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a b s t r a c t

In probabilistic model analysis and optimization, expected values of a model output f (x) in
face of continuous random inputs x are estimated through n-dimensional integrals, where
n = dim(x). Cubature formulae are approximations of these integrals by a weighted sum
of function evaluations at carefully chosen points. When each function evaluation corre-
sponds to a heavy computational simulation, and particularly in optimization problems,
one needs very efficient formulae with few integration points, even though only having
modest accuracy. In this paper, we evaluate the performance of several cubature formulae
with few points, including Smolyak type formulae, also known as sparse grid integration,
and recently proposed thinned cubatures, constructed using orthogonal arrays. Tests are
made for a wide family of smooth and non-oscillatory functions f (x), possibly with sig-
nificant anisotropy, and covering both normal and uniform input probability distributions.
Two practical case studies are also presented, one of analysis of a large scale mass transfer
model with uncertain parameters and a second one of optimal production planning under
uncertain market conditions. Results clearly indicate that cubatures with large negative
weights, including Smolyak type formulae, are not reliable, contrary to positive thinned
cubatures that produce very reasonable estimates up to dimension 24. These thinned cu-
batures may also surpass quasi-Monte Carlo methods also up to dimension 24.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Large-scale models, used for design, diagnosis and/or optimization of engineering systems, including physical products,
manufacturing processes and production/distribution systems [1–4], often include several uncertain parameters, such as
physico-chemical properties, operating conditions and economic/market parameters. If these uncertainties (vector x ∈ X ⊂

Rn) are described through a continuous probability density function g(x), the mean (or expected value) and variance of a
model output f (x), are given, respectively, by the n-dimensional integrals:

E [f ] =


X
f (x) g (x) dx (1)

V [f ] =


X
(f (x) − E [f ])2 g (x) dx. (2)
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The integrand f (x) is frequently the result of a heavy computational simulation and hence efficient numerical integration
methodswith few integration points are required, even though only havingmodest accuracy.More precisely, it is considered
in thiswork that estimates of (1) and (2)with errors up to around10%are useful, if in return only a fewhundreds or thousands
of points are required.

In optimization applications (e.g. product/systems design, production planning), the number of points is even more crit-
ical since an often used strategy is to discretize the original continuous probabilistic problem into amulti-scenario problem,
where each integration point corresponds to a plausible scenario. The size and difficulty of this problem is thus determined
by the number of integration points.

Also, in may engineering applications, the integrand function f (x), usually a model for the cost or performance of the
system under analysis, is typically smooth and non-oscillatory in the domain X , although sometimes having significant
anisotropy (some of the x inputs have much higher effect on the output f than others). Regarding dimension n, we are
interested in problems with up to around 20 uncertain parameters.

Given the above described problem domain and assumptions, cubature formulae, which are based on a polynomial
approximation of f (x) and may have relatively few points, are a first reasonable choice to estimate integrals (1) and (2).

Referring to integral (1), a cubature formula (or rule) is an approximation of that integral by a weighted sum of N
evaluations of function f :

Q [f ] =

N
i=1

wif (xi) . (3)

Integration points xi and corresponding weights wi depend on the integration region X and weight function g(x), but
not on f (x). A degree d cubature is exact, i.e. Q [f ] = I [f ], for polynomials f (x) of degree up to d. Note that degree d is the
maximum sum of exponents in monomials. In the two-dimensional case, for instance, a degree d formula is exact for terms
xa1x

b
2, with a+ b ≤ d. Given that, for any constant c, E [c] = c and that Q [c] = E [c], the sum of the weights wi is equal to 1.
The same set of points of a given cubature formula may be used to estimate both integrals (1) and (2), as follows:

E [f ] =


X
f (x) g (x) dx ≈

N
i=1

wif (xi) (4)

V [f ] =


X
[f (x)]2 g (x) dx − (E [f ])2 ≈

N
i=1

wi [f (xi)]2 −


N
i=1

wif (xi)

2

. (5)

A cubature formula is said to be interior if all points xi are in the interior of X; and it is positive if all weights are positive.
Interior formulae are preferred, since function evaluations outside X may correspond to unreasonable extrapolations. Also,
positive formulae are in principle preferable since formulae with large negative weights are ill-conditioned. More precisely,
the upper bound of the integration error is proportional to


1 +


|wi|


[5, Theorem 6.2.4] and therefore negative formulae

with


|wi| much larger than 1 may have a poor performance.
By Tchakaloff’s theorem [5, Theorem 6.2.2], there exists a degree d positive and interior cubature approximating integral

(1) with at most

n + d
d


points, which is known as the Tchakaloff’s upper bound. Unfortunately, this is only an existence

theorem and there is no general method to construct such interior and positive formulae. The literature on cubatures is vast
and there are several methods of construction and a large variety of formulae [6,7], but for general dimension n and degree
d ≥ 5, most known formulae either have large negative weights or a number of points increasing exponentially with n, well
above Tchakaloff’s bound.

A straightforward construction of a positive and interior cubature is a product rule, which is the tensor product of one-
dimensional degree d rules (each one positive and interior), having a total number of points N that increases exponentially
with n (N = Mn, ifM abscissas are used in each dimension). This kind of product formula hasmore than degree d of accuracy,
being exact for terms up to xd1x

d
2 . . . xdn. An alternative construction, known as Smolyak type rule or sparse grid integration

[8,9], avoids the exponential grow of N by combining (adding and subtracting) tensor products of one-dimensional rules
with degrees from 1 to d, and excluding combinations of total degree greater than d. The result is a formula with exactly
degree d of accuracy (relative to the sum of monomials exponents) and a number of points that only increase polynomially
with n (from now on the expression few points will be used to refer to a number of points that only increase polynomially
with n). The drawback is that negative weights are produced during the combination of the several tensor products.

More recently, Victoir [10] andKuperberg [11], independently, proposed relatedmethods to construct positive and interior
cubature formulae with few points and in a number significantly below Tchakaloff’s upper bound. Both methods are based
on error-correcting codes or corresponding orthogonal arrays (OAs). The construction of Kuperberg [11], in particular, starts
with an equal-weight degree d formula having a convolutional structure (such as a product formula), and then removes a
large portion of its points using an orthogonal array that preserves degree d of accuracy. This procedure of points removal
is designated by thinning and the resulting formula is thus called a thinned formula. This OA-based construction is the first
general method able to generate positive cubatures with few points. The efficiency is particularly high for relatively low degree
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d and high dimension n. For instance, it is possible to obtain a positive cubature of degree 5 on the n-cube with a number of
points N = O(n2).

