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ABSTRACT 

 

The environmental performance of the paper industry in Western countries has 

drastically improved over the past few decades, but manufacturers still depend on wood 

and on poorly biodegradable polyelectrolytes. In this dissertation, I inquire into the 

functionalization of cellulose from various sources to produce cationic derivatives that 

could partially replace those polyelectrolytes. Sources included cellulose powder, cotton 

linters, softwood, hardwood and different lignocellulosic residues —wheat straw, 

rapeseed stalks and orange tree trimmings. Commercial cellulose and linters could be 

cationized straightaway, while wood and waste needed chemical pulping. Specifically, 

residues were cooked without sulfur compounds, yielding satisfactory results both in 

terms of lignin removal and paper properties. 

The functionalization took place by treating cellulose or a chemical pulp with (3-

chloro-2-hydroxypropyl)trimethylammonium chloride and sodium hydroxide in a batch 

reactor, aiming to produce cationic fibers or water-soluble cationic derivatives. We (the 

authors of the publications) took samples at different reaction stages to model reaction 

kinetics. Characterization of the products involved X-ray diffraction, elemental analysis, 

viscosity measurements, pycnometry, infrared spectroscopy, microscopy, zeta potential 

measurements, and potentiometric titrations. Then, cationic fibers were added to a 

suspension of non-modified fibers, fines and fillers to evaluate the effects on retention 

and optical properties. Also, soluble derivatives were tested in a suspension of mineral 

fillers to study flocculation kinetics. The fillers we used were precipitated calcium 

carbonate, ground calcium carbonate, kaolin, and titanium dioxide.  

Results from elemental analyses were successfully fitted —with correlation indices 

above 0.95— to pseudo-second order rate equations with two parameters. We found the 

values of these parameters to depend strongly on crystallinity. Decrystallization or 

amorphization of cellulose by an alkaline pretreatment increased the highest degree of 

substitution that could be reached, especially when working with refined pulps.  

Regarding the applications of cationic cellulose in papermaking, our findings 

contributed to understand what can be improved and what cannot. A water-soluble 

cationic derivative enhanced the flocculation of kaolin, whose zeta potential is clearly 

negative, by increasing the median equivalent spherical diameter from 4 μm to 25 μm in 

2 min. It surpassed the performance of a conventional cationic polyacrylamide. The 

addition of cationic fibers before sheet formation improved the retention of fines, lowering 

the losses from 0.09 to 0.02 grams of fines per gram of pulp. As a consequence, opacity 

increased. However, neither soluble derivatives nor insoluble fibers improved the 

retention of precipitated calcium carbonate. Cationic fibers had a positive effect on the 



 
 

retention of titanium dioxide, which was evidenced by an increase in brightness of an 

unbleached pulp from 37.8% to 41.9%. 

Although the degree of substitution reached for softwood fibers was as high as 0.4, 

the lignocellulosic residues studied reached values around 0.2, good enough for cationic 

fibers, under much milder conditions. The procedure with lignocellulosic residues would 

involve mild chemical pulping with soda or ethanolamine, refining to less than 1000 PFI 

revolutions, mild peroxide bleaching if desired, 60 min-long alkaline pretreatment, and 

an even shorter cationization stage at 70 ºC. Even if papermakers keep refusing to 

replace wood with non-wood materials, these residues could be reused towards value-

added products that may reduce the need for hardly biodegradable polyelectrolytes. 

 

KEYWORDS 

alkalization; cationization; cellulose; elemental analysis; functionalization; papermaking; 

pulp; quaternary ammonium; refining; X-ray diffraction. 

 

  



 
 

RESUMEN 

 

Pese a la indudable mejora ambiental que ha experimentado la industria del papel 

en los países desarrollados, los fabricantes aún dependen de la madera y de 

polielectrolitos no biodegradables. Mi proyecto de tesis doctoral explora la 

funcionalización de celulosa procedente de distintas materias primas para producir 

derivados catiónicos que puedan reemplazar parcialmente esos polielectrolitos. Las 

materias primas fueron: celulosa comercial en polvo, línter de algodón, madera de pino 

y de eucalipto, y tres residuos lignocelulósicos: paja de trigo, tallos de colza y poda de 

naranjo. La madera y los residuos requirieron tratamientos químicos para eliminar la 

mayor parte de la lignina. La cocción de los residuos, empleando métodos alternativos 

sin compuestos de azufre, proporcionó resultados satisfactorios, tanto en la eliminación 

de lignina como en las propiedades físicas del papel. 

La funcionalización tuvo lugar tratando celulosa o una pasta química con cloruro de 

(3-cloro-2-hidroxipropil)trimetilamonio e hidróxido de sodio en un reactor discontinuo, 

persiguiendo obtener fibras catiónicas o bien derivados solubles con carga positiva. 

Adquirimos muestras a diferentes tiempos de reacción para establecer un modelo 

cinético. Las técnicas de caracterización incluyeron difracción de rayos X, análisis 

elemental, medidas de la viscosidad y de la densidad, espectroscopía de infrarrojo, 

microscopía, medidas del potencial zeta y valoraciones potenciométricas. Además, 

realizamos ensayos de floculación, retención y formación de papel con las fibras 

modificadas. Los derivados solubles sirvieron para evaluar la cinética de la floculación 

de determinadas cargas minerales. Estas cargas fueron: carbonato de calcio 

precipitado, carbonato de calcio molido, caolín y dióxido de titanio. 

Los resultados de los análisis elementales se ajustaron con éxito (con índices de 

correlación superiores a 0,95) a ecuaciones de pseudo-segundo orden con dos 

parámetros. Hallamos que los valores de esos parámetros dependen de la cristalinidad. 

La amorfización de celulosa mediante una base fuerte, especialmente con pastas 

refinadas, propició un aumento en el máximo grado de sustitución alcanzado.  

En cuanto a las aplicaciones de la celulosa catiónica en la fabricación de papel, 

nuestros descubrimientos ayudaron a comprender su utilidad y sus limitaciones. Un 

derivado catiónico soluble mejoró la floculación de caolín, cuyo potencial zeta es 

negativo, aumentando su diámetro equivalente de 4 μm a 25 μm en 2 min. Este resultado 

fue mejor que el obtenido con una poliacrilamida catiónica convencional. Por otro lado, 

añadir fibras catiónicas antes de la formación del papel disminuyó las pérdidas de finos 

de 0,09 a 0,02 gramos de finos por gramo de pasta. Como consecuencia, la opacidad 

aumentó. Sin embargo, ni los derivados solubles ni las fibras modificadas aumentaron 

significativamente la retención de carbonato de calcio precipitado. Las fibras catiónicas 



 
 

tuvieron, ahora bien, un efecto positivo sobre la retención de dióxido de titanio, 

evidenciado por un incremento en la blancura de una pasta no blanqueada desde un 

37,8% hasta un valor del 41,9%. 

Si bien las fibras de pino alcanzaron el mayor grado de sustitución (0,4), los residuos 

lignocelulósicos llegaron a valores aceptables (0,2) bajo condiciones mucho más 

suaves. El proceso con residuos lignocelulósicos comprendería: cocción suave con sosa 

o etanolamina, refino, blanqueo con baja concentración de peróxido si se desea, 

amorfización durante 60 minutos y cationización aún más breve a 70 ºC.  Incluso si los 

residuos no convencen a los fabricantes de papel, pueden ser revalorizados hacia una 

alternativa biodegradable a los polielectrolitos convencionales. 
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Pulping: chemical and/or mechanical process in which cellulosic fibers are 

separated from lignocellulosic materials. 

Quaternization: insertion of a quaternary ammonium functional group in the 

structure of a polymer. 

Refining: mechanical operation during stock preparation in which the fibers are 

shortened and their surface is roughened, resulting in increased surface area. 

Retention aid (or retention agent): substance that is added to the stock prior to 

sheet formation and promotes fiber-to-filler, fiber-to-fine and/or filler-to-filler flocculation, 

aiming to increase the total retention of fillers and fines on the wire. 

Soda pulping: process by which wood and/or lignocellulosics are cooked with 

aqueous sodium hydroxide, producing cellulosic pulps and possibly sulfur-free lignin. 



IX 
 

Soda-anthraquinone pulping: process by which wood and/or lignocellulosics are 

cooked with aqueous sodium hydroxide and anthraquinone, producing cellulosic pulps 

and possibly sulfur-free lignin. 

Softwood: wood from gymnosperm trees, such as pine and spruce. 

Stock: diluted suspension of fibers, fines and fillers that are used to form the paper 

sheet. 

Wet end: in a paper mill, section in which the stock is mixed with retention aids 

and/or other additives, lands on the drainage table and starts forming the paper sheet. 

White liquor: in chemical pulping, liquid that contains the cooking reagents. 

Wire: in a paper machine, the mesh conveyor belt through which the suspension of 

fibers, fines, fillers and additives is filtered. 

Yellowness: degree to which the color of the paper surface is shifted from white to 

yellow.



 

 
 

 

 

 

 

 

 

 

 

All serious empirical inquirers use their imagination to come up with a 

hypothesis (…) and use their judgement whether to accept the conjecture, modify 

it, reject it and start again, or figure out how to get more decisive evidence. 

 

Susan Haack (2003). “Defending Science – within Reason.” Prometheus Books, USA. 

 

 

 

 

 

 

 

I am advocating that writers should write naturally and 

economically, without affectation of a special ‘scientific style’.  

 

John Kirkman (1954). “That pernicious passive voice.” Phys. Technol. 6: 197-200. 
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1. OUTLINE

The driving force of this dissertation is the firm determination of making scientific 

efforts towards a cleaner paper industry. But a cleaner industry is not only achieved by 

decreasing emissions to air, land and water. Papermakers, at least in Europe, have 

made huge progress in this area, to the point of diminishing emissions of chlorinated 

compounds and sulfur dioxide by approximately 90% since ca. 1990. Also, the recycling 

rate lies above 70% [1].  

Nonetheless, some environmental issues remain: 

• Despite the progress on odor control in the recent past years, many pulp

mills still report odor problems [2]. In addition, the formation of hydrogen

sulfide, although not released unless a leak occurs, always arises safety

concerns.

• The water intake is still very high: 3506 million m3 in 2015, and nearly 87%

of it came from surface water [1].

• Refractory pollutants from lignin and its derivatives.

• In the first section of a paper machine, papermakers depend on

polyelectrolytes with low biodegradability to achieve acceptable filler

retention and fast drainage. These synthetic flocculants cannot pass through

biological membranes, and the rate of degradation by extracellular enzymes

is slow [3].

• The European pulp and paper industry is missing the opportunity to reuse

agricultural waste.

My PhD thesis project has dealt with these pending environmental problems of 

papermaking. Nevertheless, water consumption and refractory pollutants are only 

tangentially addressed here.  

Water consumption could be reduced, for instance, by pulping with organic solvents 

that can be recovered through distillation [4]. It would only be honest to say that, 

currently, the bleaching plant and the paper mill consume more water than pulping, 

though. Anyway, among all the stages preceding sheet formation, this text engages more 

particularly in pulping, since it is the key to produce cellulosic fibers —the main material 

along the dissertation. Sulfate mills dominate chemical pulping of virgin fibers, but the 

combination of soda or organosolv processes and some non-wood materials can result 

in acceptable paper strength [5,6]. Refusing to use sulfur compounds in pulping implies 

avoiding many of the odor issues affecting pulp mills, besides the generation of 

refractory pollutants owing to the reaction between sulfur compounds and lignin.
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The focus was more particularly in those synthetic polyelectrolytes that are 

commonly used in paper mills to aggregate fillers and/or to attach them to fibers. Sheet 

formation involves filtration, but the aperture size of the wire is larger than that of fines, 

calcium carbonate, clay and other particles that may be part of the furnish. Their zeta 

potential is usually negative [7].  In order to retain fillers and fines on the paper web, 

papermakers purchase cationic flocculation agents, such as polyacrylamides with 

positive charge (CPAM), poly-diallyldimethylammonium chloride (PDADMAC) and 

polyethyleneimine (PEI). They can be very effective, but their drawbacks include toxicity 

to fish and some invertebrates, difficulty or impossibility to be measured in the 

environment, and lack of biodegradability [3]. 

Synthetic polyelectrolytes could be partially replaced with cationic cellulose, easily 

biodegradable if water-soluble [8], or not even discharged to water in the form of 

insoluble fibers [9]. Pulp mills, paper mills and integrated mills already have the raw 

materials needed to synthetize those products and, therefore, manufacturers could 

separate a part of the cellulosic pulp to be functionalized. In contrast, polyelectrolytes 

need to be provided by external suppliers. 

Cellulose, a highly available material, can be chemically modified –essentially by 

oxidation, etherification and esterification [10]. Functionalization of cellulose, in any of 

its forms, is increasingly interesting for researchers, as can be seen from Figure 1. The 

trend is undoubtedly up. Frequently, cellulose derivatives, which can be broken down by 

many organisms, are presented as a sustainable alternative to hardly biodegradable 

polymers. Our publications address one kind of etherification: the insertion of quaternary 

ammonium groups, positively-charged, into cellulose.  

 

 

Figure 1. Results of a search in Elsevier’s journals and books from 2009 to 2016. 
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Any reaction which involves the introduction of cationic functional groups into a 

polymer is called cationization. 

The cellulosic material to be cationized can come from countless sources. 

Manufacturers can produce high-purity cellulose from cotton, from microorganisms and 

from softwood sulfite pulps. Undoubtedly, cotton linters, dissolved pulp, commercial 

cellulose or any natural material with a high cellulose content can be directly 

functionalized. Kraft pulps from wood add a new challenge, given the high degree of 

polymerization and the intermolecular forces between cellulose chains in their fibers. 

Finally, with the twofold aim of producing biodegradable derivatives and reusing waste, 

lignocellulosic residues from agriculture should be considered. They should not be 

open-field burnt, as this activity produces air pollutant emissions, hazards to the soil and 

risk of wildfires. Given their moisture content, when it comes to waste management, 

incineration with energy recovery or pyrolysis should not have priority over the 

manufacturing of useful materials.  

Most agricultural residues contain less lignin than softwoods, even less lignin than 

hardwoods. This makes them easier for pulping, not needing the use of sulfur 

compounds. They require to spend less energy to achieve certain freeness values during 

refining. Such advantages drove Pande [11], in 1998, to predict an increase in the use 

of alternative fibers for papermaking in Europe: 

• Scenario 1 (“continuation of historical trends”): 658 kt in 2010. 

• Scenario 2 (“optimal non-wood fibre use”): 5446 kt in 2010. 

• Scenario 3 (“no further advances will be made in non-wood fibre usage”): 

878 kt in 2010. 

Almost two decades later, the production of pulp from non-wood materials in 2016 

was as low as 369 kt [1], accounting for 0.36% of the total production of paper and board 

(Figure 2). This lies far from the best-case scenario and it is even worse than the worst-

case scenario for 2010. 

Pande’s predictions were not unreasonably optimistic. To the best of my knowledge, 

nobody predicted that the current production of non-wood pulps would be lower than it 

was in the nineties (512 kt in 1993) [11]. Surprisingly, non-wood fibers could not 

overcome some important disadvantages, such as the high amount of silica and fines in 

wheat straw [12], while wood pulping overcame many environmental problems.  

Nevertheless, the advocates of alternative raw materials, including myself, have not 

run out of reasons to insist. Whilst replacing wood with non-wood materials seems to be 

unnecessary from the European papermaker’s point of view, it is much more appealing 

from waste management strategies.  
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Figure 2. Raw materials used in the manufacturing of paper and board [1]. 

 

Also, making things different may be good for an industry whose added value is 

decreasing year by year, as shown in Figure 3. Innovation has been usually oriented to 

reduce the environmental impact of pulp and paper mills while using the same raw 

materials, but alternative materials could boost new product development. 

Even if Western manufacturers are not convinced by the papermaking potential of 

lignocellulosic residues, these can be delignified through sulfur-free processed and 

converted into useful fibers to be added to conventional pulps. This way, three research 

questions are raised: 

• Which procedure allows us to produce highly-substituted cationic fibers in a 

feasible way? 

• How can the cationization of cellulose, under various conditions and from 

various sources, be modeled? 

• What are the applications of cationic cellulose in papermaking? 

• What are the best ways to reuse lignocellulosic residues, such as rapeseed 

stalks and orange tree trimmings, for papermaking? 

And they converge into a single broad objective, which is stated in Chapter 2. 

Chapter 3 provides the theoretical framework that is needed to understand how the aims 

of this dissertation were fulfilled, including an overview of the papermaking process. The 

ways in which the products were characterized are extensively, but not prolixly, explained 

in Chapter 4.  

 



Aguado, 2017. Doctoral dissertation Chapter 1 
 

5 
 

 

Figure 3. Evolution of financial variables in the European paper industry [1]. 

 

All the publications included in Chapter 5 belong to JCR-indexed journals. Four of 

these works, eight in total, were accepted and/or published in Q1 journals. Out of 

courtesy to the reader, a perfunctory reproduction of the results is avoided, and thus 

Chapter 6 jumps to the discussion and conclusions drawn from those results. 

Consistently, I interpret the results by relating them to the hypotheses stated in Chapter 

2. 

Last, Chapter 7 indicates publications that are framed in the same category as the 

whole thesis, since they refer to the properties of pulps from crop residues. They were 

not included in the dissertation to prevent the cationization of cellulose from becoming 

unfocused.
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2. OBJECTIVES AND HYPOTHESES 

 

 

All the experiments carried out in laboratories located across the Iberian Peninsula 

(Seville, Madrid, Coimbra, Girona) were motivated by a broad objective. This broad 

objective can be stated as follows: 

To explore the possibilities to alleviate pending environmental problems of 

papermaking, specifically the dependence on hardly biodegradable flocculants and the 

dependence on wood, with products obtained by chemical treatments of different raw 

materials. 

Derived from this aim, three key goals arose. Publications could be grouped by the 

choice of raw material in each case: cellulose (I, II, III), conventional pulps (IV, V) and 

sulfur-free pulps from lignocellulosic residues (VI, VII, VIII). 

 

2.1. Publications I, II and III 

The first goal of this dissertation is to present our (Ecowal’s) particular focus on the 

cationization of cellulose, using cotton linters and commercial alpha-cellulose as 

materials (as they consist almost entirely of alpha-cellulose). Publications I, II and III are 

not as ambitious as the rest, but they play the role of setting the stage. Therefore, the 

statement of this goal could be: 

To establish a procedure for the cationization of cellulose, proposing a reaction 

mechanism and a kinetic model, and evaluating the effects of chemical treatments of 

cellulose itself. 

These works insist on the need of partial amorphization (decrystallization) prior to 

cationization. The reaction mechanism suggested, applicable to mild conditions, implies 

that only the –OH group on carbon 6 of anhydroglucose is substituted. As for kinetics, 

we proposed an original model, a pseudo-second order rate equation. Techniques to 

analyze the effects on cellulose involved X-ray diffraction, elemental analysis, and 

viscosity measurements. 

 

2.2. Publications IV and V 

Publication IV is the first work in which the material to be cationized is cellulosic pulp: 

unbleached kraft pulp from pine wood (PKP). In Publication V, we cationized bleached 

eucalyptus kraft pulp (BEKP). However, those papers are very different in many ways. 
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As the degree of polymerization is lower in cellulose from hardwoods than in cellulose 

from softwoods, BEKP was chosen to produce water-soluble derivatives to be used as 

flocculation agents in papermaking. Thus, these derivatives would be added to the head 

box, in the wet end of a paper machine, in a similar way to conventional cationic 

polyelectrolytes. In contrast, cationic fibers from PKP were produced to be added earlier 

in the process and enhance retention. Hence, the second goal is:  

To cationize part of the pulp that is received in a paper mill towards water-soluble 

aids and insoluble fibers, in order to improve flocculation and retention of fillers and fines. 

Both BEKP and PKP are materials conventionally used in the manufacturing of 

paper and board. If the objective of achieving suitable flocculation agents or useful 

cationic fibers is fulfilled, papermakers could reduce the use of hardly biodegradable 

flocculation agents. They could produce their own retention aids from their own materials. 

 

2.3. Publications VI, VII and VIII 

There is little novelty in looking for alternatives to wood in lignocellulosic residues, 

other than: (i) proposing raw materials not studied or scarcely studied before; (ii) 

addressing the problems that keep almost all Western papermakers away from non-

wood materials. Currently, reusing residues to manufacture pulp, paper and board is 

more appealing from the point of view of waste management than from the point of view 

of manufacturers, unless newly found properties of them serve to increase the added 

value of the paper industry. Instead of giving up, this research should continue and 

explore more possibilities. Below is the third goal of my dissertation: 

To evaluate the use of agricultural residues for papermaking purposes, including 

pulping, bleaching, refining, dewatering, sheet formation, and chemical modifications 

leading to cationic fibers. 

Those agricultural residues are rapeseed stalks (Publications VI and VIII), orange 

tree trimmings (Publications VII and VIII) and wheat straw. However, since the latter has 

been thoroughly studied for papermaking, it is only used for the production of cationic 

fibers (Publication VIII). 

 

2.4. Statement of hypotheses 

Hypothesis 1. Soaking a cellulosic material in a concentrated aqueous NaOH 

solution, at room temperature, makes cellulose prone to cationization (Publications I and 

II). 
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Hypothesis 2. Kinetics of cationization can be modelled and the shape of the kinetic 

curve (percentage of nitrogen vs. time) is nearly the same for any given raw material 

(Publications I, II and VIII). 

Hypothesis 3. The rate of cationization of low-DP cellulose is greater than the rate 

of cationization of high-DP cellulose (Publications I, II and III). 

Hypothesis 4. Cationization of cellulose has a positive impact on intrinsic viscosity 

(or in the limiting viscosity number) –given that the spatial distribution of the polymer is 

changed (Publication III). 

Hypothesis 5. Refining a pulp before alkalization and cationization increases the 

reaction rate (Publication IV). 

Hypothesis 6. Cationization has a positive effect on bulk (Publications IV and VIII). 

Hypothesis 7. Cationic fibers enhance the retention of fines and mineral fillers 

during sheet formation. This is a conglomeration of three hypotheses that are tested 

along the publications: 

Hypothesis 7.1. Cationic fibers enhance the retention of fines during sheet 

formation (Publications IV and VIII). 

Hypothesis 7.2. Cationic fibers enhance the retention of PCC during sheet 

formation (Publication IV). 

Hypothesis 7.3. Cationic fibers enhance the retention of TiO2 during sheet 

formation (Publication VIII). 

Hypothesis 8. Cationization of cellulose can produce soluble derivatives to enhance 

flocculation of mineral fillers in the wet end of the paper machine: 

Hypothesis 8.1. Cationization of cellulose can produce soluble derivatives 

to enhance flocculation of PCC (Publication V). 

Hypothesis 8.2. Cationization of cellulose can produce soluble derivatives 

to enhance flocculation of GCC (Publication V). 

Hypothesis 8.3. Cationization of cellulose can produce soluble derivatives 

to enhance flocculation of kaolin (Publication V). 

Hypothesis 9. Since the solubility of cationic cellulose depends on the degree of 

polymerization (negative influence) and on the degree of substitution (positive influence), 

hydrolyzing cellulose with orthophosphoric acid is a proper pretreatment to produce 

water-soluble cationic cellulose (Publication V). 

Hypothesis 10. Rapeseed stalks and orange tree trimmings can be cooked through 

sulfur-free processes to produce pulps of enough strength for papermaking. 

Hypothesis 10.1. Rapeseed stalks can be cooked through sulfur-free 

processes to produce pulps of enough strength for papermaking (Publication VI). 
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Hypothesis 10.2. Orange tree trimmings can be cooked through sulfur-free 

processes to produce pulps of enough strength for papermaking (Publication VII). 

Hypothesis 11. By refining, pulps from rapeseed stalks and orange tree trimmings 

need less energy than conventional pulps to reach a given value of CSF or SR  

Hypothesis 11.1. By refining, pulps from rapeseed stalks need less energy 

to reach a given value of CSF or SR (Publication VI). 

Hypothesis 11.2. By refining, pulps from orange tree trimmings need less 

energy to reach a given value of CSF or SR (Publication VII). 

Hypothesis 12. One-step bleaching with hydrogen peroxide can achieve a high 

brightness gain, even though the kappa number is considered too high (Publication VII). 

Hypothesis 13. The addition of cationic fibers to the stock favors collapsing, thus 

slowing dewatering (Publication VIII). 

Hypothesis 14. Lignocellulosic residues can be cationized to produce valuable 

fibers to be added to conventional pulps, with the goal of enhancing the optical properties 

of the final product (Publication VIII).
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3. FRAMEWORK OF THE STUDY 

 

 

3.1. Cellulose and its possibilities to develop new products 

The first of all reasons that should make anyone think about cellulose is its 

availability. Cellulose is the most abundant biopolymer in planet Earth. It can be found, 

at least, in wood, bark, seeds, leaves, stalks, rhizomes, fruits, algae, oomycetes, 

bacteria… and even in certain animals, the tunicates [13]. 

It was discovered in 1838 by French chemist Alselme Payen. Working with different 

types of wood, he isolated a substance that was the main constituent of all of them and 

that, like starch, could be broken down into glucose [10]. 

Cellulose is a linear polysaccharide consisting of anydroglucose units (AGU) with β-

1-4-glycosidic bonds. This means that each monomer in the chain, unlike in starch, is 

rotated 180º with respect to the previous one and the following one. Each AGU has three 

hydroxyl groups, as shown in Figure 4. One of them, the one outside the cycle (bonded 

to carbon 6), is more prone to etherification or esterification. 

This polymer is used as a food additive (E460), e.g., as an anti-caking agent in 

shredded cheese. In the pharmaceutical industry, it is a filler, diluent or builder in tablets 

[14]. It can be used in the manufacturing of composite materials for building or medical 

purposes. However, out of all the possible applications, this text is focused on 

papermaking. 

In this context, in which cellulose comes from materials that have hemicellulose and 

lignin as well (vegetable biomass), we often call cellulose alpha-cellulose, in order to 

distinguish it from hemicellulose.  

 

 

Figure 4. Anhydroglucose units in the structure of cellulose, numbering the carbon atoms.
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Hemicelluloses are heterogeneous polysaccharides, usually with ramifications and 

different glycosidic bonds, whose role is that of a supporting material in wood, stalks, etc. 

Monomers found in hemicelluloses include anydrohexose units, anydropentose units 

and anhydrouronic acid units. Depending on the composition, hemicelluloses can be 

xylans, xyloglucans, mannans and glucomannans, besides other heterogeneous 

polymers that are specific to certain taxons [15]. 

It should be noted that when the term cellulose is used in any part of the text, 

including the research articles, it means alpha-cellulose. To nominate both alpha-

cellulose and hemicelluloses at the same time, I use ab hinc the term holocellulose. 

 

3.1.1. Modifications of cellulose in which the product is still cellulose 

Many chemical agents can produce key changes in the structure and the properties 

of cellulose, as a polymer not needing to modify the anydroglucose units. Since cellulose 

is a linear homopolymer, cellulose chains will not differ in composition, but they can differ 

in: (i) degree of polymerization; (ii) ionization of hydroxyl groups; (iii) intramolecular and 

intermolecular forces. 

• The degree of polymerization (DP) in pulps used in papermaking, and thus the 

molecular weight, is much lower than that of native cellulose in wood. This is so 

because pulping processes take place at high temperatures and pH values far 

from neutrality. It decreases by alkaline hydrolysis (soda pulping, kraft pulping, 

alkaline sulfite pulping) or acid hydrolysis (acid sulfite pulping). Decrease during 

bleaching is slight [16]. DP is usually estimated by measuring the intrinsic 

viscosity (Publications III and V). 

• Ionization can occur by dissociation of one of the hydroxyl groups, especially the 

one attached to carbon 6. Strongly alkaline conditions are needed for this to 

happen to a significant extent. 

• Cellulose polymorphism has to be taken into account to explore further 

modifications. Native cellulose in wood and lignocellulosics is mostly cellulose Iβ. 

Bacterial cellulose and cellulose from some algae are mostly cellulose Iα [17]75. 

If treated with aqueous sodium hydroxide at low temperatures (R.T. or lower), 

they are converted into cellulose II, which is natively found in some algae [18]. A 

liquid ammonia treatment of cellulose Iα, cellulose Iβ or cellulose II gives out 

cellulose III [19]. Cellulose IV is generated by heating cellulose III in glycerol to 

260 ºC [13]. All of them are crystalline forms. A scheme is shown in Figure 5. 

These changes are of great importance for my PhD thesis. They are repeatedly 

present in our works. All works involved insoluble fibers in aqueous alkaline media, but 

only one (Publication V) implied the dissolution of non-cationized cellulose.  
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Figure 5. Cellulose: crystalline polymorphs and amorphous cellulose, schematically showing 

how to convert one into the others. 

 

In Publications I, II, III, IV, V and VII, we treated cellulosic materials with aqueous 

NaOH (10-30%) at room temperature, but the objective was not to convert cellulose Iβ 

into cellulose II. That was a side effect. The objective was decrystallization or 

amorphization: converting crystalline cellulose into amorphous cellulose, by the 

breakdown of intramolecular and intermolecular hydrogen bonds.  

As will be shown in Publication I, amorphous cellulose is much more reactive. It is 

more prone to ionization, dissolution, hydrolysis and substitutions. Aqueous agents can 

penetrate easily into its disorganized structure. 

 

3.1.2. Functionalization of cellulose 

New functional groups can be introduced in anhydroglucose units by the oxidation 

of hydroxyl groups towards carbonyl or carboxyl groups, by esterification with acids, or 

by etherification [10]. Table 1 shows the reagents commonly used for these chemical 

reactions and an example product for each of them. Oxycellulose can be used as an 

adsorbent in chromatography, carboxymethyl cellulose is the food additive E466 

(thickener, stabilizer), and cellulose phosphates inhibits calcium absorption into the 

blood [20]. 

 

Table 1. Common chemical modifications of cellulose. 

Reaction Reagent Example of product 

Oxidation Cl2, H2O2, NO2, HClO, NaIO4, 

peracetic acid 

Oxycellulose [20] 

Etherification CH3Cl, ethylene oxide, 

chloroacetic acid, epoxides 

Carboxymethyl cellulose [21] 

Esterification Acetic acid, HNO3, H3PO4, H2SO4 Cellulose phosphate [22] 
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Carboxymethyl cellulose, besides a food additive, is an anionic wet strength agent 

in papermaking, a thickening agent in pharmaceuticals, a non-toxic viscosity modifier, an 

electrode binder in lithium ion batteries, a lubricant in artificial tears, a soil suspension 

polymer in detergents, and a cation-exchange resin in chromatography [24]. Other 

successful derivatives are hydroxypropyl cellulose, cellulose acetates and methyl 

cellulose [10]. 

There is a vast number of different cellulose derivatives proposed in the literature 

[23]. They are often synthetized and thoroughly characterized by FTIR, NMR and other 

analytical techniques, although the potential applications of many of them are unknown.  

 

3.2. Cationization of cellulose 

The first work involving the production of cationic cellulose was probably the PhD 

thesis of Montégudet in 1957 [25]. He reacted the polymer with 2,3-

epoxypropyldiethylamine. He even used a sodium hydroxyde aqueous solution as 

the reaction medium. Cellulose was not dissolved (Publication V), and so the reaction 

was heterogeneous (Publications I, II, IV, VIII). The only difference between this and 

many of our reactions is the choice of the cationizing agent. 2,3-epoxypropyldiethylamine 

was rarely used afterwards [24].  

 

3.2.1. Cationizing agents 

Undoubtedly, the most common cationizing agent is not 2,3-

epoxypropyldiethylamine but another epoxide: 2,3-epoxypropylalkyldimethylammonium 

chloride (EPTAC) [25], as shown in Figure 6. It is the one we used wherever cationization 

was involved, although we decided to start from a more stable chlorohydrin which can 

be stored for a long time: (3-chloro-2-hydroxypropyl)trimethylammonium chloride 

(CHPTAC). In presence of a strong alkali, EPTAC is produced from CHPTAC and 

chloride ions are released to the medium.  

Table 2 shows other possible cationizing agents. Among them, Girard’s reagent is 

truly remarkable, but it does not work with native cellulose. It needs a previous oxidation 

stage with sodium periodate, in which the ring of anydroglucose units is broken and two 

carbonyl groups are formed, particularly on carbons 2 and 3 (Figure 4). Then, those 

groups are prone to nucleophilic additions. The breakdown of the AGU ring allows to 

insert two cationic functional groups per unit, thus reaching degrees of substitution 

slightly above 1 [26]. For nearly every other reagent, substitution or addition on 

consecutive monomers is strongly hindered by repulsive forces (including steric effects), 

not to mention the insertion of more than one group in the same unit. 
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Table 2. Examples of cationizing agents used in the literature. 

Cationizing agent Reference 

2,3-epoxypropyldiethylamine [25] 

2,3-epoxypropylalkyldimethylammonium chloride [27] 

(3-chloro-2-hydroxypropyl)dimethyldodecylammonium chloride [28] 

(3-aminopropyl)trimethoxysilane [29] 

2,3-epoxypropyltrimethylammonium chloride (EPTAC) [8] 

(3-acrylamidopropyl)-trimethylammonium chloride [25] 

1-(carboxymethyl)pyridinium hydrazide (Girard’s reagent)* [26] 

(2-chloro-3-hydroxypropyl)trimethylammonium chloride This work 

*Instead of attacking hydroxyl groups, it attacks carbonyl groups of oxidized cellulose. 

 

 

Figure 6. Results of a search in Google Scholar regarding the functionalization of cellulose 

towards cationic derivatives. 

 

3.2.2. Activation of cellulose 

At the moment, no cationizing agent can functionalize cellulose fibers with ease in 

aqueous suspensions. The main reason is the crystallinity of cellulose, i.e., its strong 

intramolecular and intermolecular hydrogen bonds. Native cellulose, be it from wood, 
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from lignocellulosic residues or from cotton, is not prone to cationization. There are at 

least three ways to overcome this problem: 

• Starting from cellulose ethers which are easier to obtain, preferably 

hydroxyethyl cellulose. In this case, the cellulose derivative is dissolved in an 

aqueous NaOH solution and then the cationizing agent is provided [24]. In this 

case, cationization is a homogeneous reaction. 

• Breaking the AGU ring by oxidation with periodate [26]. 

• Using a cellulose activator. As aforementioned, NaOH was the first activator 

used [25]. And even though researchers have tried many different chemicals to 

make the polymer prone to cationization, NaOH is still the most common one. It 

has proven better than Na2CO3, NaHCO3, methylamine and ethylamine, and as 

effective as diethylamine [28]. 

Since a strong alkali is also required to obtain EPTAC from CHPTAC (Publications 

I, II, II, IV, V, VIII), cellulose activation with NaOH was preferred. This way, the activating 

solution could simply be diluted with water before adding the cationizing agent and 

heating to the temperature at which cationization happens. 

During my internship in Coimbra, one of the goals was testing different chemical 

agents as activators for the heterogeneous cationization of cellulose —phosphoric acid 

and ammonium thyocianate, among others. No one yielded better results than NaOH 

[31]. However, testing the influence of urea and FeTNa —an iron(III)-tartrate-sodium 

complex— provided interesting findings, as a lower amount of NaOH was needed to 

achieve a certain degree of substitution with cationization. This can be appreciated in 

Figure 7. Urea’s actions on hydrophobic interactions justify its use in Publication V. 

Moreover, sodium hydroxide can be used in every chemical stage from pulping 

to the production of cationic derivatives. 

 

 

Figure 7. Effect of a small amount (2.5%) of urea on the reactivity of cellulose [31]. 
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NaOH is the main reagent during kraft pulping or soda pulping, it is always involved 

in bleaching, it decrystallizes cellulose, and very high pH values promote the dissociation 

of hydroxyl groups. Again, when the reagent chosen is CHPTAC (Publications I, II, II, IV, 

VIII), cyclization under alkaline conditions is needed to produce EPTAC, the true 

cationizing agent.  

 

3.2.3. Mechanism and conditions 

Figure 8 depicts the most probable mechanism, according to our hypotheses. 

Substitution can occur on carbons 2, 3 and 6 (Figure 4), but the latter is more prone to 

etherification with a large functional group, i.e., there is less steric hindrance. Here, this 

—OH group in AGU acts as a nucleophilic agent upon the epoxide, EPTAC. Under 

alkaline conditions, substitution occurs in a SN2 (nucleophilic substitution 2) fashion. The 

nucleophile is ionized —negative charge— and attacks the least hindered end of the 

epoxide. In Figure 8, the least hindered end of the epoxide corresponds to the C—O 

bond on the left side. 

 

 

Figure 8. Cationization of cellulose with CHPTAC: proposed mechanism.  
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Up to a certain point, alkali concentration is expected to have a positive impact in 

kinetics. However, if pH values are too high, EPTAC is easily broken down towards a 

non-reactive diol [25]. There does not seem to be any drawbacks for high concentrations 

of cationizing agent [8], other than the cost of the chemicals. CHPTAC/AGU ratios above 

4 are likely cost-ineffective. 

Regarding the temperature, it has been suggested that 70 ºC is the optimum value, 

since lower degrees of substitution may be obtained at higher temperature due to 

degradation [25]. Yet, the authors failed to see that this degradation was the combined 

effect of high temperatures and long reaction times (6 h), because samples were not 

taken for shorter times. Hence, this did not refrain us from cationizing fibers at 120 ºC in 

Publication IV. 

 

3.2.4. Applications of cationic cellulosic derivatives 

Current industrial uses of cationic cellulose are scarce. None of them, as far as I am 

concerned, involves papermaking, even though cationic starches, structurally similar, are 

widely used in paper mills [25]. 

In cosmetics, the substance known as Polyquaternium-10 or Quaternium-19 is a 

certain kind of cationic or quaternized cellulose [32]. It is produced in a homogeneous 

reaction, starting from hydroxyethyl cellulose (alkali-soluble) and using EPTAC as the 

functionalizing agent. Polyquaternium-10 adsorbs easily to proteins in hair and reduces 

static electricity, enhancing the appearance of hair. The principle is not very different for 

wet end chemistry (Publications IV, V and VIII): electrostatic interactions. 

For instance, soluble cationic derivatives are proposed as flocculants in 

papermaking (Publication V) or wastewater treatment [8]. The use of these derivatives 

is usually restricted to particles whose zeta potential is clearly negative, such as kaolin.  

Regarding insoluble fibers, cationization has been suggested for salt-free dyeing of 

cotton in the textile industry, avoiding the necessity of polluting electrolyte baths for the 

sorption of anionic dyes [33]. In a similar way, cationic fibers could be used in 

papermaking to improve the retention of negatively-charged particles or additives. 

Nevertheless, the most common process to cationize cotton fibers, i.e., mercerization 

followed by functionalization with EPTAC, had not been identically exported to 

papermaking before this PhD thesis project. The approach of Sain and Boucher [9] to 

produce cationic fibers for papermaking involved thin film deposition of a precursor, while 

Sang and Xiao [34] opted for grafting, thus converting cellulose into a branched polymer. 

In any case, cationic fibers or cationic cellulosic derivatives should not be intended 

to replace starch, which is biodegradable and easier to cationize towards a soluble 

polymer. The purpose is to replace, even if only partially, synthetic polyelectrolytes. 
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3.3. The papermaking process  

There are three key types of production centers dedicated to the manufacturing of 

paper and board: (i) pulp mills, in which the raw material is pulped and usually bleached, 

resulting in market pulp; (ii) paper mills, in which the pulp is refined and filtered in the 

paper machine to form the sheet; (iii) integrated paper mills, in which the pulp is 

produced and processed to make paper or board. 

The raw material is debarked and fractionated to chips. Chips are pre-impregnated 

with low-pressure steam to remove air and ease pulping. Released air can be vented to 

atmosphere without treatment. Pulping can be chemical or mechanical, or a combination 

of thereof (semichemical, semithermomechanical). Mechanical pulping is grinding the 

chips between refiner plates. Thermomechanical pulping also involves steam and/or 

hot water to soften lignin and separate fiber bundles. Chemical pulping implies cooking 

the chips with, in most cases, an aqueous alkaline liquor known as white liquor [16]. 

Figure 9 presents a simplified diagram of a pulp mill in which bleached market pulp 

is produced. Alkaline hydrolysis takes place with an aqueous solution of sodium 

hydroxide and sodium sulfide, which is the white liquor in kraft pulping processes. NaOH 

can be recovered from Na2CO3 in the green liquor by causticizing. 

