered, treatment plans obtained for optimized beam directions clearly outperform the benchmark
treatment plans obtained considering equidistant beam directions typically used in clinical practice. Furthermore,
treatment plans obtained considering the proposed score clearly improve the quality of the plans resulting from the
use of the optimal value of the FMO problem to guide the BAO search.
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1. Introduction

Cancer is a continuously increasing health problem with respect to its mortality and incidence features.
Radiation therapy (RT) is used for more than half of the cancer patients, either with curative intent or
simply to give important symptom relief. The aim of RT is to eradicate all cancerous cells by irradiating
the tumor with a prescribed dose while simultaneously sparing, as much as possible, the neighboring
tissues and organs. Intensity-modulated radiation therapy (IMRT) is a modern type of RT that uses a
multileaf collimator to transform the radiation beam into a discrete set of small beamlets with different
intensities (Figure 1). This discretization of the radiation beam is used for a more accurate control of the
three-dimensional dose distribution. The problem of optimizing the radiation intensities is usually known
as fluence map optimization (FMO), and is usually a large-scale programming problem that requires the
computation of algorithms to achieve valuable solutions.

In IMRT, radiation is usually generated by a linear particle accelerator mounted on a C-arm gantry
capable of rotating along a central axis. Selected radiation beams irradiate the tumor, from different
directions, depositing in an additive way the total radiation dose in the tumor while aiming to spare
the surrounding tissues and organs. In clinical practice, equispaced coplanar irradiation directions are
typically used, i.e. beam angle directions evenly distributed on the plane of rotation of the linear acceler-
ator’s gantry. However, the choice of appropriate beam irradiation directions – beam angle optimization
(BAO) – can enhance treatment plan quality (Das and Marks, 1997). Furthermore, for particular tumor
sites, as for intra-cranial tumors, the use of optimized beam irradiation directions substantially improves
treatment plan quality (Bangert et al., 2013). The main reason for the clinical use of equispaced beam
angle ensembles is inherent to the challenge of solving the BAO problem, a non-convex problem with
many local minima on a vast search space (Craft, 2007).

The problems of finding the optimal beam angle directions and the corresponding optimal radiation
maps can be addressed sequentially, considering geometric features or dosimetric surrogates as qual-
ity measures of the beam angle ensembles to guide the BAO search (Bangert and Oelfke, 2010; Llacer
et al., 2009). Alternatively, BAO and FMO problems can be solved simultaneously and the optimal FMO
value is used as quality measure of the beam angle ensembles. The second approach is predominant in
the literature as it grants reliability and optimality as beam angle directions for IMRT are often non-
intuitive (Stein et al., 1997). Two different mathematical formulations for the BAO problem have been
used. A combinatorial BAO formulation can be obtained by considering a discrete subset of all possible
angle directions in [0, 360]. Many different algorithms have been used to address the combinatorial BAO
problem, including gradient search (Craft, 2007), neighborhood search (Aleman et al., 2008), response
surface approaches (Aleman et al., 2009), branch-and-prune (Lim and Cao, 2012), hybrid approaches
(Bertsimas et al., 2013), genetic algorithms (Dias et al., 2014) or matheuristic approaches (Cabrera et al.,
2018). Alternative combinatorial strategies have been proposed as the combinatorial BAO problem is an
NP hard problem (Bangert et al., 2012). One of the most successful is iterative BAO that adds sequen-
tially one beam at a time to a treatment plan, decreasing the possible number of combinations (Bangert
et al., 2012; Breedveld et al., 2012). An alternative methodological approach considers all possible (con-
tinuous) angles resulting in a continuous BAO formulation. Different strategies have been used to explore
the BAO continuous search space (Rocha et al., 2013a,b,c, 2016).

The use of the optimal FMO value as measure of quality of a beam angle ensemble has a major
drawback: the objective functions typically used to drive the FMO problem have no clinical relevance.
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Figure 1. Illustration of a multileaf collimator (with 9 pairs of leaves) with different apertures and corresponding radiation
maps whose superimposition originate an intensity map with different beamlet intensities.

The medical dose prescription for a given patient defines constraints that have to be fulfilled so that
a treatment plan can be considered admissible. These constraints are related to dosimetric values. For
some patients it is not possible to assure that all the constraints are indeed simultaneously fulfilled. Most
FMO objective functions try to use a measure of how far the current plan is from fulfilling the medical
prescription constraints, or some measure related to tumor control probabilities. These aggregated values,
that are usually associated to importance weights, bounds or other predetermined parameters, have no
clinical meaning whatsoever. So, FMO objective function is actually a technical tool used to guide the
search procedure, but it is not used to assess the clinical quality of a treatment plan. In the clinical
medical practice, the validation and selection of treatment plans explicitly considers a set of dosimetric
values.

In this paper, a new score based on clinical dosimetric values weighted by its clinical importance, as
described by Ventura et al. (2016), is introduced and embedded in a parallel multistart derivative-free
optimization framework that explores thoroughly the BAO problem continuous search space. Prelimi-
nary tests using this score to guide a simpler BAO search lead to promising results for a single patient
case (Rocha et al., 2017). Unlike previous scores proposed for BAO, this score is obtained after solving
the FMO problem and thus BAO and FMO are considered simultaneously. Ten nasopharyngeal (intra-
cranial) tumor cases already treated at the Portuguese Institute of Oncology of Coimbra (IPOC) are used
to test and compare multistart BAO driven by the proposed score against multistart BAO driven by the
optimal FMO value. The paper is organized as follows. A mathematical formulation of the continu-
ous noncoplanar BAO problem is presented in the next section. In section three we describe a parallel
multistart derivative-free optimization framework for the continuous noncoplanar BAO problem. Com-
putational tests are presented in section four. In the last section we have the conclusions.