In this article, we compare the performance of several cubature formulae, including Smolyak type formulae and
thinned cubatures, in the context of probabilistic model analysis and optimization problems and aiming at highly efficient
integration, using nomore than a few thousands of points, so as to handle large-scalemodels. The battery of tests performed
tries to be representative of a large domain of engineering models (normal and uniform random inputs x, with n = dim(x)
up to 24; smooth and non-oscillatory models f (x), possibly with significant anisotropy), and includes simple test functions
and two practical case studies.

The loss of accuracy due to large negative weights, an issue rarely discussed in the literature, is tested and results clearly
show that cubatures with large negative weights, such as Smolyak type formulae, may result in unacceptably large errors.
Positive thinned cubatures, on the other hand, which are here extensively tested for the first time, show a much better
performance and may produce useful estimates up to dimension 24 with no more than 212 points. Moreover, we also
compare how thinned cubatures perform against quasi-Monte Carlo (QMC) integration, often considered the best option for
high dimension n (in particular, we use Sobol points [12,13]). Results are again encouraging, showing that thinned cubatures
may beat QMC integration up to dimension 24.

Such a wide comparison study, as above described, has never been presented in the literature. Schürer [14], for instance,
performed extensive tests of cubatures vs. QMC integration, but under high accuracy requisites and an upper limit of 225

function evaluations (which is well above the practical limit for large-scale models), and obviously did not include thinned
cubatures that were developed later on. Moreover, the comparison tests here presented result in new practical insights into
the selection of highly efficient integration methods to solve probabilistic problems, namely the low reliability of negative
rules and a new standing for cubatures vs. QMC integration, being shown in this paper that thinned cubatures may be more
competitive up to (at least) dimension 24.

The paper is organized as follows. In Section 2, we list the set of formulae to be tested, including positive and non-
positive formulae of degrees 5 and 7. Then, in Section 3, the Kuperberg [11] method to construct thinned positive formulae
is described in more detail, and from a practitioner’s point of view, in an attempt to deliver this valuable material to a wider
audience. Next, in Section 4, we present the results from several numerical tests, including two practical case studies. Finally,
Section 5 states themost relevant conclusions and its practical value in the context of probabilistic analysis and optimization
of large-scale models.

2. Cubature formulae

Table 1 lists the cubature formulae to be tested. Label NC refers to Normal Cubatures used to estimate expected values in
face of normal random inputs x. The standard construction of these formulae is for integration over Rn with weight function
exp


−uTu


. The following transformation is needed to adapt the formula to a joint normal probability density function g(x),

with vector of mean values µ and covariance matrix Σ:

x (u) = µ +
√
2IΣ1/2u, (6)

where I is the n × n identity matrix. Similarly, label UC refers to Uniform Cubatures, originally constructed for u ∈ [−1; 1]n
and weight function g (x) = 1. The transformation:

x (u) = (xL + xU)/2 + u(xU − xL)/2 (7)

maps the original points u into the actual points of interest x, uniformly distributed between xL and xU (vectorial operations
in (7) are performed element by element).

The first two formulae, NC51 and NC52, are normal cubatures of degree 5 from Stroud’s compilation [6, Appendix A]. The
first one is positive (and thus


|wi| = 1) and has a number of points N increasing with 2n, which is below Tchakaloff’s

bound for n ≤ 13. This formula is known to be competitive against QMC sampling up to dimension 8–10 [15]. The second
one, NC52, is an example of a degree-5 normal formula with N only increasing with n2, but having some negative weights,
which may compromise its accuracy as will be seen later on. Three other formulae with similar efficiency and also having
negative weights are reviewed and tested by Lu and Darmofal [16]. The number of points of these formulae is close to the
theoretical Möller lower bound, which for degree 5 normal cubatures is Nmin = n2

+ n + 1 [16].
Formula NC7 is a normal formula of degree 7, also from Stroud’s compilation [6, Appendix A]. For dimension n ≥ 9, a

small fraction of its points have small negative weights and thus


|wi| is only slightly larger than 1.We designate this kind
of formula as quasi-positive.

Formulae ThNC51 and ThNC7 are thinned versions of the respective original formulae NC51 and NC7, obtained using
adequate OAs as will be described in the next section. Both Victoir [10] and Kuperberg [11] presented formula ThNC51 as
an example of their thinning methodology. Formula ThNC7 is here presented for the first time using the same OA-based
construction.

The Smolyak type formulae SmNC5 and SmNC7 are constructed based on Kronrod–Patterson univariate rules [9],
resulting in a sparse grid with slightly less points than the one constructed using the classical univariate Gauss–Hermite
rules. The number of points only increases with n2 for the case of degree 5 and n3 for degree 7, but in both cases large
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Table 1
Cubature formulae.

Label Description N


|wi|

NC51 Normal cubature of degree 5, n ≥ 3, presented by Stroud [6]. 2n
+ 2n 1

NC52 A second normal cubature of degree 5, n ≥ 2, also presented by
Stroud [6].

2n2
+ 1 1 if 2 ≤ n ≤ 4. Increases from 1.2 to 3, when

n ≥ 5.

ThNC51 Formula NC51 with set of 2n points (lying on the vertices of a
n-cube) thinned to 2k points; n ≥ 6 [10,11].

2k
+ 2na 1

k = k(n)a

NC7 Normal cubature of degree 7, n ≥ 2, presented by Stroud [6]. 2n+1
+ 4n2 1 if n ≤ 4. Increases from 1 to 1.09, for n between

8 and 19, and then slowly decreases till 1.

ThNC7 Formula NC7 with two sets of 2n points thinned to 2k+1 points;
n ≥ 8 (new formula).

2k+1
+ 4n2 Same behaviour as NC7

k = k(n)a

SmNC5 Degree-5 Smolyak rule based on Kronrod–Patterson univariate
rules [9]; n ≥ 2.

≈2n2 O(n2)

SmNC7 Degree-7 Smolyak rule based on Kronrod–Patterson univariate
rules [9]; n ≥ 2.

