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Abstract-The time resolution for gamma photon pairs of a 
detector based on resistive plate chamber technology is close to 

300 ps FWHM. This allows a tight time window for coincidence 

detection, reducing the number of random coincidences observed 

and the overall noise of the acquired image. We implemented, 

inside a Xilinx Virtex-5 field programmable gate array, a fully 
programmable coincidence-trigger system with sub-nanosecond 

resolution and low latency for a small animal RPC-PET camera 
being built. 

An automatic procedure to construct a histogram of 

coincidences was implemented that helps characterizing the 
camera and allows compensating for different delays in the time 

channels. The time window for coincidences can then be placed 
at the optimal position helping rejecting coincidences from 

undesired sources. 

I. INTRODUCTION 

RESISTIVE plate chamber (RPC)-based detector technology 
provides a very interesting path towards high-resolution, 

low-cost positron emission tomography (PET) cameras with 
high sensivity [I, 2]. Such cameras make use of the high 
temporal resolution of RPC detectors [3] to achieve a time 
resolution close to 300 ps full width at half maximum 
(FWHM) for the detection of gamma photon pairs. This 
allows a tight time window for coincidence detection, 
reducing the number of random coincidences observed and the 
overall noise of the acquired image. 

In this paper we show experimental results of a 
coincidence-trigger algorithm implemented inside a Xilinx 
Yirtex-5 field programmable gate array (FPGA) for a small 
animal RPC-PET camera being built. This camera has the 
shape of a cube, with an RPC detector in each face. Each RPC 
detector generates a fast hit signal when a photon is detected 
that is used to test for coincidences. This allows, conceptually, 
just using a high-speed comparator to generate a digital signal 
from it that can be time-sampled and used to check for 
coincidences in an all-digital fashion. 
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A first implementation of such a coincidence system, along 
with several experimental results helping characterizing it, 
obtained through the use of a Tektronix A WG240 arbitrary 
waveform generator, can be found in [4]. However, while 
trying to use this coincidence system with real signals arriving 
from an experimental two-heads RPC-PET camera we were 
faced with several difficulties. The more challenging was a 
time offset depending on the RPC detector and associated 
electronics behavior that can be described roughly as the 
introduction of different time delays between the time 
channels pairs tested for coincidences. In other words, the 
events resulting from the positron annihilation were arriving at 
quite different time instants when measured by a unique 
system clock. It became clear that our original coincidence 
system should be enhanced to deal with this problem in a 
practical way. 

We also wanted to enhance the algorithm of coincidence 
validation to implement more directly the field of view (FOY) 
concept. 

II. COINCIDENCE SYSTEM ARCHITECTURE 

In the following the requirements of the coincidence system 
are outlined and the selected architecture is shown. 

A. The Small-Animal RPC-PETCamera 

The small-animal RPC-PET camera being developed has 

the approximate geometry of a cube. The RPC detector in 
each face of the cube generates a fast hit signal that is used to 
test for coincidences. Although the annihilation source can be 

roughly considered at the geometrical center of the cube, in 
practice, the hit signals arriving from one positron annihilation 

can be away in time by several ns due to detector peculiarities 

and differing electronics and cable delays, as was verified 
experimentally. The coincidence system should be able to 

compensate for such delays. 
The building of the RPC-PET camera is a permanently 

evolving project. The actual overall characteristics of the 
camera are: an event rate close to 4 MHz (maximum estimated 
number of disintegrations/second inside the camera); a 

relatively high number of data acquisition channels involved 
(48 channels for each RPC head, totalizing 268 channels for a 
full six heads camera); a data acquisition rate near 10 MHz; a 
maximum expected coincidence rate of 100 kHz (considering 

a coincidence window of I ns); a data acquisition time (for 
image acquisition) that can reach 5 minutes. 
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B. Time Channels and Coincidence Requirements 

