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ABSTRACT

Simultaneous observations of microlensing events from multiple locations allow for the breaking of degeneracies
between the physical properties of the lensing system, specifically by exploring different regions of the lens plane
and by directly measuring the “microlens parallax.” We report the discovery of a 30-65M; brown dwarf orbiting a
K dwarf in the microlensing event OGLE-2015-BLG-1319. The system is located at a distance of ~5 kpc toward
the Galactic Bulge. The event was observed by several ground-based groups as well as by Spitzer and Swift,
allowing a measurement of the physical properties. However, the event is still subject to an eight-fold degeneracy,
in particular the well-known close-wide degeneracy, and thus the projected separation between the two lens
components is either ~0.25 au or ~45 au. This is the first microlensing event observed by Swift, with the UVOT
camera. We study the region of microlensing parameter space to which Swift is sensitive, finding that though Swift
could not measure the microlens parallax with respect to ground-based observations for this event, it can be
important for other events. Specifically, it is important for detecting nearby brown dwarfs and free-floating planets

in high magnification events.

Key words: binaries: general

1. INTRODUCTION

The Spitzer 2014 and 2015 microlensing campaigns have
revolutionized the field of microlensing. The satellite observa-
tions of over 200 events that were discovered and monitored
simultaneously by ground-based surveys facilitated the sys-
tematic measurement of the microlens parallax, 7g, for the
majority of the events—a crucial quantity for determining the
physical properties of the lensing system. Simultaneous ground
and space observations of microlensing events were conducted
only twice prior to these campaigns, once with Spitzer (Dong
et al. 2007), and once with the Deep Impact (or EPOXI)
spacecraft (Muraki et al. 2011). The 2014-2015 Spitzer
campaigns have already led to the detection of two planets
(Udalski et al. 2015b; Street et al. 2016), the first caustic-
crossing binary-lens event with a satellite parallax measure-
ment (Zhu et al. 2015b), a massive remnant in a wide binary
(Shvartzvald et al. 2015), and mass measurements of isolated
objects (Zhu et al. 2016)—one of which is a brown dwarf (BD).
In addition, Spitzer observations allowed Bozza et al. (2016) to
break a strong planet/binary degeneracy in the event OGLE-
2015-BLG-1212, finding that the companion is a low-mass star
and not a planet. These campaigns are the first steps for
measuring the Galactic distribution of planets (Calchi Novati
et al. 2015a), a demographic regime that can currently only be
explored by microlensing.

A microlensing event is characterized by the Einstein
timescale g, which combines three physical properties of the
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Here 6 is the angular Einstein radius, M is the total lens mass,
el = au(D; ! — Dg'!) is the lens-source relative parallax, and
(1 is the lens-source relative proper motion. Although the
timescale will be approximately the same, the light curve of a
microlensing event as seen from two (or more) separated
observers (e.g., from Earth and space) is different, due to either
a different observed source trajectory, a time shift, or both
(Refsdal 1966; Gould 1994). Since the physical separation
between the two observers (D)) is known, this directly yields
the microlens parallax,

AT — t(),sat - tO,ﬁB .

- >

au
= Ar, AB);
TE DL(T B3) .

A/B ==+ Up,sat — :l:l/t()’@, (2)

where the subscripts indicate parameters as measured from the
satellite and Earth. Here, (¢, uo, tg) are the standard
“Paczynski” point-lens microlensing parameters: time of
minimal separation between the source and the lens, the
impact parameter in angular Einstein radius units, and the event
timescale. Different observed source trajectories will increase
the probability of detecting companions to the lens star by
exploring different regions of the lens plane (Zhu et al. 2015a).
However, due to the symmetry of the problem it usually suffers
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from a four-fold degeneracy (in AQ, see Equation (2)). As
pointed out by Refsdal (1966) and Gould (1994), observing the
same event from a third location can resolve this problem. If
the third observer is not on the projected line (with respect to
the lensing event) defined by the first two observers, it can
completely remove the microlens parallax degeneracy, both in
magnitude and direction. Even if the third observer is on the
same projected line but has a different separation than the first
two, it will likely view a different source trajectory. In addition,
it will be sensitive to different microlens parallax magnitudes
(if the separation is too large, the magnification for one of the
observers can be too low for the event to be detected).

Here we present an analysis of OGLE-2015-BLG-1319. This
is the first microlensing event observed by two space
telescopes, Spitzer and Swift, and from the ground. The ground
light-curve shows a short anomaly over the peak, due to a
companion, and the parallax measurement from Spitzer allows
us to determine that it is a BD. This additional BD detection
provides supporting evidence for a conclusion previously
drawn from microlensing studies: that BDs around main
sequence stars are relatively common at separations of a few au
(Shvartzvald et al. 2016) as compared with their rarity at closer
separations according to radial-velocity studies (e.g., Grether &
Lineweaver 2006). The small separation of Swift from Earth
did not allow for an independent measurement of the microlens
parallax for this specific event. However, as we discuss further
below, it might be possible to measure the microlens parallax
with Swift alone in other events.