≈
4
3 n

3 O(n3)

UC5 Uniform cubature of degree 5, n ≥ 2, presented by Stroud [6]. 3n2
+ 3n + 1 O(n2)

ThUC5 Uniform cubature of degree 5, obtained by thinning a Chebyshev
product formula with 4n points to 2k points; n ≥ 3 [11].

2k 1
k = k(2n)a

ThUC7 Uniform cubature of degree 7, obtained by thinning a Chebyshev
product formula with 8n points to 2k points; n ≥ 3 [11].

2k 1
k = k(3n)a

SmUC5 Degree-5 Smolyak rule based on Kronrod–Patterson univariate
rules [9]; n ≥ 2.

≈2n2 O(n2)

SmUC7 Degree-7 Smolyak rule based on Kronrod–Patterson univariate
rules [9]; n ≥ 2.

≈
4
3 n

3 O(n3)

NC—normal cubature, UC—uniform cubature, Th—thinned cubature, Sm—Smolyak type cubature.
a Exponent k as a function of n is given in Table 2.

Table 2
Exponent k as a function of dimension n. The domain presented is for k ≤ 12.

I. Degree-5 formulae: p = n (formula ThNC51) or p = 2n (formula ThUC5)

p 6 7 8, 9 10–16 17–24 25–32 33–64
k 5 6 7 8 10 11 12

II. Degree-7 formulae: p = n (formula ThNC7) or p = 3n (formula ThUC7)

p 8 9 10 11, 12 13–16 17–24
k 7 8 9 10 11 12

negative weights are produced, resulting in bad conditioned formulae (


|wi| of the order of n2 and n3, respectively for
degrees 5 and 7).

Regarding uniform cubatures, UC5 is an old formula from Stroud’s compilation (Appendix A), very efficient but bad
conditioned. ThUC5and ThUC7 are thinned equal-weight formulae constructed based on a Chebyshev product rule, as will
be described in the next section. Finally, SmUC5 and SmUC7 are Smolyak type formulae [9], also based on Kronrod–Patterson
univariate rules as their normal.

Besides cubature formulae, we also test the performance of QMC integration, more specifically using low-discrepancy
samples of points based on the Sobol sequence [12,13]. There are some experimental evidences that Sobol points outperform
other QMC schemes, namely for high dimensional financial problems [13], and they are often considered among the best
general purpose QMC schemes [14,17]. In the particular context of integrals (1) and (2), however, Hammersley points,
another type of low-discrepancy points, are also known to be very efficient [18]. In this work, we have tested both Sobol
and Hammersley points and observed that, for the battery of tests of Section 4, these two sampling schemes have similar
performance or, in some cases, Sobol points are slightly better. We have then adopted Sobol sampling as a fair benchmark
for QMC integration (for the sake of clarity, results from Hammersley samples are not shown in this paper).

Sobol sequence of points uniformly fills the hypercube [0; 1]n every 2m points, m = 1, 2, . . . , and thus, samples with
minimal discrepancy should have size N = 2m. These standard samples, after transformation (7), may be used to estimate
integrals (4) and (5), when inputs x are uniformly distributed between xL and xU . In the case of normal distributions, one uses
the inverse of the cumulative distribution function to transform standard points vi, i = 1, . . . ,N , uniformly distributed in
[0; 1]n, into pointsui representative of a normal distributionwithµ = 0 (zero vector) andΣ = I . This set is then transformed
into the x points of interest following any normal distribution N(µ, Σ): x (u) = µ + Σ1/2u.
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Table 3
Methods to construct orthogonal arrays OA(2k, n, 2, 5), with 6 ≤ n ≤ 32 [20]. Obtained OAs have minimal k, except for the case mentioned in footnote b.

Dimension Method

6 ≤ n ≤ 8 Start with a full array A having as rows the 2n n-tuples with elements −1 and 1. Define Ai,n =
n−1

j=1 Ai,j and then delete duplicate
rows from the new matrix A. The result is an OA(2n−1, n, 2, 5).

n = 9 Let G be the 7 × 9 cyclic matrix ⟨111000000⟩ (this is an abbreviation for the 7 row-vectors
111000000, 011100000, 001110000, . . . , 000000111). Let this matrix be defined in GF(2) (Galois field with elements 0 and 1).
Then, calculate in GF(2) the set of points C = {x · G, x ∈ GF(2)7}. C is called a code, in this case composed of 27 codewords (each
one of the points x · G). Finally, perform the transformation from GF(2) to {−1, 1} : 0 → −1, 1 → 1. The result is an
OA(27, 9, 2, 5).

10 ≤ n ≤ 16 Generate the code C = {x · G, x ∈ Z4
4}, where G is the 4 × 8 generator matrix G = 1⟨3121000⟩, and calculations done in Z4 (ring of

integers modulo 4). Then perform the transformation from Z4 to {−1, 1}2 :

0 → (−1, −1) , 1 → (−1, 1) , 2 → (1, 1) , 3 → (1, −1) → (−1, 1).a The result is an OA(28, 16, 2, 5). Simply take the first n
columns of this array to obtain an OA


28, n, 2, 5


, 10 ≤ n ≤ 15.

17 ≤ n ≤ 24b Generate C = {x · G, x ∈ GF(2)10}, with the 10 × 24 generator matrix G of Table 5.11 in [20]. Perform the transformation from
GF(2) to {−1, 1} : 0 → −1, 1 → 1. The result is an OA


210, 24, 2, 5


. Take the first n columns to obtain an

OA

210, n, 2, 5


, 17 ≤ n ≤ 23.

25 ≤ n ≤ 32 Generate C = {x · G, x ∈ GF(2)12}, with G = ⟨1110011100010100110010000000000⟩1, dim(G) = 11 × 32. Perform the
transformation from GF(2) to {−1, 1} : 0 → −1, 1 → 1. The result is an OA(211, 32, 2, 5). Take the first n columns to obtain an
OA


211, n, 2, 5


, 25 ≤ n ≤ 31.

a This is also known as the Nordstrom–Robinson code, a particular case of the Kerdock code.
b For 17 ≤ n ≤ 20, the best known OA is an OA


29, n, 2, 5


obtained by a special construction [19] not used in this paper.

3. Construction of thinned cubatures

In this section,we illustrate the construction of positive thinned cubatures based onKuperberg’swork [11]. Before stating
the main result supporting that construction, the following two definitions are needed.