Although the usual PET camera has the form of a ring the 
approach to design the coincidence algorithm for a camera 
with the shape of a cube is quite similar. Fig. 1 shows a 

drawing of a ring PET composed by six detectors to mimic the 

number of channels in the cube PET. The original algorithm 
implemented a coincidence validation stage. We shall 
enhance it to implement a field of view (FOV) validated 

coincidence trigger. We use a new parameter, nFOV, to 

distinguish between the different possibilities seen in Fig. I. 
Using the first channel as an example we have: if nFOV = 0 

then channel 1 is tested for coincidences with channel 4; if 
nFOV = 1 channell is tested for coincidences with channels 

3, 4 and 5; finally if nFOV = 2 channel 1 is tested for 
coincidences with channels 2, 3, 4, 5 and 6. The same scheme 

is implemented for channels 2 and 3, resulting in 15 pairs of 

channels to be tested for coincidences. This scheme can be 
easily generalized to a system comprising N time channels (N 

even). 
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Fig. 1. Ring and cube PET-cameras with time channels identified by 
numbers. Using channel 1 as an example and the parameter nFOV = 2 the 
pairs of channels shown are tested for coincidences. 

In the case of the cube the test for coincidences follow 
exactly the same pattern, with the channels numbers as 
identified in Fig. I. 

Coincidences outside the selected FOV and multiple 

coincidences are rejected by the coincidence validation stage 
(Fig. 3). 

C. Time Synchronization 

Time synchronization is a major problem of large 

experimental setups as usually it's not easy to build a clock 

distribution system with the desired accuracy. This is 
especially true for large PET cameras, where a large number 

of detectors and data acquisition channels are involved, and 
the acceptable error margins are small, maybe of the order of a 
few tens of picoseconds or even lower. 

Several ingenious solutions have been proposed to deal 
with this problem. The usual delay-line solution involves 
calibration of the system using physical delays, eventually 
using cables with different lengths to compensate for the 

delays, is very cumbersome and cannot adapt easily to 
changing system conditions. More modem solutions have 
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been proposed that make use of logic programmable devices, 

like the field programmable gate array (FPGA) and its high
speed serial links [5). 

In our case the clock synchronization problem is not an 
issue due to the small number of time channels in our RPC
PET camera, but the availability of a global system clock is 

mandatory. 

D. The Role of the FPGA 

Using FPGA technology allows developing complex, fast 

logic algorithms that can be upgraded or changed easily. This 
by itself is an enormous advantage, as the present work shows 
through the improvements introduced in the existing 

algorithms. 
Another practical and important advantage, from the point 

of view of designing trigger systems, is that the FPGA 
naturally provides a unique system clock for all logic. This 
clock is used to sample the time signals arriving form the PET 
camera and is used internally implementing a fully 
synchronous design. 

£. Digitized Time Channels 

All time signals arriving from the RPC-PET camera are 
digitized at the pads of the FPGA using a 500 MHz double

data-rate (DDR) clock. Three pads are used for each time 
signal, effectively providing an equivalent sampling rate of 3 
GHz. To lower the internal processing clock input de

serializers are used (the ISERDES components of the Virtex-5 

FPGA, [6]), so that internally all information is processed at 
the more manageable speed of 250 MHz. The digitized data 

are inspected to find transitions from low to high (edges). 

These transitions mark the detection of one event (a hit) in the 
time channel. 

Previously an edge-filtering mechanism was implemented 
[4] but experience showed that this filtering was not needed as 

the digital time signals had clean low to high transitions. 

F. Coincidence Window 

Coincidence detection is based on using the 3 GHz 
equivalent sampling clock and finding edges within a certain 

time window. The smallest available coincidence window 
spans two clock periods, or approximately 660 ps, as can be 

seen in Fig. 2, where several events are shown that are less 
than one clock period T apart (T = 330 ps) but that might be 

sampled by consecutive clock edges (events in the time 

interval T < �t < 2T are always sampled by two consecutive 
clock transitions). 

