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Abstract We use empirical orthogonal function analysis (EOFA) directly on sets of Schmidt spherical
harmonic (SH) coefficients modeling the internal geomagnetic field or its time derivatives at different
epochs. We show how to properly use the method such that the application of EOFA to either spatial
or spectral domains leads to the same results, bypassing the need to work on snapshots of field charts
synthesized from SHs. In case a spatial grid is required, we point out which is the best grid to use. We apply
the method to the CM4 geomagnetic field model to illustrate the differences in EOFA modes obtained with
and without corrections. Once the corrected main modes of secular acceleration (SA) have been singled
out, we retrieve previous results showing that the 1969, 1978, and 1991 geomagnetic field acceleration
jumps have the same spatial pattern. A new finding in this study is that the same spatial pattern is present in
principal modes of secular variation which, once inverted, may provide the flow responsible for the jerk
sequence. Another finding is the unveiling of a different spatial structure common to a second group of jerks
with SA pulses around 1985 and 1996, displaying a localization very similar to SA pulses identified in 2006
and 2009 using recent satellite data. Finally, if properly handled, the EOFA can be directly applied to a grid of
data values of the geomagnetic field in order to produce SH models of decorrelated modes which may help
to separate different sources of the field.

1. Introduction

Empirical orthogonal function analysis (EOFA) (often called principal component analysis) is a multivariate
data analysis technique used to extract spatial coherent structures that evolve correlated in time. The method
has been extensively used in meteorology and oceanography, on data consisting of time-evolving grids of
a certain geophysical field as pressure, temperature, or zonal winds [e.g., Preisendorfer, 1988; Peixoto and
Oort, 1992].

A large number of applications can be found in the fields of geomagnetism and aeronomy. Since the 1970s,
the method has been applied under the name of natural orthogonal component (NOC) decomposition,
to separate quiet and disturbed magnetic field variations or longer and shorter wavelength components
[Faynberg, 1975; Pushkov et al., 1976; Golovkov et al., 1978]. An account of the NOC formalism used in those
studies is given by Langel [1987]. In empirical ionospheric modeling, Daniell et al. [1995] applied EOFA to
decompose the altitude profiles of ion concentration in terms of orthogonal functions obtained during the
calculation procedure and revealing the coherent structures of the original data. Xu and Kamide [2004] applied
the method to the analysis of geomagnetic daily variation observed at Beijing Ming Tombs observatory all
over the year 2001, trying to understand the observed day-to-day variability. In studies of global-scale electro-
magnetic induction in the Earth’s mantle by long-period geomagnetic field variations, EOFA has been applied
to data in the time domain as well as in the Fourier transform domain, to estimate spatially and temporally
coherent external source (inducing) current systems [Fujii and Schultz, 2002; Balasis and Egbert, 2006].

Studies more focused on the core field applied the NOC method with the goal to remove components from
external sources in internal geomagnetic field modeling [Pushkov et al., 1976; Golovkov et al., 1978, 2005] or to
single out certain periodicities of the main field [Rotanova et al., 1982]. Also referring to NOC, Xu [2002, 2003]
analyzed the variability of Gauss coefficients gm

𝓁 and hm
𝓁 of the main field from 21 International Geomagnetic

Reference Field models for 1900–2000 at 5 year interval, the main goal being to revise the spherical harmonic
(SH) model in periods of higher uncertainty. More recently, Chulliat and Maus [2014] applied the method to
SH Hann-filtered coefficients of geomagnetic field secular acceleration models (g̈m

𝓁 and ḧm
𝓁 ), calculated from
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3 year time intervals of CHAMP data from January 2001 to September 2010. They identified a certain spatial
pattern, recurrently activated at the time of recent 2003, 2007, and 2011 jerks. Working on flows inverted
from geomagnetic field models, Pais et al. [2015] applied the method to a regular spatial grid of values of the
pseudo-stream function for the quasi-geostrophic flow outside the tangent cylinder.

In all those studies EOFA has been used with three main different goals. In some cases, the objective was to
separate contributions from different sources to the scalar field under scrutiny, for a better understanding
of those sources [Golovkov et al., 2005; Fujii and Schultz, 2002; Balasis and Egbert, 2006; Pais et al., 2015]. This
was based on the assumption that the fields caused by different processes in different media are expected to
have different spatial patterns that do not correlate in time. In other studies, the main purpose was to build
an empirical model of the data excluding nonrelevant information [Daniell et al., 1995], by considering the
contribution of only a few main modes. Finally, there are also applications of the method that aspire to correct
noisy data [e.g., Xu, 2002], by eliminating uncorrelated modes.

In some examples, the time-space data matrix to which EOFA is applied is built directly from observations or
synthesized from an existing model consisting in a set of time-dependent SH coefficients. It is the case of most
applications in meteorology and oceanography and the inverted core flows application in Pais et al. [2015].
In other cases, the method is applied to a “data” matrix of time-varying SH coefficients [Golovkov et al., 1978,
2005; Xu, 2002, 2003; Chulliat and Maus, 2014]. A large number of references explain how to use the EOF
method with a time-space data matrix, and another set of references shows how to use it with a time-SH
coefficients matrix. We have not found, however, any explicit account of how to assure that the EOFA results
retrieved on the spherical harmonic domain can be correctly transformed to the space domain, and vice versa.
In this paper we show that applying directly EOFA to spherical harmonic models must be done in a particular
way, if results are to be independent of both the normalization used for spherical harmonic functions and
the domain (spatial or spectral) where EOFA is applied. A unique definition for each mode is required, if
some physical interpretation is envisaged for the computed principal components and empirical orthogonal
functions. This discussion acquires special relevance in the field of geomagnetism, as we will show, because
of the standard usage of Schmidt normalization for SH coefficients and harmonic functions, instead of a full
normalization. Applications found using Gravity Recovery and Climate Experiment gravity data [e.g., Wouters
and Schrama, 2007], where fully normalized Stokes coefficients and associated Legendre functions are used,
do not suffer as strongly from this ambiguity.

Once the correct application of EOFA on SH models will be made clear, the relevance of this study for the
understanding of some specific features of the geomagnetic field variability will be shown. The proposed
corrections are illustrated using the internal component of the CM4 model [Sabaka et al., 2004]. This
component is known to reproduce the observed jerks of 1969, 1978, and 1991 in a number of observatories.
In particular, the similarity of spatial patterns associated to the jump in the geomagnetic acceleration field at
those epochs and first noticed by Le Huy et al. [1998] is reproduced by the model, as well as the anticorrelation
of successive events.

In section 2 we introduce the notation and expose the problem we will be dealing with: how do EOFA com-
ponents obtained from spatial data grids and from sets of SH coefficients relate to each other? In section 3
we derive the algebraic relations that show how time-space matrices and time-SH coefficient matrices should
be transformed before the EOF method is applied, in order to find the same modes in space and spectral
domains. An error is unavoidable when going from the description of the modes in terms of SH coefficients
to the modes in a spatial grid. This error is nonetheless brought to negligible levels when using a spatial grid
built from Gauss-Legendre quadrature points as shown in Appendix B. An estimation of errors will be done as
a function of the kind of grid and the grid resolution. In section 4 we apply the method to the geomagnetic
field model CM4. In section 5 we show how the results in this paper can contribute to bring new insight into
relevant questions under debate.