In small mills (100 kt per year or less), chips can be cooked in a batch reactor. Batch 

digesters are becoming less used. As small mills tend to cease and large mills tend to 

increase their production, a huge continuous reactor known as Kamyr digester or Richter 

digester is commonly used. It was named after engineer Johan Richter, inventor and 

CEO of Kamyr, currently part of Andritz and Metso.  

Outlet streams of a Kamyr digester include the black liquor and the pulp. The black 

liquor, which contains hydrolyzed and solubilized lignin, is concentrated in a series of 

evaporators and burnt to produce energy. The pulp is screened to remove knots, large 

particles which can be recirculated to the reactor, and washed with water. Then, it can 

be conducted to the bleaching plant. An oxygen delignification stage is increasingly 

common, especially when cooking softwoods, and its position within the pulp mill may 

vary [36]. 

Not only was continuous pulping made possible by Johan Richter. By that time, this 

engineer had already patented continuous bleaching. And, again, it was first used by 

Kamyr. 

Traditional bleaching processes involved selective delignification with chlorine and 

extraction with sodium hydroxide [16]. Now, bleaching comprises from 4 to 7 stages, 

reaching brightness values above 110% [37]. 
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Figure 9. Scheme of the main operations taking place in a kraft pulp mill. 

 

Regardless if the pulp has been bleached or not, it is air-dried to the desired 

moisture content. Even if this pulp has been produced in an integrated paper mill, 

drying is a necessary step to achieve a strong product: the elastic modulus of fiber walls 

was found to be doubled [38]. 

Then, this material is transported to the paper mill or, in the case of an integrated 

mill, processed in situ. It is crushed in the pulper and pumped to a series of chests. In 

the stock preparation chest, the pulp can be blended with some additives, possibly with 

alternative fibers (from recycled or mechanical pulps, for example), and diluted to the 

desired consistency to form the stock (2-5%). It usually needs to be refined to 

strengthen fiber-to-fiber interactions by increasing the relative bonding area of fibers. 

The stock passes between a stationary disc and a rotating disc. Refining is a mechanical 

operation involving cutting, swelling and fibrillation. 

After refining, the stock is pumped towards the blend chest, where it is diluted again. 

Mineral fillers and some additives may be added. From there, the slurry goes to the 

machine chest, where consistency is meticulously controlled so that the paper sheet 

has the desired basis weight. 

The paper machine is based on a wire or polyester woven mesh conveyor belt in 

which dewatering, pressing, drying and smoothing take place. Current machines have 

vastly evolved from the invention of Henry and Sealy Fourdrinier at the beginning of the 

18th century [39].  

The head box receives the slurry, which is stirred and whose air bubbles are 

removed. It lands of the wire and the sheet starts to be formed. As the web progresses, 

consistency becomes higher, reaching 25% and the end of the drainage table. This 

section is called wet end. Afterwards, the paper web is pressed to consistency values 

between 35% and 50%. Dryers use high-pressure steam to achieve the desired moisture 

content. Paper is then finished by passing between the calenders, becoming smooth 
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and ready to be wound onto rolls, stored, cutted, shipped and used. These operations 

are indicated in Figure 10. 

This PhD thesis seeks opportunities to alleviate the environmental impact of the 

manufacturing of pulp and paper in pulping, bleaching, refining and wet end chemistry, 

by choosing sulfur-free methods, chlorine-free processes, alternative raw materials and 

cationic cellulose, respectively. 

 

3.3.1. Pulping and sulfur compounds 

If the raw material is adequate, packaging paper can be made out of mechanical 

pulps and thermomechanical pulps, as we showed for rapeseed stalks [5]. In general, 

these pulps can be used for all types of low-grade paper, such as newsprint [40]. 

However, non-chemical pulps cannot reach high brightness values, they turn yellow with 

time, and the large amount of lignin may hinder fiber-fiber interactions, which is translated 

into lower strength. 

Therefore, almost all lignin must be removed for the manufacturing of quality printing 

paper or any kind of white paper that is meant to stay white with time. Chemical pulping 

involves several chemical reactions, mainly hydrolysis. Most pulp mills use kraft pulping 

in continuous reactors (Kamyr digesters). The most remarkable exception in Western 

countries is SAICA, the largest producer of corrugated paper. The SAICA process 

involves alkaline sulfur-free cooking, causing much less pollution than conventional mills 

[41]. 

Despite the complexity of continuous digesters, or more likely due to this complexity, 

researchers usually perform chemical pulping in batch reactors. And they (we) hope that 

their (our) experiments could be up-scaled. 

 

 

Figure 10. Possible block diagram for a paper mill. 
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Agarwal and Gustafson [42] modeled the kinetics of kraft pulping in batch reactors, 

but they stated that their equations could be exported to model the cooking zone of a 

Kamyr digester. I did it, although it should be taken into account that continuous reactors 

can achieve the same results with a lower liquid-to-solid ratio. The Matlab script can be 

found for free at my blog [43], but I suggest papermakers to look for more complex and 

more expensive models, such as that from the Purdue University [44]. 

The goal of kraft pulping is the alkaline hydrolysis of lignin with an aqueous solution, 

but, as opposed to the ancient soda process, it uses sodium sulfide. 

To explain why most pulp mills use sodium sulfide, it must be clarified that alkaline 

hydrolysis of wood is not highly selective towards lignin. Most hemicelluloses are 

solubilized and lost in the black liquor. Even cellulose can be hydrolyzed to a tenth or 

less of its original degree of polymerization, and this depolymerization is enhanced by 

high NaOH concentrations and high temperatures. Excessive hydrolysis of cellulose 

results in weak products (paper or board). However, when papermakers started using 

the basic salt NaS2, they were able to achieve the same degree of delignification with 

less NaOH. The presence of S2
2- and HS-, which is formed during the process, increases 

selectivity and the rate of delignification, particularly due to the nucleophilic attack of HS- 

on lignin [45]. 

Acid sulfite pulping, which used to be more common than alkaline sulfate pulping 

(kraft pulping), has also found its place in modern papermaking. Its yield is lower, as it 

breaks down cellulose to a greater extent and it completely hydrolyzes hemicelluloses. 

As another consequence of this, paper is weaker, but it is good enough for tissue and 

glassine. 

Sulfur compounds are related to bad odors and other environmental issues of a pulp 

mill. In an undesired side reaction of kraft pulping, HS- ions attack methoxyl groups of 

lignin. This results in methyl mercaptan, whose odor threshold is as low as 1 ppb and 

whose leaks can cause fatal accidents at work. If no malfunction occurs, methyl 

mercaptan is almost completely converted at high pH values into dimethyl sulfide, much 

less dangerous. Other important gaseous emissions of kraft pulp mills include hydrogen 

sulfide and dimethyl disulfide. All of them have unpleasant odors, even at very low 

concentrations. Toxic emissions also include non-sulfur compounds like formaldehyde 

and acetaldehyde, which are rarely found when using caustic soda alone. In sulfite pulp 

mills, the most important emissions involve SO2 and particulate matter [46]. 

We have tried two different approaches regarding sulfur-free pulping: 

• Soda or soda-anthraquinone (SAQ) pulping (Publications VI and VIII). The 

addition of a very small amount of anthraquinone was first proposed by 

Holton [47], decades later than the addition of sodium sulfide, and it plays a 
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similar role: increasing selectivity. However, instead of enhancing the 

delignification rate, it inhibits the hydrolysis of polysaccharides. It works best 

with non-wood materials, such as cereal straw. Yet, Holton’s findings were 

often used to complement, not replace, sodium sulfide in the kraft process 

[48]. A diagram of a semichemical SAQ pulping process is shown in Figure 

11. Like in kraft pulping, the green liquor, containing Na2CO3, can be 

causticized to recover NaOH. 

• Organosolv pulping with ethanolamine as a selective solvent for lignin 

(Publications VI and VII). This started in 1971 with a patent of Kainert [49], 

but the only industrial application was the Alcell process, between 1989 and 

1995, in Canada [4]. The paper industry consumes more water than any 

other manufacturing industry, but organosolg pulping requires notoriously 

less water than SAQ pulping or kraft pulping. Also, the yield reached by 

pulping with organic solvents is much higher, since it preserves 

hemicelluloses. As drawbacks, it needs higher temperatures and, besides 

holocellulose, preserves too much lignin. Figure 12 presents a scheme of 

this process. 

  

3.3.2. Bleaching and chlorine compounds 

Pulping processes manage to remove the majority of lignin from the raw material, 

which is in the range of 11-23% for straw, 19-27% for hardwoods and 24-33% for 

softwoods [50,51]. But unbleached kraft pulps still have a notorious amount of 

remaining lignin, 2-5%, and its brightness is lower than 50%. White printing paper 

generally requires brightness values above 93% and a lignin content below 0.6%. 

 

 

Figure 11. Block diagram of a semichemical pulp mill with soda-anthraquinone pulping, inspired 

in the sulfur-free SAICA process [41]. 
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Figure 12. Block diagram of an organosolv pulping process. The Alcell process used ethanol as 

the organic solvent [4]. 

 

Bleaching processes keep reducing the lignin content, but in a more selective way 

and using more expensive chemicals than pulping. Besides being more expensive per 

gram of lignin removed, bleaching consumes more water. Also, while the main 

environmental issues of pulping were related to gaseous emissions, the main issues of 

bleaching plants are found in their liquid effluents. 

Bleaching chemicals are oxidizing agents which break bonds inside the structure of 

lignin and between lignin and holocellulose. Table 3 presents their equivalent chlorine, 

defined as the mass of Cl2, in kg, that has the same oxidizing power as 1 kg of the 

reagent in each case. Efficiency indicates how much of that power is used in selectively 

breaking lignin. The codes shown are used to describe bleaching lines, which consist of 

several stages in series. For example, a sequence labelled O(DE)H(DE)P starts with 

oxygen delignification, has two stages of ClO2 with caustic extraction and hypochlorite 

treatment between them, and finishes with hydrogen peroxide.  

Most modern bleaching plants are based on elemental chlorine free (ECF) 

processes, avoiding the huge risks of Cl2. The key reagent in ECF bleaching is 

chlorine dioxide. Unlike Cl2, ClO2 does not generate 2,3,7,8-tetrachlorodibenzo-p-

dioxin, extremely toxic. It reduces the generation of chlorinated compounds by 

approximately 90% [52]. 

Possibly, papermakers did not replace Cl2 with ClO2 for safety or environmental 

concerns, but because ClO2 allowed them to work with higher pulp consistencies, from 

3-4% to 11-12% [16]. While ClO2 is much less hazardous than Cl2, chlorine dioxide and 

sodium hypochlorite still generate small but noticeable amounts of chlorinated organic 

by-products. These include chloroform and 2,3,7,8-tetrachlorodibenzofuran [52]. 

Total chlorine free (TCF) bleaching is a step beyond ECF sequences. It implies 

using no chlorine compounds, neither chlorine dioxide nor sodium hypochlorite. As a 

consequence, no chlorinated by-products are formed.  
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Table 3. Codification and characteristics of different chemicals in a bleaching plant [53]. 

Reagent Cl2 ClO2 O2 H2O2 NaClO O3 NaOH 

Code C D O P H Z E 

Equivalent 

chlorine 
1.00 2.63 4.44 2.09 0.93 4.44 -- 

Efficiency High High Low Low Medium High -- 

Reactivity High Medium Low Low Medium High -- 

Environmental 

impact 
High Medium Low Low High Medium -- 

 

A TCF sequence should consist on a combination of these stages: 

• Oxygen delignification. It is very helpful as the first stage of ECF processes, 

but mandatory in TFC bleaching. Phenolic groups and arylalkyl groups oficio 

depolymerized lignin are oxidized to arylcarbonyl groups. These structures 

are more hydrophilic and can be easily removed [36]. 

• Selective lignin oxidation with ozone. Although more expensive and less 

environmentally friendly, it gives out higher delignification rates than oxygen. 

It even attacks double carbon-carbon double bonds in aromatic groups of 

lignin. Its selectivity is higher [54]. 

• Oxidation with hydrogen peroxide (or sodium peroxide) of chromogenic 

groups in lignin (Publication VII). While the brightness gain is notorious, lignin 

removal is slight. Hydrogen peroxide bleaching was originally used to 

complement chlorine dioxide, as the last step of the bleaching sequence [16]. 

Figure 13 shows a diagram of a P stage. 

 

Figure 13. Flowchart of a hydrogen peroxide stage in a bleaching sequence. 
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• Caustic extraction with NaOH. This is common to traditional bleaching with 

Cl2, ECF bleaching and TCF bleaching. 

From an economic point of view, if high brightness values are desired, ECF 

processes are more advantageous than TFC bleaching. The first pulp mill which had no 

chlorine or chlorine compounds in its bleaching line, Metsä Fibre’s Rauma mill in 1996, 

switched from TFC to EFC in 2007 [55]. More research needs to be conducted into TFC 

bleaching stages to make them capable of reaching high brightness values while staying 

feasible. 

 

3.3.3. Refining and electricity consumption 

Refining accounts for the highest energy input during stock preparation. The 

specific energy consumption for graphical papers in this stage ranges from 1.5 to 3 GJ 

per tonne of stock, most of which goes to refining [56]. In a mill which produces virgin 

paper, the most energy-consuming operations are refining and drying. 

The Schopper-Riegler number (SR) and the Canadian Standard Freeness (CSF) 

are the two primary ways to measure and express the effects of refining, at least those 

effects that are directly related to sheet formation and paper strength. They are rough 

indications of water retention and dewatering rate, but the latter should not be confused 

with the former, since there are specific methods or devices to determine and report the 

water retention value and the drainage rate. 

Refining generates fines and causes fiber fibrillation. This strengthens fiber-to-fiber 

interactions, thus increasing the amount of water that is retained on the wire upon 

filtration of a diluted pulp suspension. 

Regardless of the cooking method, chemical pulps from softwoods require more 

energy than chemical pulps from hardwoods to achieve the same values of SR or CSF. 

Cereal straw pulps do not need refining, given their high proportion of fines [12]. 

Therefore, the most evident way to save energy during stock preparation is changing 

the raw material, if possible. 

Figure 14 presents CSF values for chemical pulps from different materials, as a 

function of the number of PFI revolutions. Data related to softwoods, hardwoods, 

bagasse and straw belong to the work of Banavath et al. [57]. Mutjé et al. [6] reported 

the results for olive tree trimmings. As for rapeseed stalks and orange tree trimmings, 

they are characterized in our contributions (Publications VI and VII). 

PFI revolutions are revolutions in a laboratory device that fulfills the ISO standard 

5264-2. This device is called PFI mill. The standard allows for comparisons to be made 

between works which involve refining mills from different manufacturers. Also, the 

number of PFI revolutions is linearly proportional to energy consumption. 
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Figure 14. Effect of the number of PFI revolutions on freeness (CSF) for pulps from various raw 

materials. 

 

The horizontal axis in Figure 10 has been cropped for the sake of easy comparison, 

but softwoods would require 4000 PFI revolutions to reach a CSF value of 460 mL, which 

is what hardwoods achieve with 1500 PFI revolutions [57]. In a paper not included in this 

document, we showed that CSF is very influential on the tensile strength, the tear 

strength and the burst strength of paper sheets [31]. 

The lower CSF is, the stronger the interactions among fibers. However, 

dewatering becomes slower and this may hinder sheet formation. No matter how large 

the relative bonding area is, if sheet formation goes wrong, the final product will lack dry 

strength.  

Let us figure, for instance, that a CSF value of 460 mL is desired for a certain kind 

of paper. If 1000 revolutions in a PFI mill correspond to roughly 1 GJ/t in a paper mill, 

which is a reasonable assumption, then: 

• Softwoods (e.g. pine wood) would need 4 GJ/t. 

• Hardwoods (e.g. eucalyptus wood) would need 1.5 GJ/t. 

• Orange tree trimmings and rapeseed stalks would need 0.7 and 0.4 GJ/t, 

respectively. 

• Olive tree trimmings and bagasse would be in the right range to proceed with 

blending. 

• Some fines would have to be removed from wheat straw by screening. 
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Almost all works on refining deal with its influence on mechanical properties, 

surface charge and fiber morphology [5]. Fibers are shortened but their surface is 

roughened, so there is generally an increase in tensile strength and burst strength, and 

the negative charge of fibers becomes higher [58]. Nonetheless, few works deal with the 

effect on refining on chemical modifications of fibers. Choi et al. [59] found that pulps are 

swollen to a greater extent with NaOH if they have been refined before the alkaline 

treatment. If an alkaline treatment eases cationization and refining enhances the effects 

of alkaline treatments, evaluating the use of mechanical operations to improve 

cationization seems appropriate (Publication IV). 

 

3.3.4. Wet end chemistry and the limitations of recirculating water 

Since the first papermaking processes appeared in the second century, makers 

have wished to achieve, at the same time, fast drainage and a strong web of fibers. 

Currently, they also want abundant retention and homogeneous distribution of mineral 

fillers. 

It is known that “difficult” fiber furnishes —those than run poorly on the paper 

machine due to the slow filtration— are related to the adverse effects of recycling, which 

is why we insist in our publications on the need to produce virgin fibers in a cleaner way 

[5]. But wet end problems may also happen with virgin pulps: too many fines, too much 

filler, high conductivity, excessive fibrillation, anionic colloids, surfactants, and pitch [7]. 

Sheet formation is a filtration and thickening operation. Water drains from the 

sheet through paths along the random web of fibers. Fines, fillers and other small 

particles may block the paths, although they are necessary for a number of reasons —

e.g., opacity. Also, when fibers collapse, which is favored by severe chemical pulping, 

the contact between fibers is so close that water has little space to flow.  

However, fibers are negatively charged, mainly due to the remaining carboxylic 

groups from uronic acids (Figure 15). The negative charge density of commercial paper 

might be as high as 24 µeq/g [60]. With the focus on sheet formation, this is good. 

Repulsion between fibers prevents them from collapsing. It also helps us achieving good 

retention of cationic additives, such as cationic starch. 

Fines may constitute a large part of the pulp [12], but they are small enough to pass 

through the wire. In fact, although consensus about the definition of ‘fine’ seems to be 

impossible, it is reasonable to regard as fines those fibrous elements whose length is 

smaller than the aperture size of the wire. This aperture size generally lies between 100 

and 150 µm. Table 4 contains the dimensions of fibers, fines and fillers that are 

considered along the text. Note that this classification does not presume to be universal. 
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Figure 15. Some uronic acid monomers from hemicellulose: a) β-glucuronic acid; b) α-4-

methoxyglucuronic acid; c) galacturonic acid. Author’s drawing. 

 

Table 4. Sizes and surface areas of fibers, fines and fillers as considered in this dissertation.  

 Fibers Fines Fillers 

Length 0.1-4 mm <100 µm 0.2-4 µm 

Length/width 30-60 >10 1-5 

Surface area 1-2 m2/g 3-6 m2/g 6-15 m2-g 

 

Three things can happen with fines, but only one of them is good: 

• Fines are retained because they become attached to fibers. This is the one 

thing that papermakers want to happen. It rarely occurs spontaneously, since 

fines are even more negatively-charged than fibers due to their higher surface 

area. Cationic polyelectrolytes are usually needed to achieve good retention of 

both fines and fibers. 

• Fines are mechanically retained (sieving mechanism). That is, they do not 

pass simply because the web of fibers below them does not let them pass. Then, 

they become unevenly distributed and they block the paths for water, slowing 

drainage. 

• Fines are hardly retained. Low fines retention is related to severe problems in 

papermaking. A poor retention of fines slows drainage [7]. And when fines are 

lost, many wet-end additives are lost too, since fines collect more additives than 

fibers [61]. Wastewater issues, deposits in chests and instability are 

consequences of not retaining the fines. 

Likewise, filler retention cannot depend on the sieving mechanism. The size of those 

particles is even smaller than the size of fines, so they must be somehow attached to the 

surfaces of the fibers and fines. Nonetheless, many fillers commonly used in 

papermaking are, like cellulosic fibers, negatively charged. London dispersion forces, 

although irrespective of the surface charge, are too weak to overcome repulsion [7]. 
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Anionic colloidal substances, which generally come from hemicellulose, slow down 

drainage, form complexes with cationic starch —which should be bonded to the fiber 

surface— and stay in recirculating water. The way to deal with fines, fillers and anionic 

substances is nearly the same: cationic polyelectrolytes such as positively-charged 

copolymers of acrylamide (CPAM), poly-diallyldimethylammonium chloride (PDADMAC), 

poly-aluminum chloride (PAC) and polyethyleneimine (PEI). In papermaking, these 

flocculation agents are commonly known as retention aids. 

As shown in Figure 16, polymeric retention aids usually interact with particles in 

three different ways:  

• Charge neutralization (Fig. 16a) makes the net zeta potential of the furnish 

particles approach zero, speeding drainage and easing the retention of 

anionic substances [62]. A suitable aid for this purpose is PAC. It must be 

noted that neutralizing all the negative charges at the surface of the cellulosic 

fibers is rarely a goal of papermakers [7]. 

• Cationic patches (Fig. 16b) are islands with positive charge on the fiber 

surface [63]. Electrostatic interactions between these islands and negatively-

charged particles enhance retention. Cationic patches are produced when 

polymers with high charge density and low or medium molecular weight, 

such as PEI, are used. 

• By bridging flocculation mechanisms (Fig. 16c), as long as the molecular 

weight of the polymers is high enough, they attach fillers and fines to fibers. 

Bridging is especially important in papermaking because it provides fast 

flocculation [64]. This is why cationic polyacrylamides with high molecular 

weight and medium charge density are so valuable. They achieve good 

results with short residence times in the head box, even when the zeta 

potential of the mineral filler is not negative. 

 

 

Figure 16. Dominant flocculation mechanisms when dealing with negatively-charged particles 

and polyelectrolytes [65]: a) charge neutralization; b) cationic patches; c) bridging. 
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As aforementioned (vid. 3.2. Cationization of cellulose), cationization of 

polysaccharides has been proposed as a way to replace oil-based polyelectrolytes with 

cost-effective, more biodegradable, less toxic polymers from vegetable biomass [24]. 

Cationic starches are already implemented in papermaking, but as a sizing agent and a 

strength agent, not as a replacement of CPAM [7]. Regarding the cationization of 

cellulose, the main problem is the difficulty to produce a polyelectrolyte which is soluble 

in water and long-chained at the same time (Publication V). 

 

3.4. State of the European pulp and paper industry  

Almost the whole European production of pulp and paper comes from CEPI 

countries. CEPI stands for Confederation of European Paper Industries. It comprises all 

the manufacturers from Austria, Belgium, Czech Republic, Finland, France, Germany, 

Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Slovak Republic, Slovenia, 

Spain, Sweden and United Kingdom. 

In 2015, CEPI’s manufacturing of paper and board accounted for 22.3% of 

worldwide production, which was as large as 407.6 million tonnes. Asian papermakers 

constituted the greatest producing region in the world, accounting for 46.1%. Among 

CEPI countries, Sweden and Finland are the largest pulp producers [1]. 

The trend in this industry is characterized by the increasing shutdown of small 

mills and the increasing company closures, as shown in Figure 17. Instead, the 

capacity of large mills is raised. Employment diminished from 411 thousand workers in 

1991 to 177 thousand workers in 2016 [1]. Likely due to the high-fixed capital investment 

that is required, papermaking seems to favor centralized manufacturing, at least in 

Europe. The total production of market pulp, paper and board remains nearly constant 

upon time. However, although the annual turnover stays approximately the same, the 

added value is decreasing (Figure 3). 

Fortunately, European manufacturers of pulp and paper have been diligent and 

innovative in techniques to decrease hazardous emissions to air and water. Table 5 

shows that in 1991, 433 g of organic chlorinated compounds were discharged. It should 

be taken into account that, by then, ECF bleaching was already the standard —those 

high values of AOX were not due to chlorine gas. The implantation of new technologies 

for wastewater treatment [66] made bleaching with chlorine dioxide much more 

environmentally-friendly. The specific emissions of AOX to water decreased by 94.7% 

from 1991 to 2015. 
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Figure 17. Evolution of the number of facilities dedicated to the manufacturing of pulp, paper 

and/or board in CEPI countries (CEPI, 2017). 

 

Table 5. Environmental performance of European pulp and paper mills, from 1991 to 2015.  

Year 

Electricity 

consumption 

(MWh/kt) 

AOX to water (kg/t 

product) 

SO2 to air (kg S/t 

product) 

1991 1.2 0.433 1.32 

2000 1.12 0.049 0.4 

2005 1.04 0.03 0.32 

2010 1.07 0.03 0.24 

2014 0.98 0.022 0.15 

2015 0.98 0.023 0.16 

 

Likewise, the specific emissions of SO2 to the atmosphere was reduced by 87.9% 

in less than 25 years (Table 5). SO2 emissions can be directly produced by acid sulfite 

pulping or by oxidizing dimethyl sulfide, dimethyl disulfide and hydrogen sulfide in a kraft 

pulp mill. Nowadays, acid sulfite pulping is scarcely used for the manufacturing of paper 

and board, and it has been surpassed mechanical and semichemical pulping (Table 6). 

Also, as shown in Figure 2, the main raw material for the manufacturing of paper 

and board is wastepaper. Recycling wins over the production of virgin fibers.  

This motivated the final hypothesis of this PhD thesis (vid. 2.4. Statement of 

hypotheses). Lignocellulosic residues per se are not appealing to Western 

papermakers, while lawmakers are satisfied with the environmental performance of 
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modern pulp mills. Using the experience gained with cellulose cationization to modify 

non-wood fibers may result in a more feasible alternative to reuse agricultural waste, 

improving certain properties and providing a way to increase the added value of the 

paper industry (Publication VII). 

 

Table 6. Production and consumption of pulp in 2016, differentiating by the pulping method.  

 Production (kt) Consumption (kt) 

Mechanical and semichemical pulps 10145 10105 

Kraft pulp 24993 29411 

Sulphite pulp 1820 1639 

Total 36958 41155 
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4. ANALYTICAL TECHNIQUES 

 

 

4.1. X-ray diffraction  

Out of 8 publications that are presented in my dissertation, six involve X-ray 

diffraction (XRD). Cellulose Iβ, the main structure of cellulose in vascular plants, is 

arranged in small crystals as a result of the interactions among hydroxyl groups from 

different chains and from the same chain. In Publications I, II, III, IV, V and VIII, XRD is 

used to identify polymorphs and to estimate the crystallinity index.  

X-rays are emitted by a cathode ray tube, filtered to produce monochromatic rays, 

collimated and directed towards the sample. The sample and the detector are rotated to 

record the intensity of the reflected X-rays trough the desired range of angles of 

incidence (θ). The device used in the works mentioned was a X-ray powder 

diffractometer from PANalytical. 

At certain incident angles, scattered X-rays interfere constructively. In Figure 18, 

where d is the distance between planes of the crystal, there will be constructive 

interference when the travel length difference between paths A-B-C and A’-B’-C’ is an 

integer (n) multiple of the wavelength (λ). Wavelength values satisfy Bragg’s equation 

[67]: 

𝑛 𝜆 = 2 𝑑 𝑠𝑖𝑛𝜃 (1) 

Then, a diffracted ray will leave the sample at the same angle as that of the incident 

beam. This is translated into a peak in X-ray diffraction patterns. 

 

 

Figure 18. Incident X-rays (A-B, A’B’) and diffracted X-rays (B-C and B’-C’) over a crystalline 

sample.
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For each crystalline structure, including organic matter, there is a certain XRD 

pattern. If we submit a cellulosic sample to this technique, we may obtain peaks from 

different polymorphs (viz. 3.1.1. Modifications of cellulose in which the product is still 

cellulose). French [17] showed ideal patterns of cellulose Iα, cellulose Iβ, cellulose II and 

cellulose III. Amorphous cellulose is characterized by the lack of peaks. Moreover, the 

author advocated for a convention regarding the Miller indices [17]. 

A Miller index is formed by three indices and designates a certain plane or family 

of planes in a crystal lattice. It defines the orientation of this or these planes in a vector 

space. For example, according to French [17], a cellulose II pattern shows a 

characteristic peak at 2θ = 20.1º, corresponding to the (110) plane. But for a given vector 

space, different researchers can place unitary vectors 𝑖, 𝑗 and 𝑘⃗⃗ in different ways. For 

instance, in publications I and II, the Miller index we assign to this reflection is ‘(101)’. 

When I first read French’s work, I was convinced of the need of a convention, and thus 

his notation is followed in Publications IV, V and VIII.  

In addition, the way to show negative terms may value. French [17] writes ‘(1-10)’ 

for the peak of cellulose Iβ at 2θ = 14.9º, but other authors express the same thing by 

‘(11̅0)’ [68]. Figure 19 shows an example of X-ray diffraction pattern for cellulose from 

wood (mainly Iβ), placing Miller indices at the corresponding peaks. 

The degree of crystallinity or crystallinity index (CI) was estimated in Publication I 

by our own variation of the height method, consisting on a ratio of intensity values. Most 

authors use a ratio of intensities to calculate CI, but this results in an overestimation [68]. 

 

 

Figure 19. X-ray diffraction pattern of cellulose from pine wood; a: Miller index used in 

Publications I and II; b: Miller index used in Publications IV, V and VIII. 
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From Publication II on, we chose the area method. This way, following peak 

deconvolution by adequate software, crystalline peaks are identified and the sum of their 

areas is divided by the total area below the pattern [69]. The software we used was 

Systat’s Peakfit. 

 

4.2. Elemental analysis 

Publications I, II, III, IV, V and VIII included the determination of the amounts of 

carbon, hydrogen and nitrogen contained in a cationic cellulose powder. The technique 

chosen for this measurement was elemental analysis by combustion. 

If the aim was to determine the percentage of nitrogen in fibers (Publications I, II, III, 

IV, VIII), they were vacuum-dried and ground up in a knife mill to a powder as fine as 

possible. In Publication V, where a water-soluble derivative was obtained, water was 

removed by evaporation. Either way, 1 mg of sample was enough for the device used, a 

CNS-2000 analyzer from LECO Corporation. 

When the sample was ready, it was burnt in excess of oxygen. Different traps in the 

elemental analysis instrument collected CO2, H2O and NO. The masses of these 

combustion products was used by the device’s software to express the percentage of 

carbon, the percentage of hydrogen and the percentage of nitrogen in the initial sample. 

The results from this analysis allowed us to report the degree of substitution (DS), 

also called degree of nitrogen substitution (DNS) in this case, of cationic cellulose. For 

that, the sample was always assumed to consist solely of cellulose. The remaining 

contents of lignin and hemicellulose after alkaline pulping are not negligible, but those 

compounds are also cationized [70]. From the percentage of nitrogen (%N), DS is given 

by: 

𝐷𝑆 =
162 %𝑁

1401−152 %𝑁
 (2) 

In Equation 2, 162 is the molecular mass of AGU, 152 is the molecular mass of a 

quaternary ammonium group, and 1401 is 100 times the atomic mass of nitrogen. If the 

sample is suspected to have some moisture, the measurements of carbon and/or 

nitrogen can be used to correct the result. 

Another way to calculate DS was followed in Publication V. By using the 

carbon/nitrogen ratio, the moisture content is no longer a problem: 

𝐶/𝑁 =
14 𝐷𝑆

144 𝐷𝑆+72 (1−𝐷𝑆)
 (3) 

In Equation 3, 14 is the atomic weight of nitrogen. There is only one nitrogen atom 

per quaternary ammonium group (Figure 6). 144 is twelve times the atomic weight of 
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carbon, since a substituted monomer contains 12 carbon atoms. 72 is six times that 

weight, as a non-substituted monomer in cellulose contains 6 carbon atoms. 

 

4.3. Viscometry  

When a polymer is dissolved in a liquid, the viscosity of the new solution is higher 

than that of the starting liquid. This increment of viscosity depends on the nature of the 

polymer, on its spatial distribution and on its molecular weight, although the contribution 

of polymers bearing electric charges, like cationic cellulose, can be difficult to predict. 

The Mark- Houwink equation relates the limiting viscosity number or intrinsic viscosity 

(η) to the molecular weight of the polymer (M): 

𝜂 = 𝐾 𝑀𝑎 (4) 

K and a are positive constant parameters. While a ranges from 0.7 to 0.8 for most 

polymers, it can be as high as 2 for anionic or cationic polyelectrolytes [71]. 

η can be determined by using a capillary viscometer, following the TAPPI standard 

T230 (2008). This determination was carried out in Publications III, IV and V. Figure 20 

presents the Cannon-Fenske viscometer, which, like the Ostwald viscometer, is 

compatible with TAPPI T230. 

First, a 0.5M aqueous solution of copper(II) ethylenediamine (CED) was prepared. 

CED is a well-known solvent for cellulose [72]. We wrote down the time that took the 

solution to fill each of the bulbs of the viscometer at 40 ºC. The non-modified, alkalized 

or cationized chemical pulp was added to the aqueous solution so that the consistency 

was 0.5%. We needed vigorous stirring to dissolve the fibers. Again, the time spent in 

filling the bulbs was measured. 

 

 

Figure 20. Cannon-Fenske viscometer. 
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The quotient between the time of the cellulose solution and the time of CED provided 

the relative viscosity. After each cycle, the viscometer was cleaned in two steps, first with 

sulfuric acid and then with acetone. 

The ISO standard 5351 (2010) contains tables and equations to calculate the 

limiting viscosity number from the relative viscosity. In Publication III, following the 

terminology of most researchers or journals and not that of the standards, the limiting 

viscosity number is called intrinsic viscosity. 

 

4.4. Gallium pycnometry 

In Publication IV, we introduced a novel way to measure the apparent density of a 

test pad of fibers. We proposed gallium pycnometry as a safe and easy alternative to 

mercury pycnometry. Like liquid mercury, liquid gallium does not enter the pores either, 

but the method, which resembles that of water pycnometry, does not require any 

particular device. 

For each of the measurements, a suspension of disintegrated pulp was dewatered 

on a wire screen to obtain a pad of fibers. The pad was left drying at room temperature 

and at a relative humidity of 50% for 48 h. Then, we weighed it.  

Gallium was heated to its melting point at 1 bar, 29.8 ºC, and poured into a glass 

pycnometer for liquids and solids. The pycnometer was filled until the mark was reached. 

Once full, it was weighed. In order to empty the pycnometer, viscosity was decreased by 

heating to 100 ºC or more. 

The test pad was placed in the pycnometer for liquids and solids, as described in 

the TAPPI standard T258 for the determination of the density of pulpwood chips, but then 

we used gallium instead of water to fill the container. The pycnometer was weighed once 

more, which allowed us to calculate the specific gravity (SG): 

𝑆𝐺 =
𝑀1

𝑀1−(𝑀2−𝑀3)
 (5) 

In Equation 5, M1 is the mass of the test pad, M2 is the mass of the pycnometer with 

pulp and gallium, and M3 is the mass of the pycnometer with gallium only.  

The specific gravity was multiplied by 6.095 g cm-3, the density of gallium at 30ºC 

[73], although we performed the test at higher temperatures to decrease viscosity —the 

density of liquids can be assumed to stay constant in a certain range. 

At any given temperature, the surface tension of gallium is even higher than that of 

mercury, and thus this liquid metal could be, besides safer, at least equally suitable to 

measure the apparent density of materials [74]. The only major drawback seems to be 

its viscosity, also higher than that of mercury [73]. 
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4.5. Determination of optical properties 

Opacity, light scattering coefficient, brightness and color are key optical properties 

of paper sheets. All of them can be easily determined with a spectrophotometer that 

conforms to ISO 2471 (2008) for opacity, to ISO 9416 (2009) for light scattering, to ISO 

2469 (2014) for brightness and to ISO 5631 (2015) for color. The Elrepho 

spectrophotometer from Lorentzen & Wettre that was used in Publications IV, VII and 

VIII fulfills those requirements [75]. 

The user only has to place the sample or samples on the measurement table and 

select the appropriate filter on the software. The light source of the Elrepho 

spectrophotometer is a pulsed xenon lamp. 

To measure opacity, the device needs to compare the reflectance factor of a 

handsheet over a black cavity to the reflectance factor of an opaque pad of the same 

material. We decided to stack five identical sheets to form the opaque pad. The 

measurement was always carried out at C/2º (illuminant/observer). The report included 

parameters to calculate the light scattering coefficient. For brightness, the equipment 

chose a wavelength of 457 nm (diffuse blue reflectance factor) and a width at half-height 

of 44 nm. Color measurement was performed by quantifying the degree of light to dark 

(L*), red to green (a*) and yellow to blue (b*). Yellowness was reported in Publication 

VIII. 

 

4.6. Determination of mechanical properties  

Typically, the most common ways to break paper are tearing, pressing and 

stretching. In Publications VI and VII, and also in Aguado et al. [76][31], we report the 

performance in those tests with the tear index, the burst index and the tensile index. 

Mechanical testers are devices that apply increasing forces on a handsheet until it 

gets broken. The burst test was carried out by using a Metrotec tester that conforms to 

the ISO standard 2758 (2014). The raw result was the absolute pressure at which the 

sheet was perforated. Then, the burst index (BI) was calculated from this pressure and 

the basis weight (G) as follows:  

𝐵𝐼 (𝑘𝑃𝑎 𝑚2

𝑔⁄ ) =
𝑃(𝑘𝑃𝑎)

𝐺(𝑔 𝑚−2)
 (6) 

The Elmendorf tear tester, a device from Messmer Instruments which carries a 

pendulum, determined the work done in tearing the paper by measuring the loss of 

potential energy from the pendulum, according to the ISO standard 1974 (2012). The 

force at which paper has been broken is the quotient between this work (W) and the 



Aguado, 2017. Doctoral dissertation Chapter 4 
 

39 
 

distance over which the tearing force acts (D). The tear index (TearI) is given by Equation 

7:  

𝑇𝑒𝑎𝑟𝐼 (𝑚𝑁 𝑚2

𝑔⁄ ) =
𝑊(𝑚𝐽)

𝐷(𝑚) 𝐺(𝑔 𝑚−2)
 (7) 

Finally, tensile properties were measured by following the ISO standard 1924 

(2008). We used a mechanical tester from HT Hounsfield. The principle is very simple. 

The device stretches a rectangular handsheet, whose width (w) has to be taken into 

account to calculate the tensile index (TensI), and reports the elongation force (F) at 

which breaking occurs.  

𝑇𝑒𝑛𝑠𝐼(𝑁 𝑚
𝑔⁄ ) =

𝐹(𝑁)

𝑤(𝑚) 𝐺(𝑔 𝑚−2)
 (8) 

 

4.7. Infrared spectroscopy  

Molecular vibrations occur at any temperature above 0 K. When infrared radiation 

—above 800 nm wavelength— interacts with a molecule, there is a certain value of 

absorbance or transmittance for any given frequency of wavelength. This generates a 

characteristic infrared (IR) spectrum. The shape of the spectrum in Figure 21 

corresponds to a bleached kraft pulp, essentially alpha-cellulose.  

The horizontal axis of Figure 19 is located in the mid-infrared region, i.e., 4000-400 

cm-1 or 2.5-25 µm. This range is the appropriate one to study the fundamental vibrations 

of bonds in most polymers, including cellulose. 

Currently, the most common way to record infrared spectra is using a Fourier 

transform infrared (FTIR) spectrometer with a dedicated computer, as we did in 

Publication V. Infrared light passes to an interferometer before reaching the sample and 

an interferogram is recorded. The Fourier transform gives out the IR spectra in an 

accurate way [77]. 

For the direct analysis of cellulosic fibers, it is recommended to use a technique 

called attenuated total reflection (ATR). IR radiation passes through a crystal of high 

refractive index which is located right before the sample, in contact with it. The crystal 

has an evanescent effect on the IR beams, allowing them to penetrate into the solid 

sample [78]. 

Table 7 relates notorious peaks in a cellulose IR spectrum to the corresponding 

bending and stretching vibrations of covalent bonds. In the spectrum of Figure 21, we 

can identify typical peaks for cellulose at 3327 cm-1 (f), related to O—H stretching, and 

at 2882 cm-1 (e), assigned to symmetrical stretching of C—H bonds. The most prominent 

peak of the cellulose spectrum is found at 1020 cm-1 (b). 

 



Aguado, 2017. Doctoral dissertation Chapter 4 
 

40 
 

 

Figure 21. Infrared spectra for fibers from a bleached eucalyptus kraft pulp. 

 

Table 7. Assignment of peaks in the IR spectrum of cellulose to vibrations [77,79].  