2. Noncoplanar BAO problem formulation

All possible continuous noncoplanar beam irradiation directions are considered for the mathematical
formulation of the noncoplanar BAO problem. Let n be defined a priori by the treatment planner as the
number of noncoplanar beam irradiation directions. Let the couch and the gantry angles be denoted by φ
and θ, respectively. An unbounded mathematical formulation can be considered as angle directions −1◦
and 359◦ or angle directions 361◦ and 1◦ are equivalent. Considering an objective function (measure
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or score) where the best noncoplanar beam ensemble is attained at the function’s minimum, a simple
mathematical formulation for the continuous noncoplanar BAO problem is:

min f
(
(θ1, φ1), . . . , (θn, φn)

)
s.t.

(
θ1, . . . , θn, φ1, . . . , φn

)
∈ R2n.

(1)

For an immobilized couch at φ = 0◦, i.e. for coplanar BAO, the gantry will never collide with the
couch. However, for noncoplanar irradiation directions, i.e. moving the couch position, collisions be-
tween couch and gantry may occur. Thus, selection of noncoplanar irradiation directions has collision
restrictions. The unbounded mathematical formulation of the continuous noncoplanar BAO problem (1)
can still be considered if the objective function incorporates collision restrictions in the form of a penalty.
In this paper, two distinct objective functions f

(
(θ1, φ1), . . . , (θn, φn)

)
used to assess the quality of a

beam ensemble (θ1, φ1), . . . , (θn, φn) will be compared. The first one is the optimal FMO value calcu-
lated for each beam angle ensemble, embedding a penalization for beam angle candidates that allow the
gantry and the couch to collide:

f
(
(θ1, φ1), . . . , (θn, φn)

)
=

{
+∞ if collisions occur
optimal FMO value otherwise.

This approach is the one usually found in the literature. The second, is a treatment plan’s quality score
calculated for each beam angle ensemble and also embedding a penalization for beam angle candidates
that lead to collisions between the couch and the gantry:

f
(
(θ1, φ1), . . . , (θn, φn)

)
=

{
+∞ if collisions occur
plan’s quality score otherwise.

Formulation of the FMO problem and description of the treatment plan’s quality score are presented
next.

2.1. Formulation of the FMO problem

The goal of a radiotherapy treatment plan is to deliver dose to some structures (tumors) while prevent-
ing the remaining structures to receive (too much) dose. This means that the FMO problem is inherently a
multiobjective problem, since different conflicting objectives have to be simultaneously considered. The
desire to explicitly consider the tradeoffs between the different conflicting objectives justify the choice
of a multicriteria based FMO problem. In this paper we consider a multicriteria optimization based on
the a priori creation of a wish-list (Breedveld et al., 2007, 2009, 2012). This methodology has proven to
be able to obtain high quality treatment plans.

For the nasopharyngeal tumor clinical cases used in our tests, the wish-list constructed is displayed
in Table 1. Intra-cranial tumor cases are difficult to plan given the multitude of organs in the close
neighborhood of the tumor. The organs at risk (OARs) considered in the wish-list are the spinal cord,
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Table 1
Wish-list for the nasopharyngeal tumor cases.

Structure Type Limit

PTV70 maximum 74.9 Gy (=107% of prescribed dose)
PTV59 maximum 63.6 Gy (=107% of prescribed dose)
PTV59 shell maximum 63.6 Gy (=107% of prescribed dose)
Ring PTV70 maximum 59.5 Gy (=85% of prescribed dose)
Ring PTV59 maximum 50.5 Gy (=85% of prescribed dose)
Spinal cord maximum 45 Gy

Constraints Brainstem maximum 54 Gy
Body maximum 80 Gy
External Ring maximum 45 Gy

Structure Type Priority Goal Parameters Sufficient

PTV70 LTCP 1 1 Ti = 70 Gy; α= 0.75 0.5
PTV59 LTCP 2 1 Ti = 59.4 Gy; α= 0.75 0.5
PTV59 shell LTCP 3 1 Ti = 59.4 Gy; α= 0.75 0.5
External ring maximum 4 42.75 Gy – –
Spinal cord maximum 5 42.75 Gy – –

Objectives Brainstem maximum 6 51.3 Gy – –
Parotids mean 7 50 Gy – –
Oral cavity mean 8 45 Gy – –
Parotids mean 9 26 Gy – –
Oral cavity mean 10 35 Gy – –

brainstem, parotids and oral cavity. The planning target volume (PTV), the tumor volume plus a ring
that adds a safety margin, have two different dose prescription levels: a lower dose radiation (59.4Gy)
was prescribed for the lymph nodes (PTV59) and a higher dose radiation (70Gy) was prescribed for
the tumor (PTV70). Some auxiliary structures are also defined, in order to promote the fulfilling of
some dosimetric constraints. Creating a margin of 10 mm from PTV70 to PTV59 originate the structure
PTV59 shell that aims to prevent over-irradiation of the lymph nodes. Ring PTV70 and Ring PTV59 are
two ring shape structures 10 mm wide surrounding PTV70 and PTV59, respectively, aiming to improve
PTV conformity and coverage. Finally, a ring 10 mm wide was created around the patient, External Ring,
aiming to avoid high entrance dose values.

The wish-list is composed of nine (hard) constraints and ten hierarchical objectives. These constraints
and prioritized objectives are anchored on prescribed and tolerance doses for the different structures in-
cluded in the treatment planning optimization and radiation oncologist preferences. While the maximum-
dose constraints have to be strictly fulfilled, the objectives are sequentially optimized following the wish-
list priority order defined a priori. For each objective, a desired goal is defined. Objectives with higher
priorities are more likely to reach the defined goal. This means that preferences of the radiation oncolo-
gist play an important role in the definition of the wish-list. Maximum-dose constraints are considered
for serial organs, i.e. organs whose functionality is compromised even if only a small subunit is dam-
aged. Spinal cord and brainstem are the serial organs included in the wish-list. Mean-dose constraints are
considered for parallel organs, i.e. organs whose functionality is not compromised even if a small sub-
unit is damaged. Parotids, the larger salivary glands, and oral cavity, that contains the remaining salivary
glands, are the parallel organs included in the wish-list.