2. EOFA Applied to Spatial Grid Values and to SH Coefficients

We summarize the EOFA formalism, which is standard and has a large number of bibliographic support [e.g.,
Preisendorfer, 1988], following closely Pais et al. [2015]. For an easier reading of sections 2 and 3 a list of symbols
used in these two sections, with their corresponding meanings, is provided in Table 1.
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Table 1. List of Symbols in Sections 2 and 3

Symbol Definition

X Data matrix nepoch × npoint, with Xij the scalar field X at time ti and at point r⃗j .

CX Covariance matrix of X: CX = XT X.

S Data matrix nepoch × ncoef, with Sij the Schmidt normalized SH coefficient j = {𝓁,m}

of degree 𝓁 and order m, at time ti .

CS Covariance matrix of S: CS = ST S.

F Transformation matrix npoint × ncoef from a spectral to a spatial description of X : X = SFT .

G Diagonal matrix npoint × npoint with elements Gii =
√
Δ𝜃Δ𝜙 sin 𝜃i .

N Diagonal matrix ncoef × ncoef with elements Nii =
√

4𝜋∕(2𝓁i + 1).
X′ Data matrix corrected for overrepresentation of higher latitudes: X′ = XGT .

CX′ Covariance matrix of X′: CX′ = X′T X′.

S′ Data matrix S corrected for Schmidt normalization: S′ = SNT .

CS′ Covariance matrix of S′: CS′ = S′T S′.

F′ Transformation matrix: X′ = S′F′T .

P Orthogonal matrix npoint × npoint with EOFs of X as columns.

Y Matrix nepoch × npoint with temporal variation of the EOFs of X as columns: X = YPT .

𝜆X, i Singular values of X.

𝚲X Diagonal matrix npoint × npoint with elements 𝚲X,ii = 𝜆2
X, i ordered by decreasing value.

Q Orthogonal matrix ncoef × ncoef with EOFs of S as columns.

Z Matrix nepoch × ncoef with temporal variation of the EOFs of S as columns: S = ZQT .

𝜆S, i Singular values of S.

𝚲S Diagonal matrix ncoef × ncoef with elements 𝚲S,ii = 𝜆2
S, i

ordered by decreasing value.

P′ Orthogonal matrix with EOFs of X′ as columns.

Y′ Matrix with temporal variation of the EOFs of X′ as columns: X′ = Y′P′T .

𝜆X′ , i Singular values of X′.

𝚲X′ Diagonal matrix with elements 𝚲X′ ,ii = 𝜆2
X′ , i

ordered by decreasing value.

Q′ Orthogonal matrix with EOFs of S′ as columns.

Z′ Matrix with temporal variation of the EOFs of S′ as columns: S′ = Z′Q′T .

𝜆S′ , i Singular values of S′.

𝚲S′ Diagonal matrix with elements 𝚲S′ ,ii = 𝜆2
S′ , i

ordered by decreasing value.

When applying EOFA to a time-dependent scalar field sampled on a regular spatial grid, X will stand for the
data matrix. Each element Xij ≡ X(ti, r⃗j) is the value of the field at point r⃗j at time ti , once the time average
during the analyzed period has been subtracted. The index i takes values from 1 to the total number of epochs,
nepoch, and the index j takes values from 1 to the total number of points in the grid, npoint. The EOF analysis
relies on the description of the space-time data in terms of decorrelated modes. They are the eigenvectors of
the covariance matrix CX = XT X. We denote P as the orthogonal matrix of eigenvectors of CX , with columns
containing the separate coherent spatial structures called empirical orthogonal functions (EOFs), normalized
and described in terms of the chosen grid. Projecting the data matrix onto P recovers the time evolution of
each EOF, as given by columns of matrix Y such that Y = XP. The time series in columns of Y are the normalized
principal components (PCs) multiplied by 𝜆X,i, the square roots of the CX eigenvalues (or singular values of X).
The different EOFs in columns of P and the different PCs in columns of Y are arranged in order of decreasing
values of 𝜆X,i. The set of 𝜆X,i gives information on the relevance of the corresponding EOFA modes to explain
the data variability, the percentage of data variance explained by mode i being computed as

fi = 𝜆2
X, i ∕

(∑
k

𝜆2
X, k

)
. (1)

The 𝜆X, i values are all positive or zero. Different 𝜆X, i values squared can be found as elements of the diagonal
matrix 𝚲X = YT Y, ordered from the larger to the smaller.
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The original data can be expressed in terms of the decorrelated modes as

X = YPT (2)

or, equivalently,

X =
∑

i

𝜆X,i (PC)i (EOF)T
i (3)

where 𝜆X,i (PC)i , and (EOF)i are columns i of matrices Y and P, respectively, containing the time and space
structures of EOFA mode i. Note that (3) may be described as the singular value decomposition of matrix X.
In practice, only the first few modes are important (first columns of Y and lines of PT ), those that explain the
highest percentage of data variance as given by (1).

Let us now suppose that the scalar field sampled at the regular grid is obtained from a SH model. From global
Earth coverages of a certain geophysical field (e.g., the gravity or the geomagnetic fields) during a certain time
interval, a set of spherical harmonic coefficients sm

𝓁 (t) can be computed. These coefficients must retrieve the
observed field at a certain point r⃗j (and within a certain model precision):

X(ti, r⃗j) =
𝓁max∑
𝓁,m

sm
𝓁 (ti) f m

𝓁 (𝜃j, 𝜙j) . (4)

Using the index k for each combination of {𝓁,m} coefficients, we can write

X(ti, r⃗j) =
ncoef∑

k

s(ti, k) f (𝜃j, 𝜙j, k) , (5)

which in matrix form yields

X = SFT . (6)

Matrix F of elements Fjk = f (𝜃j, 𝜙j, k) is the transformation matrix from a spectral to a spatial grid description
of the field, having in column k = {𝓁,m} the spherical harmonic function f m

𝓁 discretized at all j = 1, · · · , npoint

grid points. F does not depend on time, but it depends on the truncation degree of the spherical harmonic
expansion,𝓁max, and on the grid discretization, since its dimension is npoint×ncoef, where ncoef = 𝓁max(𝓁max+2).
It also depends on the normalization used for f m

𝓁 . As for matrix S, with dimension nepoch × ncoef, each of
its columns is the set of values of the expansion coefficient sm

𝓁 at all nepoch times and, like F, it depends on
the normalization.

Applying EOFA to matrix S means to project it onto matrix Q of eigenvectors of CS = ST S, i.e., computing
Z = SQ such that ZT Z = 𝚲S is diagonal. Q is orthogonal, since it diagonalizes the real symmetric matrix CS. The
EOFs are now the columns of Q, and the columns of Z are the PCs multiplied by the corresponding singular
values of S (or square roots of the eigenvalues of CS). Different 𝜆S, i values squared can be found as elements
of the diagonal matrix 𝚲S, ordered from the larger to the smaller. The original matrix S can be written as a
EOFA decomposition:

S = ZQT . (7)

One of the main purposes in this study is to clarify the relation between the EOFA modes retrieved from data
matrix S and from X. In fact, the transformation of different S-EOFs using matrix F (see (6)) does not retrieve
the X-EOFs, as will be shown in the following. A unique definition of each mode is important, if a physical
interpretation in terms of the underlying sources is sought. This will be the subject of the following section.

