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ABSTRACT 

 

The increasing penetration of renewable generation in the electric power system has been leading 

to a higher complexity of grid management due to its inherent intermittency, also with impact on 

the volatility of electricity prices. Setting the adequate operating reserve levels is one of the main 

concerns of the System Operator, since the integration of a large share of intermittent generation 

requires an increased amount of reserve that is needed to balance generation and load, assuring the 

quality of service and the security of the supply. At the same time, energy consumption in households 

has been steadily growing, representing a significant untapped savings potential due to consumption 

waste and load flexibility (that is, the possibility of time deferring the use of some loads to optimize 

consumption, namely in face of dynamic tariffs).  

In the Smart Grid context, the involvement of end-users is a key element for the implementation of 

demand response as a way to enhance the energy efficiency of the electricity infrastructure, also 

enabling to cope with the intermittency of renewable energy sources. Although the participation of 

end-users may result in a higher complexity of the system management, it may have a positive 

impact on mitigating the volatility of electricity prices. End-users may also be an important element 

in the provision of ancillary services, using demand side resources to offer the system operator 

additional means to enhance system flexibility, robust planning, constraint management and 

operation scheduling, therefore contributing to the balance between load and supply under a load 

follows supply strategy. Demand response is seen as an effective and reliable strategy for the 

successful integration of renewable energy sources, in a perspective of integrated energy resource 

management, handling the demand curve using load flexibility whenever the system requires it. This 

embodies the possibility of changing/controlling the load profile by optimally time deferring the use 

of some equipment by means of energy management systems. 

An energy management system aggregator, named Energy Box Aggregator – EBAg, has been 

designed to operate as an intermediary between individual energy management systems and the 

System Operator and/or Energy Market, capable of facilitating a load follows supply strategy in a 

Smart Grid context. The aggregator is aimed to use the flexibility provided by each end-user 

aggregated into clusters of demand-side resources to satisfy system service requirements, involving 

lowering or increasing the power requested to the grid throughout a given planning period. This 

contributes to the balance between load and supply and copes with the intermittency of renewable 
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sources, thus offering an attractive alternative to supply side investments on peak and reserve 

generation.  

For this purpose, a Multi-Objective Optimization model has been developed to maximize the 

aggregator profits, taking into account revenues from the System Operator and/or Energy Market 

and payments to end-user clusters, and minimize the inequity between the amounts of load 

flexibility provided by the clusters to satisfy grid requests. An approach based on coupling a Genetic 

Algorithm with a Differential Evolution algorithm has been designed to deal with this model. This 

approach has been then extended to perform a robustness analysis of the solutions.  

 

Keywords: Energy Management Systems, Aggregator, Demand Response, Genetic/Evolutionary 

Algorithms, Differential Evolution, Multi-Objective Optimization;  
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RESUMO 

O aumento da penetração de fontes de energia renováveis no sistema de energia elétrica origina 

desafios na gestão da rede elétrica, devido ao seu carácter intermitente, bem como volatilidade dos 

preços da eletricidade. A manutenção dos níveis de reserva operacional adequados é uma das 

principais preocupações do operador do sistema, uma vez que a integração de uma componente 

significativa da produção de eletricidade por fontes intermitentes requer uma maior quantidade de 

reserva necessária para equilibrar a produção e o consumo. Por outro lado, o consumo de 

eletricidade tem vindo a crescer ao longo dos últimos anos, representando um potencial de 

poupança ainda não totalmente explorado, através da eliminação de consumo de standby, 

eliminação de desperdícios, bem como da flexibilização do consumo ao longo do tempo.  

No contexto das redes inteligentes (Smart Grids), o envolvimento dos utilizadores finais é um 

elemento chave para a implementação de abordagens de resposta dinâmica da procura (Demand 

Response), como uma forma de melhorar a eficiência da utilização da infraestrutura elétrica, 

possibilitando a prestação de serviços auxiliares utilizando recursos do lado da procura, ou seja, 

flexibilizando o uso das suas cargas, com o objetivo de alcançar um equilíbrio entre a procura e a 

oferta.  

A Demand Response é vista como uma estratégia eficaz e confiável para o sucesso da integração de 

fontes de energia renováveis, numa perspetiva de gestão integrada dos recursos de energia, através 

da otimização e controlo do perfil de consumo do utilizador final, em tempo real, sempre que for 

solicitado pelo operador do sistema elétrico. 

Um agregador de sistemas de gestão de energia, designado Energy Box Agregator - EBAg, foi 

concebido para funcionar como um intermediário entre o utilizador final e o operador da rede e / 

ou mercado de eletricidade, cujo objetivo é influenciar a procura de energia e oferecer serviços 

auxiliares através da implementação de uma estratégia de “load follows supply” num contexto de 

Smart Grid. O agregador tem a capacidade de utilizar a flexibilidade de consumo oferecida por cada 

utilizador final para satisfazer as exigências de serviços do sistema, diminuindo ou aumentando a 

potência pedida à rede durante um dado período de planeamento, contribuindo para garantir a 

estabilidade e o bom funcionamento do sistema elétrico. 

Com este propósito, foi desenvolvido um modelo de otimização multiobjectivo para maximizar os 

lucros do agregador, tendo em conta as receitas do operador do sistema e / ou mercado de 
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eletricidade e pagamentos ao utilizador final. O modelo considera ainda a maximização da equidade, 

minimizando as desigualdades entre os valores de flexibilidade de carga fornecida pelos utilizadores 

finais agregados em clusters. Uma abordagem híbrida baseada em Algoritmos Genéticos e 

algoritmos de Evolução Diferencial foi concebida para lidar com este modelo. Posteriormente, esta 

abordagem foi estendida para realizar uma análise de robustez das soluções obtidas. 

 

 

Palavras-chave: Sistemas de gestão de energia elétrica, agregador, gestão da procura, Algoritmos 

Genéticos/Evolucionários, Evolução Diferencial, otimização multiobjectivo.  
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1. CHAPTER 1 - INTRODUCTION 

1.1 PROBLEM AND MOTIVATION 

The efforts to reduce  reduce greenhouse gas (GHG) emissions related to electricity generation as 

well as foreign dependence of fossil fuels have been leading to a fast increase of the deployment of 

generation based on renewable energy sources (RES), in particular photovoltaic and wind power [1]. 

RES are being deployed not only as bulk generation facilities but also as distributed local generation 

facilities or even private consumption infrastructures. However, the associated generation patterns 

normally do not follow the typical demand profile and cannot be neither predicted with great 

accuracy nor reliably dispatched. In fact, RES generally exhibit significant temporal variability due to 

environmental conditions, which are inherently inconstant and outside the control of generators and 

SO, often requiring the dispatch of reserve resources.  

The DSO is responsible for distributing high/medium/low voltage power and delivery it to end-user 

costumer premises, and the TSO is responsible for the very high/high voltage infrastructure 

connecting generation plants and DSO’s transformer stations. Since the operation duties of DSO and 

TSO responsibilities and roles can vary between countries, in this thesis we refer generically to an SO 

entity. The SO function may be owned by the TSO depending on the organization of the energy sector 

of each country.  The SO has the responsibility to ensure the security and reliability of the power 

system, in real-time, and coordinate the supply and demand of electrical energy, avoiding oscillations 

in frequency or voltage and interruptions of supply. The SO is responsible to assure the quality of 

service and the security of supply.  

The SO must dynamically provide AS, that is, the balancing services that are delivered by power 

system entities to the SO for ensuring reliable system operations, to assist matching demand and 

ensuring technical quality parameters, including frequency stability and voltage control [2]. 

According to Eureletric “it is not easy to define what AS actually are, and how they should be 

procured, anyone attempting to create rules for an AS market might soon see his structure rapidly 

becoming unmanageably complex” [3]. 

The penetration of RES represents a major challenge and technologies, management and control 

strategies, as well as intelligent systems based on optimization algorithms are essential to guarantee 

the system reliability and technical quality patterns.  Presently, the adjustment is mainly done using 
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“fast-reacting” generation technology systems (mainly as peak plants, based on fossil fuels) to 

safeguard the system against unexpected events such as production deficit, speedy generation 

variation or load variation [1]. Therefore, additional methods to compensate the unpredictable 

imbalances should be envisaged, including reduction of load during peak hours or periods of 

generation reduction, by interrupting, shifting or re-parameterizing end-use loads, possibly also 

using storage systems, such as batteries of EV that can, in the near future, be used in the Vehicle-to-

Grid (V2G) mode. A better integration of intermittent sources needs to take into account these issues, 

namely concerning the possibilities of managing demand in a perspective of integrated energy 

resources management to deal with supply volatility.  

The price of electricity usually encompasses the costs to build, finance, maintain, and operate the 

power plants and the whole network infrastructure. Wholesale electricity prices may change in short 

time frames. However, in general, end-users are subject to rates based on seasonal cost of electricity, 

without being affected by market conditions. Changes in electricity prices generally reflect variations 

in electricity demand, availability of different generation sources, fuel costs, and power plants. In a 

deregulated context, the SO should deal with the variability of electricity costs and the demand 

requests, in order to manage the whole system securely and safely [4]. 

The availability to modify the generation injection (generation flexibility) and/or load consumption 

profile (load flexibility) in response to a signal (a price signal or of other type) is an instrument to 

provide AS [5]. Generation flexibility can be provided by generators having large up and down 

ramping rates, and short minimum up and down time. The interconnection with more flexible 

systems is another conventional solution for the provision of AS, using the availability of neighbor 

regions/countries, although this involves that transmission lines capacity is kept for the reserve 

market, which will bound the capacity in the day-ahead spot market and thereby probably originate 

higher electricity prices. However, relying solely on generators to provide flexibility is expensive 

because it often involves producing energy with more agile but less efficient generation units or 

operating thermoelectric power plants below their maximum efficiency loading.  

The electricity consumption in households has been steadily growing due to the widespread 

utilization of new types of loads and the requirement of higher levels of comfort and energy services, 

representing a significant untapped savings potential due to waste and load flexibility [6,7]. The 

distribution of electricity consumption in households has been characterized, and it has been shown 

that some loads display flexibility in their usage; consequently, if appropriately managed those loads 

can serve as demand side resource able to offer responsive energy behavior [6]. 
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As an example, washing and drying appliances can be rescheduled to periods of lower energy 

consumption (lower prices) thus flattening the demand curve, or periods of higher energy generation 

from RES, therefore better matching consumption with RES generation.  Thermal loads (cold 

appliances, water heating and air conditioning systems) can be interrupted during shorts periods of 

time without major reductions in service quality, to avoid the most unbalanced situations between 

generation and consumption, compensating the effects of the variability of RES availability. 

In a SG context, a modernized power system extensively using ICT, intelligent devices and 

autonomous controllers, with advanced data management, two-way communication means are 

incorporated across the entire system, from generation to consumption at the end-user premises. 