The objective considered for PTV dose optimization was the logarithmic tumor control probability
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(LTCP ) (Breedveld et al., 2012),

LTCP =
1

NT

NT∑
l=1

e−α(Di−Ti),

where NT corresponds to the number of voxels in the PTV, Di corresponds to the dose in voxel i, Ti
corresponds to the prescribed dose, and α corresponds to the cell sensitivity parameter. LTCP penalizes
doses under the prescribed value while LTCP slowly tends to zero for doses Di above the prescribed
dose Ti. The ideal plan has a dose equal to Ti for each PTV voxel which corresponds to LTCP = 1.
Tumor coverage, i.e. the percent of the PTV volume that receives at least 95% of the prescribed dose,
can be enhanced for larger values of α.

A primal-dual interior-point algorithm, 2pεc (Breedveld et al., 2007), was used to address the a priori
multicriteria FMO formulation based on the described wish-list. This algorithm generates automatically
a unique Pareto optimal treatment plan for a fixed set of beam angle directions (Breedveld et al., 2007).
The algorithm 2pεc has two stages. In the first stage objectives are sequentially optimized one at a time,
following the hierarchy of the wish-list. Preceding the next objective, a constraint is added in order to
guarantee that the outcome of the previous higher-order objective is not jeopardized when lower level
priority objectives are optimized. The treatment plan reached at the end of the 2pεc first stage manage
to comply with all the wish-list constraints as well as the goal for each objective or a higher value if the
constraints avoided the desired result. Appart from tumor (LTCP ) objectives, a full optimization for
each of the remaining objectives is conducted in the second stage, following the wish-list hierarchy. For
more details on interior-point algorithm 2pεc see Breedveld et al. (2007).

2.2. Treatment Plan’s Quality Score

The quality of a treatment plan is typically assessed by resorting to a set of different clinical dose
metrics. For organ sparing, the mean or maximum tolerance doses are typically the clinical dose metrics
used, depending on whether the organ is parallel or serial, respectively. The clinical dose metric typically
used for tumor coverage is the dose that 95% of the tumor volume receives (D95). More than 95% of the
dose prescribed is required. Prescribed and tolerance doses as well as the clinical dose metrics considered
for the nasopharyngeal tumor cases tested are depicted in Table 2.

In this study, a score, S, incorporating the clinical dose metrics of all structures included in the treat-
ment planning optimization procedure, is proposed as an alternative measure to guide the BAO proce-
dure. The goal of this score is to provide a better surrogate of the quality for a given treatment plan.
Analogously to the treatment plan global score proposed by Ventura et al. (2016), S is a weighted sum
of each individual score assigned to every structure included in the treatment planning optimization
procedure:

S =
∑
i

wi × Scorei, (2)

where wi corresponds to the relative weight defined for structure i and Scorei corresponds to the score
computed for structure i. Therefore, for each structure, a relative weight has to be defined based on its
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Table 2
Prescribed and tolerance doses for tumor volumes and OARs, respectively. Clinical dose metrics considered for plan’s quality
evaluation and respective weights.

Structure Tolerance Dose Prescribed Clinical wi

Mean Max dose dose metrics

PTV70 – – 70.0 Gy D95 ≥ 66.5 Gy 0.25
PTV59 – – 59.4 Gy D95 ≥ 56.4 Gy 0.25
Brainstem – 54 Gy – Dmax ≤ 54 Gy 0.125
Spinal cord – 45 Gy – Dmax ≤ 45 Gy 0.125
Left parotid 26 Gy – – Dmean ≤ 26 Gy 0.0625
Right parotid 26 Gy – – Dmean ≤ 26 Gy 0.0625
Oral cavity 45 Gy – – Dmean ≤ 45 Gy 0.0625
Body – 80 Gy – Dmax ≤ 80 Gy 0.0625

clinical relevance and an individual score has to be computed considering the corresponding clinical
dose metric. Similarly to the priorities of the wish-list, the radiation oncologist preferences play an im-
portant role on the definition of the relative weights that should be customized for each type of tumor
in order to reflect the relative importance given by the radiation oncologist to the different planning
objectives (Ventura et al., 2016). Relative weights considered for the different structures included in the
treatment planning optimization procedure are depicted in the last column of Table 2. These weights cor-
respond to the general assumption that proper irradiation of the tumor has the highest priority, followed
by sparing the central nervous system organs and finally by the remaining OARs. In clinical practice,
these weights should be tuned for each tumor site in order to better capture the radiation oncologist plan
evaluation preferences.

Each structure’s score is defined as the ratio between the clinical dose measure, i.e. the aimed dose
and the corresponding planned dose, i.e. the dose obtained by the current plan. Scores for OARs and
PTVs are computed as

ScoreOAR =
DP

DC
, (3)

ScorePTV =
DC

DP
, (4)

respectively, where DC corresponds to the clinical dose measure and DP the dose obtained by the
current plan. Thus, from (3) and (4) follows that the structure’s score is equal to one if the dose for
a given structure in the treatment plan is satisfying the corresponding constraint as an equality. For an
improved organ sparing or target coverage a structure’s score inferior to one is obtained, meaning that not
only the corresponding constraint is being fulfilled, but there is also a slack in this constraint: targets are
being better covered than the minimum acceptable, organs are being better spared than the minimum that
would be acceptable. Overall, decreasing the S value corresponds to an improvement of the treatment
plan quality.
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Two irradiation directions
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Figure 2. Two pairs of coplanar orientations – 2(a). Corresponding four points in the search space [0, 360]2. – 2(b).