3. Concurrent EOFA Modes in the Spectral Domain and in the Spatial Grid

Using the notation introduced above, the eigenvector/eigenvalue equation for the covariance matrix
CX yields

CX P = P𝚲X . (8)

PAIS ET AL. CORRELATED PATTERNS OF GEOMAGNETIC FIELD 8015
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From (6) and (7) and by the definition of 𝚲S it can also be written as

CX = XT X = FST SFT = FQZT ZQT FT = FQ𝚲S QT FT . (9)

If matrix FQ has the semiorthogonality property (FQ)T FQ = I, then it is possible to identify in FQ a subspace
of the eigenvectors of CX , with corresponding eigenvalues in𝚲S. Since Q is orthogonal, this can be achieved if
FT F = I, which clearly is not the case, from the definition of matrix F. A different transformation matrix F′ can be
introduced that satisfies the semiorthogonality relation F′T F′ = I and, through an equation analogous to (9),
makes explicit the transformation rules between EOFA modes on SH coefficients and EOFA modes on a
spatial grid.

Let the space-time data matrix X be transformed into

X′ = XGT (10)

and the SH coefficients-time matrix S be transformed into

S′ = SNT , (11)

where G and N are matrices that compensate for the overrepresentation of higher latitudes in a regular spa-
tial grid and for a non–full normalization of spherical harmonics, respectively. These matrices are defined in
Appendix A.

From equations (6) and (10), X′ = SNT (N−1)T FT GT , and by defining F′T ≡ (N−1)T FT GT , then

X′ = S′F′T
. (12)

An important difference comparing to (6) is that F′, as shown in Appendix A (see (A7)), is now a semiorthogonal
matrix:

F′T F′ = I . (13)

Denoting by Y′ and P′ the matrices of PCs and EOFs of transformed data matrix X′, the eigenvector/eigenvalue
equation for the covariance matrix CX′ yields

X′T X′P′ = P′𝚲X′ (14)

where 𝚲X′ is the diagonal matrix of eigenvalues of CX′ . On the other hand, applying the EOF analysis
to the transformed coefficient matrix S′ gives Z′ and Q′ as the corresponding matrices of PCs and EOFs,
respectively, meaning that S′ = Z′Q′T . The transformation from spectral to spatial domain can then be written
as X′ = Z′Q′T F′T (see (12)) leading to

X′T X′(F′Q′) = (F′Q′)𝚲S′ (15)

where𝚲S′ is the diagonal matrix of eigenvalues of CS′ = S′T S′. Although P′ and F′Q′ are different matrices, the
former having npoint × npoint dimension and the later npoint × ncoef, both (14) and (15) represent eigenvector/
eigenvalue equations for the covariance matrix C′

X = X′T X′. As the eigenvector norms in both equations are
set to 1 (since P′T P′ = I and (F′Q′)T (F′Q′) = I), common eigenvector/eigenvalue equations are represented
in both cases. By construction, P′ contains all eigenvectors of CX′ and 𝚲X′ contains all eigenvalues. This is not
the case for F′Q′ and 𝚲′

S, if ncoef < npoint. However, as long as eigenvectors and eigenvalues are ordered by
decreasing fraction of explained variance (see (1)) as matrix columns and diagonal values, and, by construc-
tion, the more relevant EOFA modes are included, we can guarantee correspondence between the first (main)
ones. This has been checked numerically for the illustrative application in section 4, using the CM4 model.

The possibility of identifying the first columns of P′ and F′Q′ relies heavily on the accuracy with which con-
dition (13) is met. This problem is discussed in the scope of regular spatial grids (Appendix A) and irregular
grids of Gauss-Legendre quadrature points (Appendix B). As shown in those appendices, the condition of
semiorthogonality is met within a small error ∼10−4 with regular grids of a relatively small dimension and can
be very substantially reduced to machine precision, i.e., to values ∼10−15, if one uses Gauss-Legendre grids
for the polar angle.

PAIS ET AL. CORRELATED PATTERNS OF GEOMAGNETIC FIELD 8016
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Finally, also note that the EOF spatial patterns in columns of P can always be expanded in the basis of spher-
ical harmonic functions f m

𝓁 such that PT = RT FT , where each column of matrix R contains the SH coefficients
in the expansion of each corresponding column of matrix P. Then, from (2), X=YRT FT and, from (6), S=YRT

(as long as FT has a right inverse). This is how the EOFA modes on the spatial grid are transposed to the SH
domain in previous studies [e.g., Langel, 1987], with each spatial pattern found for X directly projected on
the basis of spherical harmonic functions and multiplied by the time evolution given by the columns of Y.
However, from ST S = RYT YRT= R𝚲X RT , it can be realized that this is not an expansion in terms of EOFA
modes for S, since RT R ≠ I and as a result columns of R are not eigenvectors of the covariance matrix CS.

The procedure of how to apply the EOF analysis on the SH coefficients-time matrix in order to obtain
(i) norm-independent modes and (ii) modes that are also modes of the (latitude weighted) grid when trans-
formed to the space domain through (12) is now well established. As a summary, after transformation of S
into S′ which delivers a SH coefficient matrix independent of normalization, an eigenvector/eigenvalue prob-
lem is solved for covariance matrix CS′ giving matrices Z′, Q′, and 𝚲S′ . The concurrent modes in the spatial
domain are identified as follows: the time-dependent amplitudes (PCs) of each coherent spatial structure are
found in the first columns of matrix Z′ (since first columns of Y′ and of Z′ are the same); the main coherent
spatial structures (EOFs) are retrieved in the first columns of F′Q′; and the corresponding percentage of data
variance explained is obtained from the first diagonal elements of 𝚲S′ .

4. Application to Geomagnetic Field Models

The main expression of temporal variability of the recent geomagnetic field, as observed at the Earth’s surface,
is found in the westward drift of the nondipole field and in the decay of the geomagnetic dipole moment.
Although a global drift of around 0.2∘ yr−1 is often invoked, the westward drift shows important spatial
variations changing in time [Finlay and Jackson, 2003; Dumberry and Finlay, 2007]. The geomagnetic dipole
moment decay, mainly concentrated on the axial component, has been monitored since the first measure-
ments of the geomagnetic field intensity by Gauss. Since 1840, the decrease is about 9% of the initial value,
using gufm1 and COV-OBS geomagnetic field models for the observatory era period [e.g., Jackson et al., 2000;
Gillet et al., 2013]. As noticed by Finlay et al. [2012], changes in different morphology features combine to pro-
duce the current dipole decay, from growth and southward motion of reversed flux patches in the Southern
Hemisphere [Gubbins and Bloxham, 1987] to weakening and equatorward flux transport of high-latitude nor-
mal flux lobes [Olson and Amit, 2006]. None of these main variability features (westward drift or axial dipole
decay) can be simply described as a coherent structure evolving in time.