The gradual implementation of SG is expected to improve overall efficiency, reliability and 

sustainability [8], enabling the end-user becoming a prosumer (that is , simultaneously producer and 

consumer) and dynamic time-differentiated electricity tariffs being the price structure seen by 

customers [9,10] 

DR programs use price signals and incentive/reward/penalty schemes to influence changes in the 

end uses of electricity. In general, programs are designed to induce lower electricity consumption at 

times of high market prices or when grid reliability is endangered [11] as a way to manage power 

usage preferences to benefit not only end-users but also the whole system. To make DR programs 

operational, households need to have EMS based on fully interactive ICT, also making the most of 

the evolution of the Internet of Things (IoT) 1. EMS are aimed at helping end-users optimizing energy 

usage, for instance, achieving energy savings and satisfying constraints on the quality of the energy 

service provided (namely concerning comfort requirements). However, in a scenario of low price 

signals from the grid, all EMS devices would attempt to achieve benefits for the end-user engaging 

in similar actions (for example, by shedding the same type of loads), eventually taking no notice of 

the instability that could impair the operation of the system, since the true impact of residential 

consumption arises when it is summed up over a large number of households. In this setting, DR can 

become a new source of revenue for entities that “aggregate” load flexibility and DR schemes. Energy 

                                                             

1 The Internet of Things (IoT) id the interconnection of uniquely identifiable embedded computing devices within the existing Internet 

infrastructure. Typically, IoT is expected to offer advanced connectivity of devices, systems and services that goes beyond machine-to-

machine communications (M2M) and covers a variety of protocols, domains and applications [322]. The interconnection of these 

embedded devices, including smart objects, is expected to usher in automation in nearly all fields, while also enabling advanced 

applications like a Smart Grid.  
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Management System Aggregators (EMSA) offer the opportunity to exploit the flexibility potential of 

small end-users and promoting their access to the retail electricity market by selling load flexibility 

and benefiting from rewards or lower energy bills.  

By making the most of Smart Meters (SM) to provide real-time monitoring, technological solutions 

arising in the SG will be able to send signals to the end-user, namely price signals, enabling the 

optimal load management according to tariffs and users’ preferences and quality of service 

requirements. These load management (LM) activities in the SG context can be viewed as additional 

DER to be taken into account in the integrated optimization of all energy resources. In the residential 

sector, where the size of individual LM resources is insignificant in comparison with the total demand, 

load aggregators and flexibility agents will expectedly play a crucial role by facilitating the integration 

of the demand side resource management into the global system operation. 

Loads started to be faced as a possible solution to deal with security of supply problems in power 

systems after the oil embargo in 1973. At this time, DSM2 was considered interesting from a technical 

point of view and made economic sense due to the momentary increase of the energy prices. Simple 

measures to incentivize efficiency in consumption and promote waste reduction were implemented 

by the electric utilities. The first phase of DSM was born under the form of energy conservation [12]. 

Later, DSM was defined in relation to Energy Efficiency, DR and Energy Conservation [13]. 

The evolution of planning procedures used by utilities in the late 1980s included all activities 

targeting the alteration of the end-user demand profile, in time and/or shape, to facilitate matching 

the supply including contributing to the efficient incorporation of RES [14], and also yielding 

significant savings both in generation and transmission [14,15]. DSM can be used as a tool to 

accomplish different load shaping objectives, such as peak clipping, valley filling, load shifting, 

strategic conservation, strategic load growth and flexible load shape, in a long-time horizon, as can 

be seen in Figure 1. 

                                                             

2 The term demand-side load management was introduced by Clark W. Gellings, in an article for IEEE’s Spectrum in 1981. Shortly after the 

publication of this article, at a meeting of The Edison Electric Institute (EEI) Customer Service and Marketing Executives in 1982, Gellings 

altered the term to demand-side planning. This change was made to reflect the broader objectives of the planning process. Gellings also 

coined the term demand-side management and continued to popularize the term throughout a series of more than 100 articles since that 

time, including the five volume set Demand-Side Management that is widely recognized as a definitive and practical source of information 

on the demand-side management process [323].  
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Currently, one of the main DSM techniques to achieve a more flexible load shape is named DR, which, 

in general, needs to be executed in a short time horizon, that is, temporary, short-term changes. DR 

is a process to encourage and influence behavior changes in the end-user consumption patterns in 

response to incentives, such as price signals. According to the US Department of Energy [11], DR is 

defined as “a tariff or program established to motivate changes in electric use by end-use customers, 

in response to changes in the price of electricity over time, or to give incentive payments designed 

to induce lower electricity use at times of high market prices of electricity over time, or to give 

incentive payments designed to induce lower electricity use at times of high market prices or when 

grid reliability is jeopardized”. In recent years, DR has progressed into a more dynamic resource that 

can contribute to price moderation and provide AS to utilities and SO [16]. 

 

 Figure 1 – Demand Side Management techniques, adapted from [17] 

Inasmuch as security of supply is a concern, the major serious complications on account of power 

intermittence happen in peak load periods, when most system resources are being used and an 

abrupt power generation reduction/increase can cause serious consequences on the system 

reliability compromising the quality of services and security of supply. So, instead of acting on the 

supply side, DR programs and technologies have the potential to contribute to optimize consumption 

and reduce peak loads, avoiding peaks in the load diagram, as well as empowering the potential 

participation of end-users in the grid management [6].  

A few recent studies have addressed the combination of demand and supply sides to implement DR 

programs for the provision of AS using load flexibility [18]. These services have been usually arranged 
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by generators prepared to adjust their output quickly in response to unexpected imbalances 

between load and supply. The provision of these services by aggregating end-users load flexibility 

using DR programs is becoming an attractive alternative to the ones that involve the supply side [18].  

This role can be performed by an aggregator energy management system (Energy Box Aggregator - 

EBAg), which is an intelligent decision-making mediator between the end-user (local energy box - 

LEB) and the grid (SO/EM) allowing the coordination of a large-scale dissemination of in-house DR 

devices (Figure 2). The EBAg is aimed at using the demand-side flexibility provided by clusters of end-

users to provide system service requirements, involving lowering or increasing the power requested 

in each time slot of a planning horizon. This contributes to balance load and supply, avoiding peaks 

in the load diagram and coping with the intermittency of renewable sources, therefore increasing 

the overall grid efficiency by offering an attractive alternative to supply side investments on peak 

and reserve generation [19]. 

 

Figure 2 - EBAg global architecture 

1.2 EU POLICY ANALYSIS 

 The Energy Efficiency Directive (2012/27/EU) requires DR to participate in the EM to provide 

balancing and AS to the system. This is possible using the EBAg as an intermediate entity between 
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customers and the utilities/retailers. The Agency for the Cooperation of Energy Regulators (ACER) 

published a recommendation (no. 03/2018) [20] in July 2015 proposing that the origin of balancing 

energy can be power generation or demand facilities, instead of being only from generation capacity. 

This balancing energy is a reserve capacity that an aggregator, named a Balance Service Provider 

(BSP), has to agree to hold, submitting the corresponding bids of balancing energy to the SO. The 

ACER draws attention to the fact that the DR provider may confront significant entry obstacles into 

the “balancing service market” and adversities in the competition with the energy suppliers. To 

mitigate these barriers, the Agency proposes that actions should be done with the intervention of 

the Member States and National Regulatory Authorities (NRA) by “implementing adequate measures 

to mitigate entry barriers and ensure demand-side response can compete at a level playing field or 

by enabling the provision of demand-side response independently of energy suppliers”. 

In this way, the ACER has established standards and common requirements that allow the 

implementation of DR independently of the energy suppliers, believing that this will facilitate the 

participation of DR entities in the balancing market.  Those requirement are: “(a) The provision that 

a BSP can provide the demand-side response service from a demand facility without the need for 

consent or a contract with the energy supplier of that demand facility or its Balance Responsible 

Parties (BRP); (b) The requirement that BSPs providing demand-side response independently of 

energy suppliers should be balance responsible; (c) The requirements for TSOs to adjust the final 

position and determine the allocated volume for the BRP of the BSP and for the BRP of the energy 

supplier; and (d) The requirement for TSOs to establish the financial settlement between the BRP of 

the BSP and BRP of the energy supplier.” This will require adjustments to today’s balancing market 

rules, and the integration of the aggregator seems a promising direction for this purpose. 

The concept of aggregator has also received special attention from the European Commission (EC) 

that perceives the aggregator as serving different power system entities (i.e. utilities, DSO, 

Independent System Operator / TSO / Regional Transmission Organization, Energy Exchange, 

Capacity Market and Energy Service Companies - ESCO) able to manage demand flexibility, such as 

load shedding and better load profiling [21–24].  

In January 2015, the SG Task force published the report “Regulatory Recommendations for the 

Deployment of Flexibility” [25], where aggregators, as legal entities, are considered an essential 

means for the end-user to act in the market since they have the ability to extract the value of 

flexibility services on behalf of their customers. 
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The European Technology Platform on Smart Grid (ETP SG) initiative has aimed to provide strategic 

advice to the EC on the medium and long-term technological research and development needs in 

the area of SG, which can be seen in the ETP SG Strategic Research Agenda 2035 (SRA 2013). The 

aim is to intelligently integrate all connected users (including end-users) to efficiently deliver 

sustainable, economic and secure electricity supply [26,27]. There is an increasing interest in the 

wider implementation of DR opportunities across smaller commercial and residential groups, using 

intermediate entities such as aggregators. This is also due to technological developments in low-cost 

power electronics and ICT along with general growing recognition of the importance of customer 

behavior [28]. 

European countries are progressing towards the development of SG for the establishment of an 

efficient market for trading flexibility in electricity consumption and production [1]. The concept is 

based on a wholesale model, which determines the future roles of actors in the EM [2]. One main 

challenge of Horizon 2020, the EU Framework Programme for Research and Innovation, is the Energy 

challenge, which was designed to support the transition of the current power system to a reliable, 

sustainable and competitive energy system. The Energy Challenge is structured around seven specific 

objectives and research areas: Reducing energy consumption and carbon footprint; Low-cost and 

low-carbon electricity supply; Alternative fuels and mobile energy sources; A single, smart European 

electricity grid; New knowledge and technologies; Robust decision making and public engagement; 

Market uptake of energy and ICT innovation, with a budget of €5 931 million to support research 

projects between 2014 and 2020. One of the main priorities is “Secure, Clean and Efficient Energy”, 

included in the section of Societal Challenges [29], which is focused essentially on the main pillars: 

Energy efficiency (the EU aims to progressively decrease energy consumption); Low Carbon 

Technologies (the EU aims to invest in the development of cost-effective and resource efficient 

technologies solutions to decarbonize the energy systems in a sustainable way). The research 

activities within this area cover RES and mechanisms for ensuring the better integration of RES in the 

power system, in which Aggregators, Smart Cities & Communities play a role (the EU will invest in 

research and development of advanced technological solutions and services allowing the 

involvement of end-user and communities in the creation of Smart Cities, namely for the areas of 

Energy, Transport and ICT). As a policy driver, the EU wants a revision of the Strategic Energy 

Technology Plan –SET Plan [30], in order to better respond to new challenges and consolidate 

research and innovation in the energy area across Europe. As can be seen on the Work Programme 

2018-2020 [29], cf. section of “Secure, Clean and Efficiency Energy” of the Energy Efficiency Call 

2018-2020, specifically on EE-23-2017: Innovative financing schemes (“schemes based on project 
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aggregators or clearing houses at regional or national level, which should support project 

development and match demand and supply of energy efficiency finance”). Also in the Low-Carbon 

Energy, specifically on LCE-04-2017: Demonstration of smart transmission grid, storage and system 

integration technologies with increasing share of renewables (“New approaches to the wholesale 

market facilitating the participation of variable renewable energy sources, remunerating adequately 

new flexibility services to the grid such as offered by storage, active participation of demand and new 

players such as aggregators and reducing the cost of operations”). At the same time, in 2015, some 

reports have been solicited by the EC to their advisers regarding aggregators [25,31,32], which 

reveals the need to take into account this new and emerging middleware entity in the power system, 

namely concerning its ability to contribute to the successful penetration of RES. In [32] the 

aggregator is mentioned as a crucial entity to gather the flexibility from many small sources and 

facilitate active participation of DER. The exploitation of the aggregator concept will be a stimulus 

for the competitiveness, innovation and development of new services and solutions. The aggregator 

role can be carried out by diverse present players or be an independent entity.  