Coincidences windows of sizes 2T, 3T and 4T can be 
selected. Nevertheless, in the case of the small-animal RPC

PET camera, the preferred coincidence window is the smallest 
one (660 ps). 
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Fig. 2. Digitized time channels sampled with a clock of period T. For hits 
occurring less than one clock period apart two different cases are possIble, 
showing the minimum available coincidence window spans two clock penods 
to guarantee detection of all coincidences. Note that the detection order of the 
events (first tl then t4, or first 4 then tl) is irrelevant. 

G. Delay Compensation 

Due to the peculiarities of the detectors and associated 

electronics different time channels can have different 
systematic propagation delays. From the point of view of 
detecting coincidences these different delays introduce a 

systematic time interval .-1td that is added to the real time 
interval .-1t due to the detection of the gamma photon pair. The 
time interval of true coincidences becomes .-11p = .-1td + .-1t. This 
would require using a much larger time coincidence window 

of size .-11p to detect coincidences, with the disadvantage of 
augmenting the number of random coincidences and resulting 
eventually on a noisier image. 

To keep the coincidence window small a method to 
compensate the .-1td delay is needed. First .-1td must be 
measured. This can be accomplished using an extension of the 
delay method usually used to estimate the random coincidence 
rate. Instead of simply measuring the random coincidences 

using a delayed coincidence window, we build a histogram of 

coincidences by sweeping the delay for a given time range in 

increments of the sampling clock period T. Ideally the 

histogram would show a more or less constant random 

coincidence floor and a peak where the true coincidences are 

found. This way we have a good estimate of the random 
coincidence rate and at the same time we can keep using a 

small coincidence window. In fact, after finding the position 

of the true coincidences the digital delay line can be 
programmed with the corresponding delay, in practice making 
the true coincidences coincident in time. 

The delays were easily introduced using programmable 

shift registers inside the FPGA. The actual implementation 

allows sweeping a 19.47 ns range in increments of 330 ps. 

H. Coincidence System Architecture 

The conceptual coincidence system architecture can be seen 

in Fig. 3. Each time channel is sampled using the equivalent 3 
GHz sampling rate. The stream of bits produced from 

sampling can be delayed according to the delay parameter. 
The delay unit is the sampling clock period, or 330 ps. After 
delaying the signals edges are found. These edges are the 
time-mark of the detection of an event. If an event in another 
channel happens within a prescribed time window (parameter 
cw size) the coincidence is registered. This is made in parallel 
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all pairs of channels in the FOY. In the case of a six

channel system and nFOv = 2 this results in the construction 
of a matrix of coincidences of size 3x5. The matrix of 

coincidences is then checked for allowed coincidences 

according to the parameter nFOV. This way the concept of 

field of view is implemented at the trigger system level. It is 
also possible to reject multiple coincidences by selecting the 
m _reject parameter. 

The design was written in YHDL in a device-independent 
fashion, although the Sample block uses specific components 
of the FPGA used (Xilinx Yirtex-5). No time constraints were 

used. 

Fig. 3. Conceptual organization of the coincidence trigger system. Time channels are digitized at the equivalent 3 GHz sampling rate. A digital delay can then 
be applied to compensate for time offsets between channels. Processmg IS done at the much lower speed of 250 MHz. 
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III. EXPERIMENTAL RESULTS 

A. Using a Function Generator 

First experimental tests were carried out using a function 
generator (Wavetek 50 MHz Pulse/Function generator model 
81) and physical delay lines. The output of the function 
generator was split by using a T-shape connector and the two 

branches were delayed using different cable lengths. These 
delayed signals were used to test the algorithm. The signals 

were connected to the time channels FPGA inputs and a set of 
histograms of coincidences was built. 