4.1. Geomagnetic Jerks as Coherent Structures Evolving in Time
Analysis of the geomagnetic secular acceleration (SA) over historical time periods brought out a few
time-space events that are particularly interesting for EOFA application, since they can be described as a
sequence of positive and negative pulses associated to the same spatial structure. Le Huy et al. [1998, 2000]
first noticed a striking similarity between the acceleration maps at the Earth’s surface computed for 1969,
1979, and 1992 epochs from observatory data and conjectured on possible implications for the surface core
flow. These are dates at which global jerks, i.e., jumps of the secular acceleration corresponding to changes
in the algebraic sign of the linear trend of the secular variation, occurring in less than 1 year, were reported
[e.g., Mandea et al., 2010]. Recently, Chulliat and Maus [2014] identified another similar space-time feature of
the SA in more recent years, where a spatial structure comprising the low-latitude Atlantic sector and the
Indian Ocean sector is seen to be coherently evolving at the core-mantle boundary, with abrupt changes in
sign at 2003, 2007, and 2011. They further pointed out the interest of using EOFA to characterize such a feature.

Since the three jerks of 1969, 1979, and 1992 are predicted by the CM4 model [Sabaka et al., 2004], we chose
to apply our findings to this set of spherical harmonic coefficients and to evaluate, for this particular and
well-known sequence of jerks, the relevance of the correction that we propose.

4.2. Results for SA Modes in CM4
The SA SH coefficients from CM4 model for the 1960–2002 period were inspected for main principal modes.
Due to regularizations applied in the inversion for the CM4 model, the SA is resolved spatially only up to
degree ∼5–6 [e.g., Gillet et al., 2010] and we use 𝓁max = 5. As to the time evolution, the CM4 model uses order
4 splines with 2.5 years knot spacing, and it is therefore expected a temporal resolution of approximately
the same value [see Olsen et al., 2009]. We use a 1 year time sampling, keeping in mind that the computed
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Table 2. Comparing Results Obtained Using a Regular Grid 3∘ × 3∘
Corresponding to npoint = 1800 (𝜆reg

X and 𝜆
reg
X′ ) and the Optimal Grid of

Gauss-Legendre Quadrature Points for 𝓁max = 5 (𝜆GL
X and 𝜆GL

X′ )

Modes
|𝜆reg

X −𝜆GL
X′
|

𝜆GL
X′

(%)
|𝜆GL

X −𝜆GL
X′
|

𝜆GL
X′

(%)
|𝜆reg

X′
−𝜆GL

X′
|

𝜆GL
X′

(%)

1 12.9 9.7 0.03

2 11.2 8.2 0.07

3 7.2 3.2 0.05

4 4.1 3.1 0.07

5 1.6 1.3 0.05

modes may have a still lower temporal resolution. The number of epochs is then nepoch = 43. Four sets of
modes were computed and compared among themselves: modes from a matrix S filled with the CM4 SH coef-
ficients at different epochs; modes from matrix X, a regular grid of the geomagnetic potential obtained from
S according to equation (6); and modes from transformed matrix X′ and from transformed matrix S′, obtained
using equations (10) and (11), respectively. The transformation matrix F was computed for an optimal grid of
Gauss-Legendre quadrature points corresponding to 𝓁max = 5, implying npoint = (2𝓁max + 1)(𝓁max + 1) = 66
(Appendix B). Condition (A7) then holds within an error ∼10−15. All computations were repeated using also F
for a regular grid 3∘ × 3∘ corresponding to npoint = 1800, for which condition (A7) holds within a still relatively
small error ∼10−4. As shown in Table 2, differences are very small when comparing EOFA over transformed
matrices X′ (column 4) and are due uniquely to the fact that the semiorthogonality condition is verified more
closely in one case than in the other. Comparing columns 2 and 3, we note a more interesting result, namely,
that by applying EOF analysis to a raw X matrix of Gauss-Legendre quadrature points, the main principal
modes are closer to those obtained from transformed matrices than if we had used a raw X of grid points
distributed regularly in latitude and in longitude.

Figure 1 shows values of the fraction of variability fi explained by each mode (see (1)) as obtained from 𝚲S,
𝚲S′ , 𝚲X , and 𝚲X′ . Only the 10 main modes are shown, which together comprise more than 90% of the total
variability of corresponding data matrices. Although there can be modes for which fi does not change sig-
nificantly according to the data on which EOFA is applied (e.g., mode 3), in most cases the differences are
significant. Largest differences are seen precisely for the first principal mode of SA. In general, those differ-
ences occur with no systematic pattern: the variability explained by a certain mode computed from𝚲X can be
higher or smaller than when computed from𝚲S. However, when comparing corresponding modes computed
from matrices 𝚲S′ and 𝚲X′ , their variability fractions are always the same, as expected. These coincident

Figure 1. Fraction of variability using equation (1), for the 10 first modes
obtained when applying EOFA to matrices X, S, X′, and S′ (see text).

estimated values can be very close to
those obtained from 𝚲S (e.g., modes 5
and 6) or from 𝚲X (e.g., modes 4 and
7–9), but again, no systematic behav-
ior is found.

Differences in the time variation asso-
ciated to each mode are shown in
Figure 2. In Figure 2a (left), curves of
the same color represent the normal-
ized PCs when working directly on
data matrices S and X, i.e., columns of
matrix Y divided by the singular values
𝜆X,i (dotted curves with markers) and
columns of Z divided by correspond-
ing 𝜆S,i (solid lines) (see also (3)). As we
can see, they are, in general, quite dis-
tinct. Corresponding plots in Figure 2a
(right) show that the normalized PCs
from a similar analysis on X′ and S′

do superpose perfectly. In general,
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Figure 2. First five main PCs for SA-CM4, using EOFA on different data matrices: matrices S (solid) and X (dotted) on the
left column and transformed matrices S′ (solid) and X′ (dotted) on the right column. Curves obtained (a) from raw
application of EOFA and (b) using a filter on raw PCs, as explained in the text. Shown are mode 1 (black), mode 2 (red),
mode 3 (blue), mode 4 (green), and mode 5 (magenta).

the time variation recovered for each mode depends significantly on which data matrix is used in the EOF
analysis, except when comparing results from transformed matrices S′ and X′.

Curves in Figure 2a are quite irregular. A filter was applied to eliminate oscillations caused by the finite model
temporal resolution related to splines’ knot spacing of 2.5 years but still preserve step edges which are impor-
tant to localize epochs of sign changes. The applied operator is a combination of a median filter of length
3 years to eliminate spikes, followed by a moving average of width 5 years in order to smooth the signal. The
role of the 2.5 years knot spacing in limiting the effective temporal resolution is quite clear in the number of
nonnegligible singular values of any of the data matrices. This value amounts to 17, the rounded down inte-
ger of nepoch∕2.5. Oscillations of period ≤ 5 years then risk to be due to an aliasing effect. Filtered curves are
represented in Figure 2b. Again, a distinct behavior of curves of the same color and different markers is seen
on the left, while on the right curves of the same color superpose exactly.

Figure 3 shows charts for the three vector components obtained from the EOFs of orders 3 (Figure 3b) and 4
(Figure 3a) for the V̈ geomagnetic potential (see (3)), through B̈ = −𝛁V̈ .

4.3. Results for SV and MF Modes in CM4
We further considered EOFA modes obtained from secular variation (SV) and main field (MF) SH coefficients
of the CM4 model, truncated at degree 𝓁max = 5. Figure 4 shows the fraction of variability fi for the 10 main
modes of (a) SV and (b) MF. The relative importance of each mode decreases with the order number more
quickly for the SV modes than for SA and still more abruptly for the MF modes where the first mode alone
explains more than 90% of the whole variability. Differences resulting from using S and X instead of S′ and
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Figure 3. Vector components of (a) SA-EOF4 and (b) SA-EOF3, as computed from CM4. Algebraic sign in agreement with
signs of corresponding PCs in Figure 2, so that (PC)i (EOF)T

i (equation (3)) gives the correct sign for the contribution of
mode i to potential V̈ . Relative amplitudes between different components for the same mode were preserved.