Therefore, as can be seen in several policy publications, the role of aggregators, as entities 

implementing DR to provide AS to SO is an emerging topic, with impact on the entire chain of the 

energy industries.  

1.3 OBJECTIVES OF THE RESEARCH AND CONTRIBUTIONS  

The main objective of the PhD research was to develop the concept of EBAg and its optimization 

models, capable to contribute to the implementation of “load follows supply” strategies to increase 

grid efficiency, ensuring the required level of supply security, reliability and quality of service, 

considering end-user flexibility of demand side resources and both grid and load technical 

constraints.  

The main results of the research were: 

- Development of the EBAg concept; 

- Development of a multi-objective optimization models for the EBAg; 

- Development and implementation of algorithmic approaches based on evolutionary 

computation to obtain solutions, including robustness assessment; 

The methodological approach to address the problem is based on an EA coupled with a differential 

evolution (DE) algorithm to deal with a multi-objective optimization (MOO) model. This model 
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considers the maximization of the EBAg profit and the minimization of the inequity among end-user 

clusters, by means of the maximum relative difference between the load flexibility provided by the 

cluster and the one used by the EBAg, as a surrogate for fairness in the usage of end-user load 

flexibility.  

The research questions framing the research carried out were: 

R.Q.1 - What are the main operational features that an EBAg should have to optimize energy 

consumption using load flexibility along with supply options? 

R.Q.2 - What should be the customer loyalty business model, that is, what kind of end-user 

engagement should be done, including financial and non-financial incentives, to promote DR 

activities from the EBAg?    

R.Q.3 - How to ensure the efficient use of the electric power system by using the services 

offered by the EBAg, such as ancillary services?  

R.Q.4 - What should be the load follows supply strategy in the SG context using the EBAg? 

The main contributions of this dissertation are presented in the three parts of this thesis:  

1. Part I – Energy Management Systems Aggregator: Review and EBAg new concept: 

A comprehensive literature review has been done regarding the categorization and roles of 

AS (which are not defined in a uniform way in different countries), as well as the impacts of 

the penetration of high shares of RES in the power system. Also, a review of the DR programs 

and models has been done, as well as regarding current DR implementations. Experiences 

of aggregators have also been reviewed, which has revealed particularly challenging since 

this is a recent topic in the SG context, and there is no uniform concept in the literature. 

2. Part II - Energy Box Aggregator Model and Algorithms 

The main contribution of this part of the thesis consists in the EBAg multi-objective model 

description, the hybrid algorithm implementation making the most of the features of EA and 

DE, and the results obtained for a case study based on real data gathered during one year 

using the Cloogy® technology [33]. 

3. Part III - Robustness Analysis of Non-dominated Solutions 

Development of a methodology to analyze the robustness of the non-dominated solutions 

obtained using the EBAg model and the hybrid EA implemented. A critical analysis of the 

work developed in this thesis is presented, along with future work proposals.  
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1.4 OUTLINE OF THE THESIS 

This thesis is divided in three parts, composed by chapters comprising a specific aspect of the EBAg 

proposed.  

 Part I:  Energy Management Systems Aggregator: Review and EBAg concept: 

Chapter 1 – Introduction: In this chapter context information is offered, exposing the problem to be 

addressed, the motivation, the objectives and the main contributions of the research developed. 

Chapter 2 – State-of-the-Art: A comprehensive literature review is presented, with the aim to give 

the essential background and definition of key concepts required for the following chapters 

regarding to AS, DR and Energy Management Systems Aggregators.  

Part II:  Energy Box Aggregator Model and Algorithms: 

Chapter 3 – MOO Problems: This chapter introduces the basic concept and approaches of MOO. The 

presentation of algorithms is focused on EA and DE, which were utilized to create the hybrid 

algorithmic approach implemented.  

Chapter 4 – A Multi-Objective Model for the energy Management System Aggregator: In this chapter, 

the MOO model for the EBAg is presented with the case study, as well as a brief overview of the 

business model using the Canvas methodology. 

Chapter 5 – EBAg Algorithm Implementation, Results and Discussion: In this chapter, the algorithmic 

approach is described as well as some illustrative results. 

Part III: Energy Box Aggregator – Robustness analysis of Non-dominated Solutions: 

Chapter 6 - Uncertainty and robustness in optimization: This chapter presents the background 

information and main concepts regarding uncertainty and robustness. A short literature review is 

presented regarding approaches to perform robustness analysis in MOO problems. The developed 

methodology and the results of the analysis of robustness of selected non-dominated solutions are 

also presented.  

Chapter 7 – Final Conclusions and Future Work: In this chapter the main conclusions of the research 

work are presented and possible future research directions are discussed. 
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2. CHAPTER 2 – A REVIEW OF THE STATE-OF-THE-ART3 

This section focuses on the role of energy management systems aggregators (EBAg), concerning 

actual practice in industry as well as research, which can be seen as relevant players contributing to 

that endeavor. A review of recent literature and projects is made, putting in perspective the role of 

EBAg in the SG context, in association with DR programs and technologies, involving the participation 

of end-users in the provision of AS. The aim is to recognize recent trends, opportunities, challenges 

and potential barriers regarding the creation of an EBAg to improve the overall system performance, 

characterizing the services provided by aggregators and identifying potential research gaps.  

2.1 A REVIEW OF ANCILLARY SERVICES 

Historically, the electric utilities were vertically integrated, owning and operating the whole 

electricity industry chain from generation to transmission, distribution and supply. Therefore, AS 

were required and provided within the same company. With deregulation and liberalization, those 

activities of the electric utilities have been separated, in general becoming independent legal entities 

with independent ownerships. This creates additional difficulties in the definition and procurement 

of AS. The creation of rules for AS markets may lead to complex structures, which are difficult to 

manage. In this thesis, we will adopt the definition of AS of Eurelectric, the Association of the Union 

of the Electricity Industry, which published a detailed analysis on the characterization of AS in 

different European countries [3,5].  

AS are services needed by the transmission and/or distribution SO to enable maintaining the integrity 

and stability of the network infrastructure as well as power quality, reliability and security on an 

economic basis. These needs can be fulfilled by connected generators, controllable loads and/or 

network devices to assist the SO maintaining the frequency and voltage between the required 

boundaries and recuperate the system in case of perturbation or failure [3,11,34]. These balancing 

needs are increasing due to the penetration of RES, in order to deal with its inherent variability and 

                                                             

3 This chapter is partially based on Andreia M. Carreiro, Humberto M. Jorge, Carlos Henggeler Antunes, Energy management systems 
aggregators: A literature survey, Renewable and Sustainable Energy Reviews, Volume 73, 1160-1172, 2017. 
http://dx.doi.org/10.1016/j.rser.2017.01.179. 
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uncertainty. The next section presents the different AS categories, focusing on the most prominent 

to be satisfied with the utilization of an EBAg based on DR.  

2.1.1 Ancillary Services categories  

The literature offers different definitions and characterization of AS. In [35], AS are separated into 

three groups: Interconnection services, which are linked to the frequency response services between 

diverse areas; Generation/Demand balancing services, which involve regulation responses, load 

following and contingency reserve; and Local Services, which include voltage and reactive power 

control to support the active power transmission. In a classification based on the system needs in 

terms of operating requirements, AS can be broadly divided in four main categories that are essential 

to maintain the system operation stability: stability control, voltage control, restarting system and 

frequency (Figure 3). 

 

Figure 3 - Types of AS. Area filled with black is where the EBAg may have a major contribution (adapted from 
[3]) 

 

The first three types of AS are not suitable to be provided by load flexibility, but it can play a role in 

frequency control. 

Stability Control is a service aimed at compensating the transmission system faults through 

emergency control actions using special equipment such as dynamic braking resistors or power 

system stabilizers to maintain a safe transmission system [36].  

Voltage Control is a service essential for maintaining voltage in the power system within the 

recommended boundaries during regular operation and disturbances, guaranteeing the balance of 

injection and absorption of reactive power. Voltage control can be delivered by dynamic sources, 

such as generators, synchronous compensators and static resources [37].  
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Restarting System consists in a restoration capability of a generation unit to start up without external 

power supply service when large blackouts happen. The most common is the black start capability. 

Frequency Control (FC) helps the system to maintain the frequency within the allowed margins by 

continuous modulation of power using the operational reserves. It includes automatic (primary 

and/or secondary) and manual (tertiary) frequency regulation. This service is mainly provided by 

generators but can also be provided by flexible loads and storage units. The primary response 

corresponds to the automatic response to frequency changes with a capability of time response of 

seconds, while the secondary response is the automatic response to frequency changes that takes 

over from the primary response and partially recovered system frequency.  

Reserve services are of three types: 

i. Spinning reserve (SP): this service consists in increasing or reducing power generation and/or 

reducing load at short notice, being performed by partially loaded generation units and 

interruptible end-users. Spinning reserve can start quickly and be available in 10 minutes. 

The use of flexible load to provide SP allows for the reduction of reserve costs. Moreover, it 

prevents situations when the SO needs to appeal for rolling blackouts in order to avoid 

blackouts of the whole system. 

ii. Standing reserve (ST): this is an offline service that in some special cases can be brought 

online quickly to meet additional contingencies. It can be fully available within 30 minutes 

and may act as a backup for the SP.   

iii. Remote automatic generation control (RG): this service consists in regulating frequency by 

controlling the output through a centrally based control system. It may mean operating the 

Secondary Response but also controlling a whole plant. This is a control capability to regulate 

the power system frequency through a centralized control system far from the network. 

A certain amount of active power, usually called system reserve, is kept available to perform 

frequency control - when the system frequency tends to decrease it is necessary to inject more active 

power or reduce load (positive reserve), while when the frequency tends to rise it is necessary to 

reduce active power generated or increase load (negative reserve) [38,39]. Reserve services can be 

provided by an EBAg and may be divided in three categories: Primary reserve, secondary reserve and 

tertiary reserve, as displayed in Figure 4. 