Peak wavenumber (cm-1) Absorption band 

3327 OH stretching 

2883 C—H symmetric stretching 

1724 C=O stretching 

1623 OH bending of water 

1368, 1363 C—H bending 

1232 C—OH bending at carbon 6 of AGU 

1204 C—O—C symmetric stretching 

1152 C—O—C asymmetric stretching 

1046 C—C, C—OH and C—H ring vibrations 

1020 Different vibrations of C—C and C—O bonds 

897 C1—H bending, C—O—C vibrations 
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The peak at 1623 cm-1 (d) is due to O—H bending, not in cellulose itself but in water 

molecules that had been retained. The band at 1368 cm-1 (c) is related to C—H bending.  

The absorbance at 897 cm-1 (a) is particularly sensitive to a rearrangement of 

intramolecular hydrogen bonds, and thus to decrystallization [79]. In fact, besides XRD 

patterns (vid. 4.1. X-ray diffraction), spectra of cellulose in the mid-infrared region can be 

used to estimate the crystallinity index [68]. 

 

4.8. Laser diffraction spectrometry 

The particle size of mineral fillers used in papermaking is so small that mechanical 

retention is not enough (vid. 3.3.4. Wet end chemistry and the limitations of recirculating 

water). Besides fiber-filler and fiber-fine attachments, filler-filler aggregation is also 

desired. Fast flocculation is particularly appreciated, since long residence times in the 

head box are not feasible. To evaluate flocculation kinetics, Rasteiro et al. [64] proposed 

the use of laser diffraction spectrometry (LDS). 

Through devices such as Malvern’s Mastersizer, LDS provides the median 

equivalent spherical diameter of particles, its size distribution and the mass fractal 

dimension. But what is more remarkable is continuous data acquisition. Those 

measurements are performed and reported every few seconds. The sample medium, a 

dilute aqueous suspension with gentle or vigorous stirring, is suitable for flocculation. 

Hence, LDS can be used to monitor the process, to evaluate the effects of polymer 

concentration and to compare different polyelectrolytes [80]. 

Laser beams are diffracted upon the encounter with a particle. Particle size is 

obtained from the distribution pattern of the intensity of light diffracted by the particle. In 

order to calculate the former from the latter, researchers usually choose between the 

Fraunhofer diffraction theory, more simple, and the Mie scattering theory, much more 

complex. In Publication V, given the small size of the particles [64], the software was set 

to base the calculations on the Mie theory [81]. 

 

4.9. Potentiometric titration  

The charge density of a positively-charged solution can be determined by titrating 

with an anionic polyelectrolyte, whilst measuring the charge density of a negatively-

charged solution would require titrating with a cationic polyelectrolyte. Publications IV, V 

and VIII involved the use of sodium polyvinylsulfate (PVSNa) as the anionic polymer 

and polydiallyldimethylammonium chloride (PDADMAC) as the cationic polymer. A 

potentiometric titration, i.e., a volumetric titration whose endpoint is the neutralization of 
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charges —0 mV, isoelectric point—, was performed by means of a Charge Analysis 

System device from AFG. 

In Publication V, where cationic derivatives are soluble in water, the sample was 

dissolved and the titration was performed in a direct way with PVSNa. Measuring the 

charge of fibers, however, was not a straightforward task. In Publications IV and VIII, we 

decided to perform a back titration. Fibers were weighed (less than 0.3 g) and soaked, 

with no stirring, in excess polyelectrolyte of opposite charge (10 mL). The titrating agent 

was the polyelectrolyte whose charge was of the same sign as that of the initial sample. 

Publication IV presented an additional challenge. It was not easy to know whether 

the surface charge of fibers cationized for short reaction times was negative or positive. 

For some samples, it was necessary to test both polyelectrolytes as the titrating agent. 

The charge density (C), expressed in milliequivalents per gram of pulp, was 

calculated as follows: 

𝐶(
𝑚𝑒𝑞

𝑔⁄ ) = 𝑁𝑡𝑖𝑡𝑟𝑎𝑡𝑖𝑛𝑔(
𝑚𝑒𝑞

𝑚𝐿⁄ )
𝑉𝑏𝑙𝑎𝑛𝑘(𝑚𝐿)−𝑉𝑎𝑛𝑎𝑙𝑦𝑡𝑒(𝑚𝐿)

𝑚(𝑔)
 (9) 

In Equation 9, Ntitrating is the equivalent concentration or normality of the titrating 

solution, Vanalyte is the volume of titrating agent spent to neutralize the charge of the 

solution with the fibers, Vblank is the volume of titrating agent used to neutralize 10 mL of 

the polyelectrolyte of opposite charge, and m is the mass of analyte. 

 

4.10. Kappa number of pulps  

It is not easy to remove or isolate lignin from carbohydrates in wood or in vegetable 

biomass, not even for characterization purposes. The method developed by Klason 

(TAPPI T222, 2002), which is used by most authors to report the lignin content of 

lignocellulosic materials [82], is time-consuming and provides acid-insoluble lignin only.  

The kappa number, which is determined by following the ISO standard 302 (2015) 

or the TAPPI test method T236 (1999), is an easier and faster way to express the lignin 

content. However, this determination is restricted to pulps that have been severely 

delignified by chemical treatments —in other words, bleachable or bleached pulps. It 

does not yield acceptable results with raw materials or mechanical pulps. 

Regardless of the standard chosen, the kappa number is defined as the volume (in 

milliliters) of a 0.1N potassium permanganate solution that are consumed by 1 g of 

moisture-free pulp. Potassium permanganate can oxidize, with acceptable selectivity, 

double bonds in compounds that remains after chemical pulping, especially lignin. 

When the raw material is not xylan-rich, the kappa number is approximately 6.7 

times the lignin content in %. Nonetheless, materials with a high amount of xylan, such 
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as hardwoods, produce hexenuronic acids (HexA) during chemical pulping. The 4-O-

methylglucuronic acid units in xylan suffer an elimination reaction to generate 4-

deoxyhex-4-enuronic acids [83]. The double bond in carbon 4 is easily attacked by 

permanganate, thus giving out an overestimation of the lignin content in hardwood pulps. 

This is shown in Figure 22. Still, the kappa number is even a better expression for 

bleachability than the lignin content, since the bleaching process is negatively affected 

by HexA. 

We determined kappa numbers in Publications VI, VII and VIII. The pulp was soaked 

in excess potassium permanganate 0.1N and sulfuric acid (catalyst) at approximately 

25 ºC, for 10 min. The objective when deciding the amount of oxidant is that 

permanganate consumption must lie between 30% and 70%. The volume of 

permanganate spent on lignin oxidation can be estimated by a back titration. 

After 10 min, the reaction was stopped with potassium iodide. It was immediately 

oxidized to iodine by the remaining permanganate. A volumetric titration with sodium 

thiosulfate, using starch as the indicator, was carried out to reduce iodine back to iodide. 

This allowed us to determine the amount of iodine and, through stoichiometric 

calculations, the amount of potassium permanganate that reacted. The kappa number 

(KN) is given by: 

𝐾𝑁 =
𝑁𝑡ℎ𝑖𝑜𝑠𝑢𝑙𝑓𝑎𝑡𝑒(

𝑒𝑞
𝐿⁄ )

𝑁𝑝𝑒𝑟𝑚𝑎𝑛𝑔𝑎𝑛𝑎𝑡𝑒(
𝑒𝑞

𝐿⁄ )

𝑉𝑏𝑙𝑎𝑛𝑘(𝑚𝐿)−𝑉𝑎𝑛𝑎𝑙𝑦𝑡𝑒(𝑚𝐿)

𝑚(𝑔)
𝑓 (10) 

 

 

Figure 22. Typical contributions to the kappa number in conventional pulps used for 

papermaking [83]. 
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In Equation 10, Nthiosulfate is the normality of the titrating solution, Npermanganate is 0.1 

eq/L, Vanalyte is the volume of thiosulfate consumed by the test specimen, Vblank is the 

volume of thiosulfate consumed in the blank determination, m is the mass of moisture-

free pulp, and f is the factor for correction to a 50% permanganate consumption (TAPPI 

T236, 1999). 

 

4.11. Microscopy  

Scanning electron microscopy (SEM) is a non-destructive technique involving a 

focused beam of accelerated electrons to generate different signals at the surface of 

solid samples. These signals include secondary electrons which the device uses for 

imaging.  

The field emission microscope used in Publications IV and VIII, the model JSM-

6335F from JEOL, is so powerful that it can reach a magnification of 500000x [84]. 

Nonetheless, magnifications of 100x to 2000x were enough to visualize cellulosic fibers 

with good resolution, as presented in Figure 23 for example purposes. Fig. 23A, with a 

magnification of 100x, shows entire fibers. Fig. 23B, with a magnification of 1000x, allows 

us to appreciate the external fibrillation at the surface. 

Besides fibers in vacuum-dried pulp pads [5], SEM can produce images of the 

surface of a paper sheet and even cross-sectional views. This is particularly useful to 

evaluate the distribution of mineral fillers (Publications IV and VIII). In any case, the 

cellulose sample has to be coated with gold before the visualization. 

Another signal that is produced by the interaction of accelerated electrons with the 

sample consists on characteristic X-rays that can be used for elemental analysis [85]. 

For instance, when working with wheat straw pulps (Publication VIII), the SEM device, 

other than providing images, can estimate the amount of silicon that remains in a paper 

sheet. 

In Publication VI and in Aguado et al. [76], we used a totally different (but also 

powerful) device to measure the morphological characteristics of fibers –length, width, 

fibrillation, kinks, etc. The MorFi analyzer (Techpap) required to soak a small amount of 

pulp in water and put the dilute suspension under stirring. It also produced micrographs, 

but their quality was too low to be displayed in our publications. The spatial resolution 

was 3 µm, much larger than that of SEM. Instead of imaging for display purposes, 

Techpap’s software processed thousands of images to produce size distributions, 

population values and useful information about the shape of the fibers [86]. 
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Figure 23. Unpublished and discarded micrographs of an Organosolv pulp from orange tree 

trimmings, with a magnification of 100x (A) and 1000x (B). 

 

4.12. Drainage, retention and freeness 

The laboratory device Mütek DFR-05 from BTG simulates dewatering of a head box 

sample at the beginning of a paper machine. In Publications IV, VI and VIII, we placed 

the test furnish —fibers, fines, fillers and water— in the stirring chamber. The rotational 

speed and the time at which the chamber opens to begin dewatering, which could be 

associated with the residence time of the head box in a paper mill, are set in the software. 

The user can start a measurement after choosing the Drainage program, the Retention 

program or the Freeness program. Retention and drainage aids can be added at any 

moment via the dosing module of the device. 

A 

B 
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The terms drainage and freeness are frequently used interchangeably. Even the 

TAPPI test method T227 (2009) states that freeness equals drainage rate. However, the 

TAPPI methods to determine the drainage time (TAPPI T221, 1999) and the so-called 

drainage rate (freeness) involve clearly different operations.  

In our publications, the drainage rate is considered to be the relationship between 

the weight of the filtrate and the drainage time. Editors and reviewers have agreed to 

this. In Table 8, where key magnitudes and their units are shown, drainage and freeness 

are classified as different categories. 

The drainage behavior is studied by gravimetric measurements of the filtrate after 

a stirring period in which flocculation and deflocculation can occur, unlike in freeness 

determinations. Mütek’s software plots a line of filtrate weight (g) vs. time (s).  

Retention is expressed as percentage and it should not be confused with filler 

retention. The device is able to tell the amount of solids that remain after filtration, but 

not to distinguish between fines and fillers. For instance, to determine calcium carbonate 

retention, one could perform a complexometric titration with EDTA (Publication VI) or 

simply burn away the organic matter (ISO 1762, 2015). 

These determinations should be performed with the 100-mesh screen (aperture size 

of 149 µm) or with the 120-mesh screen (aperture size of 125 µm), as they resemble the 

wire of a paper machine. 

In order to determine freeness, specifically the Schopper-Riegler number, a 70-

mesh screen, whose aperture size is approximately 210 µm, must be used. No stirring 

should be applied. According to ISO 5267-1 (1999), the pulp must be diluted to 0.2% 

consistency with distilled water. Temperature should be adjusted to 20 ºC and the sample 

volume has to be 1 liter. 

While the Freeness program of the DFR-05 device conforms to ISO 5267-1 (1999) 

and the Schopper-Riegler number can be related to Canadian Standard Freeness (CSF) 

for any given raw material, CSF was preferred to express the effects of refining 

(Publications VI and VII). In this case, the pulp is diluted to 0.3% consistency, according 

to the ISO standard 5267-2 (2001) and the TAPPI test method T227 (2009). 

The apparatus for CSF determinations consisted on a chamber with a screen plate, 

a funnel with a spreader cone inside and a side orifice besides the normal orifice at the 

bottom, and a backing plate to support both parts. The furnish was charged into the 

chamber and left to rest. We opened the chamber and let the sample drain until it stopped 

going through the side orifice. This part was poured into a measuring cylinder with a 

sensitivity of ±1 mL, at least. The part of the filtrate which went through the bottom orifice 

was discarded. 
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Table 8. Magnitudes associated with drainage, retention and freeness.  

 Magnitude Unit 

Drainage Drainage time s 

Retention 
Total retention % 

Filler retention % 

Freeness 
Schopper-Riegler number ºSR (degrees) 

Canadian Standard Freeness mL 

 

If the test was carried out at 20 ºC and the consistency was 0.3%, the measured 

volume equaled CSF. Otherwise, correction factors were applied according to the TAPPI 

test method T227 (2009).
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The insertion of functional groups (particularly cationic groups) in starch and cellulose is especially useful with a view 
to developing new industrial polysaccharide derivatives. The aim of this work was to develop a standard protocol for 
the mercerization–cationization of cellulose fibres based on the kinetic equations governing the process. The 
cationization of NaOH-pretreated cellulose with an alkaline solution of 3-chloro-2-hydroxypropyltrimethylammonium 
chloride (CHPTAC) was found to be a pseudo second-order reaction. Under the experimental conditions used, the 
equilibrium condition for nitrogen as a quaternary ammonium ion in cellulose was dependent on the initial amorphous 
fraction of cellulose, as determined by X-ray spectroscopy. Also, the kinetic constant increased with an increasing 
amorphous fraction. However, the nitrogen content or degree of substitution in the carbohydrate reached near-
equalibrium values after relatively short reaction times. 

Keywords: mechanisms, kinetics, cellulose, mercerization, cationization, X-ray spectroscopy 

INTRODUCTION 
Cellulose, formed by repeated linkage of D-

glucose units, anhydroglucose units (AGU), is the 
most abundant natural resource. This 
homopolymer has a rigid, highly functionalized 
linear chain that is chiral, hydrophilic, 
biodegradable, and easily modified by chemical 
means or shaped into versatile semi-crystalline 
fibres.1 

Some chemical derivatives of cellulose play 
prominent roles in industrial production 
processes. Cellulose xanthate, cellulose acetate, 
carboxymethyl cellulose and cellulose nitrate are 
largely used in the manufacturing of plastics, 
fabrics, packaging, lacquer and explosives. Some 
recently developed cellulose derivatives are being 
explored for uses in textile finishing and sizing 
agents, absorbable surgical fat, protective 
colloids, adhesives, pharmaceutical creams and 
paper products, among others.1 

Developing new cellulose-based products 
entails subjecting the polymer to various 
pretreatments. For example, the treatment of 
textile cotton with concentrated sodium hydroxide  

patented by John Mercer in 1844 provides 
brighter, stronger cellulose fibres amenable to 
dyeing.2 This treatment, named “mercerization” 
after its developer, is still widely used, 
particularly in textile processes. 

Native cellulose (e.g., cotton linter) consists 
essentially of cellulose I, which is formed by 
parallel chains in a linear structure. In its reaction 
with an alkali, cellulose I swells and then shrinks 
when washed to form a new allomorph: cellulose 
II.3  The alkali penetrates fibres and causes 
parallel chains in cellulose I to rearrange into 
antiparallel chains of cellulose II.4 This change is 
irreversible and accompanied by a decrease in 
crystallinity and a reduction in the degree of 
polymerization. The new cellulose form has a 
more open structure and its fibres possess a higher 
specific surface area; as aresult, the hydroxyl 
groups in cellulose macromolecules are easier to 
access.5 The ordered structure of the crystalline 
form and the disordered structure of the 
amorphous form influence the accessibility and 
reactivity of cellulose fibres.6 
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Under specific conditions, a treatment with 
sodium hydroxide improves the mechanical 
properties of cellulose fibres to an extent 
considerably dependent on the treatment time and 
alkali concentration.7 Cellulose is modified more 
markedly by soda than is lignin.8  As a result, 
reacting cellulose with an aqueous solution of 
sodium hydroxide alters its morphological, 
molecular and supramolecular properties, thereby 
also changing its crystallinity, pore structure, 
accessibility, rigidity, unit cell structure and fibre 
orientation. Some other properties can be 
improved, including dimensional stability, 
fibrillation, tensile strength, dyeability, reactivity, 
brightness and softness in fabrics.9 

The structure of cellulose is commonly 
characterized by wide-angle X-ray spectroscopy. 
This technique has proven effective to distinguish 
between amorphous and crystalline cellulose 
andto assess the influence of crystallinity on the 
rate of hydrolysis.6,10 

Another line in the production of new cellulose 
derivatives involves the insertion of functional 
groups (e.g., cationic groups) into polysaccharide 
chains. While cationic starches are widely used by 
the paper industry to improve retention and 
draining properties in pulp, the cationization of 
cellulose is usually performed to improve affinity 
towards anionic dyes. Cationized cellulosic 
products are also useful for the removal of toxic 
heavy metals from wastewater.11 

These processes involve making the substrate 
react with an electrophilic reagent contaning a 
quaternary ammonium salt. The properties of the 
resulting cationized derivative are different from 
and often better than those of the starting 
substrate. Cationization of cellulose shows little 
negative impact on the mechanical properties of 
fibres, although brightness may decrease 
considerably.12 To date, no standard protocol for 
the mercerization–cationization of cellulose fibres 

has been reported, despite the industrial 
significance of the process. 

The primary aim of this work was thus to 
develop a standard protocol for the mercerization–
cationization of cellulose fibres based on the 
kinetic equations governing the process. The use 
of modified natural polysaccharides is currently 
regarded as a sustainable alternative to synthetic 
polymers and hence as specially desirable with a 
view to developing new, improved products.  

EXPERIMENTAL 
Mercerization 

The raw material used here was commercial 
medium-sized cellulose fibre (Aldrich ref. C6288), 
which was reacted with an alkaline solution of NaOH 
from Aldrich, in a batch reactor at room temperature. 
Nine mercerization experiments were carried out for 
different raction times and NaOH concentrations 
(Table 1). Afterwards, fibres were separated by 
passage through a Whatman Glass Microfiber Binder 
Free Grade GF/D filter (2.7µm) and washed with 
demineralized water. The alkalized cellulose thus 
obtained was dried in a vacuum stove at 45 ºC. 

Cationization 

The cationizing agent was an aqueous solution of 
3-chloro-2-hydroxypropyltrimethylammonium 
chloride (CHPTAC) at 60wt% from Aldrich. An 
amount of 20 g of dry alkalized cellulose was mixed 
with the reagent in a CHPTAC/AGU mole ratio of 4, 
an identical number of moles of CHPTA and 5% 
NaOH, and enough isopropyl alcohol to make to 1 L. 

The reactor was a 2 L three-mouthed spherical 
glass furnished with a refluxing condenser, a magnetic 
stirrer, heating controlled by an electronic PID device 
and a Pt-100 probe for temperature measurements. 
Temperature was held at 70 ºC, through the process. 
After the solution containing mercerized cellulose, 
sodium hydroxide and isopropyl alcohol was heated to 
setpoint temperature under stirring, the mixture was 
supplied with the CHPTAC via a funnel and the 
reaction timer started. 

Table 1 
Mercerization conditions: codification 

Reaction time (min) 
Soda concentration (%) 

60 120 180 

10 A1T1 A1T2 A1T3 
20 A2T1 A2T2 A2T3 
30 A3T1 A3T2 A3T3 
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Figure 1: Diffractograms of untreated cellulose (A0T0) and of samples alkalized with different NaOH 
concentrations and times 

Samples from the reaction mixture were withdrawn 
every 30 minutes by using a 50 mL wide mouth 
pipette. Immediately, they were diluted ten times with 
cold water to stop the reaction, passed through a 
Whatman Glass Microfiber Binder Free Grade GF/D 
filter (2.7µm), washed with demineralized water and 
dried in a vacuum stove at 45 ºC. Dried samples were 
kept sealed at room temperature.  

The process developed in two steps: first, formation 
of epoxypropyltrimethylammonium chloride 
(EPTMAC) by reaction with hydroxyl ions; second, 
nucleophilic substitution of the hydroxyl group bonded 
to C6 in the anhydroglucose unit (AGU). 

Characterization of samples 
Cellulose and alkalized cellulose samples were 

characterized by using a PANalytical powder X-ray 
diffractometer in combination with X’Pertsoftware. 

Carbon and nitrogen contents were determined by 
combustion on a LECO CNS-2000I elemental 
macroanalyser. 

RESULTS AND DISCUSSION 

X-ray diffraction spectroscopy 

Figure 1 shows the XRD patterns for the 
starting cellulose and alkalized cellulose at the 
preset 2θ° values used. We chose to represent the 
patterns in a staged manner in order to envisage 
the changes in the initial fibres under the effect of 
the alkaline treatmentmore easily. The structural 
changes undergone by cellulose in the treatments 

preceding cationization were used to examine 
their potential relationship to the cationization 
results. 

The changes caused by a NaOH concentration 
of 10% were minimal, even at the longest 
operation times used; however, they increased as 
the alkali concentration was raised and levelled 
off at 30%.  

Although the enzymatic and non-enzymatic 
reaction are additionally influenced by other 
factors, we used the crystallinity index (XRD CrI), 
and the fractions of amorphous cellulose (1 – 
Am), cellulose I (CI) and cellulose II (CII) in the 
starting alkalized cellulose to compare and 
interpret the results of the cationization process. 

Oh et al.16 previously examined the structure 
of cellulose treated with sodium hydroxide and 
carbon dioxide by X-ray difraction and FTIR 
spectroscopies. The crystallinity index (CrI) was 
calculated from the height ratio of the intensity at 
2θ = 22.5° for cellullose I, or the 101 reflection at 
2θ = 19.8° for cellulose II (crystalline height, 
hcr), to the height of the amorphous reflection 
corresponding to 2θ = 18.8° for cellulose I or 2θ = 
16.1° for cellulose II (amorphous height, ham), 
respectively.6 

The intensity of scattered diffracted light was 
measured in arbitrary units without normalization 
of the mass sample. Therefore, samples were 
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compared in terms of peak height ratios rather 
than absolute intensities. 
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As shown in Table 2, structural changes in 
cellulose under the influence of the treatments 
preceding cationization had a marked effect under 
the experimental conditions used. The conversion 
into cationized cellulose must be governed largely 
by those of cellulose I into cellulose II and of the 
latter into hydrated and amorphous cellulose II. 

Elemental analysis 

The amounts of elemental nitrogen 
incorporated as quaternary ammonium ions into 
cellulose under the effect of the cationization 
treatment after different reaction times are shown 
in Table 3. The results were processed with 
various kinetic models and a pseudo-second-order 
model was found to provide the best fit. 

The pseudo-second-order kinetic model 
originally proposed by Blanchard et al.17and Ho et

al.18 is typically applied to adsorption phenomena 
occurring in solution. These kinetic expressions 
have been applied to a variety of systems.19The 
theoretical background of the pseudo-second-
order rate equation has been examined by 
Azizian.20The kinetic constants of pseudo-second-
order models are combinations of the initial solute 
concentration and the adsorption and desorption 
constants.  

Table 2 
Crystallinity index of cellulose samples 

Allomorph A0T0 A1T1 A1T2 A1T3 A2T1 A2T2 A2T3 A3T1 A3T2 A3T3 
Cellulose I 0.52 0.53 0.56 0.45 0.50 0.50 0.53 0.14 0.13 0.05 
Cellulose II 0.31 0.32 0.29 0.31 0.33 0.34 0.31 0.50 0.51 0.55 
Cellulose amorphous 0.17 0.15 0.15 0.24 0.18 0.17 0.17 0.36 0.36 0.40 
XRD crystallinity 
index 

0.83 0.85 0.85 0.76 0.82 0.84 0.83 0.64 0.64 0.60 

Table 3 
Parameters of pseudo-second order rate equations 

Parameters of linearized equation A1T1 A1T2 A1T3 A2T1 A2T2 A2T3 A3T1 A3T2 A3T3 
Intercept: Neq

-2·K-1, min/%N 19.6 17.2 9.4 31.2 15.5 10.1 7.1 5.3 4.6 
Slope: Neq

-1, %N-1 9 6.8 5.8 7.7 6.8 5.4 1.5 0.64 0.56 
R2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 
Parameters of original kinetic 
equation  

A1T1 A1T2 A1T3 A2T1 A2T2 A2T3 A3T1 A3T2 A3T3 

Neq, %N 0.11 0.15 0.17 0.13 0.15 0.19 0.67 1.56 1.79 
NSDeq 0.013 0.018 0.020 0.015 0.018 0.022 0.084 0.217 0.257 
Neq

2K, %N/min 0.051 0.058 0.106 0.032 0.065 0.099 0.140 0.189 0.217 
K, (%N·min)-1 4.13 2.69 3.54 1.93 2.99 2.87 0.32 0.08 0.07 
RMSD/10-3 5.1 6.1 6.6E 3.9 4.7 5.1 33 67 78 

The proportion of epoxypropyl-
trimethylammonium chloride (EPTMAC) bound 
to cellulose in the cationization reaction was 
referred to that of elemental nitrogen fixed by 
cellulose. The driving force was the difference 
between the proportion of nitrogen fixed by 
cellulose at time t and the maximum (saturation or 
equilibrium) proportion. The rate equation in 

terms of the proportion of elemental nitrogen 
fixed by cellulose was: 

( )2
teq

t NNk
dt

dN
−=  (4) 

where Ntis proportional to the number of active 
sites occupied by the active cationic group on 
cellulose at time t and so is Neq to the number of 



Cellulose 

113 

sites available on cellulose fibres at equilibrium 
(both as percentages of elemental nitrogen). 

The integration of this differential equation 
under the boundary conditions t=0to t=t and 
Nt=0 to Nt=Nt yields: 

ktN

ktN
N

eq

eq

t
+

=
1

2

(5) 

which is the integral form of the equation for a 
pseudo-second-order reaction. Expressing this 
equation in terms of the time/fixed nitrogen 
proportion ratio leads to a linear function of time. 

The previous kinetic equation can be written in 
a linear form as: 

eqeqt kNN

t

N

t 1
+= (6) 

The concentrations of nitrogen at different 
reaction times t as determined by elemental 
analysis of dry cationized samples were used to 
plot the linearized form of the equation. If the 
assumption of a pseudo-second-order model is 
fulfilled, then the intercept of the curve will 
represent the highest proportion of elemental 
nitrogen incorporated by effect of the reaction 
ofepoxypropyltrimethylammonium chloride 
(EPTMAC), previously formed in the reaction 
between 3-chloro-2-hydroxypropyl-
trimethylammonium chloride (CHPTAC) with 
NaOH, with alkali-activated sites of the hydroxyl 
group on C6 in the anhydroglucose unit (AGU). 
Likewise, the slope of the curve will coincide 
with the reciprocalof the percent equilibrium 
(saturation) concentration.The figures of merit of 
the linearized equations as obtained by least-
squares regression are shown in Figure 2. As can 
be seen, the coefficients of correlation ranged 
from 0.98 to 0.99. 

The dotted lines in Figure 3 represent the 
experimental percent nitrogen contents as 
measured by elemental analysis as a function of 
the reaction time for cellulose treated with NaOH, 
whereas the solid lines represent the integrated 
kinetic equations in terms of parameters andK 
as calculated from the linearized equation:t/Nt vs. 
t (see Table 3). 

Table 3 also lists the root mean square 
deviation (RMSD) as a measure of differences 
between experimental values and predicted values 
(i.e., those obtained from the pseudo-second-order 
kinetic equation). The degree of nitrogen 
substitution (DNS) of the cellulose was calculated 
from the nitrogen content (%N) and the molecular 
weight of the anhydroglucose unit (AGU), 
162.15, using the following expression: 

N%.

N%.
DNS

×−

×
=

641511400

15162 (7) 

where %N denotes the percentage of dry 
elemental nitrogen, 1400 is 100 times the atomic 
weight of nitrogen and 151.64 the molecular 
weight of the epoxypropyltrimethylammonium 
chloride (EPTMAC) group added. 

Comparing theresults of this work with the 
results of De la Motte et al.,21 under the 
conditions leading to maximal incorporation of 
nitrogen in cationic form, DNS was greater in this 
work: 0.404 (i.e., 40.4%) at the maximum %N 
level. 

We used constant CHPTAC/AGU ratio, NaOH 
concentration and isopropyl alcohol proportion 
throughout. DNS for cationic starches typically 
ranges from 0.0075 to 0.1215 and increases with 
increasing reaction time and proportion of 
cationizing reagent. Our results are consistent 
with those of other studies.22 

Figure 2: Linearized representation of the pseudo-second-order rate equation: (A) of cellulose alkalized with 
10%NaOH; (B) of cellulose alkalized with 20%NaOH; (C) of cellulose alkalized with 30%NaOH  
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Figure 3: Nitrogen in cellulose vs. reaction time. Isolated points are the experimental data 

Figure 4: Nitrogen proportion (A) and constant of the pseudo-second-order rate equation (B), 
versus amorphous fraction of cellulose 

Based on available literature, DNS increases 
with an increase in the CHPTAC concentration; 
also, using an inadequate amount of NaOH 
hinders the formation of epoxide and alkoxides 
from the polysaccharide, whereas excess NaOH 
causes degradation of the epoxide and decreases 
the molecular weight of the product. 

Figure 4 shows the variation of Neq with the 
amorphous fraction of cellulose as calculated by 
XRD analysis of the starting alkalized cellulose. A 
comparison of the variation of Neqvs. the different 
cellulose allomorphs revealed that the best results 
were obtained by linearly fitting this parameter to 
the amorphous faction (AF): 

850795 .AF.Neq −=  (8) 

with R
2= 0.80. Likewise, the best fit with the 

pseudo-second-order rate constant k was provided 
by: 

K = −12.32AF + 4.84 (9) 
with R

2= 0.83. Despite the reduction in K, the 
overall rate of nitrogen fixation was greater under 
the influence of the amorphous fraction, 
increasing the proportion of fixed nitrogen at 
equilibrium. 

CONCLUSION 
Under the experimental conditions used in this 

work, the overall cationization reaction fits a 
pseudo-second-order kinetic equation. The 
reaction rate increases with the square of the 
difference between the equilibrium and the 
apparent concentrations of nitrogen. This squared 
difference decreases –and so does the reaction 
rate, in an asymptotic manner – as the amount of 
nitrogen fixed to cellulose approaches its 
equilibrium level.  
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As previously found for other chemical and 
enzymatic reactions, the reactivity of cellulose 
increases with an increasing proportion of the 
amorphous fraction (AF) to a greater extent than it 
does with the proportions of cellulose I (CI) and 
cellulose II (CII), even though the amorphous 
fraction (AF) is related to CII. 

The proportion of nitrogen at equilibrium in 
cationized cellulose increases linearly with 
increasing content of amorphous cellulose in the 
starting material. Initially, the reaction rate is 
comparatively high. As a result, the proportion of 
nitrogen reaches a near-equilibrium level within a 
short time (about 30 min). 
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5.2. Publication II. Cationization of alpha-cellulose to develop new 

sustainable products 
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Papermaking has been using high quantities of retention agents, mainly cationic substances and organic compounds such as
polyamines.The addition of these agents is related to economic and environmental issues, increasing contamination of the effluents.
The aim of this work is to develop a cationic polymer for papermaking purposes based on the utilization of alpha-cellulose. The
cationization of mercerized alpha-cellulose with 3-chloro-2-hydroxypropyltrimethylammonium chloride (CHPTAC) is governed
by a pseudo-second-order reaction. The initial amorphous fraction of cellulose is reacted with CHPTAC until the equilibrium
value of nitrogen substitution is reached. Nitrogen is incorporated as a quaternary ammonium group in the polymer. Also, the
kinetic constant increased with decreasing crystallinity index, showing the importance of the previous alkalization stage. The use
of modified natural polysaccharides is a sustainable alternative to synthetic, nonbiodegradable polyelectrolytes and thus is desirable
with a view to developing new products and new processes.

1. Introduction

Paper manufacturing processes require the addition of reten-
tion agents for (i) compacting the pulp, formed by anionic-
charged biopolymers, and (ii) avoiding industry wastewater
effluents containing high amounts of microfibers that are
released from the original pulp [1, 2]. Traditionally, paper-
making has used high quantities of retention agents, mainly
cationic substances such as inorganic aluminium compounds
(aluminium sulphate and poly(aluminium chloride)), and/or
certain organic compounds, mainly polyamines [3]. The
addition of these agents is related to economic and envi-
ronmental issues, as they induce the apparition of adherent
flocs [4] increasing contamination of the effluents. This has
awakened the scientific community’s interest to explore new
alternatives. In the last decades, semisynthetic compounds
manufactured from natural polymers (e.g., highly cationic
starch) have also been employed in papermaking indus-
tries [5–10]. Modification of natural polymers in order to
achieve new materials with specific properties can be carried
out by cationization. In fact, in many industries, cationic

polysaccharides are replacing the traditional consumption of
cationic polyacrylamides for their use as colloid flocculants,
due to their lower toxicity and less legal restrictions on their
consumption [11].

The cationic modification of cellulose commonly goes
by the etherification with a 2-hydroxy-3-(trimethylammo-
nium)propyl group, which can be obtained by the reaction
of the biopolymer and 2,3-epoxypropyltrimethylammonium
chloride (EPTAC). EPTAC, however, is an unstable and toxic
reagent that cannot be used in industrial applications [11]. An
alternative is the use of 3-chloro-2-hydroxypropyltrimeth-
ylammonium chloride (CHPTAC). CHPTAC has been suc-
cessfully used for the cationization of cellulose [12–15], textile
fibres [16–20], and other polysaccharides such as agarose or
backbone of tamarind kernel polysaccharide (TKP), among
others [21, 22]. The flocculation efficiencies achieved for the
resulting products are similar to those obtained with classical
commercial polyacrylamides [21].

A three-step mechanism was proposed for the reaction
of CHPTAC and cellulose. In the first, fast reaction, the
chlorohydrin CHPTAC is converted to the epoxide EPTAC.
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Then, a hydroxyl group of the cellulose is converted into
an alkoxide by reacting with a base (e.g., NaOH). Finally,
the alkoxide from cellulose reacts with EPTAC, resulting
in cationized cellulose. A secondary reaction could occur
between EPTAC and water, which must be avoided as the
formed diol is unable to react with cellulose, increasing the
cost of the cationic modification [11, 12, 23]. During cation-
ization, the degree of substitution is highly influenced by the
quantity of base added. This addition is necessary not only
to generate EPTAC from CHPTAC, but also to weaken the
hydrogen bonds between molecules, making cellulose more
accessible [17]. Therefore, it can be used as a pretreatment,
taking into account the fact that an excess of base favours
polysaccharide hydrolysis and epoxide degradation towards
the aforementioned diol.

Cellulose is a linear homopolymer composed of a-
D-glucopyranose units linked by 𝛽-1,4-glycosidic bonds
(C6𝑛H10𝑛 + 2O5𝑛 + 1 (𝑛 = degree of polymerization of
glucose)). Native cellulose is essentially cellulose I, which has
a structure made of parallel chains [24]. When subjected to
strong alkaline media during the alkalization-cationization
process, cellulose becomes swollen and, upon washing,
shrinks back to yield a new allomorph, cellulose II [25, 26],
within the crystalline domains [27–29]. X-ray diffraction
gives the most direct results for the characterization of
the crystalline structure of cellulose [30–32]; however, its
interpretation is still under discussion.

The objective of this work is to develop a cationic poly-
mer for papermaking purposes based on the utilization of
alpha-cellulose. X-ray measurements were used to study the
crystalline structure and the kinetic equations governing the
process are discussed to find out the optimal concentrations
of reagents. The use of modified natural polysaccharides is
currently regarded as a sustainable alternative to synthetic
polymers and hence as specially desirable with a view to
developing new improved products.

2. Experimental

2.1. Alkalization. The raw material used was commercial 𝛼-
cellulose (AldrichC8002). Reactions took place in a 2 L three-
mouthed spherical glass reactor with a refluxing condenser,
a magnetic stirrer, heating controlled by an electronic PID
device, and a Pt-100 probe to measure temperature, which
was kept at 25∘C.NaOHpellets were purchased fromAldrich.
In each experiment, 25 g of cellulose (on the basis of dry
pulp weight) was mixed with 500mL of an aqueous NaOH
solution (10–30% w/w). Nine alkalization experiments were
carried out for different reaction times andNaOH concentra-
tions (Table 1). Afterwards, fibres were separated by passage
through a Whatman Glass Microfiber Binder Free Grade
GF/D filter (2.7 𝜇m) and washed with demineralized water.
The alkalized cellulose thus obtained was dried in a vacuum
stove at 45∘C.

2.2. Cationization. The cationizing agent was an aqueous
solution of 3-chloro-2-hydroxypropyltrimethylammonium
chloride (CHPTAC) at 60% (w/w) from Aldrich.The process

Table 1: Mercerization conditions: codification.

Soda concentration (%) Reaction time (min)
30 60 90

10 A1T1 A1T2 A1T3
20 A2T1 A2T2 A2T3
30 A3T1 A3T2 A3T3

was carried out in two steps: first, formation of epoxypropy-
ltrimethylammonium chloride (EPTAC) by reaction with
hydroxide ions, and second, nucleophilic substitution of the
hydroxyl group bonded to C

6
in the anhydroglucose unit

(AGU).
An amount of 20 g of alkalized cellulose (on the basis of

dry pulp) was mixed with the reagent in a CHPTAC/AGU
mole ratio of 4, assuming that the material is wholly con-
stituted by anhydroglucose units. A volume of 395mL of
an aqueous NaOH solution at 5% (w/w) was added. Then,
the mixture was completed with enough isopropyl alcohol to
achieve a final volume of 1 L. The reactor was the one used in
the previous alkalization step and the temperature was held
at 70∘C through the process.The reaction timer started when
the setpoint temperature was reached.

Samples from the reactionmixture were withdrawn every
30 minutes by using a 50mL wide mouth pipette. Immedi-
ately, they were diluted ten times with cold water to stop the
reaction, passed through aWhatmanGlassMicrofiber Binder
Free Grade GF/D filter (2.7𝜇m), washed with demineralized
water, and dried in a vacuum stove at 45∘C. Dried samples
were kept sealed at room temperature.

2.3. Characterization of Samples. Cellulose and alkalized
cellulose samples were characterized by using a PANalytical
powder X-ray diffractometer in combination with the X’Pert
software. Adopting the two-phase theory of structure and the
amorphous halo correction, the crystallinity index (CrI) was
obtained from the X-ray diffraction curves [33].

Carbon and nitrogen contents were determined by com-
bustion on a LECO CNS-2000I elemental macroanalyser.
Knowing the amounts of nitrogen incorporated as quaternary
ammonium into cellulose by effect of the cationization
treatment, the degree of substitution was determined. The
carbon content was used to apply a correction to systematic
errors.The results could be processed to evaluate the kinetics
models [32, 34, 35].

3. Results and Discussion

3.1. X-Ray Diffraction Spectroscopy. Figure 1 shows the XRD
patterns for the starting cellulose and alkalized cellulose at
the preset 2𝜃∘ values used. We chose to represent the patterns
in a staged manner in order to more easily envisage changes
in the initial fibres by effect of the alkaline treatment. The
structural changes undergone by cellulose in the treatments
preceding cationization were used to examine their relation
to the cationization results. The changes caused by a NaOH
concentration of 10% were minimal, even at the longest
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Figure 1: Diffractograms of untreated cellulose and of samples alkalized with different NaOH concentrations and times. (a) NaOH 10%. (b)
NaOH 20%. (c) NaOH 30%. (d) A1T1 after deconvolution.

operation times used; however, they increased as the alkali
concentration was raised.

Although the enzymatic and nonenzymatic reaction are
additionally influenced by other factors, we used the crys-
tallinity index (CrI) and the fractions of cellulose I and
cellulose II in the starting and alkalized cellulose to compare
and interpret the results of the cationization process.