X′ are small for the two first principal modes in both SV and MF. While for the MF signal these two modes
alone explain almost all the variability, for the SV signal there is still a nonnegligible contribution from modes
3 and 4, amounting to about 5%. It is thus important to acknowledge that the PCs for modes 3 and 4 depend
strongly on which data matrix is used, as shown in Figure 5a. The degree of degeneracy existing between the
two modes may contribute to this result (see Figure 4a), by promoting a different separation between them
each time a different transformation is applied on the total SV signal.

5. Discussion

Since, as generally accepted, jerks are an expression of the Earth’s core dynamics, looking for them in the core
internal component of comprehensive models such as CM4 is most convenient. It provides a time-dependent
internal component cleaned up from external and induced fields, which are prone to degrade the signal
[e.g., Sabaka et al., 2004].

5.1. SA Mode 4: Reproducing a Known Sequence of Jerks
Grey vertical lines in Figure 2 show the most often given epochs for the sequence of impulsive-type global
events identified during the CM4 time interval 1960–2002, namely, the 1969, 1978, and 1991 jerks [e.g., Le Huy
et al., 1998; Mandea et al., 2010], the 1997 jerk pointed out in Sabaka et al. [2004], and the 1999 jerk pointed out
by Mandea and Macmillan [2000]. In Figure 2a (right), mode 4 (green curve; see legend) stands out as having
a temporal behavior that more nearly sticks to a mode possibly describing the five referred jerks, i.e., showing
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Figure 4. Fraction of variability using equation (1), for the 10 first modes obtained when applying EOFA to matrices X, S,
X′, and S′ of (a) SV and (b) MF.

relatively abrupt and high-amplitude changes of sign close to grey lines. The most significant changes of sign
are preserved in filtered curves of Figure 2b (right) where they can still be seen very close to grey vertical lines.

Note that such a distinctive behavior has been made clearer due to an application of EOFA on transformed
matrices; a scrutiny on jerk time occurrence using EOFA modes computed for matrix X would have given dates
more close to 1981 and 1995 than to 1978 and 1997, respectively (Figure 2b, left).

The morphology of the three vector components of mode 4 (Figure 3a) is very similar to the charts of succes-
sive geomagnetic jerks of 1969, 1978, and 1991 at the Earth’s surface obtained by Le Huy et al. [1998] (see their
Figures 4–6), especially their 1969 and 1991 (which they set at 1992) charts. The strongest foci of B̈r flux over
west of India, northwest of Australia, north of South America, and between Canada and Greenland do show
strong correlation with corresponding foci in Le Huy et al. [1998] chart for 1969. Over South Atlantic, the cor-
relation is higher with their 1992 charts. Charts in Figure 3a are also very similar to charts shown by Sabaka
et al. [2004] (their Figure 9), when discussing the prediction of the most well-known jerks by the CM4 model,
and by Pinheiro et al. [2011] after inverting amplitudes of first differences of annual observatory mean data
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Figure 5. First five main PCs for (a) SV-CM4 and (b) MF-CM4, using EOFA on different data matrices: matrices S (solid)
and X (dotted) on the left column and transformed matrices S′ (solid) and X′ (dotted) on the right column. Shown are
mode 1 (black), mode 2 (red), mode 3 (blue), mode 4 (green), and mode 5 (magenta).

around the jerk occurrence times (their Figure 14). Again, the similarity is particularly strong with respect to
the 1969 jerk.

While the EOF analysis here applied for the 1960–2002 period localizes the first jerk at 1970 rather than at
1969 (see Figure 2) and the third jerk at 1992 rather than at 1991, this 1 year difference may perfectly be due to
the finite∼2 years temporal resolution of the CM4 model. Our EOF analysis further identifies relatively sudden
variations in sign for mode 4 close to 1996 and 2000, supporting the suggestion of Sabaka et al. [2004] that
events that they localize at 1997 and 2000 could be the follow up of the sequence initialized with the three
first jerks.

As to the reason the spatial pattern of SA mode 4 has not been retrieved in more recent epochs, it might
be that the recurrence time of this mode is relatively large and that some more time needs to pass before
a clear observation of a new pulse can be done. To support this view, Figure 2 shows that the time interval
between the two maxima of successive pulses of SA-PC4 is about 20 years. Such a recurrence time would
imply that a new pulse of this mode might be already present, although the time interval of data available
could be insufficient for a precise retrieval. In fact, when applying EOF analysis to the CHAOS-5 SA model,
an extension of CHAOS-4 model [Olsen et al., 2014] spanning 1997.0 to 2015.0, and using the modified S′ as
explained in this study, we identify interesting features in SA mode 4. Its B̈r chart shows maximum flux spots
close to Australia, India, and Canada, with similar structure to those in Figure 3a, in spite of some shift of the
foci and the presence of further features possibly showing mixing with other modes (Figure 6). It may be the
expression in CHAOS-5, of the same coherent structure represented by SA mode 4 in the CM4 model.
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Figure 6. Chart of the radial component of normalized SA-EOF4,
obtained from CHAOS-5.

5.2. Application for Recovering
the Flow That Generates SA Mode 4
From comparison of the left and right
plots in Figure 5a, we notice that the
effect of applying EOF analysis on matri-
ces X′ and S′ modifies strongly the time
series SV-PC3 and SV-PC4. Interestingly, a
link between SV mode 3 and SA mode 4
becomes apparent: SV-PC3 on the right
plot clearly shows changes in trend sign
at the same epochs when jumps in SA-PC4

occur, namely, close to 1970, 1978, 1992,
and 1996. An exception is the last jump
around 2000 that does not find corre-

spondence in SV-PC3. Also, two further trend sign changes are present in SV-PC3 that find no correspondence
in SA-PC4, in 1983 and 1986. These are epochs where jerks have been identified [e.g., Brown et al., 2013]. Note
that the 1983, 1986, and 1996 changes in trend sign show up as features of the same SV mode 3 only after
EOF analysis has been applied to the modified matrices X′ and S′. Again, it should be stressed that a certain
degree of degenerescence exists between SV-PC3 and SV-PC4 and that these two modes are probably never
completely separated, whatever the data matrices in use, given the very close values of fi [e.g., Preisendorfer,
1988]. The whole set of events around 1970, 1978, 1983, 1986, and 1992 is again present in MF-PC5, at epochs
of change in sign of curvature (Figure 5b). As can also be seen in Figure 5, the effect of using corrected data
matrices is less important for the case of EOF analysis applied to the MF than for SV and SA.