The primary reserve is requested by a local automatic control that adjusts the active power 

generation and the consumption of controllable loads to restore rapidly (in less than one minute) 
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the balance between load and supply. The demand side may also contribute to this control through 

the auto-regulation of some frequency sensitive loads [40].  

The secondary reserve is a centralized automatic control that regulates the active power produced 

in generation units to reestablish the standard value of frequency. That is, while primary control 

stops the frequency fluctuations, secondary control reestablishes the frequency target value and 

should be able to act in less than ten minutes.  

The tertiary frequency control response consists in manual changes in the generation unit and is used 

to reestablish the primary and secondary reserve at previous levels before the frequency fluctuation.  

 

Figure 4 – Frequency control reserve characterization (quick – less than 30 seconds; medium – around 10 
minutes; slow – around 30 minutes) 

2.2 AS PROVIDED BY DR STRATEGIES 

The main objective of the application of a DR program may be summarized as follows: 

- Reduction of the total power consumption, so that mutual profit for the power utility and 

the end-users is achieved. This reduction should occur not only in the end-user demand, but 

also in transmission and distribution system losses [41]; 

- Reduction of the total power generation, which is the main result of the aforementioned 

objective. Under the successful implementation of a DR scheme, the need of activating more 

expensive power plants and build new ones to meet peak demands is mitigated [11]; 

- Change of the demand pattern, optimizing the end-user consumption, to follow the available 

supply creating a “load follows supply” strategy, especially in regions with high penetration 

of RES, to maximize the overall reliability being environmental friendly [18,42]; 
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- Reduction or even elimination of overloads in the distribution system. 

A DR scheme must consider security mechanisms for the protection of privacy associated with 

energy usage information that is acquired by smart meters or local EMS for the DR provision [43]. 

Moreover, a DR scheme must be designed to engage end-users to take part in the program, through 

the delivery of incentives to change their load consumption patterns without jeopardizing comfort 

[44]. 

The adjustment of the usage of electrical energy by end-users is made as a response to changes in 

electricity prices over time, contractual agreements or when system reliability is threatened. This 

adjustment is executed through the cooperation of three main participants [45], as illustrated in 

Figure 5:  

1. End-users (residential, commercial or industrial) loads that take part in the DR program; 

2. A DR Aggregator that is connected to the end-user’s EMS and executes the DR programs; 

3. A SO that manages the system. 

 

Figure 5 - Main participants in DR Programs, adapted from [46] 

In general, the process of a DR scheme begins at the SO, which determines the demand volume that 

should be reduced or increased in a certain period. This information is submitted to the DR 

Aggregator, which then selects the participating end-users based on their availability. Taking into 

account the number of end-users that agree with the proposed DR scheme, the EBAg calculates the 

total load flexibility that can be offered in reply to the SO request, the amount of flexibility to be used 

from each participant end-user, and reports back to the SO. 
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Examples of case studies performing the role of a DR Aggregator are described below. 

Taking into consideration the development of the electricity mix of Flores Island (Azores), which 

includes a high integration of RES, the impact of DSM strategies is evaluated in [47]. The electricity 

mix was modeled using TIMES - The Integrated Markal-Efom System to optimize the investment and 

operation of wind and hydro power plants until 2020 taking into account situations of consumption 

increase, development of technologies allowing the implementation of DR programs in the 

residential sector, and campaigns of promotion of efficient behaviors to remove standby power. The 

authors concluded that DR strategies eliminate the need of ongoing investments on new generation 

sources from RES; load shifting strategies should be used to help increasing the capacity factor of 

the existing generators and further postpone the investments to build new plants [47]. 

A DR algorithm to regulate frequency (± 0.05Hz of 60Hz) using responsive loads whereas reducing 

the quantity of load changes after disturbances was developed in [48]. A dynamic model for an 

isolated micro grid and an upgraded adaptive hill-climbing approach were developed to deal with 

the problem. The simulation model consists of an incremental control strategy to minimize the 

amount of responsive loads manipulated. As a result, quality-of-service (QoS) for customers is 

ensured, while a significant amount of responsive loads is accessible for extra control to answer to 

unforeseen system instabilities. 

A framework for dealing with the discomfort caused to the end-users and the incentives required to 

accomplish DR benefits is considered in [49], based on a model of residential energy consumption. 

A management methodology appropriate for most residential technologies and objectives for a 

single house is presented in [50]. The simulation of different scenarios shows that the objectives of 

single and multiple houses can be reached [50,51]. The problem of finding the best solution is 

modeled as an Integer Linear Programming (ILP) model to minimize cost while matching all heat and 

electricity demand considering multiple time intervals. A heuristic for solving the model was 

developed making it possible to implement the application in an embedded energy efficiency 

controller. Since the cost function defines the interaction between devices, cost functions must be 

adapted for every configuration and usage scenario. 

A number of technologies can provide flexibility in the usage of energy, involving end-user loads and 

energy storage. However, only large end-users, for example, industrial clients, are presently able to 

sell their load flexibility on an individual basis and participate in the EM. In addition, many 

manufacturing processes have critical temporal dependencies, which must be scheduled with 

precision. Small (residential and commercial) end-users face high barriers in accessing the EM. The 
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design of effective DR programs for these clients is far more complicated compared to industrial end-

users, mainly due to their diversified consumption patterns and need to guarantee an ample end-

user acceptance [23]. 

A communication infrastructure that provides connectivity among systems, devices and applications 

is essential for the effective and reliable operation of the SG [52]. The general communication 

requirements for the implementation of a DR program refer to the provision of a two-way 

information flow between the entities that participate in the program. Other requirements are 

necessary for the implementation of a DR program [53]: 

i. Quality of Service: The provision of QoS guarantees for the communication technologies is 

essential for the smooth implementation of a DR program. The bidirectional networking of 

the SG should ensure that control and command, emergency response and pricing signals 

are reliably transferred without being affected by the number of the end-users connected. 

For real-time sensing and metering purposes, which are used in various pricing schemes, 

latency values of a few milliseconds should be achieved [54]. 

ii. Interoperability: The cooperation of different systems is vital to data exchange between the 

components of the SG. To provide interoperability and seamless data exchange between 

interconnected elements of the SG, the adoption of open standards across the 

communication infrastructure is an essential operational issue [55,56]. 

iii. Scalability and Flexibility: DR becomes more effective when a large number of end-users is 

engaged in programs, since further manageable loads are accessible [57]. Thus, a highly 

scalable communication infrastructure is essential for the accommodation of a large number 

of devices and services, through the evolutionary implementation of the infrastructure on a 

broader scale [54]. Cloud based architectures for DR implementation can be considered as 

an effective solution that leverages data-centric scalable and flexible communication 

between the utility and the end-users [58]. 

iv. Security: Network security is an important factor in the operation of SG, since it provides the 

means to maintain data integrity, confidentiality and authentication, while it facilitates non-

repudiation [59]. Several security issues may compromise the effectiveness of a DR scheme. 

Tampering of information of a pricing program may trigger financial and legal problems, 

while malware may cause a severe damage to the power system [60]. It is therefore essential 

to implement secure DR programs that protect the private data of end-users, prevent 

unapproved access that attempt to delay, block or even corrupt information transmission, 
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and provide authentication, authorization, auditability and trust components to the 

communication infrastructure [61]. 

More comprehensive studies on the communication requirements, challenges and solutions for DR, 

are presented in [53,54,60–63] 

2.2.1 Demand Response Programs 

DR programs can be enhanced using motivation schemes that are offered to the end-users for their 

efforts to reduce, shift, shed, reparameterize, or interrupt their load operation. Two main 

approaches may be distinguished in the scope of the aggregation of demand-side resources and their 

corresponding capabilities in the provision of AS presented in the above section.   

DR programs may be divided into two main approaches, namely Incentive Based Model (IBM) and 

Price Based Model (PBM) (Figure 6 [64–66]). 

 

Figure 6 - Types of DR Programs 

2.2.1.1 Incentive-based Model 

IBM include programs that offer fixed or time-varying incentives (payments) to end-users to reduce 

their electricity usage during periods of system stress as required by the SO [67]. Customer 

enrolment and response are voluntary, but in some cases the end-users are under specific contract 

constraints and can be penalized when failing the contractual response.  

IBM programs can be further categorized into classical programs and market-based programs, and 

they can be offered at both retail and wholesale market [68].  End-users participating in classical 

programs obtain participation payments, usually as bill credits or discount rates. In market-based 
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programs, end-users are rewarded for their performance, depending on the amount of reduction of 

electricity usage during critical conditions, such as frequency and voltage instabilities, transmission 

line congestions and management of operations. 

IBM are more focused on industry and commercial sectors where the contracts are established 

between the electricity end-user and the service providers, which may be the SO, utilities, the EBAg, 

other third parties, etc. [69]. IBM may be divided into four broad categories, as presented below.  

2.2.1.1.1 Classical Programs 

Direct Load Control (DLC) enables the power utility to remotely cycle or turn off end-use electrical 

equipment, controlling directly the appliances with a (previously known) participation fee 

compensation [15,70]. These appliances are typically thermostatic loads such as air-conditioners, 

water heaters, etc. The load control is feasible through the installation of switches at the customer 

premises that communicate with the utility. In some cases, control signals can also be sent to the 

customer to influence control actions. DLC programs are mainly offered to residential or small 

commercial end-users and they can be normally deployed within a relatively short notice [71]. End-

users that participate in a DLC program obtain financial incentive to decrease their energy 

consumption under predefined thresholds. 

Interruptible/Curtailment (I/C): The end-user is in control of appliances, making a commitment to 

modify the load upon receiving a request, for example, for curtailing the total consumption to a 

predefined level. If the end-user responds positively, he will receive a bill discount or credit in 

exchange for agreeing to reduce the load during the system request and contingencies. If the end-

user does not curtail, he can be penalized according to the contract terms and conditions [72,73]. In 

general, end-users must respond within 30 to 60 minutes after being notified by the utility, while the 

total amount of time that a utility can call for interruption is capped [74]. 

2.2.1.1.2 Market-based Programs 

The Emergency Demand Response (EDR) is called whenever the system security is in danger. EDR is 

a kind of market-based program, but can also be a combination of DLC and I/C programs, since they 

provide incentive payments to end-users for reducing their power consumption during reliability 

triggered events [75]. End-users can choose not to curtail and therefore disregard the payments, 

which are usually specified beforehand. End-users get incentive payments for helping to resolve 

system stability during security events. 
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Demand Bidding (DB), also known as negawatt program, is typically useful for large consumers, who 

offer load flexibly capacity bids in the EM [75]. The end-user is obliged to reduce the load by the 

quantity specified in the bid [71,76].  

Capacity Markets (CM) is a market-based program offered to end-users who are able to provide 

predefined load flexibility/reductions as AS to replace conventional generation units [11,77]. The 

end-user commits to provide load reductions when system contingencies arise, receiving an up-front 

payment for offering the load flexibility plus a payment for the availability of the load flexibility to be 

used in case of an event [78]. Participants are obliged to demonstrate that a minimum load 

curtailment is achievable, while they receive guaranteed payments even if they are not called to 

curtail. 

