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Why Are Human Newborns So Fat? Relationship Between
Fatness and Brain Size at Birth
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ABSTRACT The plumpness of the human newborn has long been recognized as a trait in need
of explanation among researchers. Using a linear regression analysis, we find that head circum-
ference is significantly and positively associated with BMI at birth, after gestational age and
birthlength were controlled for, in a sample of 1,069 healthy liveborn routinely delivered at the
University Hospital of Coimbra (partial correlation r ¼ 0.409, P < 0.0001). This significant
association is consistent with the idea that newborn fatness is related to the higher need of lipids
in newborn humans as an energetic and plastic substrate during its accelerated brain growth
period. As birthweight and birth head size are associated with head size and cognitive abilities in
childhood and adult life, it could be postulated that these cognitive abilities could have acted as
selective pressure responsible for the newborn fatness increase in our lineage. Am. J. Hum. Biol.
16:24–30, 2004. # 2003 Wiley-Liss, Inc.

The evolutionary mechanism of acquiring
greater than predicted (by allometric rules
for hominoids) human newborn’s amount of
fat is still unknown. Most mammals, includ-
ing nonhuman primates (Schultz, 1969;
Lewis et al., 1983), do not begin to deposit
white fat until after birth (Adolph and
Heggeness, 1971). The precocious condition
of adipose tissue development at birth,
despite the human newborn’s otherwise
altricial state (Watts, 1990), highlights the
timing of fat deposition as an atypical fea-
ture of human somatic development and
raises questions about the evolutionary ori-
gins and function of this developmental
shift. In fact, the plumpness of the human
newborn has long been recognized as a trait
in need of explanation among researchers.
Human newborns have a fat mass roughly
four times that predicted for a mammal of
their body size at birth (Kuzawa, 1998;
Pawlowski, 1998). The percentage of fat tis-
sue of the human newborn is similar to
mammals living in arctic conditions and not
to a mammal living in Africa (Forbes, 1987),
exceeding that of even the pinneped seals
(Oftedal et al., 1989).

While explanations for the fat layer of
human neonates have commonly assumed
that it serves as insulation to compensate for
hairlessness (e.g., Hardy, 1960; Pawlowski,
1998), empirical support for this hypothesis

is presently weak (Kuzawa, 1998). The
greater adiposity of human neonates as
energy storage might be also explained as an
important life-history strategy and ameans to
modify mortality risk during the nutritional
and immunological turbulent period of in-
fancy (Kuzawa, 1998). Although this asser-
tion waits to be confirmed with better data,
nutritional stress and heightened susceptibil-
ity to infection are not unique features of
humans, but characteristic of mammals gen-
erally. Finally, it has been suggested that the
plumpness of the human newborn is at least
partially explainable as an accompaniment of
the enlarged human brain, which demands a
larger energy reserve to ensure that its obli-
gatory needs are met when the flow of re-
sources from mother or other caretakers is
disrupted. The data reviewed (Kuzawa,
1998) and a high correlation between new-
born size and the brain size of an adult within
the Primate order (Lynch et al., 1983) and in
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mammals (Frost, 1987) provide support for
this hypothesis, albeit only indirectly.

In order to achieve better insight into the
association between brain size and fatness at
birth in humans, the relationship between
head circumference and body mass index
was investigated in a sample of healthy
human neonates.

MATERIALS AND METHODS

Sample

A total of 1,069 healthy liveborn singletons
(553 males and 516 females) routinely deliv-
ered at the University Hospital of Coimbra
between September 2002 and February 2003
took part in this study. Newborns of smoking
or diabetic mothers, nonwhites, and not from
an intermediate socioeconomic background
family (using culturally appropriate criteria:
from parents years in school and parents
occupation—in accordance with the Census
of Population Classification of Occupations)
were excluded from the analysis, as were
those with known developmental defects. All
selected births were the first ones for all the
mothers and occurred between 38 and 42
weeks of gestation. Data on birthweights,
head circumferences, gestational ages (post-
menstrual weeks) and recumbent lengths
were obtained from birth records. All new-
borns were measured anthropometrically
during the first 24 hours after birth by the
same anthropometrist. All information regar-
ding the pregnancy, delivery, baby’s condition
at birth, health, and socioeconomic status of
the parents were obtained from the hospital
clinical files.

Data analysis

Descriptive statistics, distribution curves,
and correlations between the variables were
analyzed. The data were analyzed separately
for boys and for girls. Using a linear regres-
sion analysis, we investigated the relation
between body mass index (BMI) at birth
(weight (Kg)/ recumbent length (m)2), a sim-
ple, accurate, and valid measure of fatness
(e.g., Billewicz et al., 1962), and head circum-
ference at birth, a convenient measure of a
baby’s brain size (e.g., Cooke et al., 1977;
Epstein and Epstein, 1978). Because the dis-
tributions of variables are skewed (Shapiro-
Wilk’s W-test, P < 0.05), analyses were
repeated after we transformed variables to

natural logarithms; the results were similar
(data not presented). Linearity was tested
using a quadratic term for birth BMI. The
quadratic term was significant, indicating
nonlinearity. In order to reduce possible
multicollinearity, we did not include birth-
weight (which is used to calculate the BMI)
with BMI in the regression analysis. To ana-
lyze whether BMI is relatively independent
of birthlength, we used a linear regression
analysis, with BMI as the dependent variable
and gestational age and birthlength as the
independent variables. In order to investi-
gate whether the correlation between head
circumference and BMI is special and is not
simply the result of fetal growth, we used a
linear regression analysis, with BMI as the
dependent variable and gestational age,
birthlength, and head circumference as the
independent variables.

RESULTS

The means and standard deviations of the
variables by sex are given in Table 1.
Pearson’s product-moments between vari-
ables are given in Table 2.

Regression analysis shows that birthlength
is independent of BMI, adjusting for gesta-
tional age (Table 3) and head circumference
is significantly and positively associated with
BMI at birth, after gestational age and birth-
length were controlled for (partial correlation
r ¼ 0.409, P < 0.0001) (Table 4).

DISCUSSION

A limitation of this study is that it does not
use a direct measure of adiposity, but rather
uses the BMI as a measure of body fatness in
human newborns. However, measurement of
body fat in the living human can be accom-
plished only by indirect methods, such as
weight/height ratios, circumference measure-

TABLE 1. Descriptive statistics for gestational age
(postmenstrual weeks), birthweight (g), birthlength (cm),
birth head circumference (cm), and birth BMI (Kg/m2)

Males Females

Gestational age 39.57 � 1.1 39.58 � 1.03
Birthweight 3,385.07 � 444.12 3,262.36 � 430.92
Birthlength 49.66 � 2.56 48.84 � 1.86
Birth head

circumference
34.89 � 1.47 34.38 � 1.45

BMI 13.8 � 2.1 13.7 � 1.4

Means � standard deviations.
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ments, skinfold thickness measurements, iso-
tope dilution, hydrostatic weighing, gas dis-
placement weighing, radiographic studies,
inert gas inhalation, photon absorption, and
total-body potassium (K) measurements by in
vivo counting using the 1.46 MeV gamma-ray
emission of the naturally occurring potassium
isotope, 40K. Each of these has its limitations
and each relies on a certain number of
assumptions (Lloyd and Mays, 1987). BMI is
often used as a proxy measure for body fat-
ness because it is correlated with body mass
and percentage of body fat in the general
population (e.g., Bouchard, 1994). The BMI
has been proposed as a simple, accurate, and
valid measure of fatness in childhood and
adolescence that could be used worldwide

(e.g., Poskitt, 1995). The advantages of BMI
are that it is easy to compute, is relatively
independent of stature (e.g., Billewicz et al.,
1962; Rolland-Cachera et al., 1982), and has
one of the highest correlations with other
measures of body fat (e.g., Micozzi et al.,
1986). Due to its simplicity and high correla-
tion with total body fat, it has been the
method of choice in both pediatric clinics
and research over the years (He et al., 2000).
BMI is highly correlated with many skinfold
thicknesses (e.g., Schroeder and Martorell,
1999). The correlation between BMI and per-
centage of body fat estimate from underwater
weighing reported is high (r ¼ 0.8–0.9) (e.g.,
Knowler et al., 1991). Estimates of body fat by
weight/height ratios or circumference mea-
surements only in unusually fit, muscular
individuals, especially in typical athletes, clas-
sify them incorrectly as obese (e.g., Flint et al.,
1977). Obviously, in this study such a problem
does not exist.

The few evolutionary hypotheses that
attempt to explain the ponderous condition
of humans generally and human infants in
particular similarly assume a connection
between the loss of fur during hominid evolu-
tion and a parallel need for compensatory
insulation from subcutaneous fat stores.
There is some evidence supporting this insu-
lation hypothesis. For example, the birth-
weight of female babies born after warm
winters is significantly lighter than those
born during years after cold winters (e.g.,
Wells, 2002). However, Pond (1997) has
reviewed the literature on body-fat insulation
in vertebrates, including humans, and con-
cludes that very few data support the insula-
tion theory, even in the case of some aquatic

TABLE 2. Correlation coefficients for the anthropometric measurements for both sexes combined and by sex

Gestational age Birthweight Birthlength Head circumference Birth BMI

Both sexes
Gestational age — 0.86* 0.85* 0.83* 0.74*
Birthweight — 0.89* 0.87* 0.87*
Birthlength — 0.87* 0.63*
Head circumference — 0.74*
Birth BMI —

Males and Femalesa

Gestational age — 0.86* 0.84* 0.83* 0.71*
Birthweight 0.87* — 0.88* 0.87* 0.86*
Birthlength 0.87* 0.90* — 0.87* 0.56*
Head circumference 0.85* 0.87* 0.87* — 0.71*
Birth BMI 0.77* 0.90* 0.72* 0.78* —

aCorrelation coefficients for males appear above the diagonal and for females below the diagonal.
*Two-sided P < 0.001.

TABLE 3. Results of a linear regression analysis with
birth BMI as the dependent variable and gestational
age and birthlength as the independent variables

(n ¼ 1,069, both sexes)

Partial correlation Two-sided P

Gestational age 0.509 <0.000001
Birth length 0.007 0.810169

TABLE 4. Results of a linear regression analysis with
birth BMI as the dependent variable and gestational age,

birthlength, and birth head circumference as the
independent variables (n ¼ 1,069, both sexes)

Partial
correlation

Two-sided
P

Gestational age 0.400 <0.000001
Birthlength �0.236 <0.000001
Birth head circumference 0.409 <0.000001
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mammals. Most but not all research among
circumpolar human population reports show
comparable or even thinner subcutaneous fat
stores compared to temperate-latitude peers,
suggesting that the tissue’s properties as
insulation may play only a minor role in
human adaptation to cold, at least among
children and adults (e.g., Eveleth and
Tanner, 1976), and there is surprisingly little
evidence that fat stores influence body tem-
perature in human newborns (Johnston et al.,
1985). On the other hand, the support for the
immune theory proposed by Kuzawa (1998) is
presently weak and a recent study suggests
that immune function is not related to birth
size (Moore et al., 2001).

However, the brain size hypothesis seems
to be more consistent. Recent evolutionary
perspectives on hominid encephalization
hypothesize that the metabolic needs of the
enlarged human brain required a suite of diet-
ary adaptations to sustain its energy require-
ments (e.g., Foley and Lee, 1991; Bogin, 1997),
and by implication the human infant—whose
brain devours fully half of total metabolic
expenditure (Epstein, 1999)—may face ener-
getic challenges unique among mammals.
This fat storage, as an adaptation made by
the fetus in response to conditions that retard
its growth, may be largely successful in main-
taining brain development (Martyn et al.,
1996). It is widely accepted that the primary
function of mammalian body fat is to serve as
an energy store (e.g., Norgan, 1997), and
developmental changes in adiposity during
other stages of the human life cycle are under-
stood as preparation for future energetic chal-
lenges, a notable example being the rapid fat
deposition of females at puberty and the sub-
sequent contribution of this tissue to the ener-
getics of pregnancy and lactation (McFarland,
1997). Additionally, breast-fed neonates have
the capacity of using the ketone bodies acet-
oacetate and D-3-hydroxybutyrate, in addition
to glucose, as energy substrates for the brain
(e.g., Girard et al., 1992). This capacity is an
interesting example of a developmentally
regulated adaptive mechanism, because mat-
ernal milk is highly enriched in lipids, result-
ing in a lipid-to-carbohydrate ratio much
higher than that present in postweaning
nutrients (Smith and Abraham, 1975).
Indeed, lipids account for �55% of the total
calories contained in human milk, in contrast
with 30–35% for a balanced postweaning diet
(Smith and Abraham, 1975). Another consid-
eration regarding the lipid-rich diet provided

during the suckling period is related to its
contribution to the process of myelination
(Cuzner and Davison, 1968).

The results of some studies suggest that
birth fatness also has a plastic role in brain
growth. For example, Loesch et al. (1999)
found that birthweight and birth BMI are
significantly related to head circumference
at school age. It has been also ascertained
that the largest increases in brain weight in
both sexes seems to occur during the first 2
(Voigt and Pakkenberg, 1983) or 3 years of
life, when the value quadruples over the one
at birth, while during the next 15 years the
brain weight quintuples over the one at birth
(Dekaban, 1978). Studies by Reiss et al.
(1996), using MRI techniques, reveal also
that both boys and girls show little change
in the total cerebral volume after the age of 5
years. Thus, this accelerated growth of brain
size during the first years may help explain
why newborns devote roughly 60% of growth
expenditure to fat deposition during the
early postnatal months (Dufour and Sauther,
2002). It has been suggested that head cir-
cumference is relatively unaffected by mal-
nutrition (Jelliffe, 1969). However, there is
considerable evidence that malnutrition in
early life can have an adverse effect on the
developing brain (Morgane et al., 1993).
Some researchers have demonstrated smal-
ler head circumference in malnourished
populations and among the malnourished
in portions of the United States (e.g., Garn
and Clark, 1975).

During various critical periods in the devel-
opment of the central nervous system, mal-
nutrition has been shown to affect the
morphology, physiology, and neurochemistry
of the brain, and this may have important
implications for future cognitive function
(Winick et al., 1972). In humans, birthweight
(e.g., Matte et al., 2001) and birth head size
(e.g., Hack et al., 1991) have been associated
with cognitive abilities. A small head circum-
ference at birth was associated with an
increased risk of minor neurological dysfunc-
tion (Hadders-Algra et al., 1988). A small head
circumference at 1 year has been also asso-
ciated with a lower score on intelligence tests
in early childhood (Nelson andDeutschberger,
1970). Additionally, studies by Lynn and
Hattory (1990) reveal that heavier twins at
birth have significantly higher IQs at the age
of 12, suggesting that prenatal nutrition exerts
a significant effect on intelligence. Some
animal studies also support this idea. For
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example, studies in rats demonstrated that
undernutrition during proliferative growth of
the brain retards the rate of cell division and
causes a permanent reduction in numbers of
brain cells (Winick and Noble, 1966). Others
animal studies suggest that such nutritional
privation during fetal life affects later perfor-
mance on tests of learning (Smart, 1977).

As a positive correlation between brain size
and intelligence has been found in many stu-
dies using or not the modern technology of
magnetic resonance imaging (see review by
Jensen and Sinha, 1993; Tramo et al., 1998),
it could be suggested that the newborn brain
size and fatness increase were associated with
a greater brain size and intelligence in our line-
age. These results and the relation between
birthweight and cognitive abilities support
the brain myelination hypothesis (Miller,
1994), which contends that much variance in
intelligence reflects myelination differences.

Consistent with earlier studies (e.g., Palti
and Adler, 1975), in this sample newborn
anthropometric variables are typically highly
correlated. The statistical analysis shows a
significant association between BMI and
head circumference in human newborns. It
could be hypothesized that newborn BMI
and head circumference are simply indices of
the adequacy of fetal growth, and that condi-
tions leading to impaired growth in one would
also tend to lead to impaired growth in the
other. Bothmeasures are positively correlated
with birthlength, for example (Table 2).
However, it is postulated that mechanisms
controlling subcutaneous fat are largely inde-
pendent of those controlling bony growth
(e.g., Palti and Adler, 1975).

In this sample, BMI is not significantly cor-
related with birthlength (controlling for
gestational age) as an index of fetal growth
(Table 3). In contrast, the head circumference
is positively and highly correlated with BMI
(controlling for gestational age and birth-
length), suggesting a functional connection
between the two (Table 4). The negative cor-
relation between birthlength and BMI, con-
trolling for gestational age and head cir-
cumference, suggests that fat deposition
seems to increase at the expense of the length
growth.

The significant association between BMI
and head circumference in human new-
borns, controlling for gestational age and
birth length, found in the present study sup-
ports the idea that the newborn fatness is
related to the higher need of lipids in new-

born humans as an energetic (Armstrong,
1983) and plastic (Martin, 1981) substrate
during its accelerated brain growth period.
Newborns with bigger brains require higher
amounts of energy and fat substrate; thus,
they need more fat storage to secure their
accelerated brain growth, especially in nutri-
tional stress conditions.

With the results of this study, it is tempt-
ing to speculate that, in our evolution,
expansion of fat stores in human females
during gestation (Aiello and Key, 2002) was
also accompanied by an extraordinary fat
deposition in the human fetus. This strategy
seems to reduce the costs of lactation, the
most energetically expensive phase of the
reproductive cycle (Aiello and Key, 2002), in
order to support the increased energy
demands of encephalization (e.g., Leonard
and Robertson, 1994; Aiello, 1998) and also
to accommodate the inferred increase in the
energy requirements of the encephalized
hominid brain during ontogeny (Foley and
Lee, 1991). Probably, this strategy was asso-
ciated with an energy-rich diet as an adapta-
tion to the high metabolic cost of our large
brain (Leonard and Robertson, 1994). Since
the majority of brain growth in humans
occurs prenatally and early in the postnatal
period, it seems possible that the extraordin-
ary fat storage in newborns was a conse-
quence of the selection for larger brain size
in hominid evolution.

As birthweight, which may reflect high
levels of fat deposition in the neonate, and
birth head size have been associated with
cognitive abilities, which are a domain-gen-
eral attribute that would be favored by nat-
ural selection because it enables humans to
attain evolutionary goals (MacDonald, 1997),
it could be postulated that these cognitive
abilities to solve problems, to learn, and to
remember could have acted as a selective
pressure responsible for the newborn fatness
increase in our lineage.
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