Besides the fact that the PCs of SA mode 4, SV mode 3, and MF mode 5 can be very approximately recov-
ered one from the other successively through time integration, their EOFs are strongly correlated as shown
in Figure 7. Note that nonzero correlation values between spatial structures of different orders, shown
in Figures 7a and 7b, are possible because the comparison is between principal modes from different
data matrices (SA and SV or SA and MF, respectively). For a given signal, EOFs with different order are, by
construction, orthogonal. In those plots, only correlation values above 0.65 are shown. Figures 7c and 7d are
to be compared with top chart of Figure 3a. Focusing on the SV mode 3 chart, which is expected to be better
retrieved than MF mode 5 (because of higher represented data variability) , we notice strong foci of Ḃr

localized over the same regions of Western India, northwest of Australia, and Eastern Canada, as was the case
of B̈r foci for SA mode 4. The chart for SV mode 3 in Figure 7c further shares with corresponding chart for
SA mode 4, a very faint expression of those modes over the South Atlantic region. Main differences are the
stronger Ḃr focus over Colombia/Venezuela and, maybe more interestingly, the emergence of a new focus
over the Pacific. This structure might be absent from the SA signal because of penalizing regularization effects
that are stronger for SA than for SV.

The high correlation between SA mode 4 and SV mode 3 may be used to infer about the core surface flow
which, by interaction with the main field, is generating SV mode 3. Our result, in fact, suggests that as proposed
by Le Huy et al. [2000], such flow component may also be modeled as a standing feature characterized by a
fixed spatial pattern evolving in time. This idea is also present in Chulliat and Maus [2014]. In both previous
studies a simplified time evolution is considered for the flow, either a sequence of trends with sign change
events at the time of jerks [Le Huy et al., 1998] or a sinusoid with periodicity 6 years [Chulliat and Maus, 2014].
In this study, the retrieved SV mode 3 provides for a SV-PC3 time series that gives the time evolution of the
flow directly from the CM4 model and for a SV-EOF3 pattern that can be inverted for the spatial structure of
the flow.

5.3. SA Mode 3: Exposing a New Sequence of Known Jerks
One other mode, mode 3, attracted our attention for well-localized and high-amplitude changes in sign
around 1982 and 1988, but also in 1994 and 1998, as shown in Figure 2a (right). They are still seen after
filtering, except the sign change around 1998, possibly due to the proximity to the end of the analyzed
time interval (Figure 2b, right). This mode accounts for an important fraction of data variability, above 10%
(see Figure 1), thus calling for further inspection.

PAIS ET AL. CORRELATED PATTERNS OF GEOMAGNETIC FIELD 8023



Journal of Geophysical Research: Solid Earth 10.1002/2015JB012399

Figure 7. For the first 10 EOFs of SA, SV, and MF, correlation values r above 0.65 between (a) SA and SV and (b) SA and

MF. Values computed according to rij = EOFT
i EOFj∕

(√
EOFT

i EOFi

√
EOFT

j EOFj

)
. Charts of the radial component of

normalized (c) SV-EOF3 and (d) MF-EOF5.

This sequence of jerks, with a spatial pattern showing features over the Indian and South Atlantic Oceans
(see Figure 3b), gets particularly active after 1980, with jerk-like events that can be associated to two pulses
of the SA, around 1985 and 1996, using Chulliat et al. [2010] terminology. It is possible to identify jerks at the
sequence of dates above, at some selected permanent observatories as, e.g., MBour (Senegal) and Pamatai
(French Polynesia) [see, e.g., Wardinski and Holme, 2006]. Their global detection is difficult when comparing
with the series of jerks of SA mode 4, and they tend to fail the robustness criteria of some jerk detection meth-
ods [e.g., Brown et al., 2013]. However, an interesting point to notice is that studies on most recent jerks show
that the same regions (low-latitude Atlantic sector and Indian Ocean sector) have felt pulses of SA during the
last 20 years of continuous geomagnetic satellite missions, in 2006 and 2009, accompanied by geomagnetic
jerks in 2003, 2007, and 2011 [Lesur et al., 2008; Chulliat et al., 2010; Chulliat and Maus, 2014]. We find corre-
spondence, in particular, between the B̈r flux foci over southward of India and Gulf of Guinea in Figure 3b, with
different signs between them, and features in recent geomagnetic field jerks computed by those authors at
the Earth’s surface. A possible explanation for an easier identification of this pattern in recent years is the great
improvement brought by satellite missions for the spatial coverage over those regions, which lack magnetic
observatories and repeat stations.

5.4. Computing SH Models of Coherent Structures From Data on a Grid
Another application of the present study on optimal grids to use and on the required transformations to
apply in order to find concurrent principal modes in spatial and spectral domains is the use of EOFA directly
on satellite data. By doing so, we can skip the fit of a spherical harmonic series first, followed by the EOFA
applied to the set of SH coefficients [Golovkov et al., 2005]. A spatial grid of Gauss-Legendre quadrature points
is the natural grid to envisage given that (A7) is exact (to machine precision) in that case. Eventually, a tem-
poral and spatial filtering of satellite data should be previously applied in filling this optimal grid with data
values. In fact, at the light of results obtained here, it seems pertinent to reconsider the use of EOF data anal-
ysis tools in geomagnetic field modeling and to further test the original claim by Pushkov et al. [1976] and
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Golovkov et al. [1978, 2005] that NOC could be useful in providing a nonparametric means of separating
components due to internal and external sources and even components due to different magnetospheric or
ionospheric current systems.

6. Conclusions

We show that EOFA modes of a set of time-dependent data sampled on a spatial grid should not be directly
obtained from the EOFA modes of the corresponding set of SH Schmidt normalized coefficients. Instead, a
preliminary transformation of the SH coefficients is required, to generate a norm-independent matrix. The PCs
and eigenvalues then obtained are the same in the spectral domain and in the spatial domain modified by a
certain weight matrix. We further identified the transformation that allows to retrieve the EOFs in the spatial
domain.

An error is unavoidable when going from the exact description in terms of the original spherical harmonic
models to the required approximation when generating a spatial grid. This error is reduced to the level of
machine precision if one uses a spatial grid of Gauss-Legendre quadrature points for the polar angles, because
the orthonormality relations of spherical harmonics are exactly fulfilled for this grid. In Appendices A and B
the whole procedure is described in detail, for an easy implementation.

Using EOF as a data analysis tool on the CM4 internal field model, our SA mode 4 sequence of jerks recovers
the spatial pattern retrieved in previous studies by Le Huy et al. [1998] [see also Sabaka et al., 2004; Pinheiro
et al., 2011], with abrupt changes in sign at the time of the well-known jerks of 1969, 1978, and 1991. This
shows that the method is most suited to characterize these kind of events, previously identified with very
different and, in general, more thorough analysis, and important since the linking of different jerks to similar
spatial structures may be of help in determining their origin.

An interesting unveiling of the SA mode 4 jerk-mode pattern in modes of CM4-SV and even CM4-MF models
is a novelty from this study and opens new perspectives for dedicated studies to recover the “jerky” core flow.
Another new result is the finding of a second sequence of jerks in SA mode 3, with a spatial pattern showing
features over the Indian and South Atlantic Oceans, particularly active after 1980, corresponding to two pulses
of SA around 1985 and 1996. Their spatial structure shows striking similarities with the spatial description of
recent jerks occurred during the satellite era. Finally, we point out that the method can be used to produce
spherical harmonic models of decorrelated modes, hopefully related to different sources, directly from a grid
of data values.