The Ancillary Service Market (ASM) is a program in which the end-user bids load 

reduction/curtailment commitment in the spot market, as operating reserves. Prices can be dynamic 

with hourly or faster variations according to system conditions. If the bids are accepted, participating 

end-users are paid the market price for committing to be on standby. Once the load reduction is 

requested and used, the participants are notified by the SO and they are paid for the energy provided 

[11,74,79].  

2.2.1.2 Price-based Model 

In PBM (also known as price-based DR) end-users are granted time-varying prices that are defined 

based on the electricity cost in different time periods. PBM has been triggered by the rise of 

deregulated EMs using price signals. Large industrial clients were interested to reduce their 

consumption during high-price periods and retailers encouraged their residential clients to flatten 

out their consumption profile using static and dynamic tariff structures [80]. Three categories of PBM 

may be identified, which are briefly referred to below.  

2.2.1.2.1 Static Pricing 

Time-of-Use pricing (TOU) divides the day into time blocks with different electricity prices, which may 

be hours within a day or days within a week. These prices are fixed for a specific period, being higher 

at peak hours and cheaper in off-peak hours, with the aim to incentivize the end-user to reduce the 

consumption in peaks hours and increase the consumption in off-peaks hours in order to allow a 

more efficient use of the generation, transmission and distribution resources [81,82]. TOU tariffs are 

also used as encouragements in household simulation models that produce representative load 
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profiles [83]. The effectiveness of this scheme depends on attractive off-peak prices and relatively 

high prices in peak-demand hours [84]. A study showed that TOU programs offer the smallest 

reduction in the peak demand among all programs reviewed [85].  

2.2.1.2.2 Dynamic Pricing 

Real Time Pricing (RTP) typically reflects hourly wholesale prices and requires a strong involvement 

from the end-user. Under an RTP scheme, the electricity provider announces prices on a rolling basis. 

These prices are determined and announced before the start of each time period full 

implementation. In general, end-users receive new hourly electricity prices between a day-ahead 

and an hour ahead. This pricing scheme allows reflecting the underlying cost of energy at all times 

[86]. To be broadly disseminated in the residential market, an RTP scheme should rely on the two-

way communication capabilities of the SG, which together with an EMS installed at the customer’s 

premises will make decisions regarding consumption, and possibly microgeneration and storage [87]. 

Critical Peak Pricing (CPP) adds a critical peak component to TOU tariffs. This additional component 

is only applied during critical peak hours/events for a limited number of hours per year where energy 

prices change due to system stress/critical conditions [88,89]. The participant end-users receive 

notification of the new energy price usually a day-ahead. The ratio of on-peak to off-peak price is 

higher on CPP events than in TOU programs [90]. From the energy provider point of view, significant 

load reduction during critical periods can be achieved under this pricing scheme [91], but with high 

probability of negative net benefits [92]. For this reason, this tariff is more frequently applied to large 

commercial and industrial consumers where the baseline profile is more constant. 

However, the end-user engagement does not rely on price signals only. As a key factor for the success 

of these programs, new technological devices have emerged in the market allowing residential end-

users to follow the household consumption in real time [69].  

2.2.2 Demand Response models  

The EBAg can play the role of an intermediary entity in the implementation of DR programs. There 

has been an increasing trend of research works in the last two decades dealing with DR issues namely 

within the evolution to SG [73].  This research effort is briefly reviewed below, presenting their key 

characteristics and making a critical analysis. 

In [93], various DR models that are applicable to wholesale and retail EM are presented, in which 

existing DR models are classified according to the nature of participants and market conditions. 
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Reliability- and price-based DR programs are analyzed in [94], concluding that it is less beneficial if 

both programs are implemented independently. In order to accomplish higher benefits, a hybrid 

model is proposed in which both programs are synchronized using an information management 

system [94]. DR strategies, such as load shifting and peak shaving, have been taken into consideration 

in the implementation of a household load control model presenting properties of both centralized 

and decentralized control methods [95]. The reliability of the centralized method matches the 

controllability and predictability of the decentralized method to give best performance (appraised 

based on predictability and delay). Household parameters are changed in accordance with the end-

user priorities and requirements. 

An EMS system for automatic DR is proposed in [96] to reduce the peak load in households taking 

into account the end-user’s requirements and comfort level. The HEM system uses the Zigbee 

communication protocol and allows end-users to regulate the consumption of the smart devices (air 

conditioners, clothes dryers, water heaters and EVs) in response to the signal received from the 

energy service provider. The smart devices are monitored and controlled using an embedded 

microcontroller to measure voltage, current and load factor, and communication modules [97].  

Several ongoing and concluded projects around the world based on DR programs are reviewed in 

[98] offering an overview of the scope and results of actual field tests with residential end-users, 

which will be presented in the next section. 

2.2.3 Pilots of Demand Response Programs 

The first experiments with dynamic pricing approaches for residential end-users were carried out in 

the 1970 decade, sponsored and promoted by the U.S. Federal Energy Administration, where the 

main objective was to evaluate the end-user response, that is, the DR subject to different price 

stimuli. After 1990 some pilot studies were carried out, in a non-controllable environment, to analyse 

the end-user response subject to dynamic (time varying) price rates to analyse the impact of DR 

programs in the reduction of consumption in peak periods. The summary of these results is 

presented in Table 1 ([99]).  

 

Table 1 – Pilot of DR programs for loads in the residential sector (adapted from [99]).  

State /reference Year 
Number of 
participating 
end-users 

Types of DR 

programs 

Percentage of load reduction 
due to DR programs 

Peak hours Off-Peak hours 

California/ [100] 2005 ~120 CPP 12% - 
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California/ [101] 2004 2500 

CPP 13% 5% 

CPP 
25% -7% 

41% 13% 

California/ [90] 2004 ~220 
CPP 51% - 

TOU - 32% 

California/ [102] 2005 ~200  
CPP 43% - 

TOU - 27% 

Colorado/ [103] 2006-2007 ~3700 

CPP 44.8% 0.1% 

TOU - 10.6% 

TOU+CPP 52.2% 10.6% 

Florida/ [104] 2000-2001 ~ 2300 CPP 44% 22% 

Idaho/ [105] 2005-2006 ~ 900  
TOU - 1.84% 

CPP 50% - 

Illinois/ [106] 2003-2006 ~1500 RTP 15% 3% 

Missouri/ [107] 2004-2005 ~500 

TOU 12% - 

TOU + CPP 12% - 

TOU + CPP 35% - 

New Jersey/ [108] 1997 Not available TOU + CPP 50% 26% 

New Jersey/ [109] 2006-2007 ~ 1300  
CPP 26% - 

TOU 21% - 

Ontario, [110] 2006-2007 ~500  

TOU 5.7% 2.4% 

CPP 25.4% 11.9% 

CPR 17.5% 8.5% 

Washington and Oregon, [111] 2005 ~110  
RTP 17% - 

TOU+CPP 20% - 

 

The experiments occurred in the United States (California, Florida, Idaho, Illinois, Missouri, New 

Jersey) and in Canada (Ontario). In general, two groups were created: a control group maintaining 

the existing tariff and the trial group subject to a dynamic tariff. The experiments led to the 

conclusion that end-users indeed responded to the price signals. The consumption pattern changed 

to achieve bill savings, leading to peak reduction in periods of higher tariff with the application of the 

CPP scheme. The end-user also consumed more in the off-peak periods since the price was much 

lower than in the peak.  The price signals were found quite relevant in influencing the end-user 

energy behavior [99].  

Since then, DR strategies have received a great interest from utility companies throughout the world, 

recognizing their role to facilitate the operation of the system, and many governments engaged in 

policies to promote their application focusing on options that include promoting energy efficiency 

programs to foster end-user energy behavior changes and the ability to control end-user appliances 

by rescheduling their operation. In general, these operations do not actually decrease the amount 

of electricity consumed, but rather shift it to when it is more convenient from the overall system 

perspective. DR can take place at a fast timescale, contributing to the system stability, the reduction 

of electricity generation costs and CO2 emissions [112]. 
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Several studies have been reported in the literature focusing on the management of household 

energy resources, considering several types of controllable loads, taking into account micro-

generation and also starting to include storage systems under a perspective of integrated 

management of energy resources. However, most of these studies take only into consideration the 

reality inside the houses. In fact, in face of a low price signal, all local EMS would engage in similar 

actions (shedding the same type of loads at the same time) to maximize benefits. Since the actual 

impact of household consumption is noticeable when it is summed up over a large number of 

consumers, this could lead to instability of the system operation [113,114]. 

In this context, recent studies attempt combining both perspectives to execute DR activities based 

on “demand follows supply” strategies, including the provision of AS. In the SG context, the provision 

of these services by aggregating electricity end-users engaged in DR programs is becoming an 

attractive alternative.  

2.3 DEMAND RESPONSE AGGREGATORS 

Several authors have argued that DR is a relevant strategy contributing to the optimal operation of 

the overall power system, by means of EBAg that are able to interact with in-house EMS controlling 

flexible loads according to end-user preferences and grid signals, namely via prices and contingency 

requests. Moreover, EBAg should be able to safeguard the quality of the energy services, provide AS, 

contribute to cope with the intermittency of RES, and avoid peaks in the load diagram. Some of those 

relevant studies are presented in [66,115–132]. 

Most studies consider that certain forms of DR are appropriate to provide AS because of their quick 

response, decentralized nature and the reliability associated with a large number of small-scale 

resources [133]. These resources may be able to provide AS cheaper, more proficiently, and with a 

reduced carbon footprint than conventional generation resources. Moreover, they can 

hypothetically be brought to market faster than new generation resources, as they do not have to 

go through lengthy permitting and regulatory agreement procedures as long as they conform to the 

regulatory dispositions. Those studies have examined the technical capabilities of flexible loads to 

provide AS including the suitability of specific end-uses [134,135], resource potential [136], control 

strategies [137,138], measurement and control [139], and strategies for incorporation into 

competitive markets [140–142]. Additionally, limited field tests of DR resources providing various 

forms of AS have verified their technical feasibility [34,40,48,143–145]. 
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In [143] the impact of increased penetration of RES generation is analyzed for the balancing 

authorities to procure more AS. However, while DR resources are technically capable of providing 

AS, such as frequency control, ongoing experiences across the U.S. have demonstrated that AS 

provided by DR have relatively negligible players in most regions. The use of DR programs for AS thus 

requires regulatory policy changes. This section presents EBAg using load flexibility and/or electric 

energy storage (EES) where the aim is to minimize operation costs contributing to manage electricity 

costs in the day-ahead and in real-time market, considering load uncertainties, to provide AS to the 

SO.  

2.3.1 Energy Management System Aggregators with Energy Storage Systems 

The predicted growth in the use of EV and its capacity to store electricity has been promoting the 

discussions about the necessity to create intermediate entities that could assist the management of 

aggregations of EV.  