3. Parallel multistart derivative-free optimization framework

3.1. On the continuous BAO search space

Multistart methods typically select randomly the starting points incorporating strategies to sample the
entire search space. For the BAO problem, the starting points (ensembles or solutions) of a multistart
procedure should be “well” spread in the entire search space [0, 360]n. Due to characteristics inherent to
the BAO continuous search space, a tailored selection of the starting beam angle ensembles is advised.
An important characteristic of a beam angle ensemble is the fact that the beam angle’s order is not
important. This feature must be acknowledged in the continuous optimization of the BAO search space
particularly for a parallel multistart approach.

To illustrate the interest of the irrelevance of the irradiation directions order during BAO, let us
consider n = 2. A solution is an ordered pair (α1, α2) ∈ [0, 360]2. However, the ordered pair
(α2, α1) ∈ [0, 360]2 is the same solution for the BAO problem. Figure 2 illustrates this symmetry, where
beam directions 30◦ and 250◦, displayed in red in Figure 2(a), have two solutions that are symmetric
in the search space [0, 360]2, displayed in Figure 2(b), and beam directions 200◦ and 300◦, displayed
in blue in Figure 2(a), have two solutions that are symmetric in the search space [0, 360]2, displayed in
Figure 2(b).

The symmetry of the solutions illustrated for two-beam ensembles in Figure 2(b) imply that, for a
multistart approach, initial points placed in opposite regions of the diagonal line, lead to the exploration
of the same solutions! Problems with symmetry properties are addressed in the literature using different
strategies. Here, the solution is quite simple and allows the exploration of a significantly smaller propor-
tion of the search space. If we sort all the iterates at each iteration of the BAO process, for the two-beam
directions case, we assure that only one of the regions divided by the diagonal line is explored. Such
strategy imply that only half of the entire search space is explored. Generically, for n-beam angle en-
sembles, by sorting the solution’s directions, only 1

2n of the entire search space is explored. Thus, for the
five-, seven- or nine-beam ensembles BAO problem, the proportion of the entire search space explored
is only 3.13% of [0, 360]5, 0.78% of [0, 360]7 and 0.19% of [0, 360]9, respectively.
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Table 3
Possible (sorted) distributions of two beam directions by the four quadrants.

α1 α2

1st Q 1st Q
1st Q 2nd Q
1st Q 3rd Q
1st Q 4th Q
2nd Q 2nd Q
2nd Q 3rd Q
2nd Q 4th Q
3rd Q 3rd Q
3rd Q 4th Q
4th Q 4th Q

Distribution of possible 2D solutions
1rst Q

2nd Q

4th Q

3rd Q

(a)

0 90 180 270 360
0

90

180

270

360
2D search space

α
1

α 2

(b)

Figure 3. Two beam directions possibilities for the four quadrants – 3(a). Corresponding squares in the search space [0, 360]2

– 3(b).

3.2. On the sampling of the initial ensembles

The selection of the starting (sorted) beam ensembles must acknowledge the peculiarities of a reduced
search space. Moreover, we must guarantee that the initial beam ensembles cover well all the reduced
search space. The strategy we adopted divide the beam angle directions by quadrants and consider as
starting points all the possible distributions of beam angle directions by quadrants. Let us consider again
n = 2 for illustration purposes. In Table 3 we have all the ten different possible (sorted) distributions
of two beam directions by the four quadrants. In Figure 3 examples of these ten distributions are dis-
played. Figure 3(a) displays examples of two beam directions for the ten cases of Table 3 while the
corresponding regions (painted squares) of the reduced search space are presented in Figure 3(b). A
fairly good distribution of starting points, that belong to the reduced search space and covers well that
reduced search space, would place a starting point in every square. E.g., for n = 2 we would consider
ten starting points, one for each of the ten out of twenty squares belonging to the reduced search space.
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Distribution of possible 3D solutions
1rst Q

2nd Q

4th Q

3rd Q

(a) (b)

Figure 4. Three beam directions possibilities for the four quadrants – 4(a) and the corresponding cubes in the search space
[0, 360]3 – 4(b).

In Figure 4, all the different possible distributions (20) of three beam angle directions by the four
quadrants are illustrated. Figure 4(a) displays examples of three beam directions for the 20 possible cases
while the corresponding regions (painted cubes) belonging to the reduced search space are presented in
Figure 3(b). For n = 3, assigning an initial point for every cube belonging to the reduced search space,
corresponds to consider 20 initial points for 20 out of 60 cubes in the search space. It is worth to highlight
that the search space is reduced to half for n = 2 while for n = 3 the reduction is done by a factor of 22,
i.e. reduced search space corresponds to 25% of the full search space. Despite a larger reduction of the
search space occur for higher dimensions, the number (and dimension) of different regions belonging to
the reduced search space increases. E.g., for n = 2 there are only ten squares while for n = 3 there are
twenty cubes.

Generically, for n−beam angle ensembles, the number of (hyper)cubes of the full search space is 4n

while the reduced search space has a number of (hyper)cubes that corresponds to the combination with
repetition of

(
n+4−1

4

)
= (n+4−1)!

4!(n−1)! . Thus, when considering five-, seven- or nine- beam angle ensembles,
the full search space has 1024, 16384 and 262144 hypercubes compared to 56, 120 and 220 of the
reduced search space, respectively.