The paper is arranged as follows: we describe the
observations from the ground-based observatories and those
from Spitzer and Swift in Section 2. In Section 3, we present the
microlensing model and try to resolve the degeneracy of the
projected separation between the companion and its host. In
Section 4, we use the color—magnitude diagram (CMD) to
characterize the source properties and combine them with the
microlensing model to derive the lens physical properties. We
study the feasibility of using Swift to measure the microlens
parallax in Section 5. Finally, in Section 6 we summarize our
results.

2. OBSERVATIONAL DATA AND REDUCTION
2.1. Ground Observations

The microlensing event OGLE-2015-BLG-1319 was first
alerted on 2015 June 11, 19:44 UT by the Optical Gravitational
Lens Experiment (OGLE), which operates the 1.3 m Warsaw
telescope at the Las Campanas Observatory in Chile (Udalski
et al. 2015a) using the OGLE Early Warning System (EWS,
Udalski 2003). At equatorial coordinates R.A. = 17:57:46.4,
decl. = —32:28:19.9 (J2000.0), the event lies in OGLE field
BLG508, which has a relatively low observing cadence of 0.5-1
times per night. Most observations were in the I band, with
additional sparse V band observations for source characteriza-
tion. OGLE photometry was extracted by their standard
difference image analysis (DIA) procedure (Udalski 2003).

The event was also observed by the Microlensing Observa-
tions in Astrophysics (MOA) collaboration, who operate the
1.8 m MOA-II telescope at the Mt. John Observatory in New
Zealand (Sumi et al. 2003); they designated the event as MOA-
2015-BLG-292. Observations were in the “MOA-Red” filter (a
wide R/I filter), with a cadence of 1-5 times per night. The
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MOA data were reduced using their routine DIA procedure
(Bond et al. 2001).

The Spitzer team selected and announced OGLE-2015-BLG-
1319 as a Spitzer target on June 25 UT 2:00 (HID’ = 7198.58)
and aggressively alerted it as being an extreme high-
magnification event. Based on these alerts, sustained follow-
up observations were carried out. First, the RoboNet team
observed the event using five telescopes from the Las Cumbres
Observatory Global Telescope (LCOGT) in Chile, South
Africa, and Australia. These observations were designed to
increase the planet sensitivity by obtaining continuous cover-
age of the entire peak region. Most observations were in the /
band, and a few were made with the V band. While these were
not used for the source color characterization, they allow for a
better coverage of the light curve. LCOGT data were reduced
using DanDIA (Bramich et al. 2008). The MiNDSTEp team
followed the event using the Danish 1.54 m telescope hosted at
ESO’s La Silla observatory in Chile, which is equipped with
the first routinely operated multi-color instrument providing
Lucky Imaging photometry (Skottfelt et al. 2015). The camera
was operated at a 10Hz rate and lucky exposures were
calibrated and tip-tilt corrected as described by Harpsge et al.
(2012). The stacked images were used for obtaining photo-
metry with a modified version of DanDIA. In addition, the
event was observed by the Microlensing Follow Up Network
(uFUN) 0.35 m telescope at the Possum Observatory in New
Zealand and by the pFUN 0.3 m Perth Exoplanet Survey
Telescope (PEST) in Australia, both with a “clear” filter. These
observations densely cover the first “bump” (see inset of
Figure 2). Finally, the event was also observed by the ©uFUN
1.3 m SMARTS telescope at CTIO, with ANDICAM, giving
simultaneous / band and H band measurements (a few
additional V band observations were taken). This multi-filter
imaging was important for the source characterization,
complementing the OGLE observations. All pFUN data were
reduced using DoPhot (Schechter et al. 1993).

In summary, the results reported here depend overwhel-
mingly on follow-up data, both to cover the anomaly and for
color information of the source, which makes it possible to both
detect and characterize the lens companion.

2.2. Spitzer Observations

The Spitzer team modeled and predicted the evolution of all
ongoing microlensing events, on a daily basis, prior to and
during the six weeks of the 2015 campaign. The team realized
the high-magnification nature of OGLE-2015-BLG-1319, and
thus its potential high planet sensitivity, from preliminary
OGLE and MOA data, when the event was only 1.4 mag
brighter than the baseline (ultimately getting 4.4 mag brighter
than base—see Figure 2). Yee et al. (2015) describe the Spitzer
selection criteria and observing strategy for such events. The
set of objective criteria is needed to both minimize selection
biases, in particular regarding the presence or absence of a
companion to the primary lens, and to maximize the sensitivity
for detecting possible companions as well as measuring the
microlens parallax. One of the conditions to ensure high
sensitivity is that the event is observed with high cadence by
either the OGLE or KMTNet survey (criterion B2). However,
since the event was in a low-cadence OGLE field and was not
observed at all by KMTNet, it failed to meet criterion B2, and
thus could not be selected objectively. In addition, the
estimated flux in Spitzer’s L band on the first date of possible
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Figure 1. Co-added UVOT images for the three epochs when the event was observed with Swift (on June 27, 28, 29, from left to right). This is the first time Swift
observed a microlensing event while it was ongoing, with magnifications of 530, 90, and 50. The event is clearly seen and detected only on the first epoch, when it was

V = 16.6.

observations (six days later on HID' = 7205) and beyond,
assuming the ground-based light curve, was too faint,
Lese > 15.9 (see definition in Yee et al. 2015). Nevertheless,
the team selected the event subjectively, due to its predicted
high magnification, immediately announced it as a Spitzer
target, and urged the follow-up teams to monitor the event in
order to have high planet sensitivity.