In [146] the concept of a player aggregating EV is introduced assuming that each EV cannot bid in 

the EM due to its low power capacity. In [147] the concept of a “middleman company” aggregating 

a significant amount of EV is proposed, in an operation mode in which drivers communicate their 

driving needs to the aggregator and the aggregator manages this information creating a Virtual 

Power Plant (VPP), i.e. a system integrating various types of power sources and loads forming an 

integrated network [148], where the expected number of vehicles to be plugged and the quantity of 

energy to be available are known. 

A similar aggregator agent is mentioned in [146,149–154], where the aggregator is seen as a source 

of generation or load. In [153]  the aggregator is a “command and contracting architecture” providing 

AS, namely frequency control to fine tune the grid frequency by matching generation and load. The 

aggregator gets instructions/signals from the SO and sends them to the EVs that are available and 

willing to sell the service. The EVs can connect/disconnect from the aggregator as they enter/leave 

the charging station.  

In [155] an aggregator of EV is proposed, which is able to use the distributed power of EVs to provide 

V2G frequency control services. An optimization problem is formulated with control strategies to 

charge batteries of each EV, involving the charging cost and the reward based on regulation prices, 

considering constraints regarding to charging requirements, such as energy capacity and desired 

target state-of-charge (SOC). The decision variables relate to the charging sequence, charging 

duration and charging rate. To optimal solution is obtained using a dynamic programming algorithm. 
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Possible architectures are presented in [156] regarding direct communication between the SO and 

the EV owner as well as intermediate communication via an aggregator. It was concluded that this 

latter architecture is the best solution since the aggregator is permanently available being possible 

to contract reserve services continuously, while single EVs present less availability during large 

periods of the day for V2G. The first architecture option is less reliable than the second one, since it 

is not possible to control the behavior of EV owners, although it is possible to influence them with 

reward schemes. The second option is more reliable since the aggregator is able to control the EVs 

for V2G through the contracted fleet size and available capacity. An aggregator agent for EVs that 

bids (energy) in the day-ahead and intraday EM is proposed in [153], working as an interface that 

exchanges information between EVs and an “energy hub agent”, that is an agent able to manage a 

control area. The key purposes of this aggregator are the detection of the EV connection, the 

estimation of the available energy in the EV fleet and its dispatch. 

Considering that load participation in the EM can contribute for the avoidance of network congestion 

and reduction of line losses, the proposal in [157] focuses on creating an optimal EV charging strategy 

and developing a decision support tool for demand-side participation in the EM. This scheme should 

be responsive to the congestion of the local distribution network, while addressing the sequential 

day-ahead and hour-ahead markets by modeling the interaction of aggregators participating in the 

transmission level of the wholesale EM with its Smart Microgrid Affiliates (SMAs) linked to the SO. 

Facing the energy prices and load uncertainties, [158] develops a Model Predictive Control (MPC) 

approach based on scheduling and process strategies for the load aggregator that is participating in 

the wholesale EM to purchase electric energy to serve their customers, with and without EES. Three 

different MPC scenarios are created: for distribution system without EES where the load is inelastic 

and determined by the customer, in which the scheduling and operation strategy has very limited 

flexibility; for distribution system with EES, used according the day-ahead forecasted load and energy 

price, in which the scheduling and operation strategy is more flexible; and for distribution system 

with EES that utilizes the real-time update price and load forecast to determine optimal operation. 

The basic approach of MPC is a finite-horizon optimization determining the series of optimal control 

operations solved before each control step, and a linear programming model is used to solve the 

real-time electricity cost minimization problem [158–160].  

An algorithm to be used by an aggregator of EV to optimize V2G provision of energy from EVs to the 

SO and AS scheduling, namely load regulation and spinning reserve, is developed in [144]. The 

algorithm maximizes the profits to the aggregator while offering more flexibility via peak load 
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reduction to the system and low cost of EV charging to the end-user. The mathematical formulation 

takes into account the temporal uncertainty of the EV and the algorithm simultaneously schedules 

charging and AS provision to reward the EV owner for their participation. 

The data driven potential of EV loads to harnessing demand flexibility is presented in [161,162], 

demonstrating that the conventional charging policies have high peak-to-average ratios of the 

aggregator demand and absence of link with wind generation. The authors show the importance of 

flexible loads in the exploitation of RES by changing the load patterns and reducing the effects of the 

intermittency of RES with simple local information focusing on load flexibility as a strategic way to 

enhance RES penetration and promoting policies complying with the end-user preferences.  

Simulation and optimization methods for an aggregator are developed in [163], involving DER, 

thermal energy storage and DSM to create a VPP. The objective function of the optimization problem 

is minimizing total costs, which implies maximizing the profits of energy generation of thermal units 

in the day-ahead market, and consequently offering lower energy costs to the end-user. The 

optimization takes into account technical constraints and the reduction of load in peak hours. 

A hierarchical coordinated charging framework for EVs through four aggregators is proposed in [164]. 

Each aggregator has several EV contracted and is responsible to optimize their charging needs. In 

this way, each aggregator should know the charging preferences of the EV owners and the local 

transformer capacity limits. Based on this information a linear optimization model is developed to 

determine the charging curve of each aggregator according to DSO requirements as a centralized 

coordination. Each aggregator takes this curve into account and uses a fast heuristic algorithm to 

allocate the state of charge of each EV combining it with the power curve suggested by the DSO. The 

aggregator is compensated by the DSO through a straightforward cooperation scheme based on the 

amount of shifted power load.  

Assuming that the correlation in the day-ahead between EV aggregators and wind generation 

companies is a challenge for the system, a stochastic optimization model based on mixed-integer 

linear programming (MILP) is developed in [165] to determine the bidding strategy to minimize the 

difference between the energy production of wind generation companies and EV consumption, 

optimizing the scheduling of batteries charging. The objective is to maximize the EV aggregator 

revenues from selling the wind energy and regulation capacity in the day-ahead market minus the 

charging cost and the energy imbalance, including constraints as the capacity of batteries and 

preferences of EV owners for the SOC.  
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A model that optimizes the performance of an EV aggregator in the EM in the long-term is presented 

in [166], managing the charging and discharging of the EV batteries to maximize EV owners profits 

considering TOU tariffs. A formulation is also proposed to evaluate the degree of willingness of the 

end-user associated with the aggregator to provide AS during a specific period, by optimizing the 

charge and discharge of EVs submitting the best bidding strategies in the day-ahead and real-time 

markets. The uncertainty associated with the utilization profile and behavior of EV owners as well as 

uncertainties in EM prices are taken into account, including the behavior of market players regarding 

prices and revenue schemes to attract the participation of EV owners. A stochastic programming 

approach is used to model the ability of competitors to attract EV owners and evaluating customer 

satisfaction [152].  

A self-scheduling model for an EV aggregator is proposed in [167], for which the main aim is deciding 

the purchase of energy in the day-ahead market and the offers of AS, as balancing services, to a wind 

power producer. The stochastic model represents the charge and discharge of EV batteries and 

several scenarios with different AS requests from the wind power producers and driving preferences 

of the EV owners. A bi-level optimization problem is formulated that is transformed in an equivalent 

MILP. The upper level consists of minimizing the EV aggregator cost (purchasing electricity, battery 

degradation) and the lower level consists in maximizing the consumer and producer surplus. The 

authors conclude that an EV aggregator can provide AS to compensate for forecast uncertainties of 

wind generation. 

An optimal scheduling of load and operation strategy is described in [168], using EV batteries 

managed by a aggregator. The aggregator bids in the day-ahead market to maximize its profits, taking 

into account the forecasted demand and price uncertainties in real time. The aggregator uses the EV 

batteries to help in achieving a balance as a consequence of forecast failure. Two main scenarios are 

dealt with: one considering a fleet of one thousand EV and another one without EVs.  

An optimization model formulated as a deterministic MILP for a load aggregator in the commercial 

sector is developed in [169], in which the objective is to allocate flexible loads to minimize the total 

energy costs for the consumer. The optimization uses physical-based models of each end-user, 

namely loads and a stationary ESS. It concludes that presently stationary ESS are not an effective 

investment due to the battery inefficiency and high prices.  

The dissemination of EBAg has been strongly focused on the contribution of EES, including the 

participation of EV to help the system achieving a balance between supply and load [167,168,170–

173]. The next section presents EBAg approaches in which EES do not play a prominent role.  
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2.3.2 Energy Management System Aggregator Offering Load Flexibility 

In this section demand/load aggregators are presented, which use the load flexibility provided by the 

end-user through DR strategies with the aim to offer AS to the SO also giving economic benefits to 

the end-user, which is summarized in Table 2. 

A methodology considering both the short and long-term operational and investment costs of 

providing load flexibility is presented in [174], analyzing how end-users can respond to requests from 

the SO. An aggregator able to connect with smart appliances is proposed for assisting network 

management and promoting a cost-effective integration of RES. In [175] the challenges and 

approaches to using responsive loads  to supply AS in SG are discussed, taking into account the 

required response duration and time of operation. The benefits of providing AS from loads instead 

from generation are assessed, along with the capability to reduce losses, increase transmission 

capacity and generation capacity. In this setting, a key challenge that is identified in the development 

of SG is the need to reduce communication latency when interfacing various communication systems 

to control a large number of small loads.   

In a series of works, the problem of DR is mapped to that of selfish routing over parallel links, with 

each link corresponding to a timeslot. The proposals in [176,177] consider a set of users that have to 

schedule their demands within a finite horizon. Users have a utility function depending on the energy 

consumed and are charged for this consumption by the SO. Thus, for given prices, each user can 

calculate the consumption pattern that maximizes its net utility. Under the assumption that the SO 

objective is to maximize social welfare (total utility minus the cost of supply), distributed algorithms 

are developed based on control mechanisms and dual decomposition methods. In a similar 

framework, a two-time scale wholesale EM is considered, where power may be purchased either 

through a day-ahead market or in real-time [176–178], assuming a social-welfare maximizing SO that 

communicates and negotiates directly with the utility and end-users. In this case, the optimal 

strategy is to set prices equal to the marginal cost of supply. However, this does not hold for a 

scenario where a self-interested SO seeks to minimize its operational cost. This has been considered 

also in [179] that investigates the problem of demand scheduling from the SO’s perspective. The DR 

scenario of a cost-minimizing SO that incentivizes home users to shift demand through dynamic 

pricing was considered in [180]. In addition, several works cast the problem of DR as a Walrasian 
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auction4, where prices are set to match supply and demand and use “tatonnement” mechanisms for 

its solution [181]. These models consider price taking residential end-users that schedule their 

consumption throughout the day and an SO that sets prices to maximize social welfare. A similar 

“tatonnement” process has been proposed in [182] for the stochastic version.  

All the works mentioned above require extensive message exchange between the SO and the end-

users. Hence, scalability issues may arise in a large-scale deployment. Hierarchical market structures, 

where EBAg serve as DR intermediates, appear as a promising approach to deal with scalability issues. 

In [183], it is proposed that the EBAg should coordinate electricity generation and DR.  

A simplified hierarchical market mechanism is proposed in [184], where the SO sets a target demand 

curtailment and the aggregator offers compensation to the end-users to meet this target at 

minimum cost. Each end-user is a price-taker and bids its supply function in order to minimize its 

disutility. In this setting, two bidding techniques were designed that converge to the optimal solution. 