3.3. Regions of attraction

Multistart is a two phase method. These phases are usually designated as global and local phases
(Mart et al., 2013). In the global phase, the objective function is evaluated for all the initial points
selected. Then, typically, search procedures are used in order to locally explore the regions around the
starting points. One of the drawbacks of multistart strategies is that each local minimum can be found
by distinct local procedures wasting computational time. In a broader sense, when computed in parallel,
distinct local procedures may end up inspecting the same region at the same time. Clustering methods is a
common strategy used to prevent different local searches to explore the same regions (Voglis and Lagaris,
2009). Regions of attraction of local minima is an alternative strategy widely used. Let L designate a
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local search routine for the continuous BAO problem. The region of attraction of a local minimum, x∗,
can be defined as

A = {x ∈ [0, 360]n : L(x) = x∗}.
Therefore, A corresponds to the points in [0, 360]n that would lead to the same result x∗ by means of the
local search routine L(x). A simple strategy to prevent overlap of distinct local procedures is to allow a
single “active” local search routine for each region of attraction. However, in practice, it is very difficult
to define a local minimum region of attraction. A common approach is to define a local minimum region
of attraction as the set of points within a given radius RA from the local minimum x∗ (Rinnooy Kan and
Timmer, 1987):

A = {x ∈ [0, 360]n : ‖x− x∗‖ < RA}. (5)

For a multistart routine computed sequentially, the regions of attraction of the local minimum sequen-
tially found can de defined one at a time, and it is possible to determine if subsequent iterates belong to
any of the previously defined regions of attraction. However, for multistart routine computed in parallel
a different strategy is required as different local minima are computed simultaneously. For the paral-
lel multistart BAO procedure, the regions of attraction are defined to be the hypercubes of the reduced
search space, corresponding for n = 2 and n = 3 to the painted squares and painted cubes in Figures
3(b) and 4(b), respectively. Thus, a generalization of the region of attraction (5) is done by considering
the infinity norm and the set of points within a given radius from the centroid of a given hypercube:

ABAO = {x ∈ [0, 360]n : ‖x−M‖∞ < RA}. (6)

3.4. Local search procedure

The non-convex nature of the BAO problem advises the selection of a local search procedure that
makes no use of derivatives. In previous works, we used derivative-free algorithms to locally improve
solutions computed sequentially. Pattern search methods (PSM) were selected for the resolution of the
continuous BAO problem as they are able to avoid local entrapment and require a small number of func-
tion (FMO) evaluations to converge (Rocha et al., 2013a,b,c). Each iteration of PSM has two steps with
different purposes. In the first step, named search step, a global search using any strategy is performed
attempting to improve the outcome of the current best iterate. If the first step fails, i.e. if the search
step is empty or the procedure used was not able to improve the outcome of the current best iterate, the
second step, named poll step, locally explore the region around the current best iterate following the
directions of positive bases. A positive basis is a set of nonzero directions (vectors) that positively span
the entire search space while no subset does. The main reason for using positive bases for optimization
purposes is that at least one of its vectors (directions) can provide an improvement on the objective func-
tion value unless the current iterate is a stationary point. An example of a positive basis is the set of 2n
vectors [I − I] where I = [e1 . . . en] corresponds to the identity matrix. In terms of BAO, following
each direction of this positive basis corresponds to the rotation of each beam direction clockwise and
counter-clockwise for a certain amount (step size) at each iteration.

The local search procedure we will use considers a pattern search method where no trial points are
attempted in the search step, as global search effort is allocated to the multistart strategy, and the positive
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basis considered in the poll step is [I − I]. This local search procedure corresponds to the coordinate
search method. Algorithm 1 displays the parallel coordinate search algorithm used for local search.

Algorithm 1 Parallel coordinate search algorithm
Initialization:

• Set k ← 0;
• Choose x0 ∈ Rn, α0 > 0 and αmin;

Iteration:

1. Compute in parallel f(x), ∀x ∈ N (xk) = {xk ± αkei, i = 1, . . . , n}.
2. If minN (xk) f(x) < f(xk) then

xk+1 ← argminN (xk)f(x);
αk+1 ← αk;

Else
xk+1 ← xk;
αk+1 ← αk

2 ;

3. If αk+1 ≥ αmin go to first step and set k ← k + 1.

3.5. Parallel multistart coordinate search algorithm for BAO

The strategy sketched here is tailored for the noncoplanar BAO problem. Starting points, x0
i ∈

[0, 360]n, i = 1, . . . , N , with N = (n+4−1)!
4!(n−1)! , are placed in each of the hypercubes illustrated in Fig-

ures 3(b) and 4(b) for n = 2 and n = 3, respectively. For each of these initial points, the objective
function value is calculated. The best solutions and corresponding objective function values found so
far for each region (hypercube) are assigned to these initial points and corresponding function values:
x∗i = x0

i , i = 1, . . . , N ; f∗i = f(x0
i ), i = 1, . . . , N .

In the first iteration, a local search is performed in parallel around each starting solution on every
region of attraction (hypercube) i. The iterate x1i , outcome of the local search around x0i , may or may
not belong to the same region of attraction i. When iterate x1i belongs to a region of attraction j 6= i,
two different local search procedures may coexist in the same region of attraction. In order to prevent
the overlap of local search procedures, only the local search yielding the iterate with lowest function
value remain active. Thus, after the first iteration, some regions will have active local searches while
other will not. Information of the regions that have active local searches is stored using a boolean vector,
ActiveN×1, that is updated at the end of each iteration.

In a following iteration, k, the outcome of an active local search for a region of attraction i is one of
the following:

• If xki is in region i,
— If f(xki ) < f(x∗i ), i.e. if the local search is successful, the best point for region i is defined as

the current iterate and the best objective function value is updated accordingly.
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— If f(xki ) ≥ f(x∗i ) the step size is decreased. When the step size becomes inferior to lowest
threshold defined (αmin), the local search is halted (Activei is set to 0).