Park et al. [36] previously examined the structure of
cellulose treated with sodium hydroxide and carbon dioxide
by X-ray diffraction and FTIR spectroscopy.The crystallinity
index was calculated from the height ratio of the intensity
at 2𝜃 = 22.5∘ for cellulose I, or the 101 reflection at 2𝜃 =
19.8∘ for cellulose II (crystalline height, hcr), to the height
of the amorphous reflection corresponding to 2𝜃 = 18.8∘ for
cellulose I or 2𝜃 = 16.1∘ for cellulose II (amorphous height,
ham), respectively [6]. While the peak height method is
widely used to measure the crystallinity index, due to its
simplicity, it produces an overestimation of this index and
neglects the influence of peak width [37]. We measured the
proportion of cellulose I (CI) and that of cellulose II (CII) by
using the peak height (see (1)), but the crystallinity index was
determined following the XRD deconvolution method, and
thus using the peak area:

CI = 1 −
ℎam
ℎcr

ℎam
ℎcr
=

𝐼18.8min
𝐼19.8max + 𝐼22.5max − 𝐼18.8min

CII =
𝐼12.1

𝐼12.1 + 0.5 (𝐼14.6 + 𝐼16.1)
.

(1)

Gaussian deconvolution was performed with Systat’s PeakFit
software. The crystallinity index was calculated by dividing
the sum of the areas of the five crystalline peaks (101, 10𝑖, 021,
002, and 040) by the total area [37]. Figure 1(d) shows the
crystalline peaks of sample A1T1 after deconvolution, as an
example.

As is shown in Figure 2, structural changes in cellulose by
effect of the treatments preceding cationization were notori-
ous under the experimental conditions used. The conversion
into cationized cellulose must be governed largely by that of
cellulose I into cellulose II and the latter into hydrated and
amorphous cellulose.

For a NaOH concentration of 10% (Figure 2(a)), the
CI was still the most frequent allomorph. The crystallinity
index decreased very slightly through the alkalization step.
When the alkali concentration was 20% (Figure 2(b)), the
CI fraction decreased once the alkalization step started,
whereas the percentage of CII increased from 0 to 90min.
The conversion of CI into CII was faster for the highest NaOH
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Figure 2: Crystallinity index and ratios of CI and CII for various NaOH concentrations and times. (a) NaOH 10%. (b) NaOH 20%. (c) NaOH
30%.

concentration (Figure 2(c)).The crystallinity index decreased
abruptly with NaOH concentration.

3.2. Elemental Analysis. The results were processed with
various kinetic models and a pseudo-second-order rate
equation was found to provide the best fit. The pseudo-
second-order kinetic model proposed by Blanchard et al.
[38] is typically applied to adsorption phenomena occurring
in solution. These kinetic expressions have been applied to
a variety of systems [39]. The theoretical background has
been examined by Azizian [40]. The kinetic constants of
pseudo-second-order models are combinations of the initial
solute concentration and the adsorption and desorption
parameters.

The proportion of EPTAC bound to cellulose in the
cationization reaction was referred to that of elemental nitro-
gen fixed by cellulose. The driving force was the difference
between the proportion of nitrogen fixed by cellulose at time
𝑡 and the maximum (saturation or equilibrium) proportion.
The rate equation in terms of the proportion of elemental
nitrogen fixed by cellulose was

𝑑𝑁
𝑡

𝑑𝑡
= 𝑘 (𝑁eq − 𝑁𝑡)

2
, (2)

where 𝑁
𝑡
is proportional to the number of active sites

occupied by the active cationic group on cellulose at time 𝑡
and so is 𝑁eq to the number of sites available on cellulose
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fibres at equilibrium (both as percentages of elemental nitro-
gen).

Integration of this differential equation under the bound-
ary conditions 𝑡 = 0 to 𝑡 = 𝑡 and𝑁

𝑡
= 0 to𝑁

𝑡
= 𝑁
𝑡
yields

𝑁
𝑡
=
𝑁2

eq𝑘𝑡

1 + 𝑁eq𝑘𝑡
, (3)

which is the integral form of the equation for a pseudo-
second-order reaction. Expressing this equation in terms of
the time/fixed nitrogen proportion ratio leads to a linear
function of time.

The previous kinetic equation can be written in linear
form as

𝑡

𝑁
𝑡

=
𝑡

𝑁eq
+

1
𝑘𝑁eq

(4)

The concentrations of nitrogen at different reaction times 𝑡 as
determined by elemental analysis of dry cationized samples
were used to plot the linearized form of the equation. If
the assumption of a pseudo-second-order model is fulfilled,
then the intercept of the curve will represent the highest
proportion of elemental nitrogen incorporated by effect of
the reaction of EPTAC, previously formed in the reaction
between CHPTAC and NaOH, with alkali-activated sites
of the hydroxyl group on C

6
in the anhydroglucose unit

(AGU). Likewise, the slope of the curve will coincide with
the reciprocal of the equilibrium (saturation) concentration.
The figures of merit of the linearized equations as obtained
by least-squares regression are shown in Figure 3. As can be
seen, the coefficients of correlation ranged from 0.97 to 0.99.

The dotted lines in Figure 4 represent the experimental
percent nitrogen contents as measured by elemental analysis
as a function of the reaction time for cellulose treated
with NaOH, whereas the solid lines represent the integrated
kinetic equations in terms of parameters𝑁eq and𝐾 as calcu-
lated from the linearized equation: 𝑡/𝑁𝑡 versus 𝑡 (Table 2).

Table 2 also lists the root mean square deviation (RMSD)
as a measure of differences between experimental values
and predicted values (i.e., those obtained from the pseudo-
second-order kinetic equation). The degree of nitrogen
substitution (DNS) of the cellulose was calculated from
the nitrogen content (%N) and the molecular weight of
the anhydroglucose unit (AGU), 162.15, using the following
expression:

NSD = 162.15 ×%N
1400 − 151.64 ×%N

, (5)

where %N denotes the percentage of dry elemental nitrogen,
1400 is 100 times the atomic weight of nitrogen, and 151.64
is the molecular weight of the epoxypropyltrimethylammo-
nium chloride (EPTMAC) group added.

Comparing the results of this work with the results of de
la Motte and Westman [41], under the conditions leading to
maximal incorporation of nitrogen in cationic form,DNSwas
greater in this work: 0.404 (i.e., 40.4%) at the maximum %N
level.

We used a constant CHPTAC/AGU ratio, NaOH concen-
tration, and isopropyl alcohol proportion throughout. DNS
for cationic starches typically ranges from 0.0075 to 0.1215
and increases with increasing reaction time and proportion
of cationizing reagent. Our results are consistent with those
of other studies [42].

Based on the available literature, DNS increases with
increase in the CHPTAC concentration; also, using an inad-
equate amount of NaOH hinders formation of the epoxide
and alkoxides from the polysaccharide, whereas excessNaOH
causes degradation of the epoxide and decreases the molecu-
lar weight of the product.

Figure 5 shows the variation of 𝑁eq and 𝑘 with the
amorphous fraction (AF) of cellulose (see (6)). 𝑁eq was
linearly fitted to the amorphous faction (see (7)). Hence,

AF = 1 − CI − CII (6)

𝑁eq = 6.94AF − 0.996 (7)

with𝑅2 = 0.98. Likewise, the best fit with the pseudo-second-
order rate constant 𝑘 was provided by

𝑘 = 9.33AF + 8.27 (8)

2with
 
𝑅

 
=

 
0.78.

 
Overall,

 
the

 
rate

 
of

 
nitrogen

 
substitution

 
was

found to increase with increasing amorphous fraction. The 
more severe the conditions of the alkalization stage were, the 
faster the cationization

 
reaction occurred and the higher the 

equilibrium value was.  

4. Conclusion

Under the experimental conditions used in this work, the
overall cationization reaction fits a pseudo-second-order
kinetic equation. The reaction rate increases with the square
of the difference between the equilibrium and the appar-
ent concentrations of nitrogen. This squared difference
decreases—and so does the reaction rate, in an asymp-
totic manner—as the amount of nitrogen fixed to cellulose
approaches its equilibrium level.

As previously found for other chemical and enzymatic
reactions, the reactivity of cellulose increases with decreasing
crystallinity index and increasing amorphous fraction to a
greater extent than it does with the proportion of cellulose II
(CII), even though the amorphous fraction is related to CII.

The proportion of nitrogen at equilibrium in cation-
ized cellulose increases linearly with increasing content of
amorphous cellulose in the starting material. Initially, the
reaction rate is comparatively high.As a result, the proportion
of nitrogen reaches a near-equilibrium level within a short
time (about 30min). To obtain cationic cellulose with a
high substitution degree, it is advisable to have a previously
performed alkalization stage under severe conditions.
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Table 2: Parameters of pseudo-second-order rate equations.

Parameters of original
kinetic equation A1T1 A1T2 A1T3 A2T1 A2T2 A2T3 A3T1 A3T2 A3T3

𝑁eq, %N 0.11 0.15 0.17 0.13 0.15 0.19 0.67 1.56 1.79
DNSeq 0.013 0.018 0.020 0.015 0.018 0.022 0.084 0.217 0.257
𝑁2

eq𝑘, %N/min 0.051 0.058 0.106 0.032 0.065 0.099 0.140 0.189 0.217
𝑘, (%N⋅min)−1 4.13 2.69 3.54 1.93 2.99 2.87 0.32 0.08 0.07
RMSD/10−3 5.1 6.1 6.6 3.9 4.7 5.1 33 67 78
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Figure 3: Linearized representation of the pseudo-second-order rate equation for cationized cellulose, previously alkalized with (a) NaOH
10%, (b) NaOH 20%, and (c) NaOH 30%.
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Figure 4: Percentage of nitrogen in cellulose after cationization following alkalization with aqueous solutions of (a) NaOH 10%, (b) NaOH
20%, and (c) NaOH 30%.
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Abstract: Researchers have studied the cationization of polysaccharides to replace conventional cationic polyelectrolytes,
linked to environmental issues. However, cationic celluloses have not achieved the success of cationic starches. The
knowledge of the cellulose cationization proccess needs to be improved. In this work, we pretreat (alkalize) and cationize
cotton linters and α-cellulose powder, using 3-chloro-2-hydroxypropyltrimethylammonium chloride (CHPTAC) in an
aqueous-alcoholic alkaline solution. The pretreatment took place under different conditions, whereas the cationization itself
was always performed at 70 ºC, for a CHPTAC/AGU (anhydro glucose units) mole ratio of 4, and for a total time of 5 h for
cotton linters or 100 min for α-cellulose powder. The degree of substitution, the crystallinity index and the temporal evolution
of intrinsic viscosity are provided for the 18 experiments performed. The background was uncertain about the effect of
cationization on intrinsic viscosity. Here, we report increasing viscosity with increasing degree of substitution and
cationization time. Furthermore, intrinsic viscosity increased with increasing cationization time, even when the degree of
substitution had leveled off. Seemingly, the incorporation of positive charges into cellulose changed the polymer distribution
and the interactions between the polymer and the solvent.

Keywords: Alkalization, Cationization, Cellulose, Viscosity

Introduction

Polysaccharides can be cationized towards sustainable

polymers to be used for flocculation processes in wastewater

and industrial effluent treatment, or in papermaking and

petroleum industries, replacing non-biodegradable synthetic

polyelectrolytes [1]. Results are often comparable to those

obtained with conventional flocculation agents, such as cationic

polyacrylamides, polyethyleneimine, and polyDADMAC.

Alternatively, instead of using cationic polysaccharides to

replace conventional polyelectrolytes, they can be combined

with anionic polyacrylamides to improve their performance

[2].

Researchers have studied the use of cationic derivatives

from starch, dextran, cellulose, xylan, chitosan, inuline, and

other polysaccharides for the aforementioned purposes [3-

8]. Among them all, cellulose is the most abundant in nature.

However, while cationic starches are already well-known

and widely used for industrial applications, the cellulose

cationization process still needs to be studied and optimized.

Since this polymer is water-insoluble, mixing a cellulose

suspension with a cationizing agent is not enough to obtain

cationic cellulose. Further research is necessary to find

pretreatments, reagents or solvents to solubilize and/or increase

the reactivity of cellulose, thus obtaining high degrees of

substitution [9,10].

One of the most popular reagents to produce cationic

cellulose is 3-chloro-2-hydroxypropyltrimethylammonium

chloride (CHPTAC), always used with an aqueous NaOH

solution. Using this chlorohydrin, the process generally

involves three stages. 2,3-epoxypropyltrimethylammonium

chloride (EPTAC) is formed by reaction between CHPTAC

and hydroxide ions. Also, the hydroxyl group bonded to C6

in some anhydroglucose units (AGU) undergoes etherification

with NaOH, resulting in an alkoxyde group. Then, a

substitution occurs, a cationic 3-(trimethylammonium)propyl

group being introduced into the AGU structure. Figure 1

shows these steps and a secondary reaction consisting of the

loss of EPTAC towards 2,3-dihydroxypropyltrimethylammonium

chloride by hydrolysis. The mechanism is described in more

detail elsewhere [8,11].

It is unclear how the cationization process affects the

intrinsic viscosity of a cellulose solution. According to Song

et al. [9], intrinsic viscosity increases with increasing degree

of substitution and depolymerization of cellulose is

negligible, but Yan et al. [12] found the opposite, attributing

the diminishment of viscosity to depolymerization and

hydrophilicity. The conditions were very similar, although

the former authors used CHPTAC and the latter ones used

EPTAC directly. This difference, however, does not seem

enough to explain the discrepancy, given that direct

functionalization with EPTAC requires less alkali, and there

is no difference in the functional group introduced.

Comparing the intrinsic viscosity of cellulose suspensions or

solutions, before and after a chemical treatment, is a very

valuable way to estimate the changes in molecular weight

[13,14], but viscosity is influenced by other factors. As we

lack a complete theoretical explanation of the influence of

molecular mass and electrostatic interactions on viscosity,

experiments are needed to study each case [15].*Corresponding author: amoram@upo.es

DOI 10.1007/s12221-016-5819-y
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In this work, we wish to make a contribution to the state of

the art of cellulose cationization and, specifically, to

something as uncertain as the influence of cationization on

viscosity. Cationic cellulose samples obtained after different

pretreatments and with different degrees of substitution are

analysed. We discuss the influence of process variables on

the intrinsic viscosity of cationic cellulose produced from

two different materials.

Experimental

Materials

Two commercial cellulose-based materials were used in

this study: medium-length fibers from cotton linters (Aldrich

C6288), coded as C1, and α-cellulose powder (Aldrich

C8002), coded as C2. Their viscosity (η), their fiber length,

and their crystallinity index (CI) are presented in Table 1.

NaOH pellets and 2-propanol were provided by Panreac.

Alkalization of Cellulose

The alkalization process was carried out at room temperature,

in a 2 l spherical glass reactor with refluxing condenser and

magnetic stirrer. In each run, 25 g of cellulose (on the basis

of dry pulp weight) were mixed with 500 ml of an aqueous

NaOH solution. Two factors were changed at three levels:

reaction time (30, 60, and 90 min) and NaOH concentration

(10, 20, and 30 % w/w), as Table 2 shows. Taking the two

different materials used into account, the number of different

experiments performed was 18. After the reaction time was

reached, the suspension was cooled down and separated by

filtration, aperture size being 2.7 μm. The solid fraction

(alkalized cellulose) was washed with demineralized water

and then dried in a vacuum stove at 45 ºC and 10 kPa.

Cationization of Alkalized Cellulose

An aqueous solution of 3-chloro-2-hydroxypropyltri-

methylammonium chloride (CHPTAC) at 60 % (w/w) was

purchased from Aldrich. 20 g of alkalized cellulose (on the

basis of dry pulp) were put in the spherical reactor. Cellulose

was mixed with 134 ml of the CHPTAC aqueous solution.

This implies a CHPTAC/AGU (anydro glucose units) mole

ratio of 4. A volume of 395 ml of an aqueous NaOH solution

at 5 % (w/w) was added. The mixture was completed with

isopropyl alcohol to reach a volume of 1 l. This alcohol was

used by Kweon et al. [10] in starch cationization to minimize

starch swelling. The timer started when the temperature of

the mixture reached 70
oC. This temperature was held

constant by heating, controlled by an electronic PID device

and measured by a Pt-100 probe. It is a suitable temperature,

according to Ren et al., who performed cationization

experiments between 50 ºC and 80 ºC [18].

Reaction time was 300 min for C1 and 100 min for C2. 10

samples were taken in each of the 18 runs, immediately

diluting them with cold water to stop the reaction. They were

filtered (again, aperture size of 2.7 μm), washed with

demineralized water and dried at 45 ºC and 10 kPa.

Characterization of Samples

The content of carbon and nitrogen was measured by

using a LECO CNS-2000I elemental macroanalyser. The

degree of nitrogen substitution was calculated from the

amount of nitrogen, incorporated as quaternary ammonium,

in the structure of cellulose [19]:

(1)

To compensate random errors, this result was corrected

with the deviations in the carbon content. The mass percent

of carbon in cellulose is 44 %, and thus the preliminary DNS

result was multiplied by %C/44.

The intrinsic viscosity of all samples was determined

according to the ISO 5351-1 standard, using a capillary

viscometer and an aqueous cupriethylenediamine solution as

the solvent.

In order to measure crystallinity, we obtained XRD patterns

with a PANalytical’s X-ray diffractometer. Diffraction

patterns were deconvoluted by a Gaussian algorithm with

Systat’s PeakFit software, calculating the area under each of

DNS
162.15 %N×

1401 151.64 %N×–
-----------------------------------------------=

Figure 1. (a) Formation of epoxypropyltrimethylammonium

chloride (EPTAC) from 3-chloro-2-hydroxypropyltrimethylammonium

chloride (CHPTAC), (b) alkalization of cellulose, (c) cationization of

cellulose, and (d) hydrolysis of EPTAC.

Table 1. Key characteristics of the raw materials

Code Material Fiber length
CI

(%)

η 

(ml/g)

C1 Cotton linters 1.5-5 mm mainly 68.0 218

C2 α-cellulose powder 75-150 μm mainly 49.9 242
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the peaks. The crystallinity index (CI) was determined by

dividing the area under the five crystalline peaks by the total

area [20,21].

Results and Discussion

Degree of Substitution

The longer the alkalization pretreatment, whose aim was

to decrease crystallinity [16], and the higher the soda

concentration, the higher the degree of substitution (DNS)

was, as it can be seen in Table 2. The only exception is

C1A2T3, but it is likely due to the random error of the

measurements. After alkalizing under severe conditions, the

degree of substitution is one order of magnitude higher than

when using mild conditions. These results were expected,

since the amorphous proportion of cellulose is more reactive

than the crystalline one [11,17]. DNS is higher for the α-

cellulose powder, more accessible, than for fibers from

cotton linter, but the difference between them was found to

be smaller than expected. Hence, particle size has little

influence compared to crystallinity, the index of the α-

cellulose powder (49.9 %) being lower than that of cotton

linters (68.0 %), as shown in Table 1. It should be noted that

crystallinity indices obtained by area-based methods are

lower and more accurate than those obtained by height ratios

between crystalline and amorphous peaks [11,21].

These degrees of substitution reached are not as high as

the highest values obtained by Song et al. [9], who used urea

to increase accessibility even more, achieving a DNS of up

to 0.6. However, these values are in the same order of

magnitude, and slightly lower than the DNS values obtained

by Ren et al. [18] at a temperature of 70 ºC.

Influence of the Alkalization Pretreatment on Viscosity

Clearly, both for C1 and C2, and for each of the sampling

times, intrinsic viscosity (η) after cationization was higher

when the pretreatments had been severe, as Table 2 shows.

Particularly, the influence of concentrarion was larger than

that of time. For both cotton linters and α-cellulose powder,

the three highest DNS values correspond to the three lowest

CI values. The influence of these pretreatments is explained

mainly by how they ease cationization, making cellulose

more accesible and reactive. Due to the same reason, severe

alkalization treatments resulted in a more abrupt increase of

viscosity with cationization time. The pretreatments themselves

had little effect on viscosity, as can be seen from Figures 2 to

7 at time zero. This agrees with studies on the mercerization

of cotton [22]. Nonetheless, η was observed to increase,

slightly but significantly, with increasing NaOH concentration,

probably due to the ionization of cellulose (-OH in carbon 6

to -O
−

Na+), since ionization of polymers is usually related to

chain stiffness [23].

It can be concluded that the higher the degree of substitution,

the higher the intrinsic viscosity. Pearson’s r, also provided

in Table 2, was calculated from DNS and viscosity values

for the two materials studied. There is a good correlation for

cationized cotton linters, r being over 0.9. Hence, when it is

complicated to perform an elemental analysis, intrinsic viscosity

Table 2. Experimental planning for the pretreatment and degrees of substitution reached after cationization

Experiment
NaOH concentration 

(%)

Time 

(min)

CI after alkalization 

(%)

DNS after 

cationization

η after cationization 

(ml/g)
Pearson’s r

C1A1T1 10 30 66.7 0.011 207

0.915

C1A1T2 10 60 66.7 0.016 222

C1A1T3 10 90 60.5 0.021 243

C1A2T1 20 30 65.8 0.020 277

C1A2T2 20 60 66.6 0.022 286

C1A2T3 20 90 64.0 0.013 314

C1A3T1 30 30 51.1 0.094 461

C1A3T2 30 60 50.4 0.189 463

C1A3T3 30 90 47.8 0.204 517

C2A1T1 10 30 49.9 0.013 267

0.806

C2A1T2 10 60 49.4 0.018 288

C2A1T3 10 90 43.5 0.020 301

C2A2T1 20 30 31.9 0.015 413

C2A2T2 20 60 33.0 0.018 426

C2A2T3 20 90 32.3 0.022 433

C2A3T1 30 30 18.9 0.084 472

C2A3T2 30 60 18.8 0.217 530

C2A3T3 30 90 19.5 0.257 568
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can be used to roughly estimate the degree of substitution.

These results support the ones obtained by Song et al. [9].

They were not completely expected, as viscosity could have

decreased due to hydrolysis of cellulose in a strong alkaline

medium [12]. While there could have been some degradation

of both cellulose and CHPTAC to a certain extent, other

factors had a greater effect. Polarity, structure, and all possible

interactions between the polymer and the solvent have an

effect on intrinsic viscosity. Furthermore, polymers bearing

electric charges are more difficult to predict than neutral

polymers. Due to the charges, the polymer chains surrounded

by solvent may become almost fully extended. This increases

friction and thus viscosity. The Mark-Houwink equation is

well-known:

(2)

In equation (2), K and a are positive constant parameters,

η KM
a

=

Figure 2. Viscosity of cationized cotton linters after pretreatments

performed with NaOH (10 % w/w).

Figure 3. Viscosity of cationized cotton linters after pretreatments

performed with NaOH (20 % w/w).

Figure 4. Viscosity of cationized cotton linters after pretreatments

performed with NaOH (30 % w/w).

Figure 5. Viscosity of cationized α-cellulose after pretreatments

performed with NaOH (10 % w/w).

Figure 6. Viscosity of cationized α-cellulose after pretreatments

performed with NaOH (20 % w/w).

Figure 7. Viscosity of cationized α-cellulose after pretreatments

performed with NaOH (30 % w/w). 
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while M is the average molecular weight of the polymer. The

exponent of the molecular weight, a, rarely exceeds 0.8 for

neutral polymers. Nonetheless, for polyelectrolytes, a can

approach 2 [13]. Since cationic celluloses are interpoly-

electrolytes, their a should take an intermediate value.

Influence of Cationization Time on Viscosity

The temporal evolution of intrinsic viscosity of cotton

linters during cationization is presented in Figures 2, 3, and 4

for NaOH concentrations of 10 %, 20 %, and 30 % (w/w),

respectively. Likewise, Figures 5, 6, and 7 show the results

for α-cellulose powder.

Through cationization, for both raw materials and regardless

of the pretreatment performed, the intrinsic viscosity of the

cellulose suspension increased with time. This can be

explained by the changes in the flexibility of the polymer

chains, which decreases [22], and by the electrostatic

interactions, including hydrogen bonds, that are intensified

by the introduction of positive charges in cellulose.

It has been pointed out that Song et al. found that

cationization causes viscosity to increase [9]. However,

those authors stated that viscosity increased with increasing

DNS, while we found that viscosity increases with

cationization time, even if the degree of substitution stays

the same. According to cationization kinetics, DNS reaches

its equilibrium value and then it levels off or even decreases

due to degradation of CHPTAC [18]. For these conditions,

the highest DNS is reached after 60 or 90 min and then the

degree of substitution fluctuates around that value [11].

Seemingly, under dillution and stirring, the hydrodynamic

behavior of cationic celluloses with a certain DNS keeps

changing.

Conclusion

Cotton linters and α-cellulose powder were cationized

with CHPTAC in aqueous-alcoholic alkaline solutions to

degrees of substitution of 0.204 and 0.257, when the

materials had been pretreated with NaOH (30 % w/w) for

90 min.

Intrinsic viscosity of cationic cellulose was found out to

increase with the degree of substitution, which is dependent

on the severity (i.e., soda concentration and time) of the

alkalization pretreatment. The introduction of positive

charges changes how the polymer chain is distributed in

space, increasing its persistence length, and how it interacts

with the solvent and with other chains. Thus, for a given

reaction time, viscosity measurements could be used as a

quick way to estimate the degree of substitution.

Also, regardless of the degree of substitution, cationization

time was found out to cause intrinsic viscosity to increase.

For cellulose from severely-pretreated cotton linters, viscosity

varied from 218 to 517 ml/g. For severely-pretreated α-

cellulose, viscosity increased from 242 to 568 ml/g.
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Abstract: A partial cationization of cellulosic pulps has 
been suggested to enhance the retention of fillers and 
fines in the paper and board manufacturing industry. 
The challenge is the highly crystalline structure of cellu-
lose and the mass transfer limitations of softwood fibers, 
which are long and resistant to and hinder the chemical 
reactions. In the present paper, it was demonstrated that 
refining (leading to decrystallization) and alkaline treat-
ments facilitate the subsequent cationization process 
with quaternary ammonium groups. Cationization was 
performed with 3-chloro-2-hydroxypropyltrimethylam-
monium chloride (CHPTAC) at 120°C for 2 h, and degrees 
of substitution above 0.3 were achieved. Beating to 4000 
or 4500 PFI revolutions was found to be an optimum to 
achieve these high degrees of substitution. Mixing a small 
percentage (4%) of cationized pulp (with a charge den-
sity of approximately 0.8 meq g−1) with the untreated pulp 
could compensate for the negative surface charge of the 
original fibers. In this way, the highest charge density and 
opacity of the paper and the best retention of fines were 
achieved. If cationization was implemented in a paper 
mill, it should follow, not precede, the refining stage.

Keywords: amorphization of cellulose, cationization of 
cellulose, cationization of wood fibers, fines retention, 
pine kraft pulp, refining

Introduction
The negative surface charge of cellulosic fibers in water, 
nearly 20 μeq g−1, causes some trouble in the manufactur-
ing of paper and board, given the repulsive forces between 
fibers and fines (Sood et  al. 2010). Furthermore, in the 
usual pH range (7.5–8.5) in the fiber suspension of a paper 
machine, the surface of most mineral fillers is negatively 
charged. Because their particle size is lower than the aper-
ture size of the wire in a paper machine, the use of floc-
culation agents is mandatory. It is also the reason why 
papermakers usually rely on cationic wet strength agents 
(Dang et al. 2007; Schäfer et al. 2007; Postma et al. 2014; 
Aguado et al. 2015).

Replacing some hydroxyl groups with positively 
charged groups, i.e. producing cationic fibers (CF), would 
reduce the need for synthetic polymeric aids and even 
enhance the wet strength (Besemer et  al. 2005; Moral 
et  al. 2016a). The stock would be prepared by mixing 
non-treated fibers with a small percentage of positively 
charged pulp to make the net charge density or the global 
zeta potential approach zero. Cationization is usually 
performed via reacting the substrate with an electro-
philic reagent containing a quaternary ammonium salt 
(Šimkovic et al.  1990; Yan et al. 2009). The cationization 
of cotton for textile applications is well documented, but 
few studies deal with the production of cationic fibers for 
papermaking purposes (Fang et  al. 2005; Acharya et  al. 
2014). Sang and Xiao (2009) prepared papermaking-
oriented cationic fibers with diallyldimethylammonium 
chloride (DADMAC) and found that the retention and dis-
tribution of a clay filler was improved.

Pulp from pine wood, usually obtained by the kraft 
process, is the most common raw material for manufac-
turing paperboard, package paper and, mixed with euca-
lyptus wood pulp, printing paper (Baptista et  al. 2006). 
However, the large moiety of crystalline cellulose from 
wood is resistant to chemical modifications, due to intra-
molecular and intermolecular hydrogen bonds. The crys-
tallinity index is commonly estimated by X-ray diffraction 
(XRD) (Park et al. 2010). Certain XRD peaks are linked to 
crystalline conformations, normally cellulose Iβ in native 
wood cellulose. Alkaline treatments (mercerization at 
low temperatures) convert the allomorph cellulose I to 
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cellulose II with different crystalline characteristics (Ioel-
ovich 2016; Moral et al. 2016b). The thermodynamic stabil-
ity and the packing density of the paracrystalline parts in 
cellulosic fibers are lower than those of crystalline parts 
and are more accessible and more reactive, and prone to 
modifications (Buschle-Diller and Zeronian 1992). As a 
drawback, their length tends to shrink (Ward 1950), and 
the extreme processes required to lower the crystallinity 
negatively affect the strength of the final product.

A higher accessibility of cellulose in fibers can be 
achieved by refining. This process step is always performed 
to different degrees in all paper and board mills in order to 
increase the tensile strength via strengthening the fiber-to-
fiber bonding (Laine et al. 2004). After refining, structural 
changes occur such as fiber shortening and internal and 
external fibrillation (Carrasco et al. 1996; Bhardwaj et al. 
2007). Choi et al. (2016) found that the crystallinity index 
decrement of cellulosic pulps after swelling with NaOH 
was more abrupt if the pulps had previously been refined.

Refining also changes the electrokinetic proper-
ties of fibers by increasing their negative surface charge 
(Bhardwaj et al. 2004, 2007; Banavath et al. 2011). In the 
case of cationized pulps, it is plausible to assume that 
refining would lead to a higher positive surface charge for 
a given degree of substitution. To the best of our knowl-
edge, this was not investigated earlier in terms of conveni-
ent and effective chemical modifications (cationization) 
of pulp fibers. The present study aimed to evaluate the 
properties of cationized Pinus pinaster fibers to improve 
retention of precipitated calcium carbonate (PCC) in the 
usual pH range during paper and board manufacturing. 
In focus will be the relationship between refining, fiber 
morphology, crystallinity index, degree of substitution, 
charge density, apparent density, and retention.

Materials and methods
An unbleached kraft pulp from pine wood (Pinus pinaster Ait.) was 
obtained from Tolsa S.A (Madrid, Spain). NaOH pellets, 2-propanol, 
ethylenediaminetetraacetic acid (EDTA), ammonia and ammonium 
chloride were obtained from Panreac (Barcelona). Sigma-Aldrich 
(Barcelona) provided the cationizing agent, an aqueous solution of 
3-chloro-2-hydroxypropyltrimethylammonium chloride (CHPTAC). 
PCC was applied as a filler, as it is the most usual filler in the paper 
industry, with a median equivalent spherical diameter (d50) of 5.5 μm.

The experimental procedure and the analyses performed are 
presented in Figure 1.

Refining and fiber characterization: Pine kraft pulp was diluted to 
1.5% consistency and disintegrated at 3000 rpm for 10 min, with a 
Lorentzen and Wettre (Stockholm, Sweden) device that conforms 

to ISO 5263 (ISO TC/6 2011). Refining was performed by means of a 
Maskin’s Mark VI PFI mill (Hamar, Norway) (0.37 kW) following ISO 
5264/2. Seven refining intensities were chosen at 3500, 3750, 4000, 
4250, 4500, 4750 and 5000 PFI revolutions. The drainage capabili-
ties of the unbeaten and beaten pulps were measured with a Cana-
dian Standard Freeness (CSF) tester, in accordance with the Tappi 
method T 227 (1999). Enough replicates were made so that the relative 
standard deviation (StD) remained below 2%. The dimensions and 
populations of fibers were measured by a MorFi fiber analyzer from 
Techpap (France). Each suspension was prepared by diluting 1 g of 
pulp in 600 ml of water. The software (V. 7.9.13E) was adjusted to stop 
imaging after counting 5000 fibers and then the average values were 
calculated. Each measurement was repeated three times (see Moral 
et al. 2010).

Alkalization: All reactions were carried out in a 2 l three-neck spher-
ical glass reactor equipped with a refluxing condenser and magnetic 
stirring. Among the eight pulps (the original one as control pulp and 
the seven refined ones), the refined pulps at 0, 3500, 4000, 4500 and 
5000 PFI revolutions were selected for alkalization and cationization. 
In each experiment, 20 g of pulp (b.o. dry pulp) was soaked in a 10% 
NaOH aq. solution. After 1 h of vigorous stirring at room temperature, 
the fibers were separated by filtration over a Whatman Glass Micro-
fiber GF/D filter (2.7 μm), and washed with demineralized water.

Cationization: Alkalized cellulose was mixed with the reagent in a 
CHPTAC/AGU mole ratio of 4, adding a 5% NaOH solution dropwise 
so that the NaOH/CHPTAC mole ratio became 1, and enough isopropyl 
alcohol was added to have a 1 l suspension. Heating to 120°C for 2 h 
(heating mantle) was controlled via a Pt-100 probe and an electronic 

Figure 1: Schematic diagram of the operations and analyses.
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PID device. The heating time began from Tmax. Afterwards, the cation-
ized pulp was diluted to lower the pH, separated from the liquid with 
the aforementioned filter, carefully washed, and dried in a vacuum 
furnace at 45°C. Washing ensured that the small portion of cellulose 
that became water soluble after cationization was removed.

Determination of cationicity: The N-content of the cationized sam-
ples was measured by an LECO CNS-2000I elemental analyzer (LECO 
Instrumentos, Madrid, Spain). The charge density was determined 
via automatic potentiometric titration [Charge Analysis System (CAS) 
device from AFG]. The equipment is designed for liquids, and thus 
a back titration mode was applied instead of the direct approach. A 
small amount of fibers (less than 0.3 g) were soaked in excess sodium 
polyvinylsulfate (3 ml of PVSNa, 1.8 meq l−1) as an anionic polyelectro-
lyte. No stirring was applied, because the surface charge and not the 
total charge should be neutralized. Water was immediately added to 
make up to 10 ml and the resulting liquid was titrated with polydial-
lyldimethyl-ammonium chloride (PDADMAC, 2.2 meq l−1) as a cationic 
polyelectrolyte. The endpoint of the titration was the isoelectric point 
(0 mV). Reversely, to measure the charge density of the control pulp 
(pine kraft pulp before treatments), a sample was soaked in PDAD-
MAC and the titration was carried out against the anionic electrolyte.

Characterization of pulps: The original pulp and the alkalized 
samples were grinded and submitted to a PANalytical’s powder XRD 

equipped with X’Pert software. The 2θ angle ranged from 10° to 45°. 
The limiting viscosity number of all cationic samples and of the origi-
nal pulp was determined according to the ISO 5351-1 standard, in a 
capillary viscometer and an aqueous copper (II) ethylenediamine 
(Cuen) solution as solvent.

The bulk density was measured in a novel way. In each case, 
a suspension of disintegrated pulp was dewatered on a wire screen 
to obtain a test pad of fibers. After drying at room temperature at a 
relative humidity (RH) of 50% for 48 h, the density of the test pad was 
determined with a pycnometer for solids and liquids, as described in 
T258 om-02 for the basic density determination of pulpwood chips, 
but gallium at 30–50°C was the agent instead of water. In this tem-
perature range, the surface tension of gallium is even higher than 
that of mercury at 25°C, and thus this liquid metal does not penetrate 
into the pores (Poole 2004). The raw density value was multiplied by 
6.095 g cm−3, the density of gallium at 30°C (Hardy 1985).

Selected pulps were observed by scanning electron microscopy 
(SEM) with magnifications of 100× and 1000× (JEOL device, model 
JM-6400). Fibers were put on a cylindrical slide, which was dried at 
45°C and 200 mbar and coated with gold. Another device from JEOL, 
a model JSM-6335F, was used to study the distribution of PCC on the 
surface of handsheets, with and without cationic fibers.

Performance in papermaking: The retention of fillers and fines was 
studied by a laboratory device DFR-05 from Mütek. Four percent 

Figure 2: It is shown how fibers are slightly shortened by refining and how freeness is clearly reduced.
Effect of refining on (a) fiber length, (b) fiber population, (c) proportion of microfibrils on the fiber surface, and (d) Canadian Standard Freeness.
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cationized pulp was combined with the original pulp refined to 3500 
PFI revolutions (96%) and a suspension with a 0.5% consistency was 
prepared with tap water of conductivity 500 μS cm−1. This suspension 

was mixed with PCC (0.2 g PCC as filler per gram dry pulp) to obtain 
a total mass of 800 g. The pH of the suspension was adjusted to 7.5 
by adding HCl or NaOH dropwise. The retention program of Mütek’s 

Figure 3: Chemical treatments damaged the surface, especially if the pulp had been refined.
Micrographs for (a) original kraft pulp (100×), (b) original kraft pulp (1000×), (c) pulp after alkalization and cationization (100×), (d) pulp 
after alkalization and cationization (1000×), (e) pulp after refining to 4500 PFI revolutions, alkalization and cationization (100×), (f) pulp 
after refining to 4500 PFI revolutions alkalization and cationization (1000×).
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software was applied to the fiber mixture under stirring (200 rpm for 
60 s, and then at 300 rpm for 30 s). The suspension went through a 
100-mesh screen, corresponding to a wire size of 0.11 mm.

As the DFR device does not distinguish between fillers and 
fines, the filtrate was submitted to a complexometric titration with 
EDTA to determine the amount of PCC with eriochrome black T as the 
indicator. The pH was kept around 10 by adding a buffer solution of 
ammonia and ammonium chloride. The amount of PCC retained is 
the difference between the PCC mass furnished initially and that in 
the filtrate. Five isotropic sheets were made from each of the follow-
ing materials: kraft pulp, kraft pulp/PCC (8/2), and kraft pulp/PCC/
cationic fibers (77/20/3), while the cationic fibers were beaten to vari-
ous refining degrees. To this purpose, a laboratory sheet former was 
applied according to the ISO standard 5269/1 (ISO TC/6 2011). Agita-
tion was carried out by hand, with a standard stirrer. The sheets were 
left to dry between rings to keep them pressed, at 23°C and 50% RH. 
The basis weight was 60 g m−2. The opacity was determined by means 
of an Elrepho spectrophotometer from Lorentzen and Wettre with a 
C/2° light source, following ISO 2471 (ISO TC/6 2011).

Results and discussion

Influence of refining and chemical 
treatments on morphology

The dimensions of the native fibers from pine are reported 
in the literature (Sable et  al. 2012). Figure  2 presents 
the results of average fiber length (weighted in length), 
number of fibers (length higher than 100 μm) and per-
centage of microfibrils over the fiber surface (area-based 
calculations), obtained by means of the morphological 
analysis. Freeness decrement is visible as a function of 
refining (Figure 2d). The fiber shortening (Figure 2a) and 
the increasing protrusion of the microfibrils (Figure 2c) are 
also presented. Kraft pulps from hardwoods, in contrast, 
may need only 3000 PFI revolutions to achieve the values 
obtained for the pine kraft pulp after 5000 PFI revolutions 
(Bhardwaj et al. 2007). Compared with other fiber sources, 
softwood pulp needs the most energy for noticeable free-
ness differences. During refining, fibers undergo shear and 
compression. The generation of fines (length <100  μm) 
is evidenced by the cutting of fibers (Figure 2a). These 
secondary fines increase the water retention of the web, 
filling the gaps between fibers and lead to lowering CSF 
data. Refining to 3750 PFI revolutions slightly increased 
the fiber population because some fibers were cut. After 
a long beating time, the mechanical damage resulted in a 
notorious fiber loss from 10.8 M g−1 to 9.6 M g−1.

The SEM images in Figure  3 reveal that the control 
pulp is nearly not curled (Figure 3a) and that their sur-
faces contain only a few microfibrils (Figure 3b). Alkali-
zation and cationization of this unrefined pulp increased 

the number of curls, but the fibers were swollen to a lesser 
extent than expected (Figure 3c). As can be seen from 
Figure 3d, the fiber surface became much rougher and the 
fiber wall was clearly peeled due to the chemical damage. 
When the pulp was refined to 5000 PFI revolutions and 
then pretreated and cationized, extreme internal and 
external fibrillation was found (Figure 3e), and at the 
end, the fiber walls were nearly destroyed (Figure 3f). It is 
obvious that refining to a certain extent before cationizing 
increases the specific surface area.