First, the convolution of two cubature formulae. If A and B are two cubature formulae with respective points a and b
(defined as position vectors), their convolution A ∗ B is defined as the set of points {c = a + b : a ∈ A ∧ b ∈ B}, having
respectiveweightswc = wawb. A product rule (above defined as the tensor product of one-dimensional rules) is a particular
case of a convolutional formula, obtained through convolutions in perpendicular directions.

Second, the definition of orthogonal array. An N × n array with entries from a set S with q elements is an orthogonal
array with q levels and strength t (n ≥ t) if every N × t subarray contains each of the qt t-tuples equally often as a row (say
λ times). The notation here used for an orthogonal array is OA (N, n, q, t). N must be a multiple of qt and λ = N/qt is the
index of the array.

Now, we state Theorem 1.1 of Kuperberg [11]. Let t, n and l be positive integers, let q be a prime power, and let µ
be a measure in Rn. For each 1 ≤ i ≤ l, let Fi be an equal-weight formula with q points such that the convolution
F = F1 ∗ F2 ∗ · · · ∗ Fl is a degree t cubature for µ. Then, an OA


qk, l, q, t


yields a thinned cubature formula with qk

points.
This result applies to equal-weight cubature formulae approximating integral (1), with the measure µ being such that

dµ = g (x) dx. It also applies to subsets of points of a formula having a convolutional structure and with all points having
the same weight. We now describe particular constructions based on this general result, including those that generate the
thinned formulae of Table 1.

The degree-5 formula NC51, from Stroud’s compilation [6], has 2n
+ 2n points, with the set of 2n points having a product

structure and the same weight. The product structure is the result of n convolutions of equal-weight one-dimensional
formulae, each onewith two coordinates, s and−s, with s given by s2 = (n+2)/[2 (n − 2)]. Wemay then apply Kuperberg’s
theorem with q = 2 and l = n, and thin the 2n points to the orthogonal array OA


2k, n, 2, 5


with entries s and −s. The

thinned formula thus obtained is labelled as ThNC51 and has 2k
+ 2n points, with k < n.

The construction of formula ThNC51 then relies on the existence of an orthogonal array OA(2k, n, 2, 5), and preferably
one with minimal k. A comprehensive map of the best known OAs (those with minimal k) and corresponding construction
methods (often based on coding theory) are available online [19]. A basic reference is the book by Hedayat et al. [20]. In
Table 3, we summarize construction methods for orthogonal arrays OA(2k, n, 2, 5), with 6 ≤ n ≤ 32. The resulting arrays
have entries ±1 that should be substituted by adequate coordinates when constructing a given thinned cubature formula
(coordinates ±s, in the case of formula ThNC51). The resulting value for the power k is given in Table 2, for k ≤ 12.

A non-specialist may have difficulties in understanding the material in Table 3. It should be noted that there is not a
universal method to construct orthogonal arrays and for that reason Table 3 includes different methods. Further, most of
the construction methods use non-conventional arithmetic. Fortunately, the textbook by Hedayat et al. [20] is clear enough
for a non-specialist and covers all the necessarymaterial. Let us here present inmore detail one of the constructions, namely
the one for 10 ≤ n ≤ 16. It begins with a code C defined in Z4, the ring of integers modulo 4 with elements {0, 1, 2, 3}. This
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code is generated as the following set of points (called codewords, in coding theory):

C = {x · G, x ∈ Z4
4}.

Here, x runs over all possible 4-tuples in Z4 and G is the generator matrix:

G =

1 3 1 2 1 0 0 0
1 0 3 1 2 1 0 0
1 0 0 3 1 2 1 0
1 0 0 0 3 1 2 1

 .

The set C has 44 points, each one with 8 coordinates in Z4. In other words, it is 44
×8matrix with elements from {0, 1, 2, 3}.

Now, performing the transformation from {0, 1, 2, 3} to {−1, 1}2 (the vertices of [−1, 1]2):

φ : 0 → (−1, −1) , 1 → (−1, 1) , 2 → (1, 1) , 3 → (1, −1) → (−1, 1) ,

one obtains an OA(28, 16, 2, 5) with elements ±1 (the rows of this OA are the codewords of a code known as Nordstrom–
Robinson code). This OA, substituting ±1 by ±s, gives the thinned set of 28 points of formula ThNC51 for n = 16. The re-
duction in the number of integration points is thus remarkable, with the original formula NC51 having 216

+ 32 = 65 568
points, while its thinned version ThNC51 only has 28

+ 32 = 288 points. For 10 ≤ n ≤ 15, the shortest known OAs are
obtained by simply taking the first n columns of OA(28, 16, 2, 5), thus resulting in thinned formulae with 28

+ 2n points.
For n = 12, for instance, the reduction is from 212

+ 24 = 4120 points to 28
+ 24 = 280 points.

Table 3 covers construction of strength-5 OAs up to dimension n = 32. For higher dimension n, BCH and Kerdock codes
are a good choice to construct infinite families of strength-5 OAs [20]: (i) for any even m ≥ 4, there is an OA(22m, 2m, 2, 5),
obtained from a Kerdock code; (ii) for both even and odd values of m ≥ 5, the dual of a BCH code results in an
OA(22m+1, 2m, 2, 5). Form even, the Kerdock OA is shorter than the corresponding OA based on the BCH code. These are the
best presently known codes, onlywhen n is a power of 2.When n is not a power of 2, wemay still use Kerdock and BCH codes,
although they are not the shortest ones [20]. For this, we simply generate an OAwith 2m columns, such that 2m−1 < n < 2m,
and then project it down to n dimensions (take the first n columns). For dimension n = 50, for instance, power m is equal
to 6 and thus a Kerdock OA is a good choice. It is an OA(212, 64, 2, 5), which may then be projected to 50 dimensions. This
array is the basis to construct a thinned cubature formula of the type ThNC51, having a total of 212

+ 2 × 50 = 4196
points.