• If xki is in region j 6= i,
— If there are no active local searches in region j,

∗ If f(xki ) < f(x∗j ), i.e. if the best function value of region j is improved, then values of best
iterate, best function and step size of region j are updated. Local search becomes active in
region j (Activej is set to 1) and inactive in region i (Activei is set to 0).
∗ If f(xki ) ≥ f(x∗j ) then local search coming from region i ends (Activei is set to 0).

— If there is an active local search in region j,
∗ If f(xki ) < f(x∗j ) then values of best iterate, best function and step size of region j are

updated. Local search of region j ends but region j remains active (Activej continues to
be 1) while region i becomes inactive (Activei is set to 0).
∗ If f(xki ) ≥ f(x∗j ) then local search coming from region i ends. Region i becomes inactive

(Activei is set to 0).

Algorithm 2 displays the parallel multistart coordinate search algorithm.

4. Computational results

An 8-core Dell Precision T5600 with Intel Xeon processador 64GB 1600MHz was used to perform the
computational tests. Erasmus-icycle, a MATLAB optimization suite developed in Rotterdam (Breedveld
et al., 2007, 2009, 2012), was used to embed our parallel BAO procedure, as well as to import DICOM
images, optimize dose distributions and compute and visualize dose. Erasmus-icycle optimizer, 2pεc,
was used to compute the optimal FMO values for a given beam angle ensemble.

The tailored coordinate search algorithm considered α0 = 25 = 32 as initial step size and define as
stopping criteria a step size inferior to one. By choosing a power of two for initial step size and one for
minimum step size, all beam angle directions considered will be integer since the step size is divided by
two in case of an unsuccessful local search.

Ten nasopharyngeal (intra-cranial) tumor cases already treated at IPOC were used to test and compare
BAO driven by the proposed score against BAO driven by the optimal FMO value. When IMRT (static
or dynamic mode) is used, nasopharyngeal tumor cases are typically treated with five to nine coplanar
equispaced beam angle directions. The parallel multistart BAO framework guided by score S and the
optimal FMO value, obtained seven-beam noncoplanar treatment plans, denoted BAOs and BAOf ,
respectively.BAOs andBAOf plans were benchmarked against seven-beam equispaced coplanar plans,
denoted Equi. Erasmus-iCycle was used to compute and compare all treatment plans.

Table 4 displays the values of the two measures considered for quality assessment of a beam ensemble,
the optimal FMO value and S, for each of the ten patients and for each of the treatment plans, Equi,
BAOf and BAOs. As expected, BAOf treatment plans obtained the best optimal FMO value with an
average improvement with respect to Equi treatment plans of 7.8% compared to an average improvement
of 3.1% obtained byBAOs treatment plans. On the other hand,BAOs obtained the best S value with an
average improvement with respect to Equi treatment plans of 7.6% compared to an average improvement
of 3.6% obtained by BAOf treatment plans.
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Algorithm 2 Parallel multistart coordinate search algorithm
Initialization:

• Set k ← 0;
• Choose x0

i ∈ [0, 360]n, i = 1, . . . , N ;
• Compute f(x0

i ), i = 1, . . . , N in parallel;
• Set x∗i ← x0

i , i = 1, . . . , N and f∗i ← f(x0
i ), i = 1, . . . , N ;

• Set Activei ← 1, i = 1, . . . , N ;
• Choose α0

i > 0, i = 1, . . . , N and αmin;

Iteration:

1. Use Algorithm 1 to locally explore, in parallel, the regions of attraction with active local search;
2. For regions of attraction i with active local search do

If f(xki ) < f(x∗i ) then
If xki is in region i then

x∗i ← xki ;
f∗i ← f(xki );

Else
Activei ← 0;
Determine region j 6= i where xki is;
If f(xki ) < f(x∗j ) then

x∗j ← xki ;
f∗j ← f(xki );
Activej ← 1;

Else
αk+1
i ← αk

i

2 ;
If αk+1

i < αmin then
Activei ← 0;

3. If there exists active regions go to first step and set k ← k + 1.

Despite the improvements both in terms of optimal FMO value and S, both measures are simply
surrogates of the treatment plan’s quality. As referred previously, clinical dose metrics are typically
used to assess and compare the quality of treatment plans. These clinical dose metrics, embedded in the
calculation of S, are compared in Figures 5 and 6. It is possible to acknowledge by simple inspection
that BAOs clearly outperforms both BAOf and Equi treatment plans. For similar coverage of the tumor
volume (Figure 5), an enhanced organ sparing is clearly obtained by BAOs treatment plans (Figure 6).

It is straightforward to compare the three treatment plans for a given patient using the graphical analy-
sis proposed in SPIDERplan (Ventura et al., 2016). For illustration, customized radar plots for the second
patient containing all the structures included in the treatment planning optimization are displayed in Fig-
ure 7. The circular area of the radar plot is divided into sections with angles proportional to the relative
weight assigned to the different structures considered. The score of each structure is represented by a
point on the corresponding bisector’s section matching the distance from the radar’s center. The inner cir-
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Table 4
Results of the beam angle optimization processes.