Influence of refining on decrystallization 
and charge

The XRD patterns displayed in Figure  4 resemble the 
typical shape of cellulose Iβ, which is the main cellulose 
polymorph in wood. Miller indices are assigned to the 
most prominent peaks, based on the suggestions of French 
(2014). Despite the treatment with NaOH, there was little 
conversion to cellulose II. The most prevalent peaks of 
this polymorph, which correspond to the planes (110) 
and (020), should appear at 20.1° and 21.5°, respectively. 
At most, the (200) peak of cellulose Iβ became slightly 

Figure 4: X-ray diffraction patterns for the original pulp and for the 
alkalized samples after refining.
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lopsided. Nonetheless, partial amorphization of fibers is 
visible after pretreatments. The intensity of the crystalline 
peaks at 15° and 16.5° decreased after alkalization, and 
this decrease was found to be more abrupt in the case of a 
preceding beating at 4000 PFI revolutions or more. There 
is an evident diminishment in the area under the peaks 
for the plane (200) of cellulose Iβ (22.5°) and (004) of both 
cellulose Iβ and cellulose II (34.6°).

The crystallinity index (CI) listed in Table 1 was esti-
mated from the diffraction patterns by performing a 
Gaussian deconvolution with Systat’s Peakfit software, 
identifying four crystalline peaks, and dividing their area 
by the total area according to Eq. (1) (Park et  al. 2010). 
Also, as a way to estimate the conversion of cellulose I 
to cellulose II, the area of the distinguishable crystalline 
peaks associated with cellulose I after deconvolution 
was divided by the area of the distinguishable crystalline 
peaks associated with cellulose II (Eq. 2). Overlapping 
peaks with those of other polymorphs were omitted. This 
is only a comparative estimation, and it is not representa-
tive of the quantitative conversion of cellulose I to cellu-
lose II.

	

Area (1 10) Area (110) Area (200) Area (004)CI
Total Area

− + + +=
�
(1)

	

I I

II

Area (110) Area (200) Area (004)Cell IA
Cell II Area (110) Area (004)

+ +− =
− + �

(2)

Refining enhanced the interactions between the 
hydroxide and the fibers during alkalization and led to 

a crystallinity decrement. Nonetheless, its influence on 
the conversion of cellulose I into cellulose II is not clear 
(Table 1). Refining increases the negative surface charge of 
fibers (Banavath et al. 2011) because of the enlarged area 
and the higher amount of hemicelluloses in the fiber wall. 
Alkalization alone produces a higher value, even without 
refining, because the hydroxyl groups in cellulose are 
ionized.

Characterization and testing of cationized 
pulps

Elemental analysis data of CF are presented in Table  2. 
To calculate the degree of nitrogen substitution (DNS) of 
the CF, it was assumed that they consist entirely of anhy-
drohexose units. The amount of anhydropentose units is 
low because of the alkaline hydrolysis of hemicelluloses 
during kraft pulping (Deutschle et al. 2014; Postma et al. 
2014) and their molecular mass is around 30 Da or lower. 
Hence, Eq. (3) contains the molecular mass of an anhy-
drohexose unit (162 Da), together with that of the quater-
nary ammonium group (152 Da) and 100 times the atomic 
mass of nitrogen (Moral et al. 2015).

	

162 %N
DNS

1401 152 %N
=

−
�

(3)

The degree of substitution (DS) was in the high range for 
insoluble cationic cellulose. According to Besemer et  al. 
(2005), the functionalization of fibers should not reach 

Table 1: Key properties of the alkalized pulps before functionalization, compared to the original pulp.

Sample Control pulp

PFI revolution

0 3500 4000 4500 5000

CI 0.81 0.73 0.64 0.62 0.62 0.59
A(Cell-I)/A(Cell-II) 3.01 2.29 2.23 2.60 2.08 2.19
Surface charge (meq g−1) –0.033 –0.044 –0.061 –0.065 –0.065 –0.068

Table 2: Key properties of the cationized pulps, compared to the original pulp.

Sample   Control pulp
 
 

Cationic fibers refined to PFI revolutions

0  3500  4000  4500  5000

%N   0  2.00  2.36  2.52  2.55  2.24
DNS   0  0.296  0.367  0.401  0.408  0.342
Limiting viscosity number (ml g−1)   1232  1637  1773  1759  1803  1720
Surface charge (meq g−1)   –0.033  0.442  0.613  0.793  0.854  0.724
Apparent density (g cm−3)   0.57  0.45  0.42  0.44  0.40  0.40
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more than 30 cationic groups per 100  monomers; oth-
erwise a lot of water-soluble polyelectrolytes may arise. 
Regardless of the pretreatment, the yield was approxi-
mately 95%, as the high DP of cellulose from pine wood 
and its high crystallinity prevented the polymer from 
being dissolved. Overall, the DS increased with decreas-
ing crystallinity, because amorphous and paracrystalline 
cellulose is less stable thermodynamically and more reac-
tive than cellulose I and cellulose II (Poletto et al. 2014). 
The exception was the pulp with the lowest crystallinity 
fraction, likely because the part with the highest DS was 
solubilized. The charge density followed the DS trend. The 
4% CF would be sufficient to neutralize the global surface 
charge when the cationized pulp is refined.

Cationization has a positive effect on the pulp vis-
cosity and a negative effect on the apparent density of 
the pulp pads. The former is due to the changes in the 
spatial distribution of the cellulose chains in fibers, which 
become stiffer (Moral et al. 2016b). The latter is explained 
by the strong positive charge of the cationic fibers, which 
are repelled from each other, and by the breakage of inter-
molecular hydrogen bonds.

Enhancement of retention

The performance of the CF refined to different levels 
is illustrated in Figure  5. Mechanical retention of PCC, 
without aids, did not reach 55% (Figure 5a), as the aper-
ture size of the wire was much larger than the particle size 
of PCC. There is no appreciable difference in filler reten-
tion (Figure 5a). To the best of our knowledge, so far, CF 

have only been proved to improve kaolin retention (Sang 
and Xiao 2009). The filler has a strongly negative zeta 
potential and its retention is favored by charge neutraliza-
tion. PCC may require a flocculation agent (a soluble poly-
electrolyte), regardless of the surface charge of the fibers. 
Nonetheless, the total retention of solids was clearly 
improved by the presence of CF. Therefore, the insertion 

Figure 5: Results for the pine kraft pulp (77%) and PCC (20%), when 
mixed or not with cationic fibers (3%).
(a) Total retention and retention of PCC; (b) C/2° opacity.

Figure 6: Addition of cationic fibers seemed to improve filler distribution.
Micrographs of the paper surface for (a) pine kraft pulp with PCC, (b) pine kraft pulp with PCC and cationic fibers that had been refined to 
4500 PFI revolutions.
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of cationic functional groups in some fibers increased 
the retention of pulp fines. The results were particularly 
good for the CF refined to 4000 and 4500 PFI revolutions, 
matching their high surface charge. In these cases, the 
pulp loss was less than 1%.

Because of the reduced loss of fines, the opacity was 
increased by the addition of CF, particularly when its DS 
was high (Figure 5b). Fines fill the gaps between fibers in 
the paper web, blocking the light in a higher degree for a 
given basis weight.

As the SEM images demonstrate in Figure 6 (surface 
of isotropic sheets with PCC without flocculants), cationic 
fibers modified the filler distribution. Figure 6a shows a 
very heterogeneous distribution of the calcium carbonate 
particles, which became aggregated in the area circled. 
These particles are more evenly distributed in Figure 6b, 
due to the addition of CF with the highest surface charge, 
enhancing fiber-filler bonding. A small amount of CF 
can both increase the bulk and the apparent density and 
improve the optical properties.

Conclusions
A previous refining stage before alkaline treatment facil-
itates the insertion of quaternary ammonium groups 
with a positive charge. Refining enhances the effect of 
the decrystallization and increases the external area of 
the fibers and improves mass transfer. In terms of the 
wet-end chemistry in a paper mill, the heavily refined 
cationic fibers have a larger contact surface, which 
likely improves the fiber-fine interactions. Beating to 
4000 or 4500 PFI revolutions is advisable to achieve 
the highest DS possible. With a charge density of ca. 
0.8 meq g−1, 4% of CF mixed with the untreated pulp is 
able to compensate the negative surface charge of the 
original fibers. As a result, the retention of pulp fines 
is improved and the opacity is increased. However, 
cationization does not replace the polyelectrolytes for 
adsorbing PCC particles.
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Abstract Water-soluble cationic cellulose deriva-

tives were synthesized by three different procedures,

cationizing bleached hardwood kraft pulp with (3-

chloro-2-hydroxypropyl) trimethylammonium chlo-

ride. The first procedure involved a previous depoly-

merization step with orthophosphoric acid. The

second one consisted on dissolving cellulose in

NaOH/urea before cationization. For the third proce-

dure, the reaction medium was heterogeneous since it

was carried out with a part of cellulose with high

degree of polymerization. Oppositely to the common

methods, cationization occurred under mild condi-

tions. Differences among the three derivatives are

illustrated by X-ray diffraction patterns of pretreated

samples, infrared spectra, and determinations of the

degree of substitution, the zeta potential, the charge

density and the molecular weight. The performance of

these polyelectrolytes for the flocculation of mineral

fillers used in papermaking was tested by laser

diffraction spectrometry. The flocculant with the

highest degree of polymerization and charge origi-

nated the best results, particularly when the filler used

was kaolin, proving that water-soluble cationic cellu-

lose derivatives can aid in the flocculation of fillers

used in papermaking. On the contrary, the shortest-

chained derivative was not effective. The results were

interpreted in terms of the characteristics of the

cellulose derivatives flocculants and of the fillers,

and neutralization and patching were proposed as the

dominant mechanisms.

Keywords Cationization � Cellulose � Fillers for
papermaking � Flocculation � Laser diffraction
spectrometry

Introduction

Non-renewable and scarcely biodegradable polymeric

aids, such as cationic polyacrylamides (CPAM) or

polyethyleneimine (PEI), are often applied in paper

mills to achieve good retention of mineral fillers. The

particle size of these fillers is generally much smaller

than the wire mesh at the forming and drainage section

of the paper machine, and thus mechanical retention
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alone, if no flocculation agents are used, results in high

losses (Allen 1985). Cationic polyelectrolytes, besides

enhancing retention, improve the drainage behavior

and sheet formation, compensating somehow the

disruption of fiber bonding caused by fillers (Antunes

et al. 2008a).

Environmental concerns have led to research into

alternative flocculation agents to be used in different

fields, dedicating efforts to obtain cleaner and/or

cheaper polyelectrolytes from natural and renewable

sources. Introducing cationic ammonium groups into

polysaccharides has been the answer for many

researchers, given their availability and biodegrad-

ability. Starch, guar gum, cellulose, dextran and

chitosan, among others, have been proved useful

(Wood and Mora 1963; Prado and Matulewicz 2014).

Nonetheless, while cationic starch and cationic guar

gum have found good markets in the manufacturing

industries (QY Research 2017), the production of

cationic derivatives from the most abundant and

available of all polysaccharides, cellulose, remains

scarce. Although they are sold as cosmetic ingredients

(Kozubal et al. 2014), their potential in the paper

industry is being missed.

Yan et al. (2009) produced water-soluble cationic

cellulose (WSCC) from microcrystalline cellulose to

enhance flocculation in wastewater treatments. A

similar procedure, i.e., dissolving short-chained cel-

lulose in NaOH/urea and then performing cationiza-

tion in a homogeneous medium, was followed by Li

et al. (2015) aiming at using it as filler modifier. Other

authors started from chemically modified cellulose,

e.g., cellulose acetate and hydroxyethyl cellulose, as

raw materials to obtain WSCC (Liesiene 2010;

Liesiene and Kazlauske 2012). Those substrates

consisted of alkali-soluble cellulose or modified

cellulose with low degrees of polymerization (DP).

The resulting cationic derivatives, obtained by means

of epoxypropyltrimethylammonium chloride

(EPTAC) or (3-chloro-2-hydroxypropyl) trimethy-

lammonium chloride (CHPTAC), were not only

soluble in aqueous alkaline solutions but also in water.

However, solubilizing wood pulp in aqueous media is

much tougher. Actually, total dissolution of high-DP

a-cellulose may be simply impossible (Qi et al. 2011).

Short-chained WSCC may be adequate for floccu-

lation by charge neutralization, as long as particles

with negative zeta potential at the working pH are

involved, but due to its small DP, it is not a good

option for flocculation by bridging, which is the

primary mechanism of particle aggregation in the first

stage of the process. In fact, it was proved that the

bridging mechanism dominates when polymers of

high molecular weight and medium charge density are

used (Rasteiro et al. 2008a).

In order to obtain high molecular weight WSCC,

solubility in water must be achieved by the introduc-

tion of enough ionic groups into high-DP cellulose,

such as that from wood. Previous studies report the

production of cationic fibers with a degree of substi-

tution around 0.2, which can be useful for some

applications, but is still too low to promote solubility

(Moral et al. 2016).

Cellulose-based polyelectrolytes from birch wood

pulp were produced by Liimatainen et al. (2011) and

Sirviö et al. (2011). Instead of using NaOH and

CHPTAC or EPTAC, they performed a previous

oxidation step with sodium periodate, and then

cationized the substrate with Girard’s reagent. They

were able to incorporate more than one cationic group

per monomer, thus obtaining a very high degree of

substitution (and consequently high charge density).

In spite of its high DP, this polymer was water-soluble

due to its high ionic character. However, to simulta-

neously improve retention and drainage in papermak-

ing, an agent of medium charge density is more

appealing than a highly charged one, as the latter

adopts a conformation that favors patching but hinders

bridging (Antunes et al. 2008b).

In this paper, the syntheses of three different water-

soluble cationic cellulosic derivatives from bleached

hardwood kraft pulp are reported. The conditions

applied, based on a previous kinetic study (Moral et al.

2016), are not as harsh as those usually reported in

literature (Song et al. 2008; Sirviö et al. 2011; Acharya

et al. 2014), since the reaction times are smaller,

making the process more feasible. Characterization of

the derivatives involved elemental analysis, X-ray

diffraction patterns and infrared spectra. Their charge

density, viscosity and zeta-potential were measured.

Their performance was tested by laser diffraction

spectrometry (LDS)with three differentmineral fillers:

precipitated and ground calcium carbonate (PCC and

GCC, respectively), and kaolin, all of them frequently

used in paper mills. In fact, LDS has proved to be very

useful in assessing the performance of polymeric aids

in flocculation (Antunes et al. 2008b; Pinheiro et al.

2013; Rasteiro et al. 2008a; Seo et al. 2016).
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Materials and methods

Materials

Industrial bleached Eucalyptus globulus kraft pulp

(BEKP) with a refining degree of 34� SR was used as

raw material.

An aqueous solution of the cationizing agent (3-

chloro-2-hydroxypropyl) trimethylammonium chlo-

ride (60%) (CHPTAC), was purchased from Sigma-

Aldrich, and orthophosphoric acid (85%) was bought

from Panreac. A cationic polyacrylamide (CPAM)

from BASF with MW = 3.7 9 106 g/mol and

CD = 1.1 mmol/g (data provided by the supplier),

commonly used as retention agent in papermaking,

was used for comparison purposes. Two different

industrial calcium carbonates and a hydrated alu-

minum silicate were used as fillers: scalenohedral

PCC, rhombohedral GCC and lamellar kaolin, respec-

tively. Their zeta potentials, measured in aqueous

suspensions by electrophoretic mobility in a Zetasizer

NanoZS (Malvern Instruments) were?9 (pH 10),-28

(pH 10) and -24 mV (pH 6) respectively. The

negative values of GCC are due to the presence of

anionic polyelectrolytes used to stabilize the GCC

dispersions (Vanerek et al. 2000). The fillers also

differ in size: their median particle sizes (d50),

determined by LDS in a Mastersizer 2000 (Malvern

Instruments), were 4.2, 2.0 and 3.5 lm, respectively.

NaOH and urea, from Panreac, were also used as

solvents.

A representative scheme of the whole experimental

procedure, including pretreatments, cationization and

separation processes, is depicted in Fig. 1.

Pretreatments

The different polyelectolytes produced are distin-

guished by the treatment previous to cationization.

The cationic celluloses (CC) were labelled by ascend-

ing order of degree of polymerization (corresponding

to descending order of yield), namely CC1, CC2 and

CC3. The materials prior to cationization were named,

respectively, C1, C2 and C3.

BEKP was depolymerized with orthophosphoric

acid (H3PO4): a sample of BEKP, with a moisture

content of 66%, was soaked in acid so that H3PO4

concentration was 80% and the consistency of the

suspension (on a dry basis) was 2%. The acid

hydrolysis occurred at room temperature for 2 h, the

first hour without stirring and the second one with

agitation with a four-blade stirrer at 600 rpm. A gel-

like, whitish solution was obtained, similar to a

suspension of nanofibrillated cellulose. Apparent

dissolution was reverted when the pulp was diluted

to 0.5% with distilled water. The suspension was

filtered through an 11 lm paper filter, obtaining a

powder-like amorphous cellulose (C1). The filtrate

was discarded.

A precooled NaOH/urea solution was used to

produce C2 and C3. For that, BEKP was diluted to

2% in an aqueous solution containing 6% NaOH and

6% urea, the mole ratio of alkali to anhydroglucose

units (AGU) being 12. The suspension was stirred for

1 h at 600 rpm and then filtered through a 11 lm
paper filter. The filtrate (lower DP fraction) was named

C2, while the fibrous solid retained (higher DP

fraction) was labelled as C3.

Cationization

Cationization was performed on the filtration retained

fractions (C1 and C3) and on the filtrate (C2) with

CHPTAC using a mole ratio to AGU of 3, as shown in

Fig. 1. NaOH and urea were also added to C1 and C3

aiming for the same concentration (NaOH 6%, urea

6%, CHPTAC/AGU 3) in all three samples. Cation-

ization lasted only 60 min, by applying gentle

mechanical agitation (200 rpm) and maintaining the

temperature at 65 �C. The mechanism by which

CHPTAC and cellulose are activated with alkali and

react is described elsewhere (Moral et al. 2016).

CC1 and CC2 seemed to be completely dissolved in

the alkaline media. Since the derivatives are intended

to be not only alkali-soluble but also water-soluble, the

media were neutralized with hydrochloric acid. While

CC2 remained in solution at neutral pH, a part of CC1

(insoluble part) was precipitated, filtered and dis-

carded. Cationization of C3 originated a large amount

of undissolved material, which increased even more

after the neutralization. In this case, only 20% of the

weight of C3 passed through the filter. The three

cationic derivatives were soaked in a regenerating

medium in which the volume percentage of ethanol

was at least 50% (Fig. 1).

The aqueous-alcoholic suspensions were filtered by

using a paper filter with an aperture size of 2.5 lm.

The filtrates were discarded, although a liquid sample

Cellulose (2017) 24:3015–3027 3017
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from the CC2 filtration was submitted to mass

spectroscopy-gas chromatography (GCMS) to iden-

tify any possible by-products. The retained fractions of

the filtrations (wet solids) were dried firstly at room

temperature for 24 h, and after at 60 �C for 4 h. The

solubility in water was confirmed by centrifugation of

1% solutions at 30009g for 10 min.

Characterization

The samples were characterized for their degree of

polymerization (DP), crystallinity, degree of substitu-

tion (DS), charge density (CD), zeta potential, yield

and also with FTIR-ATR measurements.

The degree of polymerization of the pretreated

samples was determined by dividing the correspond-

ing mean molecular weight (M) by the molecular mass

of AGU (162). In turn, the mean molecular weight of

the C1, C2 and C3 pretreated cellulose chains was

estimated from the limiting viscosity number (mL/g)

by using the Mark–Houwink equation with the

parameters reported by Eckelt et al. (2011) for

cellulose solutions in a copper (II) ethylenediamine

solution (Cuen):

g ¼ 0:0653M0:735 ð1Þ

The limiting viscosity number necessary in Eq. 1 was

determined according to the ISO standard 5351-1.

For the crystallinity assessment, aliquots of the pre-

treated samples C1, C2 and C3 were dialyzed by using

a sack from Sigma-Aldrich which ensures retention of

compounds whose molecular mass is 12,000 Da or

higher, and placed in deionized water for 24 h, in order

to remove phosphate salts and other undesired

substances. A PANalytical’s powder diffractometer

with the software X-Pert HighScore provided X-ray

diffraction patterns. The original pulp was also

analyzed for comparison purposes.

A LECO CNS-2000I elemental analyzer was used

to measure the content of carbon, hydrogen and

nitrogen. The degree of substitution (DS) was calcu-

lated from the ratio of %N to %C (N/C), assuming that

only one cationic quaternary ammonium group can be

incorporated per anhydroglucose unit (Moral et al.

2016):

N=C ¼ 14DS

144DSþ 72 � ð1� DSÞ ð2Þ

Fig. 1 Simplified diagram

of the experimental

procedure used to produce

three different cationic

cellulose derivatives
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where 14 is the atomic weight of nitrogen, 144 is

twelve times the atomic weight of carbon (substituted

monomer), and 72 is six times that weight (non-

substituted monomer).

The charge density (CD) of the cationic derivatives

was determined by potentiometric titration in a Charge

Analysis System (CAS) from AFG. For that, a small

amount of sample (less than 0.1 g) was dissolved in

10 mL of deionized water and the solution was titrated

with an anionic polyelectrolyte, sodium polyvinylsul-

phate (PVSNa, 0.001 N).

The zeta potential of 1% (w/w) dispersions in

distilled water of the dried CC1, CC2 and CC3 was

measured with a Zetasizer Nano ZS device from

Malvern Instruments.

FT-IR-ATR spectra were recorded by a Bruker

Tensor 27 spectrometer with a MKII Golden Gate

accessory, setting the resolution to 4 cm-1 and the

number of scans to 128.

Flocculation tests

The performance of CC1, CC2 and CC3 as polymeric

flocculants was evaluated by LDS in a Mastersizer

2000 device fromMalvern Instruments, equipped with

the Hydro 2000 module. To process the raw scattering

patterns, theMie theory (De Boer et al. 1987), which is

rigorous and suitable for small particles (below

10 lm), was used considering the refractive index of

the mineral fillers as being 1.57 (Wypych 2016).

Aqueous suspensions [1% (w/w)] of PCC, GCC and

kaolin were submitted to magnetic stirring for 20 min

and placed in an ultrasound bath (50 kHz) during

15 min in order to disaggregate the particles. For each

experiment, 6 mL of the filler suspension were added

to the equipment vessel containing 600 mL of distilled

water. This was enough to reach an adequate obscu-

ration of the He/Ne laser beam. The pump speed was

set to 2000 rpm during the measurement of particle

size.

As for the flocculants, solutions of CPAM, CC1,

CC2 and CC3 [0.1% (w/w)] were prepared and stirred.

A certain amount of the flocculant in each case (1 mg/

g for CPAM, 20 mg/g for the cationic cellulosic

derivatives) was added after the stabilization of the

filler median size (some initial aggregation occurs

spontaneously to a certain degree). Then, the evolution

of the median particle size of the fillers together with

the added polymer was monitored. Smaller amounts of

the WSCC were previously tested (see supplementary

information).

Results and discussion

Characterization of the pretreated samples

For the necessary calculations, BEKP was assumed to

consist entirely of anhydroglucose units (AGU). This

assumption is safe, given the negligible amount of

lignin after bleaching, the most probable dissolution of

the remaining hemicellulose in the preliminar NaOH/

urea treatment and the fact that cationic groups are

also incorporated into anhydropentose units

(Deutschle et al. 2014).

For C1, BEKP was depolymerized with orthophos-

phoric acid (H3PO4), since this compound works both

as a hydrolysis agent, as long as its concentration is

higher than 30% (w/w), and as a cellulose activator,

causing total amorphization if its concentration is

superior to 79 wt% (Vinogradov et al. 2002).

For C2 and C3, a precooled NaOH/urea solution

was used as solvent due to the influence of urea on

hydrophobic interactions of low-DP cellulose (Zhang

et al. 2002). As mentioned, the NaOH/AGUmole ratio

was 12 in order to ensure a good cellulose solvation,

since theoretically at least 4 OH- ions per monomer

are necessary in alkaline dissolution (Myasoedova

et al. 1991).

All samples differ in solubility. As visible in

Table 1, the DP of C1 was much inferior to that of

BEKP. On the contrary, and as intended, C2 produced

from the lower-DP part (soluble in NaOH/urea, at least

to a degree in which solvated particles, macroscopi-

cally undistinguishable from the solvent, passed

through the filter) exhibited a higher value than C1

but a smaller value than the original pulp. As for C3, it

has the highest mean DP value, superior to that of the

original pulp as a result of being obtained from the

higher-DP fraction of this pulp.

Table 1 also presents the crystallinity index (CI) as

calculated from the diffraction patterns shown in

Fig. 2a. A linear baseline correction and a Gaussian

deconvolution of peaks were carried out with Systat’s

Peakfit, as exemplified in Fig. 2b for the non-treated

BEKP sample. The assignment of Miller indices to the

peaks and the notation of these indices are based on the
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conventions used by French (2014). It is assumed that

BEKP, as cellulose from wood, consists fundamen-

tally of cellulose Ib, while the pretreated samples are

mixtures of cellulose Ib, cellulose II and amorphous

cellulose. The crystallinity of the samples was esti-

mated from XRD by identifying the four most

prevalent peaks of cellulose I and the cellulose II

(110) peak, and dividing their area by the total area

(Eq. 3) (Park et al. 2010):

CI ¼
A1�10ðIbÞ þ A110ðIbÞ þ A200ðIbÞ þ A110ðIIÞ þ A004

Atotal

ð3Þ

Fig. 2 X-ray diffraction

patterns of the bleached

kraft pulp (BEKP) and of the

pretreated cellulose samples

(a) deconvolution of the

BEKP X-ray diffraction

pattern (b)

Table 1 Characteristics of

the bleached kraft pulp

(BEKP) and of the

pretreated cellulose samples

Sample g (mL/g) M 9 10-4 (Da) DP CI I(Cell-I/Cell-II)

BEKP 494 18.9 1170 0.813 4.30

C1 132 3.1 194 0.518 1.33

C2 380 13.3 820 0.386 0.36

C3 658 28.0 1703 0.540 0.88
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Both orthophosphoric acid and sodium hydroxide

caused a diminishment in CI. The lowest crystallinity

index corresponded to C2, the only pretreated sample

which was totally alkali-soluble.

The diffractogram of BEKP displayed the typical

shape of cellulose I (Fig. 2a). Likely, some phosphate

groups incorporated into the structure of C1 during the

pretreatment remained after dilution and regeneration,

since the shape of the corresponding pattern before 21�
resembles that of cellulose phosphate esters (Olaru

et al. 2007). For C2 and C3, partial amorphization was

evident: the peak at 22.5� for the (200) plane of

cellulose I became much shorter (C3), or simply

indiscernible from the (020) reflection of cellulose II,

at 22� (C2). The other peaks became broader, which is

a consequence of an increase in the amorphous

fraction (Park et al. 2010).

Besides phosphoric acid and inorganic ions, the

filtrate of C1, analyzed by GCMS, contained soluble

products from the hydrolysis, but not necessarily

furanic compounds. The temperature of the pretreat-

ment (20–25 �C) was too low for dehydration.

To elucidate to what extent cellulose I is converted

into cellulose II by the pretreatment, the intensity ratio

ðI(Cell � I=Cell� II)) was calculated with Eq. 4. The

numerator contains peaks assigned to cellulose I,

while the denominator contains peaks assigned to

cellulose II (French 2014; Kolpak et al. 1978). The

peak assigned to the (020) plane of cellulose II is

omitted because it overlaps with the highest peak of

cellulose I. The peak (004) is roughly the same for

both cellulose Ib and cellulose II. It must be stressed

that this parameter serves as an indication of the ratio

of cellulose I to cellulose II for comparison purposes,

but never as an accurate and absolute determination of

that ratio.

I Cell� I=Cell� IIð Þ ¼ I14:7� þ I16:5� þ I22:5� þ I040

I12:4� þ I20:3� þ I040

ð4Þ

The value corresponding to C1 is not reliable, since

the peak (110) of cellulose II (20.1�) may be confused

with the most prominent band of cellulose phosphate.

As expected, the proportion of cellulose II, more

thermodynamically stable, increases with the alkaline

treatments (C2, C3), as it also happens, for instance, in

cotton mercerization (Poletto et al. 2014). When this

alkaline treatment results in apparent dissolution (C2)

and the sample is regenerated with an alcohol, specific

peaks of cellulose I cannot be perceived in XRD

patterns. C2may consist completely of cellulose II and

amorphous cellulose.

Characterization of the cationic derivatives

The DP values estimated from Eq. 1 for the pre-treated

samples were also used for the cationized CC1, CC2

and CC3 samples. In fact, it is legitimate to consider

that the DP is not modified with the cationization

process, because the temperature is too low for an

alkaline hydrolysis to happen at an appreciable extent.

For instance, Song et al. (2008) using size exclusion

chromatography, showed that the hydrolysis of cellu-

lose during cationization with CHPTAC, NaOH and

urea is negligible, even when the reaction took place at

60 �C for 8 h. As can be seen in Table 2, the cellulosic

derivative with the highest DP (CC3) was the one

presenting, after cationization, the highest degree of

substitution, charge density and zeta potential. This is

due to the fact that high-DP cellulose needs to have

more ionized monomers to become soluble in water,

and thus the lowly-substituted parts were rejected. As

a drawback, given the mildness of the conditions used

in this study, these lowly-substituted parts accounted

for the majority of the material. Crystalline and lowly-

substituted parts of CC3 could not pass through the

filter after neutralizing with HCl.

Table 2 also shows the yield of WSCC from the

bleached kraft pulp. It should be noted that CC2 and

CC3 share the same pretreatment. 100 g of BEKP

could be used to produce 44 g of CC2 and 11 g of CC3

(a total of 55 g of cationic cellulose from one single

process), or 60 g of CC1, which is less electrically

charged. Sirviö et al. (2011) obtained higher yield

values, achieving complete dissolution of high-DP

cellulose by producing a polymer with a very high

Table 2 Characteristics of the three cationic cellulosic

derivatives

Sample Yield (%) DSa CDa (mmol/g) f-Potential (mV)

CC1 60 0.33 2.07 ?4.5

CC2 44 0.34 2.80 ?6.8

CC3 11 0.46 5.01 ?16.7

a DS and CD mean degree of substitution and charge density,

respectively
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degree of substitution, but at the cost of a 24 h-long

first treatment, a 3 h-long second treatment at 75 �C
and then by cationizing with Girard’s reagent.

Substitution was in the expected range. Lower

degrees of substitution would have implied lack of

solubility, while obtaining values close to 1 was

impossible under mild conditions. Higher reaction

times and higher concentrations of CHPTAC could

have improved the yield, but probably not the degree

of substitution. Yan et al. (2009) cationizing cellulose

with a reagent/AGU molar ratio of 10, achieved DS

values of 0.32 and 0.47 by applying reaction times of 6

and 9 h, respectively. These values are in the same

range as those presented in Table 2, but their condi-

tions and the use of low-DP cellulose eased solubility

and avoided discards of undissolved parts, achieving a

yield of 100%.

A gentle process, like the one suggested in this

work, can generate samples with degrees of substitu-

tion higher than 0.3 at the expense of the yield. If a

continuous reactor had been used instead of a batch

one, the insoluble fraction could have been recycled,

keeping the mild conditions. This would be a feasible

alternative to the expensive and time-consuming

processes.

The zeta potential of the starting material (fibers

from BEKP) in water is slightly negative in a wide pH

range and cationization involved a switch towards

positive values. As cationic functional groups were

incorporated into cellulose, the polymer reached the

isoelectric point and then its charge density increased

with the degree of substitution. The small difference

between the CC1 and CC2 zeta potentials could be

deemed not significant. The value found for CC3

suspended in water was much higher. This could be

explained by the pretreatments applied in the latter,

which decreased the stability of the dissociable groups

that have a negative contribution to the surface charge.

All ATR-FTIR spectra, normalized and presented

in Fig. 3, showed typical peaks for cellulose in

absorption bands at 3330 cm-1 (g), related to O–H

stretching, and at 2882 cm-1 (f), associated with

symmetrical stretching of C–H bonds. The intensity of

the absorption at 897 cm-1 (a), due to C1–H bending

and sensitive to a rearrangement of intramolecular

hydrogen bonds (Yang et al. 2010), increased with the

amorphous fraction of the sample. Particularly for

CC2, the derivative with the lowest crystallinity, this

peak was almost as high as the one found at

1040 cm-1 (b). Bands at 1160 and 1019 cm-1 are

assigned to C–O–C asymmetric stretching and differ-

ent vibrations of C–C and C–O bonds, respectively. In

the spectra for CC2 and CC3, the decrease in sharpness

is evident and these peaks become mere shoulders.

The band at 1623 cm-1 (e) is due to O–H bending in

absorbed water (Granja and Barbosa 2001). Purifica-

tion after regenerating succeeded to remove urea,

since its absorption bands, which would be very

prominent between 1700 and 1400 cm-1 and between

3500 and 3100 cm-1 (Turney et al. 2013), cannot be

distinguished.

Spectra of CC1, CC2 and CC3 showed additional

peaks at 1427 and 1390 cm-1 (d), linked to the

quaternary ammonium groups (Sang et al. 2012). Due

to the conversion of cellulose I to cellulose II, the

spectra of CC2 and CC3 do not possess a peak at

1345 cm-1 (Granja and Barbosa 2001). Whether

phosphate groups remain in the structure of CC1 is

not proved by its spectrum, but their absence is not

confirmed either, since the most prominent band of

PO4 is given at 1020 cm-1, thus interfering with one

of the most noticeable bands in the spectrum of

cellulose (Hallac and Ragauskas 2011).

Performance in flocculation tests

The evolution of the median equivalent spherical

diameter (d50) of the three fillers when in contact with

the WSCC is plotted in Fig. 4. On the left side

(Figs. 4a–c) the influence of the WSCC addition on

the different fillers flocculation is shown. The results

were normalized considering the particles median size

at the moment of the flocculant addition and the

corresponding values are shown in Fig. 4d–f, which

provide a better perception of the influence of each

polyelectrolyte separately. As stated, CPAM was

always used for comparison purposes since it is one

of the most common flocculants used in papermaking.

Table 3 presents the zeta potential of the suspensions

used in the flocculation tests at given pH values.

When kaolin was used, it is evident that CPAM

and CC3 promoted a high filler flocculation, with a

maximum filler particle size increment close to 6.5

and 7.5 times, respectively. As stated in the literature

CPAM is able to flocculate the particles by bridging

due to its high molecular weight (Neimo 1999). As

for CC3, with a molecular weight one order of

magnitude off but a much higher charge density
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(Tables 1, 2), neutralization was most probably the

dominant mechanism (Neimo 1999). However, due

to the high charge, patching was also likely to occur,

which was proven by the good reflocculation ability

of the particles after a step of high shear, shown in

Fig. 5. According to Rasteiro et al. (2008b), flocs

formed by bridging mechanisms do not reflocculate

as easily as those formed by patching. In fact, the

electrokinetic potential of the kaolin/CC3 mixture

was only slightly negative (-7.3 mV), which

increases the probability of particle aggregation. In

contrast, with CC2 this value was much higher

(-27.2 mV) and the flocculation effects were atten-

uated, in accordance with the smaller values of the

molecular weight and also charge density. CC1 has

no influence in filler flocculation, regardless the

mineral used, and this is a result of the very small

molecular weight, degree of polymerization and also

charge density. For this reason, the plot with the

normalized values is not presented. This confirms

that the pretreatment with ortophosphoric acid was

not successful to induce filler flocculation.

For GCC similar results are observed with CC2 and

CC3, revealing a negligible increment of the particles

size. In spite of having also a negative charge, as

kaolin, GCC particles are scalenohedral shaped, and

not lamellar, and this fact may have hindered the

aforementioned flocculating mechanisms. In this case

only CPAM seems to be effective.

Contrary to kaolin and GCC, PCC has positive

charge (?9 mV) and therefore the influence of the

WSCC on filler flocculation is expectedly different.

Fig. 3 Infrared spectra of

the original bleached kraft

pulp (BEKP) and of the

cationic cellulosic

derivatives
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However, similarly to GCC, both CC2 and CC3 don’t

have significant impact on flocculation. By the con-

trary, CPAM has a positive effect on PCC flocculation,

by bridging, in agreement with many studies reported

in the literature (Rasteiro et al. 2008a; Lourenço et al.

2017).

The flocculation process with CPAM is however

somewhat distinct for the three fillers studied: with

Fig. 4 Flocculation kinetics of three mineral fillers with a cationic polyacrylamide (CPAM) and with the cationic cellulosic derivatives

(CC1, CC2 and CC3), depending on the choice of filler (a–c) and on the choice of flocculation agent (d–f)
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kaolin a fast flocculation occurred, while for GCC it

took almost 5 min to double the particle size. It is

worth mentioning that CC3 was the polyelectrolyte

that promoted the faster kinetics with kaolin. In

papermaking a fast flocculation is of utmost impor-

tance since the contact time between the stock and the

retention agents is as short as possible (usually 30 s or

less) (Antunes et al. 2008a) to not disturb the

runnability and sheet formation.

It should be noted that a smaller dosage of WSCC

(10 mg/g) was tested, and the results showed that

flocculation of fillers occurred but in a clearly smaller

extent. Those results can be found in the supplemen-

tary material of the electronic version of this article.

It is safe to state that by cationizing cellulose it is

possible to obtain water soluble derivatives with

promising applications as filler flocculant for paper-

making. In order to promote an effective flocculation,

the WSCC must possess high charge and/or high DP,

which in this work was achieved by pretreating

cellulose fibers with NaOH and urea, followed by a

cationization with CHPTAC, and finally by regenerat-

ing the resulting filtrate with ethanol. The obtained dry

product, soluble inwater, presented amedium degree of

polymerization, high charge density and a moderate

zeta potential, but the yield of production under mild

conditions was quite small (11%). In this work, the best

flocculation results were obtained with kaolin due to its

higher surface charge and lamellar shape that allowed

the WSCC to be adsorbed more easily on its surface.

Conclusions

Three water-soluble cationic derivatives of cellu-

lose (WSCC), containing at least 30 quaternary

ammonium groups per 100 anhydroglucose units and

a charge density above 2 mmol/g, were produced with

NaOH and CHPTAC under mild conditions, following

different pretreatments.

The pretreatment with orthophosphoric acid caused

the yield to be the highest, easing solubility by acid

hydrolysis and amorphization, but the degree of

polymerization (DP) of CC1 was too low to promote

a suitable flocculation of filler for papermaking. In

fact, by comparing the results with those obtained by

applying the other alkaline pretreatment (NaOH/urea),

it is possible to conclude that the WSCC whose DP

was the highest (CC3) originated the best results in

flocculation tests, even better than those with a

conventional cationic polyacrylamide (CPAM), when

the filler used was kaolin. The performance of the

derivative with an intermediate DP, CC2, was worse

when flocculating PCC and kaolin, but as good with

GCC as that of CC3.

When using GCC, the flocculation was faster with

CC2 and CC3 than with the CPAM polymer. How-

ever, the flocculation tests with PCC only yielded

acceptable results with CPAM, most likely due to the

high molecular weight of this polyelectrolyte. Further

research could be beneficial if a water-soluble cationic

polymer with medium charge density from high-DP

cellulose could be obtained.

Fig. 5 Reflocculation behavior of kaolin with CC3 after floc

rupture

Table 3 Zeta potential of the suspensions used in the floccu-

lation tests

Filler WSCC f-Potential (mV) pH

Kaolin – -23.7 5.6

CC1 -29.5 7.1

CC2 -27.2 7.0

CC3 -7.3 7.0

CPAM -9.7 7.1

GCC – -27.8 10.1

CC2 -2.7 9.9

CC3 -11.7 9.8

CPAM -18.9 9.9

PCC – 8.7 10.1

CC2 0.8 9.9

CC3 15.4 10.0

CPAM 7.3 10.1
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Supplementary information

The evolution of the median particle size of the fillers

with smaller dosages (10 mg/g) of WSCC is provided.
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Sirviö J, Honka A, Liimatainen H, Niinimäki J, Hormi O (2011)
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Cereal straw, bamboo and bagasse are the most widely used non-wood raw materials, but work is being done towards 
other interesting sources of fibres, such as rapeseed stalks and straw. Rapeseed oil production for energetic purposes is 
increasing, and so are wastes. In this work, pulps from Brassica napus (rapeseed) stalks were obtained by soda-
anthraquinone and Organosolv cooking. They were refined in a PFI mill. Handsheets made from those pulps were 
tested. Drainage rate and retention of fillers were also evaluated. We address the capabilities of rapeseed stalks and 
stems for papermaking and the influence of refining on the mechanical properties, the morphology of fibres and the 
amount of fines. This material was found to be suitable for papermaking and, as an advantage, a small number of PFI 
revolutions resulted in a substantial gain in mechanical properties. 