The uniform cubature ThUC5 is also constructed using strength-5 OAs, but now by thinning an entire primal formula. The
construction starts with a degree-5 Chebyshev quadrature in one dimension, which is an equal-weight Gaussian quadrature
with 4 points in the interval [−1; 1] (details are given in Appendix B). The corresponding n-dimensional product formula is
thus a convolutional equal-weight cubature with 4n points, which may be thinned using an OA(4k, n, 4, 5). A more clever
construction may be devised by choosing a quadrature in [−1; 1] that is itself a convolution of more basic formulae [11].
This is the case of the Chebyshev quadrature, whose points, for general degree (2r+1), has the structure±z1 ±z2 ±· · ·±zr .
This is clearly the convolution of r formulae each one with a pair of points ±zi. Therefore, the corresponding n-dimensional
product formula is the convolution of rn pairs of points and may be thinned using an OA(2k, rn, 2, d). For degree d = 5, one
has r = 2 and hence one needs an OA(2k, 2n, 2, 5). This OA is of the same type of the OAs used to construct normal formulae
ThNC51, with the main difference that now it has 2n columns. For dimension n = 12, for instance, one needs an OA with
24 columns, which may be constructed using the method in row 4 of Table 3, resulting in an OA(210, 24, 2, 5). A thinned
cubature with 210 points may then be constructed based on this OA, as follows.

Let bj, j = 1, . . . , 2n, with each bj ∈ {−1, 1}, be the row i of the OA(2k, 2n, 2, 5). The coordinates of point i of formula
ThUC5 are given by

xm: xm = bjz1 + bj+1z2; j = 1, 3, 5, . . . , 2n − 1; m = (j + 1)/2

. (8)

For 2n = 10, for instance, row 9 of the OA(28, 10, 2, 5) is (1, −1, −1, −1, −1, −1, −1, 1, −1, 1). The corresponding
point of formula ThUC5, in [−1; 1]5, is (z1 − z2, −z1 − z2, −z1 −z2, −z1 +z2, −z1 +z2).

Finally, cubatures ThNC7 and ThUC7 are degree-7 formulae, constructed using strength-7 OAs. The first one, ThNC7,
is a new construction that we here propose based on formula NC7 of Stroud’s compilation [6]. This one has two sets of
2n points with a product structure and the same weight. Each one of these sets may be thinned to 2k points using an
OA(2k, n, 2, 7). The methods to construct OAs of this type are not here presented and may be found in references [19,20].
The corresponding values of the power k are given in Table 2, for dimension n up to 24. For dimension n = 12, for instance,
there is an OA(210, 12, 2, 7) corresponding to a code defined by a parity check matrix [20, p. 105]. Using this OA to thin
formula NC7, one then obtains a formula with 2k+1

+ 4n2
= 211

+ 4 × 122
= 2624 points, while the original NC7 formula

has 213
+ 4 × 122

= 8768 points.
The second degree-7 cubature, ThUC7, is constructed likewise formula ThUC5. First, a degree-7 Chebyshev quadrature

(r = 3) is considered in each dimension, with 8 points ±z1 ± z2 ± z3. The n-fold product of this formula is the convolution
of 3n basic formulae, each one with a pair of points (±z1, ±z2 and ±z3). This convolution may be thinned using an
OA(2k, 3n, 2, 7), resulting in cubature ThUC7 with 2k points. Table 2 gives values of k up to 12, which in the case of formula
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Table 4
Estimation of expected values of f (x) in face of normal inputs, and for increasing dimension n. Error E is absolute deviation in % relative to the analytical
solution. N is the number of integration points.

n NC52 ThNC51a ThNC7b SmNC5 SmNC7 Sobolc

N E N E N E N E N E E

3 19 5.8 14 4.0 52 1.5 19 4.4 39 1.1 0.0
5 51 8.6 42 1.9 164 1.4 51 13.1 151 7.2 0.1

10 201 12.0 276 0.1 1424 0.8 201 121.1 1201 85.1 0.1
15 451 13.2 286 0.7 4996 0.5 451 434.0 4151 441.8 0.5
20 801 13.6 1064 0.8 9792 0.3 801 1029.0 10001 1428.8 0.7
a For n ≤ 5, formula NC51 is used.
b For n ≤ 7, formula NC7 is used.
c Estimate with 512 Sobol points.

ThUC7 corresponds to a maximum dimension n = 8. For higher dimension n, it is still possible to construct cubatures of the
type ThUC7, but the number of points may become prohibitive. One of the useful codes is the Delsarte–Goethals code that
generates an infinite family of strength-7 OAs: OA(23m−1, 2m, 2, 7), for any even m ≥ 6. For m = 6, for instance, this code
generates an OA


217, 64, 2, 7


, which allows the construction of a cubature ThUC7with n = 21 and having 217

∼ 1.3×105

points.

4. Numerical tests

This section presents results from several numerical tests, using different integration techniques. We recall that our
accuracy requisites are modest and that the main focus is on highly efficient integration with few points. More precisely,
we seek for a high efficiency that may be defined as Ef = 1/(E ·N), with an error E that may be as high as 10% and an upper
limit for N of about 212.

All calculations are made inMathematica [21], including construction of OAs and generation of Sobol samples.

4.1. First illustrative integrand function

We first consider a simple integrand function whose basic form is dimension independent. This integrand was also used
by Lu and Darmofal [16] to test the performance of several normal cubatures:

f (x) =
1

√
1 + xT x

. (9)

Expected values of this function, for increasing dimension n, are estimated using different cubatures and also Sobol
sampling. All inputs xi are normally distributedwithmeanµ = 0 and standarddeviationσ =

√
2/2 (independent individual

distributions). Results are shown in Table 4.
As dimension n increases, the loss of accuracy of negative formulae (NC52, SmNC5 and SmNC7) is evident, with the

observed errors being well correlated with δ =


|wi| (see Table 1). For high dimension n, Smolyak type formulae, for
which δ increaseswithn2 orn3, producemeaningless results. On the other hand, positive (ThNC51) or quasi-positive (ThNC7)
cubatures have small errors independently of the dimension. Formula ThNC51 has a very high efficiency, in particular for
high dimension n, producing estimates with an error less than 1% with a few hundreds of points (286 points for n = 15 and
1064 for n = 20). Sobol sampling, in this case, presents an even higher efficiency, yielding very good estimates with only
512 points.

Function (9) has a bell-shape around the origin that becomes sharper as n increases. Its integration is thus more difficult
as n increases and is facilitated as σ decreases. For σ =

√
2/6, the same tendencies of Table 4 are obtained, but now with

negative formulae having much lower errors (the highest error is 16% and occurs for formula SmNC5 and n = 20). Thinned
positive formulae are still much better, with errors below 1%.