OGLE-2015-BLG-1319 was observed by Spitzer during the
final two weeks of the 2015 campaign (July 3-19), with a
cadence of 1-2 times per day, and with each epoch composed
of six 30 s dithered exposures. The observations covered the
peak of the event as seen from Spitzer, due to the microlens
parallax, when the ground-based light curve was already almost
back to baseline. The event was indeed faint in Spitzer images,
reaching L.s = 15.9, fainter than the assumed sensitivity limit.
However, the data were reduced using the new algorithm for
Spitzer photometry in crowded fields (Calchi Novati
et al. 2015b), resulting in the required high precision. It is
important to note that while the peak L. was similar to the
estimation based on the ground-based light curve, it occurred at
a later time and with lower magnification than predicted.
However, since the source color (I — L)so = 1.35 (see
Section 4.1 below) was redder than the default assumption
for dwarfs of 0.8 by Yee et al. (2015), coincidentally, the final
brightness was similar.

2.3. Swift Observations

Based on preliminary estimates for the peak magnification of
A ~ 1000 and first hints of anomaly over peak, R.A. Street
requested target of opportunity (ToO) observations of OGLE-
2015-BLG-1319 with Swift. Observations were approved and
carried out on June 27, 28, and 29 using the UVOT camera
with the V filter. Each of the three Swift epochs is composed of
a sequence of three exposures (200, 200, and 90 s). For the first
epoch we use each image separately, while for each of the other
two epochs we use a co-added image. The photometry was
extracted using DoPhot.

This is the first microlensing event observed with Swift.
Figure 1 shows the co-added image for each epoch. The event
is clearly seen in the first epoch, when the event was highly
magnified as seen from Earth, and is marginally detected in the
other two epochs, when the event was almost 2 mag fainter.
While these observations cannot set significant constraints on
the microlensing model, in particular on 7g, they allow us to

study the feasibility of Swift observations for microlensing
events, as we do below in Section 5.

3. LIGHT CURVE ANALYSIS
3.1. Ground-only Microlensing Model

The light curve of the event, shown in Figure 2, has one
“double-bump” anomaly over its peak, while the remainder
follows a standard point-lens high-magnification profile. These
features suggest that the source passes near a central caustic
with two possible topologies. Either the source approached
close to two cusps of a binary lens system (see Figure 3), or
three cusps of a planetary system, on the opposite side of the
planet. The caustic structure for the planetary regime (mass
ratio ¢ < 1) is significantly different than that for the binary
regime (g ~ 1). However, due to degeneracies with other
parameters such as the source trajectory and the source size,
these two models can sometimes lead to a somehow similar
light curve. Han & Gaudi (2008) studied the planet/binary
degeneracy in such double-bump high-magnification events
and showed that if the source passes close enough to the cusps,
the light curve will have a characteristic feature distinguishing
between the two solutions: the planetary model will show a
flattening between the two bumps while in the binary model it
will have a concave shape. The smooth curved interval between
the two bumps seen in OGLE-2015-BLG-1319 thus clearly
favors the binary solution.

A standard binary-lens microlensing model requires seven
parameters to calculate the magnification as a function of time,
A(?). In addition to the point-lens parameters, (¢, ug, fg), and
the scaled finite source size, p = 6,/6g (where 60, is the
angular source size), the companion introduces three para-
meters. These are the mass ratio between the companion and
the primary, g, their scaled, instantaneous projected separation
in units of the angular Einstein radius, s, and an angle, «,
measured counterclockwise from the source trajectory to the
companion in the lens plane. For a given model geometry, two
flux parameters are assigned for each data set, i, accounting for
the source flux, which is being magnified, fs,i, and any
additional blend flux, Syt

5 (O = [, A@) + f;- 3)

A Markov-chain Monte-Carlo (MCMC) search of parameter
space, with a grid of initial angles of 0° < a < 360°, for both
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Figure 2. Light curve of OGLE-2015-BLG-1319 with data from Spitzer (red),
Swift (magenta), and various ground-based observatories (see interior figure
labels). All observations are aligned to the OGLE magnitude scale, such that
equal “magnitude” reflects equal magnification. The inset shows the anomalous
region over the peak of the event, revealing the presence of the companion BD.
The clear offset, both in time and magnification, of the Spitzer data with respect
to the ground data, allows us to measure the microlens parallax 7.

x (0]
-0.1 0 0.1
——ground
O.1r —— Spitzer ]
S
0 ]
o
=
o 0
01l ]
-0.002
-0.2+ B
-0.002 0 0.002

Figure 3. The source trajectory as seen from the ground (blue) and from Spitzer
(red) relative to the central caustic (green), for the wide —/+ configuration.
The coordinate system is defined such that the x-axis is parallel to the source
trajectory as seen from the ground at #y. The red circles represent the source
position at the times of Spitzer observations. The inset is a zoomed-in version
showing the source angular size (blue circles) for two (arbitrary) times, as seen
from the ground. For solutions with uy > 0, the caustic structure and the
ground trajectory will be (approximately) mirrored, and for solutions with
mg,N < O the Spitzer trajectory will be (approximately) mirrored, in both cases
around the y-axis.