 
Keywords: rapeseed, soda-anthraquinone, organosolv pulping, paper properties, drainage 

 
INTRODUCTION 

The manufacturing of paper from non-woody 
plants works in three ways to diminish the 
environmental impact. First, by re-using residues 
their open burning is avoided, a hazardous 
activity that causes air pollution. Second, the 
pulping of non-wood materials gives satisfying 
results using sulphur-free methods, such as 
SAICA’s semichemical process cooking.1 Finally, 
their processing may result in energy savings, as 
many non-wood species need less energy 
consumption in the refining process, or may not 
even require refining at all.2 

The European Union (EU) is the largest 
rapeseed (Brassica napus) producer in the world, 
as the Union members produce 21.1 million 
tonnes annually, out of a worldwide production of 
60 million tonnes. Still, the EU is also the greatest 
consumer, as 2.2 million tonnes are imported 
annually and only 0.1 million tonnes are 
exported.3 Rapeseed main products are oil, used 
as a lubricant in industrial applications and for 
human consumption, and meal for animal feeding.  

 

 
Rapeseed oil is being used and studied as an 

interesting source for biodiesel production,4  and 
as a source of polyacids to manufacture 
biocomposites.5  

The potential of rapeseed wastes for 
papermaking has already been studied by 
Mousavi et al.,6 as they analysed rapeseed straw 
and its papermaking potential. Soda-
anthraquinone pulping showed better results than 
soda alone. Tofanica et al.7 characterised rapeseed 
stalk fibres, and found them to be very slender, 
with length ranging from 0.71 to 1.99 mm, and 
width from 9.10 to 19.60 µm. Potůček et al.8 
found that rapeseed stalks are mainly constituted 
by holocellulose (76.15%) and lignin (21.35%). 
According to them, paper from rapeseed straw 
pulp has a higher breaking length than paper from 
many other non-wood materials. 

The ancient soda pulping method was 
relegated in benefit of the kraft process, but the 
addition of anthraquinone as a homogenous 
catalyst has made it a competitive technique, and  
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it seems to be especially competitive for annual 
plants.9,10,11 Another unconventional method, 
organosolv pulping, implies the use of organic 
solvents, such as methanol or ethanolamine. 
Despite its higher energy consumption, it allows 
for lignin recovery and higher yield values than 
the soda-anthraquinoneprocess.12,13 

A weakness of the pulps made from many 
non-wood materials to be used for papermaking is 
their drainage behaviour. Compared to pulps from 
wood materials, drainage time is notably longer. 
This could be explained by their high content of 
parenchyma cells.14 The use of adequate retention 
agents is necessary to increase the retention of 
fillers and the dewatering rate. 

In this work, chemical pulps from Brassica 

napus stalks were obtained through minimal 
environmental impact techniques (soda-
anthraquinone cooking and organosolv cooking), 
refined and tested for their papermaking potential. 
Tests involved the preparation of paper sheets, 
their mechanical characterization and the study of 
their drainage properties. This work aims to 
evaluate the potential application of rapeseed 
stalks for papermaking purposes, and to discuss 
the influence of cooking conditions and refining.  

 

EXPERIMENTAL 
Materials 

Specimens of rapeseed (Brassica napus) were 
grown in Castilla y León, Spain, and stalks or stems of 
all diameters were harvested as raw materials for 
pulping. 

Sodium hydroxide pellets and a monoethanolamine 
commercial solution were provided by Panreac, as 
were ammonia, solid ammonium chloride and 
ethylenediaminetetraacetic acid (EDTA). 
Anthraquinone was purchased in powder form from 
Sigma Aldrich. As filler, we used precipitated calcium 
carbonate (PCC) for analysis from Merck, with an 
approximate particle size (d50) of 14 µm.  

Two linear polyelectrolyte-based flocculants 
(retention agents) were supplied by Nalco Chemical 
Company. One of them was a co-polymer of 
acrylamide of high molecular weight with cationic 
charge, hereinafter referred as “cationic flocculant”. 
The other one was a co-polymer of acrylamide of 
medium molecular weight with anionic charge, 
referred from now on as “anionic flocculant”. 
Solutions of polyelectrolytes were prepared by adding 
0.3 g of dry flocculant to 300 mL of water. The furnish 
was kept under gentle stirring (120 rpm) for 90 
minutes.  

 

Pulping 

Stalks were isolated, crushed, and introduced into a 
stainless steel batch digester. Cooking took place by 

using ethanolamine (organosolv pulping) and sodium 
hydroxide. For the latter, anthraquinone was added to 
increase the selectivity towards lignin. Conditions are 
summarized in Table 1. Liquor-to-solid ratio was held 
at 6. Temperature was kept constant by means of a PID 
controller. The resulting pulps were washed, screened 
and stored at 4 ºC. Remaining lignin was analysed 
following TAPPI Useful Method 246, Micro-Kappa 
number, given that the amount of sample was limited. 

 
Refining 

Prior to refining, the pulps were disintegrated by 
means of a lab disintegrator ENJO model 692 
according to ISO 5263, working at 3000 rpm. Pulp 
refining was carried out by a Maskin’s Mark VI PFI 
mill at 10% consistency in accordance with ISO 
5264/2. The power of the engine was 0.37 kW and the 
voltage applied was 220 V. Three refining intensities 
were used: 250, 500 and 1000 PFI revolutions. 

The refining degree of the unbeaten and beaten 
pulps was measured using a Canadian Standard 
Freeness (CSF) tester, following the TAPPI standard 
T227 om-94. Up to four replicates were made, and in 
each case the relative standard deviation was not 
higher than 3%. 
 

Morphological characterisation 
A morphological analyzer (MorFi) from Techpap 

was used to determine the dimensions of fibers (length 
and width), the fibre population and the amount of 
fines in each pulp sample. Both unrefined and refined 
pulps were subjected to this characterisation, which is 
based on an image analysis system. Fines were defined 
as those fibrous particles whose length ranged from 10 
µm to 90 µm. The proportion of fines was expressed as 
the average percentage of the area occupied by fines in 
the images taken. The suspensions were prepared by 
dispersing 2 grams of pulp (oven-dry weight) in 1200 
mL of water. Three replicates were made for each of 
the pulp samples. 
 

Handsheet preparation and testing 

Ten handsheets, with an oven-dry weight of 60 
g/m2, were obtained from each of the pulps according 
to the ISO 5269-1:1998 standard. The experimental 
equipment consisted of a pulp dispersing-disintegrator, 
conventional sheet former, press (130 kPa), and 
heating system to remove moisture. Agitation was 
done by hand, by means of a standard stirrer. Blotters 
and standard couch weights were used to separate the 
wet sheet.  

Brightness was determined according to ISO 2470-
1:2009. The tensile index of the handsheets was 
measured by means of a mechanical tester from HT 
Hounsfield following the ISO 1924-2:2009 standard. 
Tear index was determined by a MESSMER tester 
according to UNE-EN 21974:1996. To measure burst 
strength, a METROTEC tester was used and the ISO 
2758:2004 standard was followed. 
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Table 1 
Pulping conditions and properties 

 

Pulp code Reagent 
T 

 (ºC) 
t  

(min) 
Yield (%) 

Kappa 
no. 

ISO brightness 
(%) 

ETN40 40% ethanolamine, 60% water 140 40 77.6 46.4 38.9 
ETN60 60% ethanolamine, 40% water 180 60 58.7 30.9 39.7 
SAQ10 10% NaOH, 0.1% AQ on o.d. pulp* 140 40 69 48.1 37.5 
SAQ20 20% NaOH, 0.1% AQ on o.d. pulp* 180 60 54.5 29 40.8 
*On the basis of oven-dried pulp weight 
T: cooking temperature; t: cooking time; ETN: ethanolamine; S: soda; AQ: anthraquinone 
 

 
Drainage testing 

In order to test the drainage performance, a lab 
device DFR-05 from Mütek was used. Only the pulp 
coded SAQ10 (Table 1) was tested, since the drainage 
behaviour is more dependent on the nature of the raw 
material, the size, shape and content of the filler and 
the refining degree than on the cooking method. A 
pulp suspension at 0.5% consistency was prepared 
with tap water of conductivity 500 µS/cm. This 
suspension was mixed with calcium carbonate (filler). 
The total mass of the suspension was 500 grams. We 
used 0.16 grams of filler per gram of dry pulp. The pH 
of the suspension was adjusted to 7 by adding small 
amounts of HCl. 

The mixture was put into the stirring chamber. The 
“Drainage” program was selected in Mütek’s software. 
We set the stirring at 200 rpm for 60 seconds. Then a 
retention agent was added into the suspension, and we 
ran the stirrer for 30 seconds more at 300 rpm. The 
suspension went through a 100 mesh screen, wire size 
being 0.11 mm. The cake was rejected and the filtrate 
was collected for analysis. 

The amount of precipitated calcium carbonate in 
the filtrate was determined by complexometric titration 
with EDTA. Eriochrome Black T was used as 
indicator. A buffer solution of ammonia and 
ammonium chloride was used to keep the pH around 
10. Knowing the amount of filler in the filtrate and in 
the initial furnish, the amount of filler retained in the 
fibrous matrix was determined by difference. As tap 
water was used, we also measured its hardness, 
following this same method, to apply a correction. 

The drainage tests performed on Mütek’s device 
were repeated on the handsheet formation apparatus, in 
order to confirm the results or point out the differences 
found. Again, a pulp suspension of 0.5% consistency 
and tap water were used. The total mass was 4 kg and 
the pH, slightly above 7, was not adjusted. The 
nominal aperture size of the wire screen was 0.125 µm 
(115 mesh). A fourth part of each of the handsheets 
was disintegrated and dispersed in water. The amount 
of calcium carbonate in this suspension was 
determined by titration with EDTA. This was a direct 
measurement of the amount of PCC retained in the 
handsheets. 

 
RESULTS AND DISCUSSION 

Besides the conditions under which stalks 
were cooked, Table 1 shows the yield obtained, 
expressed as the weight of oven dried pulp 
obtained per weight of oven dried stalks. The 
Kappa number and ISO brightness are also 
shown. 

Table 2 shows the mechanical properties of the 
handsheets for the different beating degrees. The 
deviations are expressed for a confidence level of 
90%. Fibre length and coarseness are shown in 
Table 3, along with the number of fibres per gram 
of oven-dry pulp and the proportion of fines. 
 

 

 
Table 2 

Influence of cooking and refining on the mechanical properties 
 

Pulp PFI revolutions 
Tear index 
(mN m2/g) 

Burst index 
(kN/g) 

Tensile index  
(N m/g) 

0 11.1 ± 0.7 0.84 ± 0.04 7.5 ± 0.1 
250 13.3 ± 0.4 0.97 ± 0.06 14.2 ± 0.6 
500 15.0 ± 1.0 1.45 ± 0.05 16.2 ± 0.4 

ETN40 

1000 17.6 ± 0.3 1.87 ± 0.14 18.1 ± 0.9 
0 11.5 ± 0.3 0.84 ± 0.05 10.2 ± 0.5 

250 13.9 ± 0.5 1.53 ± 0.11 22.9 ± 2.0 
500 14.2 ± 0.4 4.87 ± 0.30 45.8 ± 1.8 

ETN60 

1000 15.2 ± 0.7 5.14 ± 0.26 47.5 ± 3.1 
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0 4.6 ± 1.0 0.73 ± 0.08 8.2 ± 0.3 
250 12.6 ± 0.9 1.25 ± 0.12 12.9 ± 1.1 
500 17.8 ± 0.5 1.52 ± 0.04 17.2 ± 0.5 

SAQ10 

1000 19.9 ± 0.6 2.18 ± 0.11 26.6 ± 1.5 
0 14.0 ± 1.2 0.72 ± 0.04 9.5 ± 1.0 

250 20.1 ± 0.8 1.62 ± 0.11 17.1 ± 0.4 
500 21.8 ± 0.9 2.12 ± 0.06 19.8 ± 1.1 

SAQ20 

1000 19.5 ± 0.5 3.70 ± 0.19 38.5 ± 1.7 
 

Table 3 
Influence of cooking and refining on the characteristics of fibres, their population and the number of fines 

 

Pulp PFI revolutions 
Average length 

(µm) 
Coarseness 

(mg/m) 
Number of fibres 

(106 g-1) 
Proportion of fines 

(% in area) 
0 617 0.201 13.7 7.20 

250 567 0.162 18.0 8.37 
500 582 0.147 19.3 9.60 

ETN40 

1000 554 0.139 21.1 10.06 
0 574 0.106 27.3 7.74 

250 543 0.116 25.3 8.95 
500 563 0.114 25.4 9.05 

ETN60 

1000 507 0.115 26.2 9.34 
0 654 0.166 16.6 4.51 

250 629 0.114 24.0 5.41 
500 628 0.108 25.5 6.00 

SAQ10 

1000 617 0.095 28.7 7.01 
0 632 0.114 15.9 4.40 

250 632 0.085 31.6 4.56 
500 621 0.082 32.9 4.92 

SAQ20 

1000 587 0.083 33.2 7.03 
 

Influence of cooking conditions 

Mild treatments, at 140 ºC and after 40 
minutes of cooking, resulted in higher yields, 
more pronounced for the organosolv pulps. 
However, only severe cooking provided enough 
removal of lignin to make feasibly bleachable 
pulps, as it achieved Kappa numbers around 30. 

Unbleached pulps from rapeseed stalks 
showed good values of brightness (around 40%), 
even when cooked under mild conditions. ISO 
brightness of rapeseed straw pulps, according to 
the experiments of Mousavi et al.,6 lies around 
16-18%. Unbleached rice straw kraft pulps, Alfa 
soda pulps and Eucalyptus citridiora kraft pulps 
show brightness values of 45-50%,15 47%,16 and 
15-20%,17 respectively. Hence, the brightness 
values of the pulps studied are in the high range. 

Cooking under severe conditions gave higher 
burst index and tensile index (Table 2). These 
values were found to be particularly high for the 
organosolv pulps. Also, severe conditions caused 
fibre coarseness to decrease (Table 3), which has 
a positive effect on fibre bonding.18 Cooking with 
ethanolamine resulted in the largest amounts of 
primary fines (i.e., before refining). This is likely 

due to the lesser damage to carbohydrates. 
Therefore, the proportion of fines in organosolv 
pulps ranges between that of mechanical pulps 
and that of soda pulps. 

 
Influence of refining 

Figure 1 presents the degree of refining, 
expressed as Canadian Standard Freeness, for the 
different pulps. For all pulps, 1000 PFI 
revolutions were enough to achieve freeness 
values below 350 mL. Hardwood kraft pulps need 
around 3000 PFI revolutions to get to such a low 
refining degree, and softwood kraft pulps need 
more than 5000 PFI revolutions.19 Therefore, the 
use of rapeseed stalks implies great energetic 
savings at this stage, as expected from a non-
wood material.2 Pulp ETN60 showed the lowest 
freeness values, since the freeness of the pulp was 
already low prior to refining, meaning that 
Organosolv pulping alone resulted in good fibre-
to-fibre bonding.  

The tear index values of the sheets from non-
refined pulps were high enough for papermaking, 
while the tensile index and the burst index were 
still too low for that purpose (Table 2). Hence, a 
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refining stage would be necessary to obtain pulps 
of sufficient quality. 

The tear index was slightly improved by 
refining (Table 2) and was in the high range, 
similar to that of soda pulps from abaca.20 The 
tensile and burst indices were greatly increased 
from non-refined pulps to 1000 PFI revolutions, 
the burst index being similar to that of rice straw 
pulps.15 

As expected, fibre length decreased with 
refining (Table 3), but this shortening was not a 
major drawback considering that 500 PFI 
revolutions may be enough to produce printing 
paper. Coarseness was found to decrease notably 
from 0 to 250 PFI revolutions and hardly changed 
with further refining, whereas fibre population 
showed the opposite trend. Refining resulted in a 
great generation of fines, considering the low 
numbers of PFI revolutions. This is related to the 
abrupt decrease in freeness. 
Drainage properties 

Low freeness is associated with slow 
dewatering and compels manufacturers to use a 
longer paper machine or to decrease the 
production rate.14,21 In addition, a great amount of 
energy is consumed by drying. In this work, water 
removal was not increased, but the use of 
flocculants could hasten it.  

The more retention agent was added to the 
chamber, in the range that was studied, the faster 
the drainage was, as shown in Figure 2. This does 
not imply that the process could be improved by 
using even higher dosages of retention agent. A 
small addition of cationic flocculant was enough 
to achieve a great reduction of the time at which 
an asymptotic value of the filtrate weight was 
reached, while further additions gave a slight 
improvement (Figure 2B). As for the anionic 
flocculant, a concentration of 6 mg/L was needed 
to get the drainage time obtained for 3 mg/L of 
cationic flocculant.  

 

 
 
 

Figure 1: Evolution of Canadian Standard Freeness with the number of PFI revolutions 
 

  
 
 

Figure 2: Drainage – weight versus time curves for different amounts of added anionic flocculant (A) and 
cationic flocculant (B) 
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Figure 3: Evolution of filler retention with the concentration of anionic and cationic flocculants, using the DFR-
05 (A) or the handsheet formation apparatus (B) 

 
Figure 3A shows the evolution of filler 

retention in the pulp with the amount of retention 
agent added, when Mütek’s device was used. 
Both flocculants made calcium carbonate 
retention reach values around 70%. 
Concentrations higher than 6 mg/L were not 
considered, since the curves tend to reach an 
asymptotic value (anionic flocculant) or a 
maximum peak (cationic flocculant). 

As shown in Figure 3B, when using the 
handsheet former, the initial retention of PCC 
(without retention agents) was higher. This was 
due to the lower aperture size of its wire screen. 
Upon addition of the cationic flocculant, the 
retention reached 83%. Nonetheless, the 
proportional increase was slightly lower since 
stirring was done by hand. Agitation influences 
the adsorption of polyelectrolytes on fibres and 
fines, and thus the kinetics of flocculation. The 
advantage of the cationic flocculant over the 
anionic one was confirmed and it became more 
evident without automatic stirring.  

It may be concluded that a cationic 
polyacrylamide is better for drainage and 
retention of calcium carbonate, as expected.22 
This is explained by the presence of dissociated 
carboxyl groups, negatively charged, in pulp 
fibres.  

 
CONCLUSION 

Comparing the brightness and mechanical 
properties of pulps from rapeseed stalks with 
those of pulps from rapeseed straw, rice straw and 
common hardwoods, it can be concluded that 
rapeseed stalks represent a source of fibres 
suitable for producing market pulp and/or certain 
grades of paper. Handsheets prepared from the 

pulps that were studied showed high tear index 
and their brightness was found to be in the high 
range. The mechanical properties were 
notoriously improved by refining. Even low 
numbers of PFI revolutions resulted in the 
generation of large amounts of fines and in a 
strong decrease in fibre coarseness. 

Organosolv pulping under severe conditions is 
recommended, since low freeness values are 
achieved with little refining energy consumption. 
Moreover, it results in the highest mechanical 
resistance. 

The retention of calcium carbonate in a non-
refined pulp sample was clearly improved by the 
addition of polyelectrolyte-based flocculants, the 
cationic polyacrylamide being the best. The 
dewatering rate was also increased. When the 
consistency of the suspension is 0.5%, a dosage of 
3 mg of cationic polyacrylamide per liter of water 
is suggested. 
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a b s t r a c t

One of the most popular ways to carry out the re-use of wastes from agriculture is the pulping, refining
and bleaching of those residues for papermaking. Spain annually produces more than 300 thousand
tonnes of Citrus sinensis (orange tree) trimmings, crops being concentrated in the East and the South of
the country. Their chemical composition is similar to that of common hardwoods.

This work aims to show the suitability of ethanolamine cooking when applied to orange tree trim-
mings, and to study the effect of peroxide bleaching and refining on some key properties. As for
bleaching, we used a design of experiments to discuss the influence of peroxide concentration, time and
temperature on the yield, brightness, viscosity, kappa number of pulps and mechanical properties of
paper sheets. Refining was studied by analysing the diminishment in freeness and the mechanical
properties of paper sheets formed. Results showed that even a mild bleaching process gives out a high
relative brightness gain, but a multiple-step process is necessary to achieve enough brightness for
printing paper. Mechanical properties of non-refined pulps were found to be too low for paper of any
grade, but they were greatly improved by refining.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

With the high prices of wood constituting a major drawback in
papermaking, the use of agricultural wastes to manufacture fibre-
based products stands as one of the most attractive options for
their valorization (Jim�enez and Rodríguez, 2010). If no use is found
to those residues, field burning is all that awaits them, causing
pollution and GHG emissions.

CEPI's production of pulp from wastes accounted for 248 kt in
2013, making it the 0.7% of total pulp production, 17.6% more than
the previous year (CEPI, 2014). While the manufacturing of pulp
from alternative sources was slightly increased, the production of
pulp from conventional sources decreased in Europe. Total pulp
production was diminished from 38,127 kt in 2012 to 37,303 kt in
2013. It is since 2005 that the CEPI countries are lowering their pulp
and paper production. In a market where the number of companies
decreases and there is little product differentiation, the use of new
raw materials and the discovery of new properties might be one of
the keys of success. Many agricultural wastes have been studied for
papermaking purposes, namely rapeseed straw (Mousavi et al.,
2013), hemp core (Barber�a et al., 2011), olive tree trimmings (Díaz
et al., 2005). All of them can be used to obtain printing paper of
acceptable quality after being cooked through sulphur-free pro-
cesses, according to the authors' conclusions.

In Spain, the total production of trimmings implies a large wood
potential, over 6.5 million tonnes. This includes trimmings from
sweet orange tree (Citrus sinensis) with a potential between
300,000 and 400,000 tonnes, mainly located in Eastern and
Southern Spain. Fortunately for a potential pulp mill, they are
rather concentrated: Comunidad Valenciana, a region comprising
23,255 km2, accounts for 60% of total harvesting of oranges in Spain
(Server et al., 2009). This results in transport and storage savings.

Orange tree trimmings consist mainly of 73% of holocellulose
and 20% of lignin (Gonz�alez et al., 2011). Residues from orange tree
pruning have been used by Gonz�alez et al. (2013) to make paper
and evaluate the influence of cooking conditions and beating.
However, to the best of our knowledge, ethanolamine pulping and
hydrogen peroxide bleaching of orange tree trimmings have not
been studied yet.
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Organosolv pulping processes use an organic solvent that
selectively dissolves lignin, such as ethanol and ethanolamine,
resulting in less water consumption and less production of waste-
water (Jim�enez et al., 2002). It allows for higher yield values, since it
is less damaging to cellulose and hemicellulose, and recovery of
lignin, furfural and hydroxymetylfurfural as by-products. As a ma-
jor drawback, in the current market enough profit cannot be ob-
tained from value-added products made out of lignin (Ibrahim
et al., 2013; Sahoo et al., 2011).

Traditional bleaching processes used to be based on elemental
chlorine, related to various pollution problems. This reagent was
progressively displaced by chlorine dioxide, less hazardous, since
its first use in 1946 (Rapson, 1970). Stages involving ClO2 are pre-
sent in the majority of bleaching plants today, but a next step is
being taken by trying new bleaching processes with oxygen, ozone
and/or hydrogen peroxide (L�opez et al., 2003; Reinstaller, 2008).
These reagents do not form chlorinated organic derivatives needing
to be removed. Particularly, peroxide stages are claimed to be able
to replace chlorine dioxide stages (Bajpai, 2012). Comparing
hydrogen peroxide to chlorine dioxide, the latter achieves a greater
lignin removal, but they are similar in terms of brightness gain and
water consumption. H2O2 bleaching does not need to remove large
amounts of lignin to increase brightness greatly. Due to this, besides
its less environmental impact, H2O2 is advised over chlorinated
compounds when working with high-yield pulps, whose lignin
content is high (Ghose and Chinga-Carrasco, 2013).

Besides the use of alternative raw materials, an alternative way
of pulping and a chlorine-free bleaching process, the refining stage
should be taken into account. Works have shown that the refining
of non-wood materials and some alternative woody materials
result in less energy consumption compared to conventional
hardwoods and softwoods (Banavath et al., 2011; Stoica et al.,
2010).

In this study, residues from orange trees were harvested and
pulped under two different sets of conditions, using mono-
ethanolamine as the reagent, and the resulting pulps were char-
acterized. One of the pulps was bleached, both of them were
refined, and we measured the change in key properties. This work
is related to environment protection in at least three ways: first, by
re-using wastes that otherwise would be open-burnt; second, by
using environmentally friendly processes of cooking and bleaching,
not tested before with this raw material; third, by saving energy in
the refining stage. The influence of three variables (temperature,
time, reagent concentration) in a one-stage bleaching process with
hydrogen peroxide is studied. The convenience of this bleaching
process to remove lignin and increase brightness of cellulosic pulp
obtained from orange tree trimmings through organosolv pulping,
using ethanolamine as the solvent, is discussed, and so is the
improving of mechanical properties by refining.
2. Experimental

2.1. Harvesting and pulping

Trimmings were harvested from orange trees grown in the East
of Spain. A monoethanolamine commercial solutionwas purchased
from Panreac (Castellar del Vall�es, Spain).

First, the wood fraction of orange tree trimmings, i.e., stems
whose diameter was greater than 5 mm, was separated from the
rest, washed, crushed, and then cooked to obtain the pulp. Cooking
was performed in a stainless steel batch reactor. Liquor to solid ratio
was held at 6. Cooking liquor consisted of ethanolamine and
distilled water. Temperature and inner pressure were held constant
thorough the process. The different conditions tested are
summarized in Table 1. The resulting pulp was washed, screened,
crumbled and stored at temperatures below 10 �C.

Prior to bleaching or refining, the pulp was disintegrated in a lab
disintegrator ENJO model 692, working at 3000 rpm. Fig. 1 shows
the experimental procedure, from the raw material to the paper
sheet.

2.2. Bleaching

Only the severely-treated pulp (OP2) was considered for
bleaching, due to its lower kappa number, higher brightness when
unbleached and, in short, higher bleachability.

Peroxide bleaching of organosolv pulp was performed following
a fractional experimental design. In each essay, a pulp sample was
mixed with deionized water, hydrogen peroxide, sodium hydrox-
ide, magnesium sulphate and diethylentriaminepentaacetic acid
(DTPA), these last two being used as a cellulose protection agent
and lignin oxidation activator, respectively. All reagents were sup-
plied by Panreac. The pulp sample and the bleach liquor were
placed in a polyethylene bag, which was sealed and kept at the
desired temperature by means of a water bath. Pulp consistency
was held at 10% for all the experiments. Amounts of NaOH, MgSO4
and DTPA added per gram of oven-dry pulp were held constant
(1.8%, 0.2% and 0.5%, respectively).

Once bleaching was complete, the sample was quenched to
room temperature, filtered, washed, air-dried, weighted and stored.
Yield was calculated as the weight of oven-dried bleached pulp per
weight of oven-dried pulp prior to bleaching.

Remaining hydrogen peroxide in bleaching liquor was deter-
mined by iodometric titration (Kolthoff and Belcher, 1957). First, a
known amount of potassium iodide was added in excess, being
oxidized to iodine by reaction with H2O2. Sodium thiosulphate was
the titrating agent, allowing for the quantification of iodine. The
amount of H2O2 was then determined by stoichiometry.

2.3. Experimental design

To study the influence of bleaching conditions, we performed a
second-order factorial design of experiments (Montgomery, 1991),
consisting of three factors (hydrogen peroxide concentration,
temperature and time) and three levels. 15 different runs were
considered: a central experiment and several additional points
lying at the cube vertices and side centres in a cube-plot.

The hydrogen peroxide concentration was 2%, 6% and 10%, on
the basis of oven-dried pulp weight. Bleaching temperature was 55,
70 and 85 �C. Duration of peroxide bleaching was 30, 90 and
150 min. The inputs were normalized, casting them in a range
between �1 and þ1 (Table 2). The codes for the normalized factors
are XP (peroxide concentration), XT (temperature) and Xt (time).

2.4. Refining

Unbleached pulps were beaten at 10% consistency in a Maskin's
Mark VI PFI mill (ISO 5264/2). The numbers of revolutions applied
were 250, 500, 750, 1000 and 1250. The electric power of the en-
gine was 0.37 kW as the voltage applied was 220 V.

The degree of refining, expressed as freeness, was measured
using a Canadian Standard Freeness (CSF) tester, following TAPPI
standard T227 (Canadian Standard Method). Relative standard
deviation was never higher than 3%.

2.5. Analysis of handsheets

We made up to seven handsheets from unbleached pulp and
from the bleached pulp obtained through each of the experiments.



Table 1
Cooking conditions of trimmings.

Code OP1 OP2

Temperature (�C) 140 180
Cooking time (min) 40 60
Composition of cooking liquor Ethanolamine (%) 40 60

Water (%) 60 40
Pressure (bar) 4 9

OP1: Organosolv pulp 1. OP2: Organosolv pulp 2.

Fig. 1. Chemical and mechanical treatments undergone by Citrus sinensis trimmings.

Table 2
Bleaching: independent variables and their coded values.

Actual values at coded factor levels

Independent variable Code �1 0 1
H2O2 (%) XP 2 6 10
Temperature (�C) XT 55 70 85
Time (min) Xt 10 85 150
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The conventional sheet-former method (ISO 5269-1) was followed.
Handsheets were pressed at 130 kPa and dried at 140 �C for 10 min.
The grammage of the handsheets was 60 g/m2. Brightness was
determined according to ISO 2470-1 (ISO Brightness). Stretch and
tensile index of handsheets were measured by means of a me-
chanical tester from HT Hounsfield following UNE 57-054 (resis-
tance to folding) and ISO 1924-2 (determination of tensile
properties), respectively. Tear index was determined by a
MESSMER tester according to ISO 1974. Burst strength was
measured by using a METROTEC tester, according to ISO 2758.

Micro kappa number was measured according to TAPPI Useful
Method UM 246, for both the unbleached pulp and the one-stage
bleached samples. Intrinsic viscosity was determined following
TAPPI standard T230. Between 5 and 9 repetitions were carried out
for mechanical properties, between 10 and 20 for brightness, and
between 3 and 6 for the kappa number and the intrinsic viscosity.
Starch, KMnO4 and copper(II)ethylendiamine solutions were pro-
vided by Panreac.
3. Results and discussion

3.1. Properties of unbleached, non-refined pulp

Paper sheets from pulps with no further treatment were found
to be unacceptably weak, as it is shown in Table 3. Mechanical
properties of unrefined pulps are clearly better for other raw ma-
terials, such as drunken horse grass, rapeseed straw and rice straw
(Li et al., 2015; Mousavi et al., 2013; Rodríguez et al., 2008). Only the
tear index is high enough for papermaking purposes. Furthermore,
the pulp obtained is rather dark even for an unbleached pulp,
indicating that ethanolamine treatment leaves a high amount of
lignin remaining in the cooked pulp. In all cases, error is expressed
in terms of a 95% confidence interval using Student's t distribution
for a p-value of 0.05 or lower (two-tailed tests).

Comparing these results with those of Gonz�alez et al. (2011)
using another sulphur-free method, soda-anthraquinone cooking,
we found the yield to be higher, as expected, since a large amount of
the hemicellulose remains in the pulp, whereas its content is
severely diminished when pulping with caustic soda. Also, orga-
nosolv pulping grants less water consumption (Gonz�alez-García
Table 3
Properties of unbleached, non-refined pulps.

Pulp OP1 OP2

YI (%) 81 62
KN 62.5 ± 1.8 51.9 ± 1.2
IV (mL/g) 401 ± 18 286 ± 7.8
BR (%) 32.60 ± 0.05 34.49 ± 0.06
Tear index (mN m2/g) 3.05 ± 0.15 3.11 ± 0.13
Stretch (%) 0.12 ± 0.06 0.26 ± 0.09
Burst index (kN/g) 0.29 ± 0.07 0.43 ± 0.13
Tensile index (N m/g) 5.6 ± 0.3 7.1 ± 0.9

BR: ISO brightness. KN: Kappa number. IV: Intrinsic viscosity. YI: Yield.



Table 4
Properties of bleached pulp for different conditions. PC: Hydrogen peroxide
consumption.

Run XP XT Xt BR (%) KN IV (mL/g) YI (%) PC (%)

1 1 1 1 72.9 ± 0.4 38.5 ± 0.7 192 ± 8 90 99.6
2 1 1 �1 70.0 ± 0.5 40.6 ± 1.4 184 ± 12 90.1 99.5
3 1 �1 1 68.3 ± 0.2 43.2 ± 1.0 211 ± 11 93.8 99.4
4 1 �1 �1 68.2 ± 0.3 42.3 ± 0.7 215 ± 8 89.6 99.2
5 �1 1 1 67.5 ± 0.1 44.2 ± 0.3 246 ± 6 94.2 99.7
6 �1 1 �1 67.4 ± 0.4 44.8 ± 1.8 234 ± 21 94.3 99.3
7 �1 �1 1 67.6 ± 0.2 44.1 ± 1.4 246 ± 13 95.7 98.1
8 �1 �1 �1 67.3 ± 0.2 44.5 ± 1.2 250 ± 11 95.5 98.2
9 0 0 0 68.3 ± 0.3 42.6 ± 1.8 201 ± 6 92.4 99.4
10 1 0 0 68.8 ± 0.3 41.9 ± 0.1 184 ± 1 93.5 99.0
11 �1 0 0 67.6 ± 0.5 43.7 ± 0.8 219 ± 8 94 99.5
12 0 1 0 68.1 ± 0.1 41.8 ± 1.9 188 ± 11 94.4 99.2
13 0 �1 0 67.9 ± 0.2 42.1 ± 1.7 234 ± 0 94.3 99.5
14 0 0 1 68.4 ± 0.2 41.5 ± 1.8 211 ± 16 93.7 99.3
15 0 0 �1 67.0 ± 0.1 44.6 ± 0.8 223 ± 1 92.8 99.2

Fig. 2. Paper strips corresponding to different bleaching conditions.
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et al., 2010). On the other hand, tensile properties were worse than
those obtained by soda-anthraquinone pulping.

A mild treatment (OP1) resulted in a dark pulp with a high
kappa number, although a high yield was achieved. The treatment
at high temperature and high reagent concentration (OP2) gave out
a significant diminishment in the kappa number, although intrinsic
viscosity was severely lowered, showing that carbohydrates were
degraded or destroyed at a higher extent (Isihara, 1992). However,
this high degree of depolymerization of carbohydrates was not
Fig. 3. Response surfaces for bleaching efficiency. A) Bleaching time
translated into lower mechanical strength, as values found for both
pulps are in the same range. In fact, severely cooked pulp gave out
even stronger sheets, due to the stronger fibre bonding that takes
place.

Brightness of unbleached pulp is strongly dependant on the raw
material. For instance, ISO brightness of unbleached rice straw kraft
pulps lies around 45e50% (Rodríguez et al., 2010), while Li et al.
(2015) found the brightness of drunken horse grass soda-AQ
pulps to range from 40.7 to 43.1, to name other two alternative
materials. As for organosolv pulps from orange tree trimmings, the
values obtained are slightly lower, likely due to their higher lignin
content.
3.2. Bleaching

Table 4 shows the normalized values of independent variables
and the four dependent variables, according to the proposed
experimental design. 95% confidence intervals are shown for kappa
index and viscosity. Nearly all hydrogen peroxide was consumed by
the pulp samples during bleaching, as it was found in the spent
liquors at very low concentrations. Reaction time and temperature
showed little influence on peroxide consumption, which was more
dependent on the initial amount of hydrogen peroxide.

Comparing with the unbleached pulp, even a mild bleaching
process raises brightness greatly. This brightness gain was higher
than that observed by L�opez et al. (2003) for organosolv pulps from
olive tree trimmings under similar conditions. Such a high incre-
ment in brightness corresponds to a low decrement in kappa
number. This is due to the mechanism of peroxide hydrogen
bleaching: brightness gain is mainly caused by the oxidation of
chromophoric groups in lignin structure, rather than the removal of
lignin itself (Zhao et al., 2010).

Even very severe conditions cannot achieve brightness values
higher than 72%. Additional bleaching stages should be taken into
account if it is aimed to obtain higher values, like the ones required
for printing paper. In spite of that, hydrogen peroxide bleaching is a
good choice to obtain the so-called kraft colour (in the web
version), or even brighter, as can be seen from the photograph
shown in Fig. 2, starting from the dark colour that results frommild
sulphur-free cooking methods. It can be done in only one step with
low energy inputs and small amounts of reagents. More impor-
tantly, as no chlorinated compounds are used, AOX emissions are
negligible. The only pollution issue to be taken into account is the
production of H2O2, which requires to spend a large amount of
energy and releases some toxic compounds. Overall, it is still clearly
cleaner than ClO2 (Gonz�alez-García et al., 2009).

We fitted the results to a 2nd grade-polynomial model, giving
the inapplicability of universal mechanistic models. The aimwas to
is 90 min. B) Temperature is 70 �C. C) H2O2 concentration is 6%.



Fig. 4. Response surfaces for intrinsic viscosity. A) Bleaching time is 90 min. B) Temperature is 70 �C. C) H2O2 concentration is 6%.

Fig. 5. Change of intrinsic viscosity (A) and Kappa number (B) with brightness.

Table 5
Effect of bleaching conditions on mechanical properties.

Run Tear index (mN m2/g) Burst index (kN/g) Tensile index (N m/g)

1 3.20 ± 0.10 0.38 ± 0.02 3.90 ± 0.34
2 3.26 ± 0.16 0.52 ± 0.09 4.08 ± 0.21
3 3.15 ± 0.15 0.40 ± 0.05 4.10 ± 0.26
4 3.18 ± 0.24 0.34 ± 0.02 3.96 ± 0.25
5 3.11 ± 0.15 0.38 ± 0.05 4.46 ± 0.38
6 3.35 ± 0.29 0.42 ± 0.08 4.15 ± 0.32
7 3.26 ± 0.22 0.36 ± 0.09 4.90 ± 0.23
8 3.16 ± 0.10 0.40 ± 0.03 5.16 ± 0.18
9 2.95 ± 0.19 0.48 ± 0.07 4.85 ± 0.35
10 3.15 ± 0.10 0.35 ± 0.07 4.56 ± 0.53
11 3.28 ± 0.18 0.39 ± 0.08 4.33 ± 0.23
12 3.40 ± 0.38 0.38 ± 0.06 5.11 ± 0.44
13 3.01 ± 0.16 0.50 ± 0.05 3.88 ± 0.36
14 3.34 ± 0.28 0.46 ± 0.00 4.45 ± 0.19
15 3.26 ± 0.08 0.52 ± 0.08 4.67 ± 0.29
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evaluate the influence of the input variables on the outputs. We
used the software BMDP for this purpose. The terms possessing a
Snedecor F-value greater than 6 and a Student t-value greater than
2.5 were deemed statistically significant. Equations found are the
next:

BR ¼ 67:8þ 1:073XP þ 0:652XT þ 0:487Xt þ 0:455X2
P

þ 0:805XPXT þ 0:308XPXt þ 0:287X2
T þ 0:321X2

t (1)

KN ¼ 42:5� 1:479XP � 0:638XT � 0:540Xt � 0:873XPXT

� 0:400XtXT (2)

IV ¼ 203� 21:3XP � 11:6XT � 0:4Xt � 4:75XPXT þ 13:56XPXt

þ 7:56X2
T

(3)

YI ¼ 93:7� 1:67XP � 0:59XT þ 0:51Xt � 0:08XPXT þ 0:5X2
T

� 0:58XtXT

(4)

The correlation coefficient R2 was 0.84 for brightness, 0.66 for
kappa number, 0.82 for viscosity, and 0.42 for yield. No response
Fig. 6. Effect of the number of PFI revolutions on freeness (CSF) for various pulps.



Table 6
Mechanical properties of pulps for various degrees of refining.