Appendix A: Matrices of Grid Weight and SH Normalization

The coefficients of F are values of the spherical harmonics on a grid that covers the whole spherical surface.
The expressions for f m

𝓁 (𝜃, 𝜙) are

f m
𝓁 (𝜃, 𝜙) = Cm

𝓁 (𝜃, 𝜙) = Pm
𝓁 (𝜃) cos m𝜙 , for m = 0, 1, 2, ...

and

f m
𝓁 (𝜃, 𝜙) = Sm

𝓁 (𝜃, 𝜙) = Pm
𝓁 (𝜃) sin m𝜙 , for m = 1, 2, ... (A1)

In the case of Schmidt quasi-normalization of surface spherical harmonics,

1
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∫
0

𝜋

∫
0
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𝓁 (𝜃, 𝜙)C
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𝛿𝓁
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𝓁 𝛿m′

m
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0
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𝓁 (𝜃, 𝜙)S
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𝓁′ (𝜃, 𝜙) sin 𝜃 d𝜃 d𝜙 = 1
2𝓁 + 1

𝛿𝓁
′
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1
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∫
0

𝜋

∫
0

Cm
𝓁 (𝜃, 𝜙)S

m′

𝓁′ (𝜃, 𝜙) sin 𝜃 d𝜃 d𝜙 = 0 . (A2)
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In the limit of an infinite number of grid points, the Riemann sums converge to the above integrals:

lim
Δ𝜃,Δ𝜙→0

npoint∑
l=1

Cm
𝓁 (𝜃l, 𝜙l)Cm′

𝓁′ (𝜃l, 𝜙l) sin 𝜃l Δ𝜃Δ𝜙 = 4𝜋
2𝓁 + 1

𝛿𝓁
′

𝓁 𝛿m′

m

lim
Δ𝜃,Δ𝜙→0

npoint∑
l=1

Sm
𝓁 (𝜃l, 𝜙l)Sm′

𝓁′ (𝜃l, 𝜙l) sin 𝜃l Δ𝜃Δ𝜙 = 4𝜋
2𝓁 + 1

𝛿𝓁
′

𝓁 𝛿m′

m

lim
Δ𝜃,Δ𝜙→0

npoint∑
l=1

Cm
𝓁 (𝜃l, 𝜙l)Sm′

𝓁′ (𝜃l, 𝜙l) sin 𝜃l Δ𝜃Δ𝜙 = 0 . (A3)

The set of all Riemann sums above can be written as

lim
Δ𝜃,Δ𝜙→0

npoint∑
l=1

FliFlj sin 𝜃l Δ𝜃Δ𝜙 = 4𝜋
2𝓁i + 1

Iij (A4)

where Iij is element (i, j) of the ncoef × ncoef identity matrix. This convergence can be tested by computing the
matrix product FT GT GF, where the grid matrix G is a diagonal matrix that depends only on the spatial grid
(chosen points and discretization):

G =
√
Δ𝜃Δ𝜙

⎡⎢⎢⎢⎢⎣

√
sin 𝜃1 · · · · · · · · ·
· · ·

√
sin 𝜃2 · · · · · ·

⋮ ⋮ ⋮ ⋮

· · · · · · · · ·
√

sin 𝜃npoint

⎤⎥⎥⎥⎥⎦
. (A5)

Note that the
√

sin 𝜃 factor is often applied to a regular grid on a sphere, to compensate for the meridian
convergence and consequent oversampling toward higher latitudes.

Another useful matrix is the normalization matrix N, also diagonal:

N =
√

4𝜋

⎡⎢⎢⎢⎢⎢⎢⎣

√
1

2𝓁1+1
· · · · · · · · ·

· · ·
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· · · · · ·
⋮ ⋮ ⋮ ⋮

· · · · · · · · ·
√

1
2𝓁ncoef

+1

⎤⎥⎥⎥⎥⎥⎥⎦
. (A6)

Its elements depend only on the used normalization for spherical harmonic functions, which in geomag-
netism is commonly the Schmidt quasi-normalization. For a full normalization as that used in gravimetry this
matrix would have a simpler form; it would be the identity matrix multiplied by some constant.

From equation (A4), the following matrix equality will be verified for a dense spatial grid :

(N−1)T FT GT GFN−1 = F′T F′ = I , (A7)

where matrix F′ = GFN−1 is introduced for simplicity. How dense the spatial grid must be so that equation (A7)
is met within an acceptable error is shown in Figure A1, where deviations are plotted as a function of the grid
discretization.
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Figure A1. Frobenius norm of the matrix difference I − F′T F′ (see equation (A7)) divided by the total number of SH
coefficients, as a function of total number of grid points (npoint), when using grid weights given by (A5) (squares) or by
(B6) (circles). Empty squares are for regular grids with Δ𝜃 = Δ𝜙. Empty circles are for nonregular grids of Gauss-
Legendre quadrature points, with the same npoint values as empty squares. Filled black circles are for optimal grids
of Gauss-Legendre quadrature points with 𝓁max = 5 (lower value) and 𝓁max = 13 (higher value). Filled black squares
are for regular grids with Δ𝜃 ≠ Δ𝜙 and the same npoint values as filled black circles.

A regular grid is not, however, the most judicious grid to use in search for a more precise fulfillment of the
(A7) relation. Appendix B shows how a grid built from Gauss-Legendre quadrature points is better to achieve
this goal.

Appendix B: Optimal Choice of the Space Grid

For the sums in (A3), let us consider a grid npoint = n𝜃 × n𝜙 where n𝜃 and n𝜙 are, respectively, the number
of values for 𝜃 and 𝜙. Because the functions Cm

𝓁 and Sm
𝓁 in (A1) are products of functions of 𝜃 and 𝜙, we can

perform separately the respective sums. We will now show how, if the space grid and weights for each point
are properly chosen, the orthonormality relations in (A3) hold exactly for a finite grid, i.e.,

n𝜃∑
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n𝜙∑
i=1

Cm
𝓁 (𝜃j, 𝜙i)Cm′
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𝓁′ (𝜃j, 𝜙i)w(𝜃)j w(𝜙)i =
4𝜋

2𝓁 + 1
𝛿𝓁

′

𝓁 𝛿m′

m

n𝜃∑
j=1

n𝜙∑
i=1

Cm
𝓁 (𝜃j, 𝜙i)Sm′

𝓁′ (𝜃j, 𝜙i)w(𝜃)j w(𝜙)i =0 , (B1)

where w(𝜃)j and w(𝜙)i are the weights for each grid point j, i.