the planetary and binary configurations was used to find the
best fit model. For the initial modeling we use only uy > 0 and
s > 1 to avoid possible degenerate solutions, which we address
and consider later. For each set of trial parameters, we fit points
far from the two bumps using the hexadecapole, quadrupole, or
monopole approximations (Gould 2008; Pejcha & Heyr-
ovsky 2009), while for points near and during the anomaly
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we use contour integration (Gould & Gaucherel 1997). For the
finite source size we assume a limb-darkened profile with linear
coefficients of u(V, I, H) = [0.782, 0.607, 0.425] (Claret 2000),
based on the source type derived below in Section 4.1. We find,
as expected, that the binary model is favored over the planetary
model by sz ~ 300. Dominik (1999) and Bozza (2000)
predicted that for Chang—Refsdal lenses®’ there is an s < s~
wide/close degeneracy. We search and find a close solution
(s ~ 0.08) that is degenerate with the wide one (s ~ 14).

The mass ratio we find is ¢ ~ 0.08, suggestive of a low-mass
stellar companion.”® The event was highly magnified
(Amax = 725) and had a long timescale of #g ~ 100d. For
such a timescale, the orbital microlens parallax due to the
orbital motion of Earth can be detected, but since it was heavily
blended (f,/f, =~ 0.1) it appeared magnified for only ~40 days.
Including orbital parallax improves the fit by only Ax? = 6,
which is within our systematic uncertainty range (see Section
3.3), and thus we do not consider it as a detection. We next
include Spitzer data and fully constrain the microlens parallax.

3.2. Satellite Microlens Parallax

Observations by two fixed observers introduce a four-fold
degeneracy, as discussed above. If the microlens parallax can
be detected separately in one or both of the observed light
curves, due to the orbital motion of the observer, the
degeneracy can be completely removed. Since the orbital
parallax is only marginally detected in the ground-based light
curve of OGLE-2015-BLG-1319, when including Spitzer, we
re-run the MCMC process with all four possibilities for both
the wide and close configurations. In addition, we include a
constraint on the Spitzer source flux, fs’Spimr, derived from
color—color regression (see Section 4.1 below).

The results find that indeed the eight possible solutions, the
four-fold satellite degeneracy for both the wide and close
configurations, are fully degenerate. The microlens parallax
components are roughly the same for all solutions since the
impact parameter, ug, as seen from Earth, is very close to zero
(see Gould & Yee 2012). The magnitude of the microlens
parallax is 7 ~ 0.12, with 4%-8% uncertainty. As a check,
we run the chains without the Spitzer flux constraint. We find
that the median IogLe — Lspiwzer SOUrce color is similar to the
one derived from regression, but the source-color distribution
from the MCMC is wider than the constraint uncertainty. This
would imply a 10%—20% uncertainty on the microlens parallax
magnitude in the absence of the flux constraint.

Table 1 summarizes the derived model parameters and their
uncertainties for the eight degenerate solutions. While in this
case, the satellite degeneracy has no importance for the
physical interpretation of the lensing system, the wide/close
degeneracy suggests two significantly different orbital periods
for the companion. We next try to resolve this degeneracy.

ST A Chang—Refsdal lens refers to the case where the magnification field can
be approximated by a single lens mass and a tidally induced shear (originally
discussed in the context of a single lensing star in an extended gravitational
lens galaxy; Chang & Refsdal 1979, 1984). In binary microlensing, similar to
our case, it referred initially to the companion providing this tidal shear.
Subsequently, Dominik (1999), Bozza (2000) and An (2005) showed that there
is a deep mathematical symmetry between such tidal shears (from widely
separated companions) and quadrupole distortions induced by very close
companions. Since in most cases these cannot be distinguished, they are jointly
referred to as “Chang—Refsdal” in the context of binary microlensing.

58 The mass function of lenses toward the Galactic Bulge, as modeled by
Dominik (2006), is a narrow distribution, with the most probable lens mass
of ~0.3 M.
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3.3. Close/Wide Degeneracy

A binary lensing system with projected separation signifi-
cantly different from the angular Einstein radius can be
approximated as a circularly symmetric system with a weak
perturbation potential. An (2005) studied this symmetry and its
implications for binary-lens microlensing light curves and
found an analytic form to convert between a set of (Scioses Gelose)
to their degenerate pair (Syides gwide)- Lhe degeneracy is more
severe when s < 1 or s > 1, i.e., far from the resonant caustic
topology. The projected separation of OGLE-2015-BLG-1319
is s~ 0.08 (or s~ 14), which is securely in the highly
degenerate regime.