These works do not take into account incentives and consequently do not capture the interaction of 

competing aggregators. Considering the interaction of several EBAg, for a microgrid scenario, a two-

phase market model was proposed [185], where in the first phase a “tatonnement” process is used 

to decide the price paid by the SO and the energy provided by each EBAg. For the second phase, a 

supply function bidding technique is proposed, where the microgrid bids supply functions and the 

EBAg sets the price to maximize its profit. While [185] focuses on microgrid generation within a 

particular time slot, [49] focuses on the time schedule of residential loads. The importance of DR in 

the residential sector was also quantified in [186], where it is shown that a slight extension of 10% 

in the total operation time of residential loads may reduce peak consumption by 125 MW. The model 

consists of a set of competing aggregators, where the aim of the SO is to minimize operational costs 

giving prizes for the aggregators that contribute to achieve this objective. The aim of the aggregator 

is to maximize its profits giving compensations to their associated end-users for changing their 

consumption patterns. The aim of end-users is to maximize the tradeoffs between the income 

obtained from the aggregator and the discomfort for changing the energy consumption behavior. 

Game theory and benchmark scenarios are used for this purpose. The access to end-user energy 

                                                             

4 A Walrasian auction is a type of simultaneous auction where each agent calculates its demand for the good at every possible price and 
submits it to an auctioneer. The price is then set so that the total demand across all agents equals the total amount of the good. Thus, a 
Walrasian auction perfectly matches supply and demand. Walras suggested that equilibrium is achieved through a process 
of tâtonnement (French for "trial and error"). 

 

https://en.wikipedia.org/wiki/Auction
https://en.wikipedia.org/wiki/Agent_(economics)
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consumption behavior information is essential to better exploit the DR benefits in the SG context 

and the DR strategies, and therefore mechanisms for this purpose need to be investigated [49]. 

Considering that load flexibility is the best resource to provide fast AS, namely primary and secondary 

FC, [187] proposed an aggregator that provides AS based on scheduling flexible load taking into 

account restrictions for the utilization of appliances. In [188], a hierarchical framework for a load 

aggregator was presented, which is an intermediate between TSO and electric storage space heating 

systems in the residential sector.  

In [189], it is considered that DER and (flexible) thermostatic loads should participate in the real-time 

operation of transmission and distribution grids, using the VPP concept. The authors developed an 

optimization model based on DLC to manage a VPP and compute optimal control strategies to be 

applied to controllable devices to obtain the maximum load reduction over a specified control period. 

An aggregator determines the load reduction capability over a specified control period to define the 

corresponding load reduction bid to be presented in the EM to reduce congestion and differences 

between load and supply.  

Considering the adaptation of load to the EM changing condition, a multi-layered and multi-

directional information exchange framework is developed in [190], creating an adaptive load 

management system able to implement DR. The system is decomposed in three layers: the primary 

layer (bottom level) is composed by end-users; the secondary layer (middle level) is composed by 

load aggregators as load serving entities; the tertiary layer (top level) is composed by the SO. The 

optimization of the system as a whole is made in this layer. For this purpose, techniques based on 

Lagrange decomposition are used to formulate the optimization problem with demand functions for 

each end-user, with a given uncertainty degree, to better inform the other layers about the end-

user’s preferences on electricity consumption [190–193].  

The role of an EBAg is presented in [194], which is a mediator between the end-user (local energy 

box - LEB) and the SO allowing the coordination of a large-scale dissemination of in-house DR devices. 

The EBAg is aimed at using the demand-side flexibility provided by clusters of end-users to provide 

system service requirements, involving lowering or increasing the power requested in each time slot 

within a planning horizon. This contributes to balancing load and supply, avoiding peaks in the load 

diagram, and coping with the intermittency of RES, thus increasing the overall system efficiency by 

offering an attractive alternative to supply side investments on peak and reserve generation. For this 

purpose, an MOO model was developed to maximize the EBAg profits, taking into account revenues 

from the SO and payments to end-user clusters, and minimize the inequity between the amounts of 



35 

 

load flexibility provided by the clusters to satisfy system requests. An approach based on a genetic 

algorithm coupled with a differential evolution algorithm is proposed to deal with this model. 

Taking into account the problem of optimally scheduling appliances in households considering time 

differentiated electricity tariffs and rewards to the end-user from an energy aggregator, [19] 

developed a MILP model and an algorithm, which is based on a heuristic scheme that combines local 

search and exhaustive enumeration stages, where the aim is to minimize the overall cost in the load 

rescheduling, taking into account end-user’s comfort preference. This approach allows to explore a 

significant subset of the solution space, with limited computational burden, although it does not 

consider the schedule of appliances in a limited time horizon [195]. 

A trading framework permitting the DR aggregator to get load flexibility from end-users and sell it to 

“purchasers”, i.e. buyer in EM, is proposed in [196], via a power purchase agreement, i.e., a contract 

between the seller and the buyer of electricity [197]. The DR aggregator presents TOU tariffs to the 

end-user and gives rewards based on the load flexibility provided. The reward scheme consists of a 

stepwise function, the higher the amount of load reduction the higher is the reward. The aim of the 

DR aggregator is to maximize its profits (revenues for selling load flexibility to the purchaser and 

costs to reward end-users). The model includes a mixed integer profit function, and the case study 

was based on the Australian National Electricity Market. The authors conclude that bidirectional 

exchanges of energy between end-users and the purchaser is a major future challenge that should 

take into consideration the uncertainties of the energy consumption behavior [196]. Afterwards, in 

[198] the authors modeled the behavior of a DR aggregator taking into account wind power 

uncertainty. The aim of the DR aggregator is to maximize its revenues and the problem was 

formulated as a bi-level programming model, in which the upper layer deals with the wind power 

producer and the lower layer deals with the DR aggregator, which is modeled through a revenue 

function. The bi-level problem was then configured into a single layered mathematical problem with 

equilibrium constraints using a mixed integer programming approach and solved using CPLEX [199] 

and GAMS [200] for a scenario based on the Nordic Electricity Market [201]. 

The German EM based on the balancing mechanisms demonstrated that DR is impacted by: 

minimum bidding volume, minimum bidding duration and bidding up and down offers. New DR 

services will open the door for end-users to manage and adjust their consumption as well as to 

reduce their energy bills. Although it is difficult to forecast at this stage how significant is the role 

that demand side flexibility will play, in order to guarantee a level playing field for all market 
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participants and unlock market access for end-users and aggregation agents, market rules will need 

to be adapted to enable them to participate in the EM [202]. 

The implementation of SG offers a business prospect for SO and energy traders to implement DR 

programs [203], since those entities can maximize their profits trading flexibility provided by end-

users on the EM using an aggregator service platform. These authors designed an architecture based 

on an ICT platform providing management, forecasting, aggregation and load scheduling of a large 

number of end-users, being a scalable infrastructure that allows the implementation of residential 

DR programs, with a VPP at the core of the system named SEMIAH – Scalable Energy Management 

Infrastructure for Aggregation of Households. To validate this new infrastructure and assessing its 

potential impacts, a large-scale simulation of 200,000 households was performed. They concluded 

that the remuneration schemes given by the aggregator to the end-users for their load flexibility 

would lead to a more secure and sustainable energy supply.  
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Table 2 – Energy Management System Aggregators Models 

Refer. Manage Requests/Constraints Reward Scheme Objective Function Algorithmic Approach 

[88] Storage PS/EM According to EV 
available power 
capacity 

Maximize the aggregator revenue Dynamic programming 

[121] Load (Thermostatic 
appliances); Micro-

generation 

PS/EM   Maximize load reduction over a control 
period; 

Integer Linear Programming 

[136] Storage (V2G) PS/EM   Maximize revenue Dynamic programming to compute the optimal charging 
control for each vehicle 

[86] 
[137] 

Storage (EV) PS/EM; End-user/ EV 
owner 

  Day-ahead and intraday with supply and 
demand energy bids 

  

[90] Load (Thermostatic 
appliances); Storage (EV) 

PS/EM   Minimize EM   costs Stochastic dynamic programming, for the real-time and 
day-ahead markets. 

[91] Storage (EES) PS/EM   MPC: Scheduling and operation 
strategies in day-ahead and real-time 
power markets with different levels of 
price and load uncertainties 

Linear programming and stochastic optimization 

[28] Load PS/EM   (1) Regulate frequency; (2) Minimize the 
amount of responsive loads manipulated 

Dynamic model in MATLAB/Simulink® 

[127] Load End-user/ EV owner   Minimize a convex combination (overall 
electricity costs, scheduling preferences 
and indoor comfort) 

MILP and heuristic algorithm 

[27] Load PS/EM   TIMES – The integrated Markal Efom 
System 

Energy Technology System Analysis Programme (ETSAP) 

[123] Load     Multi-layered adaptive load management 
(ALM) 

Lagrange decomposition technique 

[113] 
[30] 

Load PS/EM For aggregator to 
end-user; For 
aggregator to 
end-user 

SO: Minimize operational costs; 
Aggregator: Maximize profits; End-user: 
Optimize tradeoffs between income and 
discomfort; 

Optimization model    

[120] Load; Storage     Minimize energy payments CPEX solver in GAMS 

[4] Load PS/EM; End-user/ EV 
owner 

Reward and 
penalties from 
the SO and end-
user 

Maximize EBAg profit, minimize the 
inequity of load flexibility by end-users 

Genetic Algorithm and Differential Evolution 
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[102] Load (commercial 
sector); Storage 

    Minimize end-user costs Deterministic mixed integer linear programming 

[96] Load; Storage; Micro-
generation 

PS/EM   Minimize total costs Mixed-integer quadratic programming; Lagrange 
relaxation 

[99] Storage PS/EM; End-user/ EV 
owner 

Reducing the 
electricity price 

Maximize aggregator profit Stochastic programming: Multi-agent systems and 
dynamic game theory 

[98] Storage PS/EM (local farm of 
wind generation) 

  Minimize the difference between wind 
generation and EV consumption 

Stochastic programming, MILP 

[97] Storage   Cooperation 
compensation 
mechanisms from 
DSO to 
aggregator 

Minimize electricity purchasing costs; 
Minimizef peak loads 

Linear programming combined with heuristic algorithm 

[100, 
138] 

Storage PS/EM; End-user/ EV 
owner 

  Minimize aggregator costs; Maximize 
consumer and producer surplus 

Mixed-integer linear programming 

[128] Load PS/EM; End-user/ EV 
owner 

Based on the load 
provided by the 
end-user 

Maximize aggregator profits Mixed-integer profit function 

[130] Load PS/EM; End-user/ EV 
owner 

  Maximize aggregator profits Bi-level programming, Mixed-integer linear 
programming 
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2.3.3 Energy Management System Aggregators Companies 

Some demand aggregator companies offer electricity end-users the possibility to take part in DR 

activities using their load flexibility. Examples in the USA are: EnerNOC, Comverge, Inc, CPower, 

EnergyConnect, Energy Curtailment Specialist (ECS), and North America Power Partners (NAPP). These 

companies establish individual contracts with their customers, the end-users of electricity. In Europe 

there are energy service companies leading aggregator field tests in Austria, Finland and Sweden. Table 

3 displays some features of these projects, namely the main objective of the aggregator, the customer 

portfolio, and an overview of technologies used to implement the DR programs. 
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Table 3 – Companies in USA and Europe with EBAg of load flexibility [98] 

State or Country/ Company /Reference Aim Customer portfolio Strategy/Technologies 

Massachusetts/ EnerNOC / [204] Energy management services, namely DR 
program design and implementation 

Large customer (<1GW): Industry, 
commercial, services. 
Aggregated power: ~1,000MW. 