PAIS ET AL. CORRELATED PATTERNS OF GEOMAGNETIC FIELD 8027



Journal of Geophysical Research: Solid Earth 10.1002/2015JB012399

B1. Grid in 𝝓

We choose a uniform grid for the values 𝜙i , with w(𝜙)i = Δ𝜙 for any i, such that 𝜙i = i Δ𝜙, i = 0,… , n𝜙 − 1,
and Δ𝜙 = 2𝜋∕n𝜙. The three types of sums over the functions of angles 𝜙i in (B1), with an index shift, are

n𝜙−1∑
i=0

cos(m i Δ𝜙) cos(m′ i Δ𝜙)Δ𝜙 =
n𝜙−1∑

i=0

{
cos[(m − m′) i Δ𝜙] + cos[(m′ + m) i Δ𝜙]

}
Δ𝜙∕2

n𝜙−1∑
i=0

sin(m i Δ𝜙) sin(m′ i Δ𝜙)Δ𝜙 =
n𝜙−1∑

i=0

{
cos[(m − m′) i Δ𝜙] − cos[(m′ + m) i Δ𝜙]

}
Δ𝜙∕2

n𝜙−1∑
i=0

cos(m i Δ𝜙) sin(m′ i Δ𝜙)Δ𝜙 =
n𝜙−1∑

i=0

{
sin[(m′ − m) i Δ𝜙] + sin[(m′ + m) i Δ𝜙]

}
Δ𝜙∕2 . (B2)

In equation (B2) the sums are of the general form
∑

i cos(k i Δ𝜙) and
∑

i sin(k i Δ𝜙), 0 ≤ |k| ≤ 2𝓁max. If we set
the maximum value of Δ𝜙 to 2𝜋∕(2𝓁max + 1), i.e., the minimum value of n𝜙 equal to 2𝓁max + 1, one can show
that the sums above will be all zero for any values of m,m′ with m ≠ m′, i.e., 1 ≤ |k| ≤ 2𝓁max − 1, and also for
k = 2𝓁max. For n𝜙 ≤ 2𝓁max this is no longer the case.

The third sum is also zero when m = m′. For m = m′ ≠ 0, the first and second sums are equal to n𝜙 Δ𝜙∕2 = 𝜋.
For m = m′ = 0, one gets 2𝜋 for the first sum and zero for the second one.

In conclusion, if we choose a uniform grid in 𝜙 with 𝜙 = 0,Δ𝜙,… , 2𝜋 − Δ𝜙, with Δ𝜙 = 2𝜋∕n𝜙 and at least
n𝜙 = 2𝓁max + 1, the sum over 𝜙 values assures that the third equation in (B1) is satisfied and we get for
the first and second equations the contribution 𝜋𝛿m′

m (m ≠ 0) in their right-hand sides and for the first one
2𝜋𝛿m′

m (m = 0).

B2. Grid in 𝜽

For the sums in 𝜃 values, we first note that the associated Legendre polynomials Pm
𝓁 (𝜃) in Cm

𝓁 and Sm
𝓁 are

polynomials of cos 𝜃 and sin 𝜃. From their definition in terms of the Legendre polynomials P𝓁(𝜃), which are
polynomials of degree 𝓁 in cos 𝜃 [Abramowitz and Stegun, 1965], the terms of the polynomials have the
general form ak (cos 𝜃)𝓁−2k−m(sin 𝜃)m, k=0, 1, ..., [(𝓁−m)∕2], where ak are constant coefficients and [(𝓁−m)∕2]
is the largest integer equal or less than (𝓁−m)∕2. Thus, the term with the highest power of cos 𝜃 is proportional
to (cos 𝜃)𝓁−m(sin 𝜃)m.

If we perform first the sum in𝜙 in (B1), the nonzero terms involve products of associated Legendre polynomials
with the same m, i.e.,

Pm
𝓁 (𝜃j) Pm

𝓁′ (𝜃j) ∝ (cos 𝜃j)𝓁+𝓁
′−2m(sin 𝜃j)2m +… ∝ (cos 𝜃j)𝓁+𝓁

′ + …

where only the term with the highest power in cos 𝜃 is shown. This means that the product Pm
𝓁 (𝜃j) Pm

𝓁′
(𝜃j) is a

polynomial in cos 𝜃j of degree 𝓁 + 𝓁′.

We recall that the sums in (B1) were introduced to implement in matrix form the orthonormality relations (A2).
Rewriting the integrals in 𝜃 in terms of x = cos 𝜃

∫
𝜋

0
Pm
𝓁 (𝜃) Pm

𝓁′ (𝜃) sin 𝜃 d𝜃 = ∫
1

−1
Pm
𝓁 (x) Pm

𝓁′ (x)dx , (B3)

we see that what we want to write as a finite sum is the integral of a polynomial in x with degree 𝓁 + 𝓁′. It so
happens that Gaussian quadrature is exact for precisely this type of integral [Abramowitz and Stegun, 1965].
In particular, if f (x) is a polynomial in x of degree 2n − 1 or less, we apply n point Gauss-Legendre quadrature
to yield the following equality:

∫
1

−1
f (x)dx =

n∑
i=1

wi f (xi) , (B4)

where xi are the n zeros of the Legendre polynomials Pn(x) and wi = 2∕{(1 − x2
i )[P

′
n(xi)]2} the positive

weights. Since the maximum value for 𝓁 +𝓁′ is 2𝓁max, we have to consider at least n𝜃 = 𝓁max + 1 terms in the
sum for the quadrature formulas.
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The sums in 𝜃 are then written in terms of xj = cos 𝜃j , zeros of the Legendre polynomials Pn𝜃
(x),

∫
1

−1
Pm
𝓁 (x) Pm

𝓁′ (x)dx =
n𝜃∑

i=1

wi Pm
𝓁 (xi) Pm

𝓁′ (xi)

where n𝜃 ≥ 𝓁max + 1.

Since for the Schmidt quasi-normalization of Legendre-associated polynomials one has

∫
1

−1
Pm
𝓁 (x) Pm

𝓁′ (x)dx =

{
2

2𝓁+1
𝛿𝓁

′

𝓁 , m = 0
4

2𝓁+1
𝛿𝓁

′

𝓁 , m ≠ 0

we can write finally, as exact formulas

n𝜃∑
j=1

n𝜙−1∑
i=0

Cm
𝓁 (𝜃j, 𝜙i)Cm′

𝓁′ (𝜃j, 𝜙i)wj Δ𝜙 = 4𝜋
2𝓁 + 1

𝛿𝓁
′

𝓁 𝛿m′

m

n𝜃∑
j=1

n𝜙−1∑
i=0

Sm
𝓁 (𝜃j, 𝜙i)Sm′

𝓁′ (𝜃j, 𝜙i)wj Δ𝜙 = 4𝜋
2𝓁 + 1

𝛿𝓁
′

𝓁 𝛿m′

m

n𝜃∑
j=1

n𝜙−1∑
i=0

Cm
𝓁 (𝜃j, 𝜙i)Sm′

𝓁′ (𝜃j, 𝜙i)wj Δ𝜙 =0 , (B5)

with 𝜙i, 𝜃j , wj , Δ𝜙, n𝜙 and n𝜃 defined as above.

The diagonal matrix G (A5) becomes for this grid

G =
√
Δ𝜙

⎡⎢⎢⎢⎢⎣

√
w1 · · · · · · · · ·

· · ·
√

w2 · · · · · ·
⋮ ⋮ ⋮ ⋮
· · · · · · · · · √wnpoint

⎤⎥⎥⎥⎥⎦
, (B6)

where wk (k = 1,… , npoint) have weight values corresponding to the particular point j of the 𝜃 grid.

By using a Gauss-Legendre quadrature weight matrix G given by (B6) allows relations (A2) and (A7) to be
satisfied numerically. In fact, as shown in Figure A1, the values of the Frobenius norm of the matrix difference
I − F′T F′ divided by ncoef decrease very significantly, to the level of machine precision. The nonregular grid of
Gauss-Legendre quadrature points with minimal size for achieving this goal has npoint = (2𝓁max +1)(𝓁max +1),
a result also known from, e.g., spherical harmonic transforms [e.g., Reinecke and Seljebotn, 2013], and we call
it the optimal grid for a given truncation degree 𝓁max.
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