Pulp CSF (mL) Tear index (mN m2/g) Stretch (%) Burst index (kN/g) Tensile index (N m/g)

OP1 588 5.57 ± 0.26 1.07 ± 0.20 1.72 ± 0.22 19.3 ± 3.0
548 4.94 ± 0.29 1.12 ± 0.19 1.73 ± 0.25 19.6 ± 2.4
459 5.57 ± 0.22 1.34 ± 0.20 2.49 ± 0.35 25.0 ± 3.8
435 5.43 ± 0.11 1.14 ± 0.22 2.07 ± 0.28 19.8 ± 3.5
355 5.78 ± 0.41 1.30 ± 0.22 2.90 ± 0.31 28.0 ± 4.0

OP2 561 5.17 ± 0.18 1.09 ± 0.15 2.00 ± 0.26 18.8 ± 2.2
488 5.43 ± 0.21 1.19 ± 0.18 2.10 ± 0.34 22.9 ± 3.1
428 5.70 ± 0.44 1.21 ± 0.10 2.37 ± 0.23 23.8 ± 2.5
411 5.74 ± 0.23 1.34 ± 0.13 2.42 ± 0.18 28.2 ± 3.6
378 5.88 ± 0.29 1.40 ± 0.19 3.26 ± 0.35 29.2 ± 1.8
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surfaces were drawn for kappa number and yield polynomial
models, considering their weak correlation.

Bleaching efficiency is defined as (Zhao et al., 2010):
BE ¼ Brightness gain ð%Þ=Amount of hydrogen peroxide in relation to mass of o:d: pulp ð%Þ (5)
Where the brightness gain is the difference between the ISO
brightness of a certain bleached sample and that of the unbleached
pulp. Note this magnitude is dimensionless. Bleaching efficiency is
an objective function. We preferred this function to be shown in
response surfaces, since minimizing the inputs is as important as
maximizing the outputs. An additional correlation was proposed:

BE ¼ 5:577� 6:488XP þ 0:065XT þ 0:078Xt þ 4:416X2
P

þ 0:020X2
T þ 0:082XPXT (6)

Fig. 3 shows response surfaces relating brightness effectivity to
normalized values of temperature and peroxide concentration, to
normalized values of peroxide concentration and time, and to
normalized values of temperature and time. Bleaching effectivity
decreases with peroxide concentration in the same way that it was
found by Zhao et al. (2010).

Response surfaces for intrinsic viscosity are presented in Fig. 4.
As expected, severe conditions resulted in a decrease of viscosity,
indicating depolymerisation of carbohydrates. Nonetheless, vis-
cosity of the most severely-treated sample was not the lowest, as a
minimum is reached between the limits considered. This might be
explained by the removal of hemicelluloses (L�opez et al., 2003).
Fig. 5 shows that higher brightness values are associated with
lower kappa number and lower pulp viscosity, because of the
removal of lignin and the degradation of cellulose, respectively. As
it is shown in Table 5, bleaching was observed to affect tensile
strength (expressed by the tensile index) negatively. Stretch per-
centage was too low to obtain reliable values, always below 0.2%.
Tear index was slightly increased and burst index remained
similar. These results are not distant from what Shatalov and
Pereira (2005) found with organosolv pulps of giant reed. The
great diminishment of the tensile strength is due to the degra-
dation of carbohydrates.
3.3. Refined pulps

The decrease in freeness for a given number of PFI revolutions
was similar for both pulps, as Fig. 6 shows. A comparisonwith pulps
from other commonly studied raw materials is presented as well.
This diminishment of freeness is greater than the one achieved
with conventional hardwoods, much greater than when softwoods
are used, and in the same range of organosolv pulp from olive tree
trimmings (Jim�enez et al., 2008; Mutj�e et al., 2005). This finding
allows for energy savings when using orange tree trimmings, since
less energy is required to achieve a certain degree of refining.

Burst index, tensile index and stretch were drastically improved
by refining, while the tear index increased too (Table 6). Even a little
energy input, as is the one corresponding to only 250 PFI revolu-
tions, is translated into a huge improvement. 1000 PFI revolutions
seemed to be enough for paper of certain grades. A refining process
turns out to be necessary to manufacture paper of enough me-
chanical strength.
4. Conclusions

One-step alkaline bleaching with hydrogen peroxide, using
DTPA as activator, achieved a high brightness gain in organosolv
pulps from orange tree trimmings, although delignification was
poor. For brightness values above 71%, a multi-stage bleaching
process is necessary.

Tensile index, stretch and burst index of non-refined pulps, be
them bleached or unbleached, were found to be too low. However,
they were greatly improved by refining. Hence, a refining stage is
necessary when manufacturing paper from orange tree trimmings.
Fortunately, acceptable mechanical strength is achieved with little
energy consumption.

Temperature, peroxide concentration and duration of the
bleaching process affected brightness positively. Temperature and
concentration showed negative influences over kappa number and
yield. Viscosity could increasewith those factors due to the removal
of hemicellulose, or decrease due to the partial degradation of
carbohydrates.

Given the results of mechanical properties and brightness, the
authors recommend to cook orange tree trimmings under severe
conditions with ethanolamine. For feasibility reasons, it is advisable
to give the pulp a mild bleaching treatment, since a 5% peroxide
concentration, 30 min and 83.5 �C are, according to our models,
enough to increase ISO brightness from 34.5% to 68%. If brightness
values over 70% are desired, we suggest to increase the hydrogen
peroxide concentration to 8%, the reaction time to 90 min and the
temperature to 85 �C. In addition, pulps should be refined to a CSF
of 350mL at most, which can be achieved at a low energy spending
(1000 PFI revolutions were found to be enough).
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a b s t r a c t

Although the environmental performance of the paper industry has drastically improved since the
nineties, Western manufacturers still refuse to reuse agricultural waste. Moreover, papermakers make
extensive use of poorly biodegradable polyelectrolytes which are toxic to fish. With this in mind, we
suggest pulping lignocellulosic residues by sulfur-free processes, decrystallizing cellulose, and intro-
ducing positively charged functional groups with the goal of partially replacing conventional cationic
polymers. Functionalization of pulps from orange tree trimmings, rapeseed stalks and wheat straw was
carried out with different concentrations of (3-chloro-2-hydroxypropyl)trimethylammonium chloride
(CHPTAC). When the mole ratio of CHPTAC to anhydroglucose units was 4, cationic fibers reached charge
density values over 0.2 meq/g after 40 or 60 min of reaction. Then, we tested the performance of these
fibers in papermaking, using titanium dioxide, whose zeta potential is negative, as filler. Opacity of
lightweight paper was raised to 90%, surpassing a conventional cationic polyacrylamide (CPAM), while
the increase in brightness (from 37.8% to 41.9%) was not as good as that achieved with CPAM. Even if
residues cannot replace wood, chemical modifications of them can result in valuable cationic fibers,
making synthetic polyelectrolytes less necessary.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past few decades, researchers have been proposing
countless potential sources of fibers for papermaking to replace or
complement wood, frequently for environmental purposes (Hurter,
1990; Gonzalo et al., 2017). However, predictions were perhaps too
optimistic about the future use of alternative materials in Europe
and America. Pande (1998) projected three scenarios in which the
annual production of non-wood pulp in European countries would
account for 658 kt, 878 kt and 5446 kt by 2010. Actual production of
non-wood pulp in 2010 was 588 kt (CEPI, 2011), even worse than
Anionic copolymer of acryl-
droxypropyl)trimethylammo-
copolymer of acrylamide; DS,
ylammonium chloride; OCF,
ings; PDADMAC, Poly-
pulp; PVSNa, Sodium poly-
lks; SEM, Scanning electron

do).
the worst-case scenario. More recently, in 2016, the production of
non-wood pulp was much lower, 273 kt (CEPI, 2017).

Despite the advantages of using non-wood fibers (Gonz�alez-
García et al., 2010), manufacturers could not overcome key prob-
lems affecting dewatering and thickening in the paper machine.
Cereal straw pulps, as promising as they were (Harris et al., 2008;
Thykesson et al., 1998), contain large amounts of fines and silica,
which hinders sheet formation (Guo et al., 2009; Shao et al., 2017).
Furthermore, while keeping with wood, European papermakers
have managed to reduce hazardous emissions to air and water by
approximately 90% (CEPI, 2017).

We do not suggest giving up on the effort to replace wood,
whose prices are still high (Wood Resources International, 2017),
with agricultural residues. Reusing waste to produce paper and
board is, undoubtedly, better than burning. Considering this, our
suggestion is to pulp lignocellulosic residues by sulfur-free
methods to remove as much lignin as possible, and then func-
tionalizing cellulosic fibers. For instance, cationic fibers could be
added to the furnish, along with conventional fibers fromwood, to
reduce the need of cationic polyelectrolytes.

Cationic polyacrylamides with medium or high charge density
are extensively used in paper mills to improve the retention of

mailto:rjagugar@alumno.upo.es
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jclepro.2017.11.053&domain=pdf
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fillers and fines, and also to treat wastewater. Although only a re-
sidual amount is discharged, their poor biodegradability
(Guezennec et al., 2015) and their toxicity to aquatic organisms
explain why they are considered pollutants to water (Umwelt
Bundesambt, 2017). Cationic polyelectrolytes are particularly toxic
to fish, since those polymers bind to the surface of gills, which carry
negative charge, and hinder breathing (Murgatroyd et al., 1996).
Taking this into account, cationization of agricultural waste can be
useful both for waste management and for natural water
protection.

A mechanism for cationization is proposed in Fig. 1. Not many
authors insist on the importance of a pretreatment before chemical
modifications, but partial amorphization with NaOH can make
cellulose much more accessible and reactive (Moral et al., 2015).
Fig. 1. Mechanism of the heterogeneous
The alkali is also involved in the ionization of cellulose itself and in
the conversion of (3-chloro-2-hydroxypropyl)trimethylammonium
chloride (CHPTAC), more stable, to epoxypropyl-
trimethylammonium chloride (EPTAC). If the conditions are mild,
only the substitution on carbon 6 is expected.

The surface charge of unmodified cellulosic fibers is negative
(Sood et al., 2010). Most applications of cationized fibers lie in the
textile industry, with the goal of reducing or removing the need of
polluting electrolyte baths when using anionic dyes (Arivithamani
and Giri Dev, 2017). Nonetheless, similar reasons could drive pa-
permakers to perform these chemical modifications. It has been
stated that paper sheets are strengthened if fibers contain cationic
functional groups (Montplaisir et al., 2006). Sang and Xiao (2009)
produced cationic fibers by grafting, resulting in improved
cationization of cellulose in fibers.
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retention of china clay, a filler whose surface charge is negative.
Sain and Boucher (2002), using amino trimethoxy silane to produce
cationic fibers, clearly enhanced the retention of fines.

In this paper, we report the functionalization of alkaline pulps
from rapeseed stalks, orange tree trimmings and wheat straw,
whose capability as raw materials for papermaking has been
already studied (Aguado et al., 2015; Moral et al., 2016). We hy-
pothesize that cationic fibers enhance the effects of titanium di-
oxide (TiO2) on brightness and opacity, since the surfaces of rutile
and anatase are negatively charged (Sood et al., 2010), and thus a
cationic polyacrylamide is not needed to bind the filler particles to
the fibers. The kinetics of the chemical process was studied under
the hypothesis that long reaction times are not needed. The per-
formance of cationic fibers was evaluated for the drainage behavior,
for the apparent density and for the improvement of key optical
properties.
2. Materials and methods

2.1. Pulping

Rapeseed (Brassica napus L.) stalks, orange tree (Citrus sinensis)
and wheat (Triticum aestivum) straw were harvested in different
parts of Spain. In each case, the raw material was fractionated to a
size below 5 mm and cooked in a stainless steel batch reactor for
60min. Thewhite liquor, an aqueous alkaline suspension consisting
of 0.2e0.3 g of NaOH and 0.01 g of anthraquinone (AQ) per gram of
pulp, was heated to 180 �C before supplying the lignocellulosic
material. The water-to-solid ratio was 6. The temperature was kept
constant with a proportional-integral-derivative controller. Soda-
AQ pulps were filtered, washed with cold water and stored at
4 �C. The kappa numbers (ISO 302) of the pulps from rapeseed
stalks, orange tree trimmings and wheat straw were 27, 37 and 23,
respectively.
2.2. Pretreatment

Pulps were diluted to a consistency of 1.5% and disintegrated, at
3000 revolutions per minute (rpm) for 10 min, in accordance to ISO
5263 (ISO, 2011). Afterwards, the suspensions were filtered to in-
crease consistency to 10%. 20 g of each pulp, on the basis of dry pulp
weight, were soaked in 150 mL of a strongly alkaline solution, in
which NaOH concentration was 30% (w/w). After stirring for 1 h at
room temperature, fibers were separated from the liquid by filtra-
tion over glass microfiber (2.7 mm) andwashed with cold water. We
took small samples (approximately 1 g) to evaluate the effects of
alkalization. The rest was cationized.
2.3. Cationization

Functionalization of cellulosic pulps took place in a 2 L three-
mouthed spherical glass reactor with refluxing condenser, mag-
netic stirring and heating mantle. Alkalized pulps to be cationized
were mixed with distilled water and NaOH. When a temperature of
70 �C was reached, an aqueous solution of CHPTAC (60% w/w),
purchased from Sigma-Aldrich, was poured into the reactor. Pulp
consistency was 2%. Temperature was kept at 70 �C for 90 min by a
controller with an on/off action. The NaOH-to-CHPTAC mole ratio
was always 1.5, while the mole ratio of CHPTAC to cellulose, in
terms of anhydroglucose units (AGU), was varied from 1 to 4. Once
cationized, pulps were filtered and thoroughly washed with 2-
propanol and water.
2.4. Characterization of pulps

The untreated pulps and the alkalized samples were submitted
to a powder X-ray diffractometer from PANalytical. X-ray diffrac-
tion patterns were obtained with X'pert software. The peaks of the
crystalline polymorphs were identified and integrated, thus
determining the height and area of each of them, by choosing a
Gaussian deconvolution in Systat's software Peakfit.

After cationization, the percentage of nitrogen in all pulps was
determined by combustion with an elemental analyzer from LECO.
To measure the surface charge of cationic fibers, we chose a Charge
Analysis System device from AFG, performing a potentiometric
titrationwhose endpoint was 0mV (isoelectric point). We opted for
a back titration, since the system was not designed to measure the
charge density of solids. Approximately 0.1 g of fibers were soaked
in excess sodium polyvinylsulphate (PVSNa), an anionic poly-
electrolyte. The mixture was not stirred. The liquid was titrated
with polydiallyldimethylammonium chloride (PDADMAC), a
cationic polyelectrolyte. When the number of equivalents of
PDADMAC surpassed the amount of PVSNa, the surface charge was
deemed negative and the measurement was discarded. Then,
another sample of pulp was soaked in excess PDADMAC and
titrated with PVSNa.

Some pulps were observed by scanning electron microscopy
(SEM) with a device from JEOL. Untreated and cationized fibers
were placed on a cylindrical slide. The slide was left to dry in a
vacuum oven, then coated with gold and visualized.

2.5. Sheets with cationic fibers

Five handsheets with a basis weight of 40 g/m2, in the range of
lightweight offset paper, were made from pine kraft pulp (PKP)
provided by TOLSA (Madrid, Spain) and refined to 4000 PFI revo-
lutions. Its Canadian Standard Freeness was 420 mL (TAPPI, 2017).

Five other sheets were made from the same pulp (94%) with
paper-grade TiO2 (6%), Tiona RCL-722, kindly provided by Cristal,
with a particle size comprised between 0.3 and 0.4 mm. Three sets
of five sheets each had 0.06 g of cationic pulp per gram of untreated
pulp, plus TiO2 (6%): one of those sets was prepared with cationic
fibers from rapeseed stalks (RCF), another one with cationic fibers
from orange tree trimmings (OCF), and the last one with cationic
fibers from wheat straw (WCF). In each case, we selected the
experiment that resulted in the highest degree of substitution (DS).

To compare the use of cationic fibers to that of cationic poly-
acrylamides, the sixth set was prepared with TiO2 (6%) and 5 mg/g
of a cationic copolymer of acrylamide (CPAM) with medium charge
density and high molecular weight, supplied by NALCO. The sev-
enth one involved TiO2 (6%), cationic fibers of high DS (6%) and
5 mg/g of an anionic copolymer of acrylamide (APAM) from the
same provider. To make all the isotropic sheets, we used a labora-
tory sheet former that conforms to the ISO standard 5269/1 (ISO,
2011).

2.6. Characterization of sheets

The thickness of all sheets from PKP, with and without cationic
fibers (RCF, OCF, WCF), was measured by means of a motor-driven
micrometer from IDM Instruments. Bulk was calculated and
expressed according to the TAPPI test method T220 (TAPPI, 2017).

Opacity of all sheets was determined with an Elrepho spectro-
photometer from Lorentzen&Wettre, using a C/2� light source and
stacking five sheets over a black cavity in each case. The device
conforms to ISO 2471 (ISO, 2011). Besides opacity, it provided R457
brightness (ISO 2469) and yellowness (ASTM method E313).

Analogously to the production of micrographs from pulps, two
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paper sheets with TiO2, with and without cationic fibers, were
observed by SEM.

To evaluate the effect of this addition of cationic fibers on
dewatering, we used a laboratory device DFR-05 from Mütek. The
furnish consisted in 1 kg of a water suspension containing PKP and
TiO2, with and without cationic fibers (6%). Consistency was 0.25%.
The “Drainage” program was chosen in Mütek's software. The
stirring was set at 600 rpm for 60 s, and then the suspension went
through a screen with an aperture size of 0.11 mm. Conductivity
was approximately 500 mS/cm and the pH was adjusted to 7.5.

Fig. 2 shows a schematic diagram of the experimental
procedure.
3. Results and discussion

3.1. Effects on fibers

3.1.1. Effect of the pretreatment
The alkaline pretreatment produced notorious changes in

intramolecular and intermolecular bonds of cellulosic fibers, as can
be appreciated in X-ray diffraction patterns (Fig. 3). Miller indices
were assigned to the key refraction bands of crystalline polymorphs
of cellulose in accordance with the conventions followed by French
(2014). Unless the subscript II (cellulose II) is indicated, those bands
are related to cellulose Ib. Peak (004) belongs to both cellulose I and
cellulose II.

Peaks (1e10) and (110) of cellulose Ib were flattened, becoming
Fig. 2. Scheme of the exp
nearly indistinguishable after the treatment with NaOH for pulps
from rapeseed stalks (Fig. 3a) and orange tree trimmings (Fig. 3b).
Decrystallization was evident: the intensity (expressed as arbitrary
units) of all crystalline peaks in the original pulps, including (004),
decreased. Conveniently, some crystalline parts were kept in the
fibers, as some crystalline peaks remain appreciable. Amorphous
cellulose is more reactive, but also linked to worse mechanical
properties (Nakai et al., 1977). If these fibers are meant to be used in
papermaking, their diffraction pattern should look more like the
one for wheat straw pulp (Fig. 3c), in which decrystallization is
clear but not excessive.

Table 1 presents the crystallinity indices (CI) of untreated and
treated pulps. The area of the peaks ideally found in crystalline
cellulose (French, 2014) was divided by the total area (Park et al.,
2010):

CI ¼
A1�10ðIbÞ þ A110ðIbÞ þ A200ðIbÞ þ A110ðIIÞ þ A020ðIIÞ þ A004

ATOTAL

(1)

In Eq. (1), A is the area under each of the Gaussian peaks
resulting from the deconvolution with Xpeak. Indices 1e10(Ib),
110(Ib), 200(Ib), 110(II), 020(II) and 004 correspond to the peaks
found at 15�, 16.5�, 22.5�, 20.1� and 34.6�, respectively, in Fig. 3.

After alkalization, the most prominent peak in X-ray diffraction
patterns became not only shorter, but also lopsided to the left
(Fig. 3). This is due to the conversion of cellulose Ib, whose most
erimental procedure.



Fig. 3. X-ray diffraction patterns of untreated and pretreated soda-AQ pulps of rape-
seed stalks (A), orange tree trimmings (B), and wheat straw (C).

Table 1
Crystallinity and indication of the conversion to cellulose II before and after the
alkaline treatment of soda-AQ pulps.

Pulp Kappa number CI A(I/II)

Rapeseed, untreated 27 0.75 2.0
Rapeseed, alkalized 0.61 0.8
Orange tree, untreated 37 0.77 2.1
Orange tree, alkalized 0.58 0.9
Wheat, untreated 23 0.81 2.1
Wheat, alkalized 0.68 1.4

Fig. 4. Evolution of the surface charge with time in pulps of rapeseed stalks (A), orange
tree trimmings (B), and wheat straw (C), for CHPTAC/AGU mole ratios ranging from 1
to 4.
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prominent peak is found at 2q ¼ 22.5�, to cellulose II, whose most
characteristic peak is located at 2q ¼ 20.1�. Determining the ratio of
cellulose Ib to cellulose II is a complicated task involving very se-
lective cellulases, but the quotient of the two aforementioned peaks
(after deconvolution) is useful for comparison purposes:
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AðI=IIÞ ¼ A200ðIbÞ

.
A110ðIIÞ (2)

The ratio calculated by Eq. (2) is shown in Table 1 for all mate-
rials. Like decrystallization, conversion to cellulose II was very
notorious for pulps from rapeseed stalks (Fig. 3a) and orange tree
trimmings (Fig. 3b). In contrast, the pattern of the pulp fromwheat
straw (Fig. 3c) still resembles the ideal shape of cellulose Ib.
3.1.2. Effect of cationization
Fig. 4 presents the results from the charge analysis system,

expressed as milliequivalents of the counter polymer needed to
reach the isoelectric point when 1 g of pulp has been soaked. The
most negatively-charged pulp before the functionalization was the
one from orange tree trimmings, corresponding to the largest
content of remaining lignin and uronic acids, since its kappa
number was 37 (Table 1). Consistently, for any given values of time
Fig. 5. SEM images of pulps: rapeseed stalks, original (A) and cationized (B); orange tree tr
and CHPTAC/AGU ratio, cationizing the pulp from orange tree
trimmings resulted in the least positively-charged fibers.

The surface charge of fibers was rapidly switched from negative
to positive. Charge measurements are subject to errors due to the
heterogeneity of the samples, and thus the values after 20 min are
fluctuating. Nevertheless, the influence of the CHPTAC/AGU ratio on
charge is evident for all pulps, and apparently linear. When only the
stoichiometric amount of cationizing agent was supplied to the
reactor, cationicity lied around 0.05 meq/g. When the ratio was 4,
the charge density reached 0.25 meq/g for RCF, 0.22 meq/g for OCF,
and 0.33 meq/g for WCF. The maximum values are in the same
range as those reported by Sain and Boucher (2002) with amino
trimethoxy silane (0.25 and 0.31 meq/g). We could not expect them
to be as high as the charge density of water-soluble cationic cel-
lulose, which is one order of magnitude greater (Aguado et al.,
2017). Insoluble fibers, as an advantage, do not pass through the
wire to the recirculating water. Anyway, both ways of producing
immings, original (C) and cationized (D); wheat straw, original (E) and cationized (F).



Fig. 6. Reaction kinetics for various concentrations of cationizing agent: (A) rapeseed
stalks; (B) orange tree trimmings; (C) wheat straw, for CHPTAC/AGU mole ratios
ranging from 1 to 4.

Table 2
Cationization: varying experimental conditions and kinetic parameters.

Experiment Raw material CHPTAC/AGU [NaOH] (

1 Rapeseed stalks 1 0.185
2 2 0.371
3 3 0.556
4 4 0.742
5 Orange tree trimmings 1 0.185
6 2 0.371
7 3 0.556
8 4 0.742
9 Wheat straw 1 0.185
10 2 0.371
11 3 0.556
12 4 0.742
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cationic cellulose, soluble and insoluble, can be complementary.
Taking as example a market pulp whose surface charge is 0.02

meq/g, in order to achieve global charge neutralization, the per-
centage of cationic fibers obtained with a CHPTAC/AGUmolar ratio
of 4 would range from 5.5% (wheat straw) to 8.5% (orange tree
trimmings). Total neutralization might not be desirable Hubbe,
1999), but even smaller amounts could improve key paper prop-
erties and retention of anionic additives Montplaisir et al., 2006).

Micrographs obtained with a magnification of 2000 times are
shown in Fig. 4. The surface of the original fibers in soda-AQ pulps
from rapeseed stalks (Fig. 5a) and orange tree trimmings (Fig. 5b)
was smoother, with an almost intact cell wall and with few mi-
crofibrils protruding from it. Alkalization and cationization resulted
in evident damage on the wall and in the swelling and shrinking of
fibers (Fig. 4d and e). With exposed fibrils, the relative bonding area
clearly increased, somehow compensating the loss of strength. It
also eased chemical modifications of cellulose, overcoming mass
transfer limitations, and allowed the material to reach a higher
surface charge for a given DS value.

The fiber wall of fibers from wheat straw was also damaged
(Fig. 4f), although their surface was not as smooth in the beginning
(Fig. 4c). What is remarkable of the original pulp fromwheat straw
is the large number of fines and non-fibrous elements. Many of
them, however, were lost upon cationization because they became
water-soluble. This overcomes one of the main problems of using
wheat straw fibers, as Guo et al. (2009) proposed the removal of
wheat straw fines to achieve good sheet formation.
3.2. Kinetics of cationization

Kinetic curves (Fig. 6) achieved an abrupt increase after the first
few minutes of cationization, leveling off at the end of the treat-
ment. It must be taken into account, then, that an equilibrium value
is reached during functionalization, and this value seems to depend
on the concentrations of CHPTAC and NaOH. Even homogeneous
reactions, aiming to produce water-soluble cationic cellulose, have
displayed a very similar shape of the kinetic curves (Liesiene and
Kazlauske, 2013).

In previous studies, Moral et al. (2015) proposed an approach
similar to the modeling of many adsorption processes. The mass
fraction of nitrogen can be successfully fitted to Eq. (4), a pseudo-
second order rate equation with two parameters: K’ and Neq.

duN

dt
¼ K

0�
Neq � uN

�2 (3)

where uN is the mass fraction of nitrogen as provided by an
elemental analysis.

This model provided good results for a given amount of NaOH,
mol/L) DSmax K (L mol-1 min-1) Neq (%) R2

0.059 27.1 0.670 0.964
0.098 0.857 0.984
0.145 1.086 0.952
0.171 1.322 0.963
0.064 34.8 0.684 0.956
0.102 0.832 0.960
0.141 1.071 0.964
0.182 1.367 0.988
0.072 21.0 0.754 0.952
0.120 1.038 0.980
0.193 1.514 0.977
0.242 1.759 0.980



Fig. 7. Drainage rate, presented as increasing weight of the filtrate, normalized to
900 g, with dewatering time, for pine kraft pulp (PKP) with TiO2, wheat straw pulp
(WSP) and cationic fibers from wheat straw (WCF).

Fig. 8. Paper with TiO2: photograph, without WCF (A) and with WCF (B); micrograph of the
WCF (E) and with WCF (F).
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which would affect both K’ and Neq. It is not clear how the
maximum amount of fixated nitrogen is affected (Hashem et al.,
2003). De Vries et al. (2014) found, for the cationization of cotton,
first-order dependence on NaOH concentration. While cyclization
is fast, cellulose ionizationwith OH- is surely a controlling stage. Eq.
(4) results from including the alkali concentration into the differ-
ential equation:

duN

dt
¼ K½NaOH�

�
Neq � uN

�2 (4)

This way, K is a rate constant which should not depend on the
concentration of any reagent. Eq. (4) can be easily integrated if the
concentration of NaOH is assumed to stay constant through the
process. Although OH- ions are first consumed in cellulose ioniza-
tion, they are then released by the reaction between ionized cel-
lulose and the epoxide.

uN ¼
K½NaOH�tN2

eq

1þ K½NaOH�tNeq
(5)
surface, without WCF (C) and with WCF (D); micrograph of the cross-section, without



Fig. 9. Opacity and light scattering coefficient of sheets from wheat straw pulp and
TiO2, cationized pulps, CPAM and APAM.

Table 3
Codification and key optical properties of sheets fromwheat straw pulp (WSP) with
and without titanium dioxide, cationic fibers and polyelectrolytes.

Composition Bulk (cm3/g) Brightness Yellowness

PKP 0.115 31.5 47.8
PKP þ TiO2 0.110 37.8 43.0
PKP þ RCF þ TiO2 0.120 41.5 40.0
PKP þ OCF þ TiO2 0.119 41.6 39.8
PKP þ WCF þ TiO2 0.114 41.9 41.1
PKP þ CPAM þ TiO2 0.116 43.3 38.4
PKP þ APAM þ WCF þ TiO2 0.124 42.2 38.5
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Eq. (5) presents the integrated form of the rate equation. For the
12 experiments (Table 2), the mass fraction of nitrogenwas fitted to
this model by using Origin 8.5. The fittings are shown in Fig. 6 as
continuous lines, while dots represent experimental data. Residues
are more notorious between 10 and 40 min of reaction time. Any-
way, as can be read from Table 2, all regressions presented R2 values
above 0.95.

Table 2 also shows the maximum DS reached in each of the
90min long reactions. DSwas calculated under the assumption that
fibers solely consisted of cellulose. Actually, the remaining contents
of lignin and hemicellulose after chemical pulping are not negli-
gible, but those compounds are modified by CHPTAC too (�Simkovic
et al., 1990). Given that themolecular mass of anhydropentose units
(132 Da) is only slightly lower than that of anhydrohexose units
(162 Da), Eq. (6) should provide a satisfactory estimation:

DS ¼ 162 %N
1401� 152 %N

(6)

Here, 162 is the molecular mass of AGU, 152 is the molecular
mass of a quaternary ammonium group, and 1401 is 100 times the
atomic mass of nitrogen (Moral et al., 2015). Some DS values were
above 0.15, which is in the high range for insoluble fibers. When DS
is higher than 0.3, cationic fibers may be so ionized that they get
dissolved in water.

As expected, the percentage of nitrogen and the surface charge
are correlated. Pearson's coefficient was found to be as high as 0.97
for WCF and OCF, and 0.98 for RCF. Remarkably, the cationic pulp
from orange tree reached a higher DS value than the cationic pulp
from rapeseed, but the charge density was lower. This is explained
by the fact that, before cationization, the former was more nega-
tively charged than the latter.

3.3. Performance in papermaking

3.3.1. Influence on sheet formation
The use of cationic fibers did not hinder sheet formation in

terms of dewatering. For a furnish with WCF, drainage was slightly
faster, as can be seen from Fig. 7. The improvement of dewatering
can be explained by the improvement of retention of fillers and
fines Hubbe, 1999). It may be argued that this effect could come
from mixing a heavily refined pulp with a non-refined pulp,
regardless the surface charge, but the combination of PKP and the
original soda-AQ pulp was also tested. No effect of untreated fibers
could be appreciated. In fact, unrefined pulps from wheat straw
contain as many fines, if not more, as heavily refined softwood
pulps (Guo et al., 2009).

Fig. 8 presents two handsheets: a sheet made with PKP and TiO2
and a sheet made with PKP, TiO2 and WCF. To ease comparisons,
these handsheets were produced with a higher basis weight than
those whose opacity was measured. Photographs (Fig. 8a and b)
were taken during daylight and at the same hour and place. The
sheet with cationic fibers is slightly but appreciably brighter.

Micrographs of the cross-section of paper seemed to indicate
that the presence of decrystallized fibers (Fig. 9d) results in more
void space, while the layers of fibers are more compact in Fig. 9c. As
for the surface (Fig. 9e and f), the distribution of TiO2 was found to
be uniform enough and very similar for both sheets, proving that
the addition of cationic fibers does not produce undesirable big
aggregations of fillers.

3.3.2. Enhancement of paper properties
The opacity and the light scattering coefficient for the different

sets of handsheets are shown in Fig. 9. Bulk, brightness and yel-
lowness are presented in Table 3. Cationic fibers from wheat straw
with the highest DS value, obtained under a CHPTAC/AGU mole
ratio of 4, clearly improved opacity and brightness, due to the
enhanced retention of TiO2 and fines, even without poly-
electrolytes. Moreover, opacity reached its highest value when the
original pulp was mixed with WCF.

Adding a small amount of CPAM resulted in the brightest sheets
(Table 3) and in the highest light scattering coefficient (Fig. 9). As
the brightness gain is provided by TiO2 and not by fines, this in-
dicates that cationic fibers are better for the retention of fines but,
still, cationic flocculants are better for filler retention. Combining
APAM with cationic fibers, unfortunately, did not achieve better
results than using a cationic polyelectrolyte alone (Fig. 9).

It is noteworthy that the apparent density of paper sheets
decreased with the addition of cationic fibers (Table 3). Likely, this
was not as due to cationization itself as to the reduction of the
packed density of pulp pads by the partial amorphization
(Vinogradov et al., 2002). With the breakage of many intermolec-
ular and intramolecular hydrogen bonds, the less crystalline
structure tends to swell, occupying a larger volume for the same
basis weight.

The increase of bulk is desired for any paper grade. This way, a
sheet can be produced with a certain thickness while using less raw
material. However, amorphization also implies drawbacks.
Although it has been stated that cationic fibers can improve the
strength of the paper webMontplaisir et al., 2006), further research
is needed to address the effect of using cationic fibers with low CI.
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4. Conclusions

We successfully produced cationic fibers under different con-
centrations of CHPTAC, by chemically modifying soda-
anthraquinone pulps from lignocellulosic residues. First, cellulose
Ib was partially converted (wheat straw) or almost completely
converted (rapeseed and orange tree) to cellulose II and amorphous
cellulose. This pretreatment, together with high concentrations of
CHPTAC and NaOH, allowed the material to reach DS values above
0.15, after only 40 or 60 min of cationization at 70 �C. We adjusted
cationization kinetics to a pseudo-second order rate equation with
a first-order dependence of NaOH concentration.

The process is mild enough to be regarded as feasible. The
addition of only a small amount of cationic fibers (5.5e8.5%) should
be enough to neutralize market pulps, and we did not even need
total charge neutralization to enhance optical properties that were
provided by fines and TiO2. While the choice of TiO2 in the paper
industry will remain hindered by its price, the addition of cationic
fibers can alleviate the unaffordable losses of these particles, whose
zeta potential is strongly negative at a wide pH range. Hence, as
long as the surface charge of a filler in a papermaking process is
clearly negative, agricultural residues could be reused towards
cationic fibers, which would reduce the need of toxic and non-
biodegradable polyelectrolytes.
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6. DISCUSSION AND CONCLUSSIONS 

 

 

6.1. Interpreting results: for or against hypotheses 

 

6.1.1. Effects of the pretreatments on further modifications 

Evidence supports Hypothesis 1: Soaking a cellulosic material in a concentrated 

aqueous NaOH solution, at room temperature, makes cellulose prone to cationization. 

Both the reaction rate and the maximum nitrogen percentage that could be reached 

increased with decreasing crystallinity. Decrystallization or amorphization occurred by 

treating cotton linters (Publication I) and alpha-cellulose powder (Publication II) with 

caustic soda, as indicated by X-ray diffraction (XRD) patterns. Table 9 shows the highest 

degree of nitrogen substitution (DNS) reached for cotton linters and cellulose powder 

and the crystallinity indices (CI) after 90 min-long treatments with NaOH 10%, NaOH 

20% and NaOH 30%. It should be noted that the two sets of data cannot be interpreted 

jointly, since the crystallinity of cotton linters was estimated by the height method, while 

the area method was followed to measure the crystallinity of alpha-cellulose. 

Due to the lack of a baseline correction of XRD patterns, the area method probably 

resulted in an underestimation of crystallinity [68]. Evidence from later works [76] 

suggested me that, if the amorphous fraction of the alpha-cellulose powder were as high 

as 50%, this material could have been cationized to high DNS values without the need 

of severe pretreatments. Still, CI calculations in Publication II are suitable for comparison 

purposes, which is the objective stated in the paper. 

 

Table 9. Crystallinity indices (CI) after 90 min-long alkaline treatments and maximum degrees of 
nitrogen substitution (DNS) reached.  

Material CI* DNS Source 

Cotton linters 

Initial CI*: 0.83 

Publication I 
0.76 0.021 

0.83 0.013 

0.60 0.204 

Commercial alpha-cellulose 

Initial CI*: 0.50 

Publication II 
0.44 0.020 

0.33 0.022 

0.19 0.257 

*Abbreviated as CrI in Publications I and II. 
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Results in Publication IV support Hypothesis 5: Refining a pulp before alkalization 

and cationization increases the reaction rate. Refining itself had no visible impact on 

crystallinity, but this mechanical treatment caused fibers to become easily swollen in 

aqueous alkaline suspensions, thus weakening hydrogen bonds between cellulose 

chains. XRD patterns corroborated the enhancing of alkalization by refining: the 

crystallinity index of the unrefined pulp after alkalization was 0.75, but refining to 4500 

PFI revolutions (vid. 3.3.3. Refining and electricity consumption) and then alkalizing was 

translated into a CI of 0.66. As a consequence, the degree of substitution of the pulps 

refined and cationized was always above 0.34, while its value was 0.296 for the unrefined 

pulp.  

Even more notorious was the impact on the surface charge of fibers. This was 0.442 

meq g-1 for the unrefined, alkalized and cationized pulp, but as high as 0.854 meq g-1 

when the pulp had been refined to 4500 PFI revolutions. Swelling and decrystallization 

are not enough to explain such difference. External fibrillation by surface roughening 

during refining was key. The surface had more positive charges per unit of mass because 

there was more surface per unit of mass. 

Hypothesis 9 is not supported by Publication V. That hypothesis was formulated 

as follows: Since the solubility of cationic cellulose depends on the degree of 

polymerization (negative influence) and on the degree of substitution (positive influence), 

hydrolyzing cellulose with orthophosphoric acid is a proper pretreatment to produce 

water-soluble cationic cellulose. However, the use of H3PO4 served to produce the 

flocculation agent with the worst performance. Incapable of working by bridging 

mechanisms, due to its low molecular weight, this derivative did not boost aggregation 

of any of the fillers tested in Publication V (precipitated calcium carbonate, ground 

calcium carbonate and kaolin).  

What we achieved with H3PO4 and not with NaOH, however, was increasing the 

proportion of amorphous cellulose —CI: from 0.813 to 0.518— while most crystalline 

cellulose remained as cellulose I. But this does not seem to be relevant for the purpose 

of cationization. 

Table 10 lists the treatments that precede functionalization in our publications. By 

the time we started hypothesizing, it was already known that cellulose chains whose 

molecular weight is low can be dissolved in an aqueous solution of NaOH and urea [87]. 

This treatment, followed by cationization, was used in Publication V to separate medium-

DP (820) cellulose from high-DP (1703) cellulose. It was also known that the solubility of 

charged cellulose derivatives would decrease with the length of the polymer chain and 

increase with the amount of charged units along this chain. This is why the high-DP part 

needed to reach a higher degree of substitution (0.46) than that of the medium-DP part 

(0.34) to become soluble in water. 
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Table 10. Pretreatments used in our publications and their effects.  

Pretreatment Tested in Usefulness 

NaOH 
Publications I, II, 

III, IV, VIII 

Decreasing crystallinity of cellulose 

without dissolving it 

Refining Publication IV 
Enhancing the NaOH treatment to be 

carried out afterwards 

NaOH + urea Publication V 
Decreasing crystallinity of cellulose and 

solubilizing the low-DP part 

H3PO4 Publication V 
Depolymerizing cellulose while 

amorphizing it 

NaOH + FeTNa [31] 
Decreasing crystallinity of cellulose and 

solubilizing the low-DP part 

NH4SCN [31] 
Slightly activating cellulose without 

dissolving it 

 

 

6.1.2. Kinetics of cationization  

Observations support Hypothesis 2: Kinetics of cationization can be modelled and 

the shape of the kinetic curve (percentage of nitrogen vs. time) is nearly the same for 

any given raw material. This curve always looked like the one depicted in Figure 25. 

There is a region in which the reaction is fast, at the beginning, and then the percentage 

of nitrogen slowly levels off towards an asymptotic value —and so does the degree of 

substitution. There is an easy explanation for this. The first region corresponds to less 

crystalline, reactive parts, which are quickly modified, while the second region 

corresponds to more crystalline, stable parts in fibers. 