The results shown in Fig. 4 are for an input rectangular 
wave of frequency 19.91 MHz and a data acquisition time of 
approximately 0.1 seconds. Five overlaid histograms are 

shown. The first one has a small delay due to the use of cables 

of similar, but no equal, lengths, and is labeled as the 0 ns 
series. The other histograms were obtained adding cables with 

the approximate delays shown to one of the branches. A total 

sweep time of 19.47 ns was used, in increments of 0.33 ns 

(although, for clearness, only the first 5.94 ns of the sweeps 
are show, as all other readings are zero). The added cable 
delays are clearly visible in the histogram as the histogram 

peaks shift accordingly. 
Measuring the FWHM of the peaks in Fig. 4 show a 

coincidence time window width of approximately 0.99 ns 

instead of the nominal 0.66 ns expected. This can happen if 

the events considered in coincidence have a real time offset 
smaller than the coincidence window but bigger than the 
sampling clock period (actually 330 ps), or if a similar 

spreading effect happens, eventually due to noise. 
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Fig. 4. Coincidence histograms obtained by splitting the output of a 
function generator, a 19.91 MHz rectangular wave, and using it as inputs to 
the two channels tested for coincidence. The data acquisition time for each bin 
was 0.1 s. Due to a fixed time offset bigger than 0.33 ns in the events 
considered in coincidence or to a similar spreading effect due to noise the 0.66 
ns coincidence window selected looks like a larger 0.99 ns FWHM 
coincidence window 

Introducing a delay in the time channels incurs a penalty in 
the latency of the trigger system. Fig. 5 shows the coincidence 
histogram of a system with a large time offset (a much longer 

cable was used in one of the branches of the signal arriving 
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from the function generator). The histogram shows a peak 

around the delay of 11.22 ns. 
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Fig. 5. Coincidence histogram measured while using a large time offset 
between the channels in coincidence. It shows the time offset between the two 
channels is around 11.22 ns. 

Selecting the time offset of 11.22 ns we now measure the 

latency of the trigger system with the help on an oscilloscope. 
In Fig. 6 we can see the input time signal (top 9.91 MHz 
rectangular wave) and the output trigger signal that is 
generated. As it can be seen, the latency is now of 
approximately 50 ns, to be compared to the original latency of 

approximately 35 ns. 

Tek PreVu 

1. 

�: 

ij-+ .... [i!.oooonO 
Fig. 6. Latency of the coincidence trigger system when one of the channels 

has a time offset of 11.22 ns. The top signal is the undelayed input signal, 
while the bottom signal shows the coincidence trigger output generated. The 
measured latency is under 50 ns. 

B. Using signals From a RPC-PET camera 

Experiments were carried out using a prototype two-heads 
RPC-PET camera. Fig. 7 shows the experimental setup, with 
the camera inside the metal box. 



Fig. 7. Experimental setup for the prototype two heads RPC-PET camera. 

A positron source was placed in the middle of the camera 

and a coincidence histogram was built. Although one would 
expect to have just one peak in the coincidence histogram the 
measurements showed differently. Fig. 8 shows the histogram 
obtained while acquiring 300 s for each bin. There are clearly 

three distinct peaks, showing some kind of noise source is 

present in the system. 
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Fig. 8. Coincidence histogram obtained experimentally using the prototype 
two-heads RPC-PET camera. Each bin was acquired during 300 s. The 
histogram has several peaks, showing some kind of noise source is present in 
the system. 

IV. CONCLUSIONS 

We implemented, inside a Xilinx Virtex-5 field 
programmable gate array, a fully programmable coincidence
trigger system with sub-nanosecond resolution and low 

latency for a small animal RPC-PET camera being built. First 
experimental tests showed the trigger system works as 

expected. 
Using a completely digital approach it was possible to 

develop an automatic procedure to construct a histogram of 

coincidences that helps studying and characterizing the 

camera. 

A method was implemented to place the coincidence 
window at the correct position in time, easily compensating 
the time offsets due to differing electronics and cable delays, 

while allowing to use a small coincidence window. 
The coincidence trigger system showed a very small latency 

(under 50 ns while delaying a time signal for approximately 

11 ns) and is virtually dead-time free. 
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