Equi BAOf BAOs

Case FMO S FMO % S % FMO % S %

1 771,87 0,99 709,8 8,04 0,96 3,03 750,85 2,72 0,93 6,06

2 678,37 0,93 617,19 9,02 0,9 3,23 642,78 5,25 0,85 8,60

3 734,11 0,99 665,48 9,35 0,94 5,05 721,5 1,72 0,92 7,07

4 646,62 0,97 598,28 7,48 0,96 1,03 630,78 2,45 0,91 6,19

5 694,59 0,98 655,95 5,56 0,92 6,12 677,87 2,41 0,89 9,18

6 772,28 0,99 713,47 7,62 0,95 4,04 758,03 1,85 0,91 8,08

7 566,9 0,94 511,02 9,86 0,9 4,26 548,21 3,30 0,88 6,38

8 603,9 0,97 564,38 6,54 0,94 3,09 591,36 2,08 0,91 6,19

9 820,95 0,96 761,74 7,21 0,92 4,17 774,69 5,63 0,89 7,29

10 791,97 0,98 730,29 7,79 0,96 2,04 766,14 3,26 0,91 7,14
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Figure 5. Comparison of PTV coverage metrics obtained by Equi, BAOf and BAOs treatment plans. The horizontal lines
displayed represent D95.

cle in the radar plot has a radius equal to one corresponding to the case where the planned dose matches
the clinical dose measure defined. Optimal scores will converge to the radar plot center while increasing
deviations from prescribed/tolerance doses will converge to the outer circle with radius equal to two.
The overall quality of the treatment plan is represented by the polygon connecting all the structure’s
scores. The inner treatment plan, corresponding to BAOs treatment plan, is easily identified as the best
treatment plan.

In clinical practice, results are also typically judged by their cumulative dose-volume histogram
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Figure 6. Comparison of organ sparing metrics obtained by Equi, BAOf and BAOs treatment plans. The horizontal lines
displayed represent the tolerance (mean or maximum) dose for each structure.
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Figure 7. Radar plots comparing the results obtained by Equi, BAOf and BAOs for the second patient case.

(DVH). DVH results for the second patient are displayed in Figure 8. The DVH curves also show that for
similar coverage of the tumor volumes, a clearly better sparing of the different organ’s at risk is obtained
by BAOs treatment plan.

5. Conclusions

The optimal choice of beam angle directions is a very challenging optimization problem yet to be
solved satisfactorily. Typically, the optimal FMO value is used as the measure of quality of a beam
angle ensemble to guide the BAO search. However, the functions used for the different mathematical
formulations of the FMO problem have no clinical meaning. Thus, obtaining a treatment plan with an
improved optimal FMO value is not sufficient to assure that the corresponding treatment plan is preferred
by the radiation oncologist. Typically, treatment plan comparison/selection rely on a set of clinical dose
metrics whose relative importance depends on the tumor type and the radiation oncologist’ preferences.
Assuming that it is possible to define a priori the radiation oncologist’ preferences, i.e. the relative
importance of the clinical dose metrics of the different structures considered, it is possible to define
a score that objectively quantifies the analysis made qualitatively by the radiation oncologist. In this
paper, a new score S based on clinical dose measures weighted by relative importance was described
and embedded in a multistart BAO procedure.

A parallel multistart derivative-free optimization framework was detailed and used to compare two
different surrogate measures of the treatment plan’s quality. This multistart derivative-free framework
proved to be a competitive approach to address the noncoplanar BAO formulated as a continuous opti-
mization problem. A global search scheme for sampling the reduced continuous BAO search space is
combined with a procedure that locally improves the sampled ensembles. This scheme to disseminate
starting solutions on the reduced continuous BAO search space proved to be an excellent alternative to
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Figure 8. Cumulative dose volume histogram comparing the results obtained by Equi, BAOf and BAOs for the second
patient case.

random strategies. Furthermore, it requires a fairly small number of starting solutions in order to assure
a proper coverage of the entire reduced continuous BAO search space. Despite the importance of the
global strategy sketched, particularly for a search space with a peculiar shape due to symmetry proper-
ties, the choice of a derivative-free method for locally improving the solutions is important to avoid local
entrapment.

The multistart BAO framework guided by the two different measures manage to obtain improvements
in terms of these measures. As expected, the measure that guide the search is the one with larger im-
provement. These improvements translate in different magnitudes of improvement of the typically used
clinical dose metrics for assessing the quality of a treatment plan. For similar target coverage, an im-
proved sparing of the OARs is clearly demonstrated by BAOs treatment plans. For example, BAOs
plans showed an average decrease of 11, 1 Gy (21, 9%) and 5, 3 Gy (13, 3%) on the maximum dose of
brainstem and spinal cord, respectively, and 4, 1 Gy (15, 2%) and 5, 4 Gy (18, 8%) on the mean dose
of right and left parotids, respectively, compared to Equi treatment plans. More modest improvements
were obtained by BAOf plans with an average decrease of 5, 5 Gy (10, 7%) and 0, 2 Gy (0, 5%) on the
maximum dose of brainstem and spinal cord, respectively, and 1, 8 Gy (6, 7%) and 3, 8 Gy (13, 3%) on
the mean dose of right and left parotids, respectively, compared to Equi treatment plans. While improve-
ments in brainstem and spinal cord dose metrics by BAOs plans are impressive and important for possi-
ble cases of re-irradiation, improvements obtained in parotids are important as well. Over-irradiation of
salivary glands can lead to xerostomia, decreasing the patient’s quality of life. Therefore, an improved
sparing of the salivary glands is important to minimize the risk of this complication, common for na-
sopharyngeal tumor cases.

Future work will include the integration of a larger number of structures in a score S and the clinical
validation of the structure’s weights. Further tests to acknowledge the advantage of this score on driving a
BAO procedure should be carried on. Furthermore, one of the disadvantages of a BAO procedure guided
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by the the optimal FMO value is that the beam angle ensemble found is jeopardized if a different fluence
optimizer is used. It will be important to test if the BAO procedure guided by S is less dependent on
the fluence optimizer, i.e. if the optimal beam ensemble found using a given treatment planning system
shows the same benefits when used in a different treatment planning system.

Acknowledgements

This work has been supported by the Fundação para a Ciência e a Tecnologia (FCT) under project
grant UID/MULTI/00308/2013. The authors would like to show gratitude to Ben Heijmen and Sebastiaan
Breedveld for giving permission and helping them to install Erasmus-iCycle.