In the case of uniform inputs, similar results are obtained, again with Smolyak type formula (and also formula UC5 for
which δ increases with n2) yielding unacceptably large errors. For uniform inputs x ∈ [−1; 1]n and n ≥ 10, all negative
formulae (UC5 and Smolyak type) producemeaningless results (errors above 100%), while the error of ThUC5 stays below1%.
Similarly to the case above, integration difficulty decreases as the input domain shrinks, with negative formulae producing
better results, but still worse than the ones of thinned cubatures.

The results of this section clearly illustrate that negative formulae may produce meaningless results and in situations
in which positive formulae function very well. This bad performance is a priori indicated by the high value of


|wi| and

corresponding bad conditioning of the formulae. As will be seen in the next sections, there are cases in which negative
formulaemay perform reasonably, and thus results in this section should then be viewed as a pathological case that however
illustrates the low reliability of negative formulae, including Smolyak type formulae.
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Fig. 1. Error in the variance estimate for 50 elements of family (10) with n = 15.

4.2. Extensive numerical tests on a representative family of functions

In this section, a more extensive battery of tests is made, based on a single family of functions (adapted from one of the
test functions of Genz [22]):

f (x) =

n
i=1


c + exp


−ai(xi − bi)2


. (10)

This is the product of nGaussian functions fi(xi), each onewith a peak at xi = bi that becomes sharper as ai increases. This
function will be integrated in [0; 1]n with uniformweight or in Rn with normal weight (independent random xi’s withmean
0.5 and standard deviation 0.5/3, and thus 99.7% of the distribution falls in the interval [0; 1]). Parameters bi are chosen
randomly in [−0.2; 1.2] leading to both peak andmonotonous behaviours (there is a peak along direction i if b ∈ (0; 1) and
a monotonous path otherwise). Parameters ai are also chosen randomly and in such a way that a subset of them is of high
impact (between ∼1 and ∼3) while the other ones are low impact parameters (∼0.5 or lower). In this way, one generates
anisotropic functions having much sharper variations along some key directions. The level of anisotropy may be quantified
by the ratio max(a)/min(a), which is around 10 or more. Finally, parameter c is a constant, here taken as 0.1 (c = 0 leads to
functions with long tails having a close to zero value and then artificial numerical errors are obtained). The function value
f (x) is always in [0; 1.1n

].
This family of functions is thus a reasonable representation of engineering models where an output index y is a function

of several inputs x, with much more pronounced variations (that may be monotonous or peak-like) for a subset of more
important inputs.

Based on this family of functions, the following battery of integration tests is made. For each input distribution type
(normal and uniform), and for dimension n between 3 and 24, one generates 50 elements of family (10) through random
choice of the parameters ai and ui. In each instance, the performance of the several integration techniques is tested against
the analytical solution, computing relative errors (absolute values in %). Both the mean and variance of f (x) are calculated
(integrals (4) and (5)). Analytical solutions are easily obtained since integrals of (10) can be separated as a product of one-
dimensional integrals. In rigour, the range of n values is not exactly 3–24: for low values of n, when formulae ThNC51
and ThNC7 are not defined, their non-thinned congeners are used; for degree-7 formulae, the highest n is limited by the
maximum imposed on the number of points of about 212

= 4096 (maximum n of 16 for formula ThNC7, 8 for formula
ThUC7 and 15 for formulae SmNC7 and SmUC7). Sobol integration is tested with two sample sizes: 256 and 2048 points.

Fig. 1 shows the error in the variance estimate for 50 random elements of family (10) with dimension n = 15 and for
inputs with a uniform distribution. It is evident the much better performance of the thinned cubature ThUC5 in comparison
with Smolyak type formulae, both of degrees 5 and 7. It is also manifest the high variability of Smolyak formulae results,
with errors varying from practically 0 to about 100%, again illustrating the low reliability of this kind of formula. In contrast,
the positive cubature ThNC51 consistently produces estimates with errors below 5% and with an average value of only
1%. It should be noted that these numbers do vary significantly from sample to sample of 50 integrands of family (10), but
qualitative behaviour remains the same: Smolyak type formulae are not reliable, while thinned cubature ThUC5 consistently
produces good estimates.

Figs. 2 and 3 show condensed results for the complete set of tests. The ordinate in the figures is an error index E(%)
calculated as themean value plus the standard deviation of the relative error in the sample of 50 integrations, performed for
each dimension n. Each figure has a pair of graphics, one showing the error E(%) for the mean estimation (integral (4)) and
the other the error for the variance estimation (integral (5)). As expected, variance estimates have larger errors than mean
estimates, since the first ones require the integration of the square of f (x).
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(a) Mean.

(b) Variance.

Fig. 2. Mean and variance estimate of family (10) functions with normal random inputs.

In this broader test domain, the low reliability of negative cubatures is again observed, andparticularly for high dimension
n. Negative formulae have a reasonable performance for normal inputs (Fig. 2) but fail in the case of uniform inputs (Fig. 3),
with errors systematically increasing with dimension n, and up to values as high as 100% in the case of degree-5 estimates
of the variance (Fig. 3(b), formulae UC5 and SmUC5). Positive and quasi-positive thinned cubatures, in contrast, remain
reliable even for uniform inputs (Fig. 3(b)) and high dimension, with errors well below 10%. Formula ThUC5, in particular,
has a remarkable performance, even beating the degree-7 formula SmUC7 for high dimension n.

Regarding thinned cubatures vs. Sobol sampling, since both techniques produce very reasonable estimates, a close
comparison is needed, and for that purpose one evaluates the efficiency index Ef = 1/(E · N) for all cases represented
in Figs. 2 and 3. Thinned cubatures have most of the times a higher efficiency Ef , with the advantage being more expressive
for the case of Fig. 2(a) (normal inputs and mean estimation) and then decreasing in the order Figs. 2(b), 3(a) and (b), such
that in this last case cubatures and Sobol sampling have similar efficiencies. The intermediate case of Fig. 2(b) (normal inputs
and variance estimation) is represented in Fig. 4, where it can be observed that formula ThNC51 is 2–10 timesmore efficient
than a Sobol sample of 2048, with this value stabilizing around 2 for higher dimensions. The last case, corresponding to
Fig. 3(b) (uniform inputs and variance estimation), is represented in Fig. 5. All these results agree with the fact that the
distinctive advantage of cubatures, in comparison with QMC integration, is their polynomial exactness, being thus expected
higher efficiencies when integrating very smooth functions, and a continuous decrease in performance when integrands
become less smooth (variance estimation vs. mean estimation) and when the cubature approximation itself requires more
points (uniform formulae vs. normal formula).