A possible way to distinguish between the two degenerate
solutions is by detecting the projected orbital motion of the
companion. This requires two additional parameters represent-
ing the evolution of the companion’s position (angle and
separation) during the event, da/dt and ds/dt. For a single
observer these are commonly degenerate with the microlens
parallax, since both can have similar signatures on the light
curve. However, when considering two or more observers, as in
our case, the microlens parallax information comes from a
completely different and independent measurement, and thus
they can easily be disentangled. The models of the wide and
close configurations, when including orbital motion, will
usually still be degenerate (or very close to it), thus neither
can be favored by goodness-of-fit tests. However, they can be
distinguished by energy considerations. Each solution implies a
certain ratio of the projected kinetic to potential energy (Dong
et al. 2009),

ﬂ . (E) _virg H,MQ; yrz 7TES372 4)
PE),  2G6M 872  Og(mg + ms/0p)

where 2 = (ds/dt/s)* + (da/dt)>. The typical ratio is
B ~ O(0.4). The main observables that are different between
the wide and close models, in the limit of low ¢, are
(s, ds/dt, da/dt) (Og will also be different by ~./1 + q).
Since the rate of position change should be very similar, giving
approximately the same ~?, the dominant difference will be due
to 5. The strong dependence on the projected separation and the
s < 57! nature of the wide/close degeneracy suggest
Buwide/ Betose == 8. Thus, if the close solution has a typical
value, the wide solution will give (3> 1, an unphysical
solution. Conversely, if the wide solution has a typical energy
ratio, then the close solution will have 8 < 1, which has a
negligible probability (the probability distribution follows 37).

We include the possibility of orbital motion in the eight
solutions for OGLE-2015-BLG-1319. For the wide solutions
the fit is improved by Ax? = 17 and for the close solutions it is
improved by Ay = 6. The projected energy ratio for the wide
solutions is Byige = 3.6 X 10° and for the close solutions it is
Betose = 0.7. Thus, while the wide configuration gives a better
fit, it is ruled out by physics and therefore shows that
systematic errors are possible at the Ay? = 11 level. Hence,
the improvement for the close solution is not believable. Even
if we ignore systematics, the Ax”> = 6 improvement is too
weak to reliably claim a detection. We conclude that orbital
motion cannot be reliably detected, so the wide/close
degeneracy remains.
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Figure 4. OGLE instrumental CMD of stars within 90” of the event’s position.
The offset between the red clump centroid (red) and the source star (blue) allow
us to derive the source angular radius 6. The total “blend light” (green), which
is composed of the light from the lens and additional unrelated stars in the
OGLE PSF, is also marked. From the derived mass and distance of the lens star
we find that the lens is not the dominant object of the blend.

4. PHYSICAL PROPERTIES

The mass and distance of the lensing system can be derived
from the microlens parallax and the angular Einstein radius,
Ok

M=t
KRTE

el = TEOE. (5)

These allow us to translate the mass ratio and the scaled
projected separation between the two companions to absolute
physical values. While 7g is a direct observable, the angular
Einstein radius g is derived from the scaled finite source size
(found from the light curve model) and the angular size of the
source (found using the CMD) by 0 = 6,./p.

4.1. Color-Magnitude Diagram

The source properties can be derived from its position on a
CMD. We construct a CMD of objects within 90” of the
event’s position (Figure 4), using OGLE instrumental V-band
and /I-band magnitudes. We estimate the centroid of the “red
giant clump” (RGC) to be at (V — I, I) ogle = (1.94, 15.68)
and compare it to the intrinsic centroid of
(V =1, I)q0 = (1.06, 14.51) derived by Bensby et al. (2013)
and Nataf et al. (2013) for the galactic coordinates of the event,
(I, b) =(—1.7, —4.0). The source baseline OGLE I-band
magnitude as inferred from the microlensing model is
I 0g1e = 21.50 £ 0.06, and assuming it is behind the same
dust column as the red clump, its intrinsic magnitude is
Lo = 20.33 £ 0.06. This is one of the faintest sources ever
reported in microlensing.

It is important to determine the source (V — I) color for two
reasons. First, this quantity enters into the measurement of the
angular source size #,. Second, it is needed to estimate the
I — Lspitzer source color, via a VIL color—color diagram derived
from nearby field stars.

A standard way to determine the instrumental (V — I); color
is from regression of V versus / flux as the source magnification
changes. We apply this technique to OGLE data and find
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Table 2
Physical Properties of the Binary System for the Eight Degenerate Solutions
Parameter Close Wide
- +- —+ ++ - +— —+ ++

M, M) 0.547913 0.617512 0.651313 0.53+3:98 0.591349 0.6770% 0.603% 0.57+3:9
M, [M)] 407911203 4207787 5316187, 36.781%9 5776437 5774438 59.14+38 53534331
r. [au] 0244002 0.26%0% 0254003 0257993 4626738 4747443 4647133 43724383
D, [kpc] 4.897914 4.86701¢ 4837018 4997913 485713 4807313 4847913 4931013
0 [mas] 0.6179% 0.6575%8 0.6879% 0.59*5:9¢ 0.66+397 0.70+398 0.66+391 0.637997
fiper (N, E)[mas yr—'] (-1.1,-1.6)  (=1.1,-16)  (1.0,—-17) (09, -1.6)  (=1.1,—-1.6) (=12, —-1.6)  (1.0,-1.7) (0.9, —1.7)
prsr(l b)[mas yr™'] (—1.8, 0.6) (~1.9, 0.6) (-0.1,1.8)  (=0.1, 1.7) (~1.9, 0.6) (=19, 0.6) (-0.1,1.8)  (=0.1, 1.7)

(V = Dyoge = 1.87 £0.07, from which we derive 4.2. Another Brown Dwarf in the Desert?

(V= 1I),0 =100 =% 0.07 by correcting to the clump offset
found above. Note that we must also account for the fact that
the OGLE instrumental (V — I) is a factor of 1.09 larger than
standard. This measurement suffers from two separate potential
problems. First, the error is relatively large. Second, almost all
the information in the regression comes from a single,
significantly magnified V point and thus could be subject to
systematic errors. Therefore, we also measure (V — I); o using
a second method. We apply regression to determine the
instrumental (I — H); o = 0.67 £ 0.01 from / and H data
taken simultaneously at SMARTS CTIO. We then used a VIH
color—color relation derived from all stars in our field to infer
an instrumental (V — I); o = 1.64 £ 0.03. Then, comparing
to the instrumental clump (V — I)qehio = 1.69, we
derive (V — I);o = 1.01 £ 0.03.

Combining the two measurements yields (V — I);o =
1.01 £ 0.03. Using standard color—color relations (Bessell &
Brett 1988) and the relation between angular source size and
surface brightness, derived by (Kervella et al. 2004), we find
0, = 0.38 £ 0.02 pas.

Before applying the VIL color—color relation (using OGLE-
1V and Spitzer — L) to derive the (I — L), color we convert the
(V—=1I)0 color back to the OGLE system, i.e.,
(V — Dy ogte = 1.88 £ 0.03. We then use red giant branch
stars (logle < 18; 1.7 < (V — I)oge < 2.3), which are a good
representation of the bulge star population, to derive the color—
color relation and find the source instrumental color,
(Iogle — Lspitzer)s = 1.54 = 0.07. As a check, we also fit with
a larger set including most stars (Lge < 20; 1<
(V — Dogle < 3) and find a compatible color 1.51 £ 0.02.

Any light from the lensing system is superposed on the
microlensing event and is a part of the blending flux. Therefore,
the blend flux sets an upper limit on the lens flux, giving an
additional constraint to the physical properties of the lensing
system. The high blending fraction in OGLE-2015-BLG-1319
suggests that the lens star might dominate the blended flux. If
so, it can have an additional application. For example, one can
measure the radial velocity of the lens star (Boisse et al. 2015;
Yee et al. 2016), which can be a complementary way to break
the wide/close degeneracy. Subtracting the source color and
magnitude from the total baseline fluxes gives
(V — 1, Dplend,ogle = (2.16, 19.04). If we assume that the blend
is behind all the dust, which for the direction of the event
means it is at >3 kpc (Green et al. 2015), we find
(V — 1, Dyjenago = (1.26, 17.87). We next derive the physical
properties of the lensing system and show that the lens cannot
be the dominant source of the blend light.

Table 2 summarizes the physical properties derived for each
of the eight degenerate solutions. The results span a relatively
narrow range for each of the properties, but one that is still
wider than the uncertainties of each of the solutions, therefore
we discuss the full 1o range of all results.

The angular Einstein radius we find is fg = 0.54-0.78 mas.
The relative proper motion between the source and the lens is
tinel = 1.8-2 mas/year. This is smaller than what is typical for
disk lenses, and moreover the direction is also peculiar.
Converting the relative proper motion to the Local Standard of
Rest (LSR), we find two solutions (corresponding to 7 N),
frsg (4 b) = (=19, 0.6)masyr ' or pysr(l, b) = (0.1,
1.8) mas yrfl. Since the typical value is ppsr(l, b) = (6.5,
0.0) £+ (2.9, 2.8) mas yrfl, the probabilities for the solutions
are only 2% and 6%, respectively. Current microlensing
surveys detect over 2000 events per year, therefore one expects
over 40 and 120 events, respectively, with these properties each
season. Thus, while we find low probabilities, they will become
statistically significant only if more events yield similar
configurations.

The host lens is a 0.44-0.8 M, star and the system is at a
distance of 4.6-5.1 kpc. These suggest a K dwarf host fainter
than [;; > 18.4. Therefore, the lens star is not the dominant
source of blend light. The companion is a 30-65 M; BD, with
two possible solutions for the projected separation due to the
wide/close degeneracy, of either 0.23-0.28 au or 40-52 au.
The close solution suggests that the BD is inside the “brown-
dwarf desert” (e.g., Grether & Lineweaver 2006). We discuss
this possibility below in Section 6.

5. SWIFT FEASIBILITY OF MICROLENS PARALLAX
MEASUREMENTS

The microlens parallax sensitivity of a satellite depends on
its projected separation from Earth, the photometric precision,
and the underlying event microlens parameters, mainly u, fg,
and 7g. In the case of a low-Earth-orbit satellite such as Swift
(~600 km from the surface of the Earth), the separation might
be too small to detect the parallax signal in a typical event
(Honma 1999; Gould 2013). Recently, Mogavero & Beaulieu
(2016) showed that a low-Earth-orbit satellite can be used to
discover free-floating planets down to the mass of the Earth,
i.e., with short timescales of 7z < 1 days, for impact parameters
of up < 0.1 (i.e., Apax > 10). They assumed a continuous 3
minute cadence with a 0,, = 0.01 mag photometric precision at
baseline, while Swift has only o, = 0.1 mag precision at
V ~ 17.3 mag (for 3 minute exposures), which corresponds to
RGC bulge stars. Most microlensing sources are 3—4 mag
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Figure 5. The light curve model of OGLE-2015-BLG-1319 as seen from Swift
(dashed—dotted purple line) and from the ground (black line). The thick lines
show the 50 minute windows during which the event was visible from Swift,
and the magenta diamonds are the three measurements during the first epoch.
The wave-like structure between the models due to the varying projected
separation of Swift allows, in principle, for the detection of the microlens
parallax. However, the maximal difference in the case of OGLE-2015-BLG-
1319 was only 0.006 mag (at the first bump). Even if the event was observed at
that time, the Swift precision was not sufficient to constrain the microlens
parallax 7.

fainter at baseline. Even for RGC sources, the magnification
needs to be >100 times higher (i.e., ug < 1073) in order to
compensate for the photometric precision (though for such
giant sources the finite source size starts to limit the maximal
magnification for such impact parameters).

In the case of OGLE-2015-BLG-1319, the microlens
parallax could not be detected with Swift data. However, it
can be used as a first test case for such measurements. In
particular, the microlens parallax was measured by Spitzer, so
we know what the Swift light curve should look like. Although
it was a high magnification event with Ap,x ~ 725, it was also
heavily blended and with a long timescale of ~100 days. The
projected Einstein radius 7z = au/ng was 7.7 au, several orders
of magnitudes larger than Swift’s distance from Earth. The
event was bright enough (V < 16.5) to obtain sufficient
photometric precision for only 10 hours, and it was observed
for only 10 minutes during that time, with 3 consecutive
observations. The field was visible from the satellite for ~50
minutes every orbit of 96 minutes. Figure 5 shows the model of
the event as seen from Earth and from Swift. It includes Swift
measurements and highlights, in thick lines, the regions where
the field was visible from the satellite. It is clear that Swift could
not detect the parallax signal. The wave-like feature between
the two light curves, mainly seen around the first bump, is due
to the varying projected separation of Swift. Identifying this
feature in future events can be important, allowing for the
detection of microlens parallax from relatively short portions of
the light curve, when the precision is sufficiently high.

A study of Swift feasibility for measuring the microlens
parallax, extending the work by Mogavero & Beaulieu (2016),
requires taking into account the Swift specifications (photo-
metric precision, bulge visibility from its orbit) as well as more
extreme parallax cases. Mogavero & Beaulieu (2016) assumed
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Figure 6. Extreme microlensing event OGLE-2007-BLG-224, for which the
lens star was a nearby (~500 pc) single BD, as hypothetically seen by a
geocentric observer and from Swift. Panel a shows the peak as seen during the
50 minute Swift visibility window if it were centered around the geocentric #,,
while in panel ¢ the geocentric #, is 13 minutes earlier. Panels b and d show the
magnitude difference between the Swift and geocentric light curves for these
two possibilities, respectively. The difference is clearly larger in panel b, which
shows that the Swift feasibility of measuring the microlens parallax is very
sensitive to the exact time of the peak during the visibility window. The black
circles are hypothetical 90 s exposure data points with the expected Swift
precision as their errors. In both cases the microlens parallax is detected, with
x> = 931 for panel b and x> = 670 for panel d. Since the variations are on
timescales of minutes, especially near the maximal differences, the signal is
marginalized over the exposure time. This can be seen by the data point at the
peak of panel b. For 180 s exposures, while the photometric precision is better,
the overall x” is smaller by 30.

a single (typical) value for . and x. Under these assumptions,
a given fg sets the mass of the lens and the magnitude of 7. For
more extreme values of 7, and lens mass one can get much
larger 7, to which Swift might be sensitive. In addition,
Mogavero & Beaulieu (2016) concluded that visibility gaps in
the light curves will not significantly alter the parallax
sensitivity, while for high magnification events the effective
time is of order of minutes thus it is very sensitive to the ~45
minutes visibility gaps.

To show Swift’s potential for measuring microlens parallaxes
we use the extreme microlensing event OGLE-2007-BLG-224
(Gould et al. 2009) for which terrestrial parallax was measured.
The lens star was a 58 + 4 M; BD at a distance of 525 + 40 pc
implying a large microlens parallax of mg = 1.97 £ 0.13. The
source baseline magnitude was Vg = 20.58 and the event
reached a high magnification of A = 2452 (i.e., Vpeax = 12.11
mag). Figure 6 shows the peak of the event as it would have
hypothetically been seen by a geocentric observer and from
Swift during its 50 minute visibility window. The left panels
show the two light curves and their difference if the geocentric
to was at the middle of the Swift visibility window and the right
panels for a geocentric ¢y, 13 minutes earlier. The difference is
clear in both possibilities but significantly larger if the visibility
window happened to be centered on the geocentric #,, with a
maximal difference of Amag = 0.17 (only Amag = 0.09 for
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the offset case), showing the large sensitivity to the exact time
of the peak during the visibility window.

We sample the Swift light curve with a 90 s cadence and use
the UVOT signal-to-noise tool’” to estimate the photometric
precision for each point. The crowded fields of the bulge could
potentially result in larger errors. However, we calculated the V
magnitude rms of all stars in our six 200 s Swift images of
OGLE-2015-BLG-1319 and found that the rms distribution
agrees well with the UVOT tool estimates for 200 s exposures.
(We note that for the bright V magnitudes OGLE-2007-BLG-
224 reached, the coincidence loss correction needs to be taken
into account). We then calculate the x> between the 32 Swift
points and the geocentric light curve and find x> = 931 for the
centered observations and x> = 670 for the offset ones, thus
easily detected in both cases. Observations on the adjacent
visibility windows would not improve the detection since the
photometric precision is >20 larger than the parallax signal at
those regions. The differences between the two light curves
vary around the maximal differences with timescales of
minutes, and therefore the parallax signal is also sensitive to
the exposure time (see for example the data point at the
maximal difference on panel b of Figure 6). To check this we
also sampled the light curve with 180 s exposures and found
that the x> was smaller by 30.

The Swift feasibility can also extend to nearby free-floating
planets. The microlens parallax magnitude will be larger than
that of BDs but the peak magnification will be lower, limited
by the finite source effects. The duration of the signal over the
peak will be similar since it is dominated by the source crossing
time 7, = 6, /p. Finally, we note that Swift might be able to
detect the parallax signal during caustic crossings (in particular
the caustic exits) of bright binary events (analogous to the
original idea presented by Honma 1999), which are much more
common, and with real-time light curve modeling it can be
predicted in advance to trigger Swift. A thorough study of Swift
microlens parallax sensitivity will be conducted in R.A. Street
et al. 2016, (in preparation).

6. DISCUSSION

We have presented the detection, via simultaneous observa-
tions from the ground, Spitzer, and Swift, of a BD orbiting a K
dwarf with two degenerate solutions for the projected
separation. This BD adds to other microlensing-detected BDs
in a variety of physical configurations. Han et al. (2016)
summarizes the 15 published microlensing events with BDs
prior to OGLE-2015-BLG-1319. This list includes 1 BD
hosting a planet, 10 BDs around main sequence stars (9 around
M dwarfs and 1 around G-K dwarf), 2 binary BD systems, and
2 isolated BDs. These were discovered through different
surveys with different detection efficiencies, making it difficult
to derive a statistical conclusion from them (however, see Ranc
et al. 2015). In addition, more than half of the published BDs
with companions were discovered due to central caustic
anomalies. Therefore, the majority of these suffer from the
wide/close degeneracy, which leads to a degeneracy in their
derived projected separation. Nevertheless, the 11 binary
microlensing events with a BD around a main sequence star
hint (and need to be confirmed with a much larger sample) that
such systems might not be rare at separations of 0.5-20 au,

39 http: / /www.mssl.ucl.ac.uk /www_astro/uvot /uvot_observing /uvot_
tool.html
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where microlensing is sensitive (this range is larger than for
exoplanets due to higher detection sensitivity). This is in
contrast to estimates through other techniques, such as radial
velocity and transit, which find that BDs are rare (<1%,
Grether & Lineweaver 2006) at closer separations. A possible
explanation for this difference besides the different separations,
as suggested by Shvartzvald et al. (2016), is that different host
stars are mostly probed by each technique—FGK stars by
radial velocity and transits versus M stars by microlensing.

The event was part of the 2015 Spitzer campaign and was the
first to be observed simultaneously from two space telescopes.
Kepler follows the path started by Spifzer and is now
conducting, as Campaign 9 of its K2 mission (K2C9), the first
space microlensing survey (Gould & Horne 2013; Henderson
et al. 2015). The K2C9 fields are monitored continuously from
the ground, both to increase the planet sensitivity and to enable
the measurement of the microlens parallax of all events in those
fields. In addition to detecting bound companions (planets,
binaries, stellar remnants), this will be the first opportunity to
measure themasses of free-floating planets, which are
identified by their short timescales, of order of one day. Such
events cannot be observed from Spitzer, which requires target
uploads at least three days before observations. Triple-location
observations, such as those conducted for OGLE-2015-BLG-
1319, are planned with Spitzer and Kepler, monitoring events
in the K2C9 fields during the last 10 days of the Kepler
campaign, when both satellites can observe the bulge (see
discussion in Calchi Novati & Scarpetta 2016).

For the first time, Swift was used to observe a microlensing
event and was able to detect the event while it was magnified.
The unique ToO override capability of the Swift spacecraft is,
by design, ideal for the observation of transient variables of all
kinds and in particular for microlensing. However, the
microlens parallax could not be measured with Swift data for
this event. From our preliminary study of Swift’s ability to
detect the microlens parallax signal we find that it is sensitive to
nearby BDs and free-floating planets in high magnification
events (A > 1000). If the lens in our example of OGLE-2007-
BLG-224 was a free-floating super-Jupiter rather than a BD,
with all other characteristics of the event identical, Swift could
have significantly detected (x> = 430) the microlens parallax
signal with continuous 90s exposures over a 50 minute
visibility window centered on the peak of the event. Such
nearby (~500 pc)massive free-floating planets could be
directly imaged with the James Webb Space Telescope (for
ages <1Gyr), and would possibly allow study of their
formation mechanisms and environments.

We thank T. Meshkat and R. Patel for fruitful discussions
about directly imaging free-floating planets. Work by Y.S. and
C.B.H. was supported by an appointment to the NASA
Postdoctoral Program at the Jet Propulsion Laboratory,
administered by Universities Space Research Association
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observations from the LCOGT network, which includes three
SUPAscopes owned by the University of St Andrews. The
RoboNet programme is an LCOGT Key Project using time
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