References

Aleman, D., Kumar, A., Ahuja, R., Romeijn, H., Dempsey, J., 2008. Neighborhood search approaches to beam orientation
optimization in intensity modulated radiation therapy treatment planning. J. Global Optim. 42, 587–607.

Aleman, D., Romeijn, H., Dempsey, J., 2009. A response surface approach to beam orientation optimization in intensity
modulated radiation therapy treatment planning. INFORMS J. Computing: Comput. 21, 62–76.

Bangert, M., Oelfke, U., 2010. Spherical cluster analysis for beam angle optimization in intensity-modulated radiation therapy
treatment planning. Phys. Med. Biol. 55, 6023–6037.

Bangert, M., Ziegenhein, P., Oelfke, U., 2012. Characterizing the combinatorial beam angle selection problem. Phys. Med.
Biol. 57, 6707–6723.

Bangert, M., Ziegenhein, P., Oelfke, U., 2013. Comparison of beam angle selection strategies for intracranial imrt. Med. Phys.
40, 011716.

Bertsimas, D., Cacchiani, V., Craft, D., Nohadani, O., 2013. A hybrid approach to beam angle optimization in intensity-
modulated radiation therapy. Comput. Oper. Res. 40, 2187–2197.

Breedveld, S., Storchi, P., Heijmen, B., 2009. The equivalence of multicriteria methods for radiotherapy plan optimization.
Phys. Med. Biol. 54, 7199–7209.

Breedveld, S., Storchi, P., Keijzer, M., Heemink, B. A.W.and Heijmen, 2007. A novel approach to multi-criteria inverse planning
for imrt. Phys. Med. Biol. 52, 6339–6353.

Breedveld, S., Storchi, P., Voet, P., Heijmen, B., 2012. icycle: integrated, multicriterial beam angle, and profile optimization for
generation of coplanar and noncoplanar imrt plans. Med. Phys. 39, 951–963.

Cabrera, G., Ehrgott, M., Andrew J. Mason, A.J., Raith, A., 2018. A matheuristic approach to solve the multiobjective beam
angle optimization problem in intensity-modulated radiation therapy. Intl. Trans. Op. Res. 25, 243–268.

Craft, D., 2007. Local beam angle optimization with linear programming and gradient search. Phys. Med. Biol. 52, 127–135.
Das, S., Marks, L., 1997. Selection of coplanar or non coplanar beams using three-dimensional optimization based on maximum

beam separation and minimized nontarget irradiation. Int. J. Radiat. Oncol. Biol. Phys. 38, 643–655.
Dias, J., Rocha, H., Ferreira, B., Lopes, M., 2014. A genetic algorithm with neural network fitness function evaluation for imrt

beam angle optimization. Cent. Eur. J. Oper. Res. 22, 431–455.
Lim, G., Cao, W., 2012. A two-phase method for selecting imrt treatment beam angles: Branch-and-prune and local neighbor-

hood search. Eur. J. Oper. Res. 217, 609–618.
Llacer, J., Li, S., Agazaryan, N., Promberger, C., Solberg, T., 2009. Noncoplanar automatic beam orientation selection in cranial

imrt: a practical methodology. Phys. Med. Biol. 54, 1337–1368.
Mart, R., Resende, M., Ribeiro, C., 2013. multistart methods for combinatorial optimization. Eur. J. Oper. Res. 226, 1–8.
Monz, M., Kufer, K., Bortfeld, T., Thieke, C., 2008. Pareto navigationalgorithmic foundation of interactive multi-criteria imrt

planning. Phys. Med. Biol. 53, 985–998.
Rinnooy Kan, A., Timmer, G., 1987. Stochastic global optimization problems part ii: Multi level methods. Mathematical

Programming 39, 57–78.

c© 2018 International Transactions in Operational Research c© 2018 International Federation of Operational Research Societies



20 H. Rocha / Intl. Trans. in Op. Res. XX (20XX) 1–20

Rocha, H., J., D., Ferreira, B., Lopes, M., 2013a. Beam angle optimization for intensity-modulated radiation therapy using a
guided pattern search method. Phys. Med. Biol. 58, 2939–53.

Rocha, H., J., D., Ferreira, B., Lopes, M., 2013b. Pattern search methods framework for beam angle optimization in radiotherapy
design. Appl. Math. Comput. 219, 10853–65.

Rocha, H., J., D., Ferreira, B., Lopes, M., 2013c. Selection of intensity modulated radiation therapy treatment beam directions
using radial basis functions within a pattern search methods framework. J. Glob. Optim. 57, 1065–89.

Rocha, H., J., D., Ventura, T., Ferreira, B., Lopes, M., 2016. A derivative-free multistart framework for an automated noncopla-
nar beam angle optimization in imrt. Med. Phys. 43, 5514–5526.

Rocha, H., J., D., Ventura, T., Ferreira, B., Lopes, M., 2017. A global score-driven beam angle optimization in imrt. In 17th
International Conference on Computational Science and Its Applications, LNCS, Springer, pp. 77–90.

Stein, J., Mohan, R., Wang, X., Bortfeld, T., Wu, Q., Preiser, K., Ling, C., Schlegel, W., 1997. Number and orientation of beams
in intensity-modulated radiation treatments. Med. Phys. 24, 149–160.

Ventura, T., Lopes, M.C., Ferreira, B., Khouri, L., 2016. Spiderplan: A tool to support decision-making in radiation therapy
treatment plan assessment. Rep. Pract. Oncol. Radiother. 21, 508–516.

Voglis, C., Lagaris, I., 2009. Towards“ideal multistart”. a stochastic approach for locating the minima of a continuous function
inside a bounded domain. App. Math. Comput. 213, 1404–1415.

c© 2018 International Transactions in Operational Research c© 2018 International Federation of Operational Research Societies