Direct control by EnerNOC from operation 
center through customer EMS 

Georgia/ Comverge/ [205] Install and control smart thermostat at the 
customer premises; sell DR to utilities and 
SO 

Residential and small customer  
Aggregated power: ~500MW. 

Smart thermostat and web-portal. In 2010: 
2.5 M load control devices installed 

Manyland /CPower/ [206]  Strategic energy asset management to 
increase customer revenues 

Large customer. A total of ~2,000MW of 
aggregated power. 

Remote operation web-based energy 
management metering. 

California/ Energy Connect/ [207]  Energy Automation Service provider Large customer (<1GW): Industry, 
commercial, government 
 

Energy automation, metering and 
communication 

New York/Energy Curtailment Specialist 
(ECS)/ [208] 

Sell DR to utilities and SO Large customer: Industry, commercial, 
services. 
Aggregated power: ~1,000MW. 

Metering and metering software, control 
center 

New Jersey/ North America Power Partners 
(NAPP) /[209] 

Sell DR to utilities and SO Industrial and commercial 
Aggregated power:~500MW. 

Web-based platform for monitoring and 
self-scheduling 

Austria/ [32] FC from electrical water heaters . Sell DR to 
TSO (Austrian Power Grid AG) 

Residential end-user provide load flexibility 
from electrical heaters 

Remote control. Independent metering and 
communication (via SMS). Profit sharing 
between aggregator and end-user. 

Finland/SEAM/[210] FC from demand response. Aggregates and 
assists end-customers providing capacity to 
the reserve. Sell DR to TSO (Fingrid) 

End-customers (commercial): Provide 
capacity to FCR 
mainly from ventilation equipment. 

Profit sharing between aggregator and end-
user. 
Load control of HVAC systems 

Sweden/ Ngenic/ [211] Control of heat pump. Sell flexibility to DSO, 
TSO, suppliers/BRPs 

Residential sector Temperature sensor, communication to the 
control and temperature forecast. Machine 
learning algorithm which “learns” the 
thermal inertia.  
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Most implementations of DR programs are for large customers; only Comverge, Inc. and Ngenic address 

the residential sector using smart thermostats and controlling the temperature in house to satisfy 

utilities and SO requests.  

EnerNOC and EnergyConnect, Inc. follow a specific procedure to design and implement DR programs: 

first an energy audit is made in the customer installation to evaluate the capability to participate in DR 

programs, then the loads that are flexible and can be controlled are identified, the amount of power that 

is available to be managed and in which periods it is defined, and then an estimate is made of the 

economic benefits for the customer to participate in the DR program as well as the investment needed 

to implement the DR strategies. While the project is under execution, an energy manager focuses on 

monitoring and control actions to reduce energy consumption, creating energy efficiency 

recommendations to improve the economic benefits.    

Cpower is an energy service company (ESCO) aiming to reduce loads in peak periods by controlling the 

load in real time. ECS installs a meter for free at customer’s facility to help managing the energy usage 

more efficiently by displaying the consumption and associated cost in real time. NAPP offers a DR service 

provider from customers, giving financial incentives based on the kW of load reduced to decrease load 

once a month for 15 minutes. It follows the same process as EnerNOC and EnergyConnect, Inc. 

In Austria, electrical water heaters (2 kW) are the target loads in the residential sector, the 

communications being established between the aggregator and the end-user via SMS. The water 

temperature is monitored with a frequency of minutes, and the aggregator remotely controls the heater 

through a control relay, with a temperature sensor and a cellular device. In this way, the load operation 

is shifted in time without causing discomfort to the end-user, and the aggregator can turn on all water 

heaters in sequence to provide a service during a certain period of time. A partnership with a telecom 

utility in Austria was established to provide the communications infrastructure between end-user and 

the aggregator [32].  

SEAM is an aggregator company from Finland [210] working in the day-ahead, the intraday and the 

balancing markets, including frequency control reserve. The procurement procedure for load control is 

divided into two auctions: yearly, remunerated based on a fee, and hourly, approximately 400€/MW 

demand cut. The profits obtained are shared between the aggregator and the end-user. The participant 

customers are large consumers, namely commercial buildings to control the ventilation in cycles of 
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around 3 minutes, which can be rescheduled without discomfort being noticed by the users (due to the 

inertia in air quality).  

Ngenic is an ESCO from Sweden, which develops technologies enabling to control heat pumps remotely, 

to minimize the consumption by scheduling the load according to temperature forecasts and using 

thermal inertia to store heat. An algorithm minimizes the electricity consumption according to price 

signals (€/kWh), thus minimizing the cost for heating [211].  

2.4 CONCLUDING REMARKS  

In this chapter the key characteristics of DR programs and models for the development of EBAg were 

presented. This survey focused on the challenges, potential advantages and (technical and policy) 

barriers that are at stake regarding the implementation of DR programs using EBAg to provide AS 

requested by the SO. These barriers should be addressed to make the most of SG features to enable 

more cost-effective decisions for the efficient operation of the grid with high shares of RES.  

The ongoing transformations of power systems, concerning the dissemination of distributed generation 

and the evolution towards SG, pave the way for the implementation of load follows supply strategies to 

cope with the penetration of RES and ensure an adequate level of power reserve. Load management has 

received special attention from researchers and policy makers as an effective tool to reduce the need 

for additional generation capacity as a backup for volatile RES supply and face disturbances and 

congestions occurring in the grid. Therefore, DR is increasingly important as an enabling strategy for the 

successful integration of RES, in a perspective of integrated energy resource management, involving 

controlling flexible loads according to (price and/or emergency) signals from the SO and end-users’ 

preferences. 

In this context, EBAg recently emerged as new entities acting as mediators between end-users and the 

SO in the EM. In a first stage EBAg, as VPP, were devoted to managing EES resources to store the 

electricity not dispatched, avoiding instabilities in the system. Due to the proliferation of smart 

appliances, EBAg were extended to other types of loads using DR to exploit the flexibility potential of 

end-users regarding the usage of some loads and promoting their access to the EM by selling load 

flexibility and benefiting from rewards or lower energy bills. 
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Attention should be paid to the contracts underlying the relationships between end-users, the EBAg and 

the SO. In principle, the EBAg should establish bilateral contracts with end-users and the SO, with the 

obligation to deliver to the SO the requested load flexibility according to the availability expressed by 

the end-users involving a certain amount of power in specific timeslots. A thorough definition of the 

remuneration scheme is necessary as a way to engage and achieve the loyalty of end-users to the EBAg, 

guaranteeing the implementation of the required changes in the load diagram through specific devices 

or the change of energy consumption behaviors. Therefore, end-users should receive rewards for load 

availability, the load changes effectively provided, and also penalties for not complying with load change 

commitments. Although some studies take the reward schemes into account [155,164,166,175,194,196], 

most studies just address the advantages associated with the electricity tariffs applied.  

The load flexibility offered by an EBAg allows a better management of the power system according to 

the SO requests to match the supply availability in specific areas and periods, taking into account local 

RES.  

The EBAg requires efficient ICT infrastructures, incorporating features associated with the IoT, to interact 

with end-users endowed with home EMS to exchange data and send control signals to manage loads. 

These EMS should be able to monitor and control appliances in the house through robust and low-cost 

communication infrastructures and protocols. The communication of the EBAg with local EMS and the 

SO requires secure and reliable communication infrastructures, offering quality of service support, 

secure routing, interoperability, and scalability to enable the integration of EBAg in a SG context. Special 

attention should also be paid to privacy issues arising from the management of metering data, which 

contains private information and activities or choices of end-users, regarding security vulnerabilities and 

unauthorized access to data. 

Adaptive optimization algorithms should be embedded in the EBAg to compute optimal solutions 

satisfying the constraints derived from the interests and preferences of all stakeholders – the SO, the 

EBAg and end-users. 

The practical implementation of EBAg still faces challenges and barriers that need to be addressed, 

namely regarding adequate regulatory frameworks. For this purpose, a strategic cooperation between 

academia, industry and policy makers is necessary to develop algorithms, technical standards, low cost 

systems, and schemes of seamless integration with the whole power system.   
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3. CHAPTER 3 – MULTI-OBJECTIVE OPTIMIZATION PROBLEMS 

 

3.1 INTRODUCTION 

Many real-world problems comprise the need to optimize simultaneously conflicting objective functions 

addressing multiple evaluation aspects that need to be considered simultaneously to appraise the merit 

of potential solutions. Those aspects of different nature are often combined into a single objective 

function expressed in a common measurement unit, generally an economic indicator; however, this 

combination requires a difficult and arbitrary task: to express an objective function in monetary units 

when it has a quite distinct nature. Moreover, this impairs the analysis of the trade-offs at stake between 

the conflicting objectives. In face of the existence of conflicting objective functions, in general, there is 

no optimal solution to all objective functions simultaneously. In this context, the concept of optimal 

solution, in single objective models, gives place to the concept of non-dominated solutions, that is, a 

feasible solution for which no improvement in all objective functions is simultaneously possible; that is, 

in order to improve an objective function, it is necessary to accept worsening, at least, another objective 

function value.  

The multi-objective optimization algorithms should be able to compute and exploit non-dominated 

solutions enabling to shed light on the tradeoffs at stake to offer decision support information. In 

addition to contributing to turn the model more realistic vis-à-vis actual problems, a multi-objective 

approach intrinsically possesses a value-added role in the modeling process and in model analysis, 

supporting reflection and creativity of DM in face of a larger universe of potential solutions [212]. Thus, 

compromise solutions should be discovered in this set by exploring the trade-offs between the 

competing objectives in order to reach a final recommendation. 

This chapter introduces the basic concepts of MOO problems.  
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3.2 MODELLING MOO PROBLEM 

The development of a MOO study generally comprises the phases of problem formulation, model 

building, model optimization, and decision support involving the articulation of the decision maker’s 

preferences.  

The existence of multiple, conflicting objective functions generates a set of non-dominated solutions, 

which represents different trade-offs between those objectives. In the absence of further information, 

namely regarding the decision maker’s preferences, none of these solutions can be said to be better 

than other belonging to this set.  

The MOO problem can be formulated mathematically as the following: 

Minimize/Maximize   𝒇𝒔(𝒙), 𝒔 = 𝟏, 𝟐, … 𝑺      (3.1) 

Subject to     𝒈𝒎(𝒙) ≥ 𝟎, 𝒎 = 𝟏, 𝟐, … , 𝑴     (3.2) 

       𝒉𝒒(𝒙) = 𝟎, 𝒒 = 𝟏, 