It is therefore difficult to state absolute conclusions regarding the performance of cubatures against QMC integration,
since the second ones will always be superior in the case of very sharp integrands, while the advantage of the first ones is
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(a) Mean.

(b) Variance.

Fig. 3. Mean and variance estimate of family (10) functions with uniform random inputs.

Fig. 4. Efficiency of thinned cubatures vs. Sobol sampling in estimating the variance of family (10) functions, with normal random inputs.
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Fig. 5. Efficiency of thinned cubatures vs. Sobol sampling in estimating the variance of family (10) functions, with uniform random inputs.

their polynomial exactness. Nevertheless, the tests here performed are in fact representative of the degree of smoothness
observed in many engineering models, used for instance in systems design and optimization. It is therefore fair to conclude
that positive thinned cubatures may likely outperform QMC integration, and up to dimension 24. This represents a new
and improved standing for cubatures vs. QMC integration, since the current heurist limit in the integral dimension, up to
which cubatures are considered advantageous, is around 8–10 [15]. Above dimension 24, the advantage of cubatures is
likely to decrease since even the most economic formulae of degree 5 have 2048 points or more (see Table 2), and with this
number of points it is probable that the best QMC schemes, namely Sobol sampling, will produce an equivalent or better
result.

4.3. Example of model analysis: transdermal drug delivery model

This section presents predictions of a mass transfer model with uncertain input parameters. The model equates the rate
at which a drug is released from a pharmaceutical ointment and its subsequent transfer across several skin layers until it
reaches the blood circulation system. Some of the model parameters are estimated as a function of ointment composition.
The main output is the temporal profile of drug concentration in plasma, which is desired to be as constant as possible
around an optimal level. A performance index y is then calculated as themean deviation of the plasma concentration profile
from the target value [23].

The model consists of a system of partial and ordinary differential equations. A numerical solution is obtained through
spatial discretization (along a single drug transfer direction) that results in a large linear system of ordinary differential
equations.

Eight input parameters are uncertain, all with uniform distributions between estimated lower and upper limits: a liq-
uid–liquid equilibriumparameter, two kinetic parameters related to the drugmolecule diffusion, a kinetic parameter related
to drug clearance from blood, two parameters of the ointment production process (that determine ointment microstructure
and thus the rate of drug release) and two more parameters related to final ointment application (volume applied and area
of application). Model simulation with these 8 uncertain inputs requires the calculation of multidimensional integrals like
(4) and (5), where the integrand function f (x) is the deterministic prediction of the performance index y for a particular
instance of the 8 inputs x. Function y = f (x) is known to vary smoothly within the domain of the 8 inputs, and with values
between around 0.03 and 0.07. It is also known that some of the inputs have a much higher impact on y than others.

Fig. 6 shows estimated values for the standard deviation of y using different integration techniques. The horizontal lines
are ±1% margins around the Sobol solution with 214

= 16 384 points, taken as a quasi-exact solution. Thinned cubatures
show the best performance. The 5th degree estimate is within the error band with only 256 points, while Sobol sampling
needs 1024 points to attain this level of accuracy and the Smolyak type formulae do not attain it even with a 7th degree
estimate.

4.4. Example of model optimization: a chemical process planning problem

Let us consider the production network of Fig. 7 [15]. The intermediate product B may be produced via processes 1, 2
and/or 3 or purchased outside (quantity Bp). The final product C is obtained through process 4. The production planning
problem of this network is to find which of the processes 1, 2 and/or 3 should be operated and what should be the
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Fig. 6. Standard deviation of the model output y, calculated using different integration techniques: thinned cubatures (circles), Smolyak type formulae
(full triangles) and Sobol sampling (open squares).

Fig. 7. Production network.

amounts A1, A2, A3 and Bp in order to maximize an objective function, equal to the revenues from selling product C
minus raw-materials and processing costs (fixed and variable). Economic input parameters are given, including availability
and cost of raw-materials, price and demand of the final product, and processing costs. Also, simple non-linear models
for process conversions are known. There are 12 uncertain input parameters, including expected errors in the predicted
process conversions. All uncertainties are considered to follow a normal distribution with known mean and variance
values.

Ignoring uncertainties in the inputs, the optimal planning problem is a small MINLP (mixed-integer non-linear program-
ming) problem, with 4 binary variables, 10 continuous variables and 18 restrictions. The 4 binaries correspond to the ex-
istence of processes 1, 2 and 3 (y1, y2 and y3) and whether or not B is purchase to the exterior (yBp). There are several
alternatives to formulate this problem handling uncertain parameters. Here, we consider binary variables and the feed to
process 3 (A3) as rigid decisions that are not adjustable to the different possible concretizations of the uncertain parameters,
while the remaining variables are considered recourse decisions adjustable to different uncertainty scenarios. The objective
is to maximize the expected profit (revenues minus costs) given the uncertainty in the input parameters. This problemmay
be formulated and solved using an integration formula with N points to estimate the objective function and considering all
restrictions involving recourse variables indexed over the integration points i, i = 1, . . . ,N . In order to ensure feasibility in
the entire uncertainty space, one further needs towrite restrictions over index j, with j = 1, . . . ,M , including here theworst
case scenarios (a straightforward approach is to include all the 2n vertices of the uncertainty space; in case of infinite spaces,
as is the case for normal distributions, one needs to consider a truncated space). The resulting problem is thus much larger
than the original deterministic problem. In this planning example, one has 5+ 9(N +M) decision variables and 18(N +M)
restrictions. A subset of M = 27 vertices is chosen as extreme limiting scenarios. Normal distributions are truncated such
that vertices are located at µ ± 3.09σ .

Table 5 shows optimization results, using as integration techniques the thinned cubature ThNC51 or Sobol sampling.
Problems were formulated and solved in GAMS, using solvers SBB/CONOPT3 [24].