The general shape of cationization kinetics (Figure 24) is similar to that of other 

reactions involving cellulose etherification. For the production of carboxymethylcellulose, 

Hedlund and Gemgard [88] proposed a model comprising two first order rate equations: 

𝑡 < 𝑡𝑐 ,
𝑑𝑋

𝑑𝑡
= 𝑘1 𝑋  (11) 

𝑡 < 𝑡𝑐 ,
𝑑𝑋

𝑑𝑡
= 𝑘2 𝑋 (12) 

In Equations 11 and 12, tc is the time at which nearly all reactive parts are modified, 

X is the fraction of functional groups inserted, and the rate constant k1 is much higher 

than the rate constant k2. Nevertheless, there is not an abrupt discontinuity (Figure 24) 

and, according to this model, X would not tend towards an asymptotic value. 

Again for carboxymethylcellulose, we found the model of Li et al. [89] more 

appealing. It is a pseudo-first order rate equation: 

𝑑𝑋

𝑑𝑡
= 𝑘 (𝐶 − 𝑋) (13) 
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Figure 24. General shape of the kinetic curve for cationization. 

 

Here, C is the asymptotic or equilibrium value. 

As for cationization, regardless of the raw material used, we got better results by 

fitting the variation of the mass percentage or mass fraction of nitrogen (N) per unit of 

time (t) to a pseudo-second order equation: 

𝑁 =
𝐾2

′ 𝑡 𝑁𝑒𝑞
2

1+𝐾2
′ 𝑡 𝑁𝑒𝑞

 (14) 

In Publications I and II, the lowest correlation index reached by fitting the results to 

the linearized form of Equation 14 was 0.979 (Publication II). At the same time, Equation 

14 is the integrated form of: 

𝑑𝑁

𝑑𝑡
= 𝐾2

′(𝑁𝑒𝑞 − 𝑁)
2
 (15) 

In Eqs. 14 and 15, K2’ resembles the constant of common chemisorption models. 

According to Plazinski et al. [90], pseudo-second order equations are useful for a very 

broad spectrum of sorbates and sorbents, as long as the surface reaction controls the 

overall kinetics. In this case, in which the thermodynamic stability of cellulose polymorphs 

is even more important than mass transfer limitations, what is called the surface reaction 

would involve all reactive parts. Because of the alkaline pretreatment, they are more 

abundant on the surface. 

However, K2’ depends on the concentration of reagents, or at least on the 

concentration of homogeneous catalyst (caustic soda). Later, in Publication VIII, we got 

acceptable results (R2 > 0.95) by defining a concentration-independent constant, K2, and 

assuming first-order dependence of the reaction rate on NaOH concentration: 

𝑑𝑁

𝑑𝑡
= 𝐾2 [𝑁𝑎𝑂𝐻] (𝑁𝑒𝑞 − 𝑁)

2
 (16) 

N
 (

%
)

Time (min)

Reactive parts

Crystalline parts
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In Equation 16, N is expressed as mass fraction of nitrogen (ωN), while K2 is to be 

expressed in L mol-1 min-1. 

However, Equation 16 was tested for a constant NaOH/CHPTAC mole ratio 

(Publication VIII). The high correlation indices obtained do not mean that K2’ does not 

depend on CHPTAC concentration, as the influence of CHPTAC may be contained in 

that of NaOH. Various NaOH/CHPTAC ratios should be tried to determine the impact of 

the cationizing agent on the reaction rate. 

Results do not support Hypothesis 3: The rate of cationization of low-DP cellulose 

is greater than the rate of cationization of high-DP cellulose. Crystallinity seemed to 

hinder cationization much more than the degree of polymerization (DP), whose influence, 

if any, was very slight. The intrinsic viscosity of commercial alpha-cellulose, 242 mL/g, 

was higher than that of cotton linters, 218 mL/g (Publication III). This meant that the first 

material had a higher molecular weight, according to the Mark-Houwink equation (vid. 

4.3. Viscometry). But the crystallinity of cotton linters was higher too, and this alone can 

explain their lower degrees of substitution (Publication III). This does not imply that the 

hypothesis should be rejected or refuted, but specific research would be needed to 

address the influence of DP on the cationization rate. 

6.1.3. Effects of cationization on cellulosic materials 

Hypothesis 4 is supported by Publication III and Publication IV. Cationization of 

cellulose has a positive impact on intrinsic viscosity (or in the limiting viscosity number). 

Figure 25 displays the Pearson’s coefficient for the relationships between the limiting 

viscosity number (η) and DNS. Cationized cotton linters, cellulose powder and softwood 

fibers are considered. 

While the results do not allow us to conclude that the intrinsic viscosity is linearly 

proportional to the degree of substitution —R2 would be as low as 0.65 for alpha-cellulose 

powder—, it goes without a doubt that the former increases with the latter. Yet, Yan et 

al. [8] found the opposite, associating the decreasing viscosity to alkaline hydrolysis of 

cellulose during cationization with NaOH and EPTAC, even though the conditions were 

mild. But experiments with size-exclusion chromatography showed that 

depolymerization during cationization is negligible [91]. Our observations support those 

of Song et al. [91], which drive us to propose: 

• Conjecture 1: At 70 ºC or less, NaOH concentration being below 5% (w/w),

alkaline hydrolysis can be neglected.

• Conjecture 2: Cationization changes how the polymer chain is distributed in

space, becoming more extended. Therefore, it interacts with the solvent and

with other chains in a different way.
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Figure 25. Correlations between the intrinsic viscosity or limiting viscosity number and the 

degree of nitrogen substitution (Publication III, Publication IV). 

 

In Publication V, viscosity measurements were used to estimate the molecular 

weight, and thus the degree of polymerization, of cationic cellulose derivatives, but the 

values taken by K and a in the Mark-Houwink equation (Eq. 4) correspond to unmodified 

alpha-cellulose [92]. What we did was measuring the viscosity right before cationization, 

since it was assumed that cationization involved no significant impact on molecular 

weight (Conjecture 1). 

Further experimentation is needed to test Hypothesis 6: Cationization has a positive 

effect on bulk. Certainly, the apparent density of pulp pads (Publication IV) and sheets 

(Publication VIII) decreased, and thus the bulk increased. The apparent density of 

softwood pulp samples went from 0.57 g cm-3 to 0.40 g cm-3 (Publication IV). By adding 

cationic fibers with very low CI to the same pine kraft pulp, the bulk of sheets with TiO2 

increased slightly but significantly, from 0.11 cm3 g-1 to 0.12 cm3 g-1. However, we could 

not distinguish whether this increment of bulk was due to decrystallization or to 

cationization. Decrystallization weakens attractive interactions among hydroxyl groups, 

while cationic functional groups act as spacers between cellulose chains [93]. In order to 

test it the effects of each process separately, it would be necessary to cationize pulps by 

following a non-amorphizing procedure. 
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6.1.4. Applications of cationic cellulose in papermaking 

Cationic cellulose was tested as an additive to the stock in two ways: (i) as insoluble 

fibers and (ii) as water-soluble derivatives. Both in Publication IV and in Publication VIII, 

cationic fibers (CF) increased the retention of fines, thus supporting Hypothesis 7.1: 

Cationic fibers enhance the retention of fines during sheet formation. However, retention 

of precipitated calcium carbonate (PCC) was not enhanced by the use of CF from a pine 

kraft pulp (Publication IV). This tells against Hypothesis 7.2: Cationic fibers enhance the 

retention of PCC during sheet formation. 

Adding CF to the furnish in Publication IV made the total retention go from 80% to 

89%. Out of the 0.11 g of solids lost per gram of pulp in this experiment with CF, 0.09 g 

corresponded to PCC. This meant that only 0.02 g of fines per gram of pulp were lost, 

as exposed in Table 11. We conjectured that fines were retained to a great extent 

because their surface is negatively-charged in aqueous suspensions, so they tend to 

collapse over cationic fibers during stirring. Now, I wish to suggest another reason, a 

reason related to the morphology of the particles. Their surface is far from being totally 

smooth. Indeed, fibers and fines have hollow centers that make them able to drape over 

each other, especially after refining [7]. Fiber-to-fiber collapsing is not desired before 

sheet formation —papermakers do not want fiber bundles to be formed in the head box. 

But attachment of fines to fibers is desirable and what prevents it from happening at a 

greater rate is repulsion. Cationizing a part of the pulp, then, promoted attraction and 

collapsing. 

Depending on the source and on the pH, the zeta potential of PCC may be slightly 

positive or slightly negative (Publication V). Anyway, PCC autoflocculation occurs, 

without aids, and once the particle size stops increasing, cationic patches or 

neutralization will not result in a noticeable change. In papermaking, PCC’s primary 

flocculation mechanism is bridging [64], while electrostatic interactions play a minor role. 

This is why PCC retention was not enhanced (Table 11). It is clear that cationic cellulose 

could only work by bridging mechanisms if dissolved, and only if its chains are long 

enough (vid. 3.3.4. Wet end chemistry and the limitations of recirculating water). 

ECOWAL did not give up on the idea of improving filler retention with CF, but a 

different mineral compound had to be chosen. The choice was titanium dioxide, which is 

expensive and is usually relegated to be used as coating of specialty papers, but its 

strongly negative zeta potential drove us to ask for a sample. The zeta potential of TiO2 

powder suspensions at pH 6 lies around -65 mV [94]. This implies that TiO2 particles are 

highly stable, not prone to aggregation. Instead, they tend to stay dispersed. The addition 

of positively-charged fibers can decrease the stability of mineral particles with highly 

negative zeta potential. 
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Table 11. Performance of cationic cellulose, in the form of insoluble fibers or soluble derivatives, 
in retention and flocculation essays.  

Agent 
Tested 

with 
Performance Source 

Cationic fibers 

Fines 
Losses reduced to 0.02 g per 

gram of pulp Publication IV 

PCC No significant effect 

TiO2 
Higher brightness gain when CF 

are used 
Publication VIII 

Water-soluble 

cationic cellulose 

derivatives 

PCC Poor. Slow flocculation 

Publication V GCC 
Fast flocculation, but floc size 

levels off too soon 

Kaolin Even better than CPAM 

 

Results supported Hypothesis 7.3: Cationic fibers enhance the retention of TiO2 

during sheet formation. Hence, cationic fibers can enhance filler retention, as long as the 

filler particles are stable by virtue of their negative electrokinetic potential.  

It should be noted that the particle size of TiO2 —300-400 nm, not prone to 

autoflocculation— was much lower than that of PCC —around 5.5 µm after 

autoflocculation. Further experimentation is required to address the effects of particle 

size and particle shape on the performance of cationic fibers. 

Like cationic fibers, soluble cationic derivatives from cellulose showed their worst 

performance as flocculation agents when the filler was PCC (Table 11). The medium-DP 

derivative and the low-DP derivative did not boost PCC flocculation at all, while the high-

DP derivative promoted a slow increment of floc size. Still, its molecular weight was at 

least one order of magnitude below that of the cationic polyacrylamide (CPAM) used, 

which was able to duplicate the median particle size of PCC —from 4 µm to 8 μm— in 3 

min (Publication V). Producing polymers for PCC flocculation requires them to be long-

chained and soluble at the same time, which is particularly challenging when the raw 

material is cellulose. Therefore, evidence does not support Hypothesis 8.1: 

Cationization of cellulose can produce soluble derivatives to enhance flocculation of 

PCC. 

The best of the soluble derivatives, the one whose DP and DS were the highest, 

promoted fast flocculation of GCC, even faster than when CPAM was used. To reach a 

median particle size of 3.5 µm, starting from 2.2 µm, cationic cellulose needed 1.5 min 

under stirring, while CPAM required 3 min. As a drawback, large flocs could not be 

achieved (Publication V). While the surface charge of GCC is negative, its scalenohedral 

shape may have hindered flocculation. Producing cationic derivatives by different ways 
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is advised to test Hypothesis 8.2: Cationization of cellulose can produce soluble 

derivatives to enhance flocculation of GCC.  

When the filler was kaolin, flocculation was faster and achieved more aggregation 

with cationic cellulose than with CPAM. Median particle size went from 4 µm to 25 µm in 

only 2 min (Publication V). This can be explained by the fact that the charge density of 

the best cationic cellulose derivative was much higher than that of CPAM, and thus its 

performance in flocculation by neutralization and patching mechanisms is better. The 

zeta potential of a 1% suspension of kaolin and CPAM at pH 7.1 was -9.7 mV, more 

stable than a 1% suspension of kaolin and cationic cellulose, whose zeta potential was 

-7.3 mV. This supports Hypothesis 8.3: Cationization of cellulose can produce soluble 

derivatives to enhance flocculation of kaolin. 

Fortunately for the applications of cationic fibers in papermaking, results in 

Publication VIII told against Hypothesis 13: The addition of cationic fibers to the stock 

favors collapsing, thus slowing dewatering. Starting from 1 kg of furnish, a filtrate weight 

of 800 g was reached after 9 s with CF and after 8 s without them. Apparently, formation 

of fiber bundles during stirring was negligible. The increase in drainage rate was likely 

due to the higher retention of fines [7]. This does not mean that CF could be used as 

drainage aids –the improvement was very slight. But they do not hinder sheet formation. 

6.1.5. The use of lignocellulosic materials 

Unlike semichemical pulps from wheat straw [41], pulps from rapeseed stalks and 

pulps from orange tree trimmings needed to be refined to show acceptable paper 

strength. The tensile index was 10.2 N m g-1 in the best case, for rapeseed stalks cooked 

with ethanolamine-water at 180 ºC. The burst index was always lower than 1 kN g-1. Only 

the tear index was in the high range, always above 3 mN m2 g-1 (cf. [12]). However, the 

strength of these sulfur-free pulps from lignocellulosic residues was drastically improved 

by refining to less than 1000 PFI revolutions. Figure 26 shows the tear index, the tensile 

index and the burst index for the pulps cooked and refined under optimal conditions in 

each case: 

• For rapeseed stalks, ethanolamine (60%) and water (40%) as the cooking

liquor, 180 ºC, 60 min, refined to 500 PFI revolutions.

• For orange tree trimmings, ethanolamine (60%) and water (40%) as the

cooking liquor, 180 ºC, 60 min, refined to 1000 PFI revolutions.

Hypothesis 10.1 is supported: Rapeseed stalks can be cooked through sulfur-free 

processes to produce pulps of enough strength for papermaking. Nonetheless, 

Hypothesis 10.2 is partially supported: Orange tree trimmings can be cooked through 

sulfur-free processes to produce pulps of enough strength for papermaking. It is only 
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partially supported because the tensile index of pulps from orange tree trimmings was 

never high enough for paper bags [5]. The use of orange tree trimmings, whose fibers 
are short and thick (Appendix 2) should be restricted to graphic paper. 

Freeness measurements of pulps from both rapeseed stalks and orange tree 

trimmings support Hypothesis 11: By refining, pulps from rapeseed stalks and orange 

tree trimmings need less energy than conventional pulps to reach a given value of CSF 

or SR. This is common to many non-wood materials (Figure 14), which is why we 

hypothesized this, but for different reasons.  

The freeness of unrefined pulps from wheat straw is similar to that of heavily refined 

conventional pulps (i.e., kraft pulps from hardwoods and softwoods) because of its high 

content of fines. Rapeseed stalks are rich in fines too, with much more fines than wood 

and less than cereal straw, but orange tree trimmings are not. CSF values of pulps from 

trimmings decreased abruptly because the surface of their fibers was less resistant than 

that of wood fibers. It was easily roughened by refining. Anyway, spending less energy 

to achieve a certain freeness value is an advantage, both for rapeseed stalks and for 

orange tree trimmings. For instance, to get CSF below 400 mL, rapeseed stalks would 

suffice with 1000 PFI revolutions (Publication VI) and orange tree trimmings would need 

1250 PFI revolutions, while common hardwoods may require 2000 PFI revolutions [57]. 

Figure 26. Strength indices for an organosolv pulp from rapeseed stalks (Publication VI) and for 

an organosolv pulp from orange tree trimmings (Publication VII). 
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Evidence in Publication VII supported Hypothesis 12: One-step bleaching with 

hydrogen peroxide can achieve a high brightness gain. By bleaching an organosolv pulp 

from orange tree trimmings at 85 ºC for 150 min, spending 0.1 g of H2O2 per gram of 

pulp, brightness went from 34.5% to 72.9%. 

Hydrogen peroxide is not a cheap reagent and a residence time of 150 min would 

be unacceptable, but we found severe conditions unnecessary. Bleaching at 70 ºC for 

90 min, spending 0.06 g of H2O2 per gram of pulp, raised brightness from 34.5% to 68.3% 

(Publication VII). 

What is more remarkable of Publication VII is that the pulp was, in principle, hardly 

bleachable. Its kappa number, instead of lying below 30, was 52. Its lignin content was 

too high for conventional bleaching. But, unlike other bleaching reagents, hydrogen 

peroxide bleaching is not based on lignin removal. It is based on the oxidation of 

chromogenic groups [97]. This conjecture was corroborated by the very slight decrease 

in the kappa number by H2O2 bleaching (Publication VII). 

As aforementioned, titanium dioxide is expensive, but its characteristics made it a 

good choice to test the potential of cationized pulps from lignocellulosic residues. 

Besides its negative zeta potential, a small amount of TiO2 has a strong positive impact 

on brightness and opacity, but it is easily lost upon filtration. In Publication VIII, cationic 

fibers from wheat straw, rapeseed stalks and orange tree trimmings enhanced this 

impact on brightness and opacity by reducing TiO2 losses. This supports Hypothesis 

14: Lignocellulosic residues can be cationized to produce valuable fibers to be added to 

conventional pulps, with the goal of enhancing the optical properties of the final product. 

Due to electrostatic interactions, many mineral particles became attached to cationic 

fibers but, fortunately, micrographs of handsheets did not show excessive agglomeration 

of TiO2 (Publication VIII). 

Figure 27 displays the opacity gain in Publications IV and VIII, defined as follows:  

𝑂𝑝𝑎𝑐𝑖𝑡𝑦 𝑔𝑎𝑖𝑛(%) =
𝑂𝑝𝑎𝑐𝑖𝑡𝑦 𝑤𝑖𝑡ℎ 𝑓𝑖𝑙𝑙𝑒𝑟𝑠−𝑂𝑝𝑎𝑐𝑖𝑡𝑦 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑓𝑖𝑙𝑙𝑒𝑟𝑠

𝑂𝑝𝑎𝑐𝑖𝑡𝑦 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑓𝑖𝑙𝑙𝑒𝑟𝑠
100 (17) 

The improvement caused by cationic fibers from pine wood (PCF) in Publication IV 

was due to the impact on the retention of fines, not to PCC retention. Cationic fibers from 

wheat straw (WCF), from orange tree trimmings (OCF) and from rapeseed stalks (RCF) 

increased the opacity gain achieved by TiO2 and fines to a greater extent than 5 mg/g of 

CPAM. 

However, whilst the opacity gain was higher when using CF, the brightness gain was 

higher when using CPAM. With CF from lignocellulosic residues, brightness went from 

37.8% —unbleached pulp and TiO2 alone— to 41.5-41.9%.  
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Figure 27. Opacity gain with PCC and cationic fibers from pine (Publication IV), and with TiO2 

and cationic fibers from wheat straw, orange tree and rapeseed stalks (Publication VIII). 

 

With the addition of CPAM, brightness reached 43.3% (Publication VIII). We 

conjecture that the latter is probably the best choice to enhance TiO2 retention, while CF 

are better when it comes to enhance the retention of fines. 

 

6.2. Concluding remarks 

The contribution made by this research involves answers to several questions 

related to the functionalization —specifically, cationization— of cellulose with CHPTAC, 

from studies on different raw materials to the applications in papermaking. Native 

cellulose is not prone to cationization, but decrystallization with NaOH (20-30%) at room 

temperature activated the polymer. Between the degree of substitution of cationic fibers 

from highly-crystalline cellulose and that of cationic fibers from severely amorphized 

cellulose, there was a difference of one order of magnitude, as shown for cotton linters 

and commercial cellulose. The role of NaOH also involved the conversion of CHPTAC 

into EPTAC, the true cationizing agent, and deprotonating at least one hydroxyl group in 

AGU to promote cellulose etherification.  

We successfully fitted reaction kinetics to a pseudo-second order rate equation with 

first order dependence on NaOH concentration. Correlation indices above 0.95 were 

obtained. The maximum degree of substitution reached was strongly dependent on the 

crystallinity index, whose influence was negative, and on the CHPTAC/AGU mole ratio, 

whose influence was positive. 
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Out of all the materials used in our works, the fibers with the highest degrees of 

substitution were produced from pine kraft pulp. The high degree of polymerization of 

cellulose in this material allowed the polymer to stay insoluble even after reaching DS 

values of approximately 0.4. These cationic fibers, when added to the original pulp to 

form a paper sheet, clearly improved the retention of fines, whose surface is negatively 

charged, but not PCC retention. Likewise, cationic fibers from rapeseed stalks, orange 

tree trimmings and wheat straw increased the opacity of sheets to a greater extent than 

CPAM, a conventional cationic polyelectrolyte. We conjectured that fines tend to collapse 

over cationic fibers during stirring of the furnish and/or during sheet formation. 

Cotton linters and commercial cellulose, for instance, could be used right away, 

while wood and lignocellulosic residues needed to be delignified. This delignification of 

wheat straw, rapeseed stalks and orange tree trimmings was successfully performed by 

soda-anthraquinone pulping. While cereal straw had been widely studied long before the 

writing of this dissertation, I presented two publications of ours dealing with rapeseed 

stalks and orange tree trimmings. We found out that cooking them with ethanolamine 

(60%) / water (40%), at 180 ºC and for 60 min, yielded even better results than soda-

anthraquinone pulping, reaching tensile indices of 46 N m g-1 for rapeseed stalks and 28 

N m g-1 for orange tree trimmings. Cationic fibers from these materials improved the 

retention of TiO2, whose highly negative zeta potential —around 60 mV— prevents 

particle aggregation, but not as much as CPAM did. 

Besides cationic fibers, water-soluble cationic derivatives were also tested. For 

performance reasons, I remark a derivative with a degree of substitution of 0.46 and a 

degree of polymerization of approximately 1700. Its enhancement of kaolin flocculation 

surpassed even the addition of CPAM. However, due to the inability of cationic cellulose 

to work by bridging mechanisms, the trials with PCC yielded very modest results. 

Although further research is required to address the feasibility of using cationic 

cellulose in papermaking, these findings show what can and cannot be improved by its 

addition. We suggest a mild process, insisting on the importance of the pretreatment 

and, if possible, reusing waste from agriculture. 

 

6.3. Future research 

In the publications and all along this dissertation, some research limitations 

hindered the testing of certain hypotheses. For instance, when functionalizing cellulose, 

the focus was only on one procedure to cationize the polysaccharide –a procedure 

involving decrystallization. This prevented us from telling whether certain effects, such 

as the increase in bulk, were due to the insertion of charged functional groups in cellulose 
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or to the fact that cationized fibers had been amorphized before. Moreover, we have 

noted the lack of a convention regarding the estimation of crystallinity. As a 

consequence, the crystallinity index is reported only for comparison purposes. And while 

we presented gallium pycnometry as a novel way to measure the apparent density of 

pulp pads, this novelty was due to the impossibility of using mercury pycnometry. 

To address unanswered questions, further research involves an alternative 

approach to cationize cellulose. When the aim is to produce cationic fibers, the method 

should have little effect on crystallinity. When water-soluble derivatives are produced, 

the reaction should reach very high degrees of substitution (above 0.5) for cellulose of 

high degree of polymerization. 

The finding that adding cationic fibers to the stock increases the retention of fines, 

with no detrimental effect on dewatering and sheet formation, leads us to consider the 

cationization of fines. Would adding cationic fines to the stock result in good retention 

of all fines? Would only the cationic fines be affected? Continuous imaging of the stirring 

suspension could throw some light on how cationic fines are attached to fines and fibers, 

or on how cationic fibers are attached to negatively-charged fines. 

Other than wheat straw, rapeseed stalks and orange tree trimmings, we have been 

considering different raw materials. We got some work done that is patiently waiting to 

be published. Also, we are testing a new hypothesis related to the activation of cellulose 

before cationization, using various reagents. 

Working with papermakers could be very fruitful. Scientific findings cannot be subject 

to market mechanisms but, as long as they can allow manufacturers to address 

environmental issues, collaboration is key to transfer results to society. 

And to finish this dissertation with what could be a little flash of genius, I would like 

to try ammonia fiber expansion. It would be performed with lignocellulosic residues, 

with the raw materials, with a twofold aim of delignifying and decrystallizing. According 

to my hypothesis, the cellulosic material resulting from this treatment would be ready for 

many sorts of functionalization, including cationization.
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7. OTHER WORKS (related to the PhD thesis) 

 

 

7.1. Publications in JCR-indexed journals 

The four papers referenced in this section deal with lignocellulosic residues. They 

can be consulted for more information regarding cereal straw, rapeseed stalks and 

orange tree trimmings. The works published in J. Spectrosc., Ind. Crops. Prod. and 

Measurement suggest timesaving and non-destructive ways to predict key properties of 

pulps. The article published in BioResources presents the convenience of using 

mechanical and thermomechanical pulps from rapeseed stalks. 

 

• NIRS characterization of paper pulps to predict kappa number 

Authors: Ana Moral (corresponding author), Elena Cabeza, Roberto Aguado, 

Antonio Tijero. 

Reference: Moral, A., Cabeza, E., Aguado, R., Tijero, A. J. Spectrosc. 2015: 6 pages 

(2015). DOI: 10.1155/2015/104609. 

Abstract: Rice is one of the most abundant food crops in the world and its straw 

stands as an important source of fibres both from an economic and an environmental 

point of view. Pulp characterization is of special relevance in works involving alternative 

raw materials, since pulp properties are closely linked to the quality of the final product. 

One of the analytical techniques that can be used in pulp characterization is near-infrared 

spectroscopy (NIRS). The use of NIRS has economic and technical advantages over 

conventional techniques. This paper aims to discuss the convenience of using NIRS to 

predict Kappa number in rice straw pulps produced under different conditions. We found 

that the resulting Kappa number can be acceptably estimated by NIRS, as the errors 

obtained with that method are similar to those found for other techniques. 

 

• Morphological analysis of pulps from orange tree trimmings and its 

relation to mechanical properties 

Authors: Roberto Aguado, Ana Moral (corresponding author), Patricio López, Pere 

Mutjé, Antonio Tijero. 

Reference: Aguado, R., Moral, A., López, P., Mutjé, P., Tijero, A. Measurement 93: 

319-326 (2016). 

Abstract: To optimize the pulping and refining processes of new alternative raw 

materials for papermaking, researchers generally perform tests that consume 
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considerable time and large amounts of sample. We propose measuring the 

morphological properties of pulps from orange tree trimmings by image analysis 

systems, which are fast and user-friendly, to develop models relating key mechanical 

properties to the dimensions, the deformation and the population of fibers. Data modeling 

involves multiple linear regression, as used in other studies, and support vector 

regression, not used before for this purpose, achieving higher R2 values (up to 0.90). 

Although tensile, tear and burst tests are still required to obtain accurate values, a quick 

morphological characterization allows for a rough but satisfactory prediction of paper 

strength. In this case, chemical pulping and moderate refining are shown to be necessary 

to obtain pulps of acceptable quality from orange tree trimmings. 

Graphical abstract: Figure 28. 

 

• Relating near infrared spectra of Oryza sativa pulps to paper 

mechanical strength and brightness 

Authors: Ana Moral (corresponding author), Elena Cabeza, Roberto Aguado, 

Antonio Tijero. 

Reference: Moral, A., Cabeza, E., Aguado, R., Tijero, A. Ind. Crops Prod. 89: 493-

497 (2016). 

Abstract: Rice straw pulps produced under different conditions were subject to near 

infrared (NIR) spectroscopy. At the same time, samples from those pulps were used to 

make handsheets, whose mechanical properties were measured. These values and 

those of brightness were successfully fitted to the pulping variables. Relating them to the 

NIR spectra, we found valid correlations for all parameters except the burst index, 

concluding that NIR spectroscopy could be used as an economical, timesaving and non-

intrusive way to predict the mechanical strength of pulps before the paper sheet is made. 

 

 

Figure 28. Graphical abstract included in Aguado et al. [76]. 
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• High-yield pulp from Brassica napus to manufacture packaging paper 

Authors: Ana Moral (corresponding author), Roberto Aguado, Antonio Tijero, Quim 

Tarrés, Marc Delgado-Aguilar, Pere Mutjé, 2017. 

Reference: Moral, A., Aguado, R., Tijero, A., Tarrés, Q., et al. BioResources 12(2): 

2792-2804 (2017). 

Abstract: The stalks that are left on the field after harvesting rapeseed crops could 

be used to make packaging grade paper. This work evaluates the suitability of 

mechanical and thermomechanical pulps from rapeseed stalks for papermaking, with a 

view to alleviating the limitations of recycled fluting. Their performance was compared to 

that of commercial fluting (recycled fluting) of the same basis weight, 100 g/m2, and to 

that of virgin pulps from pine wood. The thermomechanical pulp was refined to improve 

key mechanical properties. Its drainability was found to be very low, even before refining, 

and its breaking length after beating to 1200 PFI revolutions, 4 km, surpassed that of 

sheets of recycled fluting that were obtained under similar conditions. These findings 

support the hypothesis that high-yield pulps from rapeseed stalks are a strong choice of 

virgin fibres to produce fluting and, generally speaking, packaging paper. 

 

7.2. Conference papers, posters and oral communications 

All contributions listed below deal with cationization of cellulose, pretreatments 

suggested to activate cellulose before functionalization, and/or lignocellulosic residues. 

For more detail, the reader is invited to visit my ResearchGate profile 

(Roberto_Aguado2). 

 

Moral, A., Aguado, R., Cabeza, E., Ballesteros, M., Tijero, A. “TCF bleaching of 

Organosolv pulp from orange tree trimmings.” EWLP: 13th European Workshop on 

Lignocellulosics and Pulps, Seville, Spain (2014). 

Aguado, R., Moral, A., Pérez, A., Monte, M.C., Tijero, A. “Potential of rapeseed 

stems as an alternative raw material for papermaking purposes.” EWLP: 13th European 

Workshop on Lignocellulosics and Pulps, Seville, Spain (2014). 

Moral, A., López, M.M., Aguado, R., Torrecilla, J.S., Tijero, A. “Cellulose from Ulva 

sp. as a reinforcing fibre for the pulp and paper industry.” EWLP: 13th European 

Workshop on Lignocellulosics and Pulps, Seville, Spain (2014). 

López, M.M., Moral, A., Aguado, R., Campaña, M.L, Tijero, A. “Evaluation of Bloom 

algae as raw material for papermaking.” EWLP: 13th European Workshop on 

Lignocellulosics and Pulps, Seville, Spain (2014). 

http://www.researchgate.net/profile/Roberto_Aguado2
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Tijero, A., Hernández, M.D., Moral, A., Aguado, R., De la Torre, M.J. “Relationship 

among cationization degree, crystalline structure and viscosity of cationized cellulose.” 

EWLP: 13th European Workshop on Lignocellulosics and Pulps, Seville, Spain (2014). 

Tijero, A., Hernández, M.D., Moral, A., Aguado, R., De la Torre, M.J. “Electrokinetic 

properties (cationic demand) of cellulose suspensions.” EWLP: 13th European 

Workshop on Lignocellulosics and Pulps, Seville, Spain (2014). 

Monte, M.C., Aguado, R., Tijero, A., Moral, A. “Use of orange tree prunings as an 

alternative source of fibres for papermaking.” VIII International Congress of ANQUE: 

Science and Technology of Materials, Madrid, Spain 2014. 

Ballesteros, M.M., Moral, A., Lorenzo, A., Aguado, R., Tijero, A. “Zoostera noltii 

como materia prima alternativa en la extracción de celulosa.” CONAMA, Madrid (2014). 

Moral, A., Cabeza, E., Aguado, R., Tijero, A. “NIRS en la determinación de las 

propiedades de la pasta de papel.” CONAMA, Madrid, Spain (2014). 

Moral, A., Aguado, R., Espinosa, E., Tijero, A., Jiménez, L., Rodríguez, A. “Influence 

of mercerization-cationization process in the structure of cellulose.” 2nd International 

Conference on Natural Fibers, São Miguel, Portugal (2015). 

Moral, A., Aguado, R., Rodríguez, A., Espinosa, E., Tijero, A. “Cationization of soda-

AQ pulps and its influence on retention effectiveness.” 18th ISWFPC, Vienna, Austria 

(2015). 

Moral, A., Aguado, R., Jarabo, R., Torrecilla, J.S. “Cationic derivatives of pine kraft 

pulp as alternative retention and drainage agents.” 1st IWBLM, Cordoba, Spain (2015). 

Ballesteros, M., Amaya, J.A., Moral, A., Moreno, A., Aguado, R., Tijero, A. 

“Elaboración de Compost Empleando Posidonia oceanica y Dictyota dichotoma.” IX 

CONAMA LOCAL, Malaga, Spain (2015). 

Porcel, M.C., Moral, A., Ballesteros, M., Aguado, R., Moreno, A., Tijero, A. 

“Obtención de celulosa de Posidonia oceánica mediante tecnologías limpias.” IX 

CONAMA LOCAL, Malaga, Spain (2015). 

Tijero, A., Moral, A., Ballesteros, M., Aguado, R. “Who has put beach waste in my 

ice cream?” 9th Euro-Global Summit & Expo on Food & Beverages, Cologne, Germany 

(2016).  

Moral, A., Aguado, R., Mutjé, P., Tijero, A. “Hydrogen peroxide bleaching of soda-

AQ and organosolv pulps from rapeseed stalks.” 6th EuChems, Seville, Spain (2016). 

Tijero, A., Aguado, R., Ballesteros, M., Moral, A. “Partial amorphization of cellulose 

with different aqueous treatments.” 6th EuChems, Seville, Spain (2016). 
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Aguado, R., Moral, A., Tijero, A., Tijero, J. “Enhancing retention in papermaking with 

highly-substituted cationic fibers.” 6th EuChems, Seville, Spain (2016). 

Aguado, R., Lourenço, A.F., Moral, A., Ferreira, P.J. “Cationized cellulose for use as 

filler retention and strength enhancer in papermaking.” IX Iberoamerican Conference on 

Pulp and Paper Research, Espoo, Finland (2016). 

Moral, A., Cabeza, E., Aguado, R., Tijero, A. “Caracterización morfológica como 

método de predicción de las propiedades mecánicas del papel procedente de residuos 

agrícolas.” CONAMA, Madrid, Spain (2016). 

Campaña, L., Moral, A., Ballesteros, M., Tijero, A., Aguado, R. “Valorización de 

residuos de marea: producción de celulosa para aplicaciones industriales.” CONAMA, 

Madrid, Spain (2016). 

Aguado, R., Lourenço, A.F., Ferreira, P.J., Moral, A., Tijero, A. “Tratamientos 

químicos de la celulosa para facilitar su posterior cationización bajo condiciones 

suaves.” CONAMA, Madrid, Spain (2016). 

Aguado, R., Moral, A., Lourenço, A.F., Ferreira, P.J., Tijero, A. “Cationization of 

cellulosic fibers: kinetics and influential factors.” World Congress of Chemical 
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APPENDIX 1 

 

Supplementary information for Publication V: Cationic cellulosic derivatives as 

flocculants in papermaking. 

Flocculation kinetics of the three mineral fillers with the cationic cellulosic derivatives 

(CC1, CC2 and CC3), measured by laser diffraction spectrometry (Mastersizer 2000, 

Malvern Instruments). The dosage of cationic cellulose is 10 mg per g of filler. 
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APPENDIX 2 

 

Additional information for Publication VII: Papermaking potential of Citrus 

sinensis trimmings using organosolv pulping, chlorine-free bleaching and refining. Not 

included in the submission. 

While Publication VI shows morphological data for chemical pulps from rapeseed 

stalks, the focus of Publication VII is more particularly in bleaching. This appendix 

presents the results from the morphological characterization of soda-anthraquinone, 

organosolv, mechanical and thermomechanical pulps from orange tree trimmings. 

The different levels of refining are expressed by the Canadian Standard Freeness 

(CSF). 

Pulp 1-6: Organosolv pulp, ethanolamine 60%, 180 ºC, 60 min. 

Pulp 6-12: Organosolv pulp, ethanolamine 40%, 140 ºC, 40 min. 

Pulp 13-18: soda-anthraquinone pulp, NaOH 15%, anthraquinone 0.1%, 140 ºC, 40 

min. 

Pulp 19-24: soda-anthraquinone pulp, NaOH 15%, anthraquinone 0.1%, 140 ºC, 40 

min. 

Pulp 25-30: mechanical pulp. 

Pulp 31-36: thermomechanical pulp, water 100%, 180 ºC, 60 min. 

NF: number of fibres per gram. L: fibre length (weighted in length). W: fibre width. CN: 

coarseness. KF: percentage of kinked fibres. CI: curl index. MF: percentage of 

microfibrils (in area). BE: percentage of broken ends. FI: percentage of fines (in area). 
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A3 
 

Pulp 

code 

CSF  

(mL) 

NF  

(106 g-1) 

L  

(m) 

W  

(m) 

CN 

(mg/m) 

KF 

(%) 

CI 

(%) 

MF 

(%) 

BE 

(%) 

FI 

(%) 

1 692 20.8 543 20.7 0.134 22.2 6.87 29.5 1.3 4.7 

2 588 27.3 538 19.5 0.099 20.2 7.13 30.2 1.5 5.3 

3 548 27.4 518 19.3 0.092 19.2 7.13 30.9 1.5 6.7 

4 459 29.6 502 19.3 0.083 16.9 6.38 32.0 1.7 6.9 

5 435 27.1 483 19.1 0.089 16.7 6.85 32.6 1.5 6.2 

6 355 32.6 483 19.5 0.081 15.7 6.26 33.9 1.7 7.3 

7 683 16.2 541 22.6 0.159 24.1 7.80 35.7 1.3 7.7 

8 561 19.4 507 22.0 0.135 24.1 8.27 36.5 1.3 9.0 

9 488 19.5 489 21.3 0.130 22.9 8.28 35.9 1.5 9.4 

10 428 20.1 464 21.0 0.131 22.7 8.07 35.5 1.4 9.9 

11 411 23.3 452 20.9 0.122 21.7 8.08 36.9 1.7 10.6 

12 398 23.5 438 20.8 0.111 20.5 7.97 36.9 1.6 9.8 

13 606 23.4 575 19.2 0.099 20.6 6.79 28.4 1.2 7.5 

14 389 30.0 582 19.4 0.087 22.3 8.10 27.9 1.4 10.4 

15 365 28.7 565 19.3 0.082 22.0 8.06 30.5 1.5 10.9 

16 315 30.3 559 18.9 0.078 20.7 7.67 29.0 1.5 11.3 

17 295 30.0 543 19.9 0.083 20.1 7.84 33.4 1.6 12.1 

18 289 37.3 532 19.8 0.068 19.8 7.77 34.1 1.8 12.7 

19 645 18.6 510 21.2 0.116 23.9 7.28 34.8 1.7 4.3 

20 391 25.2 513 21.7 0.110 22.3 7.78 37.4 1.7 5.3 

21 354 25.2 510 21.2 0.104 21.8 8.14 34.8 1.7 5.1 

22 333 26.6 496 20.8 0.102 22.2 8.21 35.9 1.7 5.7 

23 280 28.3 489 20.8 0.098 22.6 8.63 36.4 1.8 5.7 

24 276 26.5 485 20.8 0.090 22.4 8.95 36.6 1.8 5.8 

25 729 12.8 445 21.1 0.226 14.3 4.19 32.8 1.1 23.3 

26 693 13.0 441 21.3 0.236 14.1 4.30 33.5 1.2 21.5 

27 661 14.1 422 21.2 0.219 14.2 3.91 33.8 1.2 21.4 

28 625 14.0 411 21.0 0.221 13.9 3.98 32.9 1.2 22.4 

29 597 13.9 385 20.8 0.230 14.4 4.14 33.4 1.3 23.4 

30 584 15.7 406 21.0 0.202 14.2 4.09 34.7 1.3 22.9 

31 712 8.4 467 25.0 0.421 13.9 5.02 37.9 1.2 16.9 

32 648 8.6 371 21.4 0.314 14.0 5.12 40.3 1.6 18.0 

33 645 9.3 356 24.4 0.386 13.8 4.88 39.1 1.5 19.4 

34 593 9.8 342 24.5 0.376 13.8 4.90 41.4 1.5 19.0 

35 591 11.9 333 24.5 0.315 14.4 5.09 41.9 1.7 19.0 

36 532 10.9 322 24.2 0.351 15.0 5.18 41.4 1.6 18.9 
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