Problem size (number of variables and restrictions) increases linearly with N , while CPU time, as expected, increases
exponentially with N . The use of a very efficient integration technique is thus critical for routine problem solving. In this
case, the economic cubature ThNC51 yields a very reasonable approximation with only 280 points and 15 s of CPU time.
Sobol samples also have good performances andwith a similar number of points. Smolyak formula SmNC5, with 289 points,
leads to a meaningless solution (impossibly high expected profit of 19722 USD/h, resulting from negative weights).
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Table 5
Planning problem optimal solutions. In all cases: y1 = 0, y2 = y3 = yBp = 1 and A3 = 3.207 ton/h.

Integration technique N CPU (s)a Profit (USD/h)
Expected value Standard deviation

ThNC51 280 15 1402 325.1
Sobol 128 9 1403 309.3
Sobol 256 19 1406 321.4
Sobol 512 39 1403 319.4
Sobol 1024 108 1403 319.1
Sobol 2048 436 1403 319.5
Sobol 4096 1508 1403 319.1
a Intel Core i5 @ 2.5 GHz.

5. Conclusions

We have tested the performance of several cubature formulae (of degrees 5 and 7) in estimating multidimensional
integrals relevant in probabilistic analysis problems, with normal or uniform random inputs. Tests were made for a wide
family of integrand functions f (x) representative of typical engineering models (dimension up to 24, smooth and non-
oscillatory variations, possibly with significant anisotropy). Two practical case studies were also presented. Results show
that cubature formulae with large negative weights, including Smolyak type formulae (also known as sparse grid formulae),
are not reliable, producing unacceptably large errors or even meaningless results. On the other hand, thinned positive and
quasi-positive formulae, constructed based on orthogonal arrays, have a much better performance and may produce useful
estimates up to dimension 24 with no more than 212 points. Further, these thinned cubatures, which were here extensively
tested for the first time, may perform better than quasi-Monte Carlo integration schemes, namely Sobol sampling, also up to
dimension 24. We believe that these results may help other researchers in choosing highly efficient integration techniques
and, in particular, that may contribute to disseminate thinned positive cubatures as a powerful alternative.

Appendix A. Cubature formulae

The following three formulae are normal cubatures from Stroud’s compilation [6], for integration over the entire space
Rn with weight function exp


−uTu


. The index FS designates a set of fully symmetric points, generated by permutation of

coordinates and their sign. For instance, (r, 0, . . . , 0)FS represents the six points (±r, 0, 0) , (0, ±r, 0) and (0, 0, ±r).

Formula NC51

Domain: n ≥ 3.
Points ui and respective weights wi:

(r, 0, . . . , 0)FS w0

(s, s, . . . , s)FS w1.

Parameters: r2 =
n+2
4 ; s2 =

n+2
2(n−2) ; w0 =

4
(n+2)2

; w1 =
(n−2)2

2n(n+2)2
.

Number of points: N = 2n
+ 2n.

Positive formula:


|wi| = 1.

Formula NC52

Domain: n ≥ 2.
Points ui and respective weights wi:

(0, 0, 0, . . . , 0)FS w0

(r, 0, 0, . . . , 0)FS w1

(s, s, 0, . . . , 0)FS w2.

Parameters: r2 =
n+2
2 ; s2 =

n+2
4 ; w0 =

2
n+2 ; w1 =

4−n
2(n+2)2

.

Negative formula for n ≥ 5, with


|wi| =
4−4n+3n2

(2+n)2
.

Number of points: N = 2n2
+ 1.

Formula NC7

Domain: n ≥ 2.



F.P. Bernardo / Journal of Computational and Applied Mathematics 280 (2015) 110–124 123

Points ui and respective weights wi:

(r · r1, 0, . . . , 0)FS B · A1

(r · r2, 0, . . . , 0)FS B · A2

(s · r1, s · r1, . . . , s · r1)FS C · A1

(s · r2, s · r2, . . . , s · r2)FS C · A2

(t · r1, t · r1, 0, . . . , 0)FS D · A1

(t · r2, t · r2, 0, . . . , 0)FS D · A2

Parameters: r = 1; s2 =
1
n ; t2 =

1
2 ; r21 , r22 =

n+2∓
√
2(n+2)

2 ;

B =
2(8 − n)

n (n + 2) (n + 4)
; C =

2−n+1n3

n (n + 2) (n + 4)
; D =

8
n (n + 2) (n + 4)

;

A1, A2 =
n + 2 ±

√
2 (n − 2)

4(n + 2)
.

Negative formula for n ≥ 9, with


|wi| =
−24+10n+n2
(2+n)(4+n) .

Number of points: N = 2n+1
+ 4n2.

The following formula is a uniform cubature from Stroud’s compilation [6], for integration over the n-cube [−1; 1]n with
unit weight function. The index S designates a set of symmetric points, generated by permutation of coordinates without
change of sign.

Formula UC5

Domain: n ≥ 2.
Points ui and respective weights wi:

(0, 0, 0, . . . , 0) w0

(r, r, 0, . . . , 0)S w1

(−r, −r, 0, . . . , 0)S w1

(r, 0, 0, . . . , 0)FS w2

(s, −t, 0, . . . , 0)S w3

(−s, t, 0, . . . , 0)S w3

(s, 0, 0, . . . , 0)FS w4

(t, 0, 0, . . . , 0)FS w4.

Parameters: r =


7
15 ; s =


7+

√
24

15 ; t =


7−

√
24

15 ;

w0 =
5n2

− 15n + 14
14

; w1 =
25
168

; w2 =
−25 (n − 2)

168
; w3 =

5
48

; w4 =
−5(n − 2)

48
.

Negative formulae for n ≥ 3, with


|wi| =
10n2−20n+7

7 .
Number of points: N = 3n2

+ 3n + 1.

Appendix B. Chebyshev quadrature formula

The Chebyshev quadrature of degree 5 has 4 points ±z1 ± z2, all with the same weight. The parameters zi are the square
root of the roots (all real positive) of the polynomial: x2 −

x
3 +

1
45 .

In general, the Chebyshev quadrature of degree (2s + 1) has 2s points ±z1 ± z2 ± · · · ±zs, all with the same weight. The
parameters zi are the square root of the roots (all real positive) of the polynomial [11]:

xs −
xs−1

3
+

xs−2

45
− · · · +

(−1)s

1 · 3 · 15 . . . (4s − 1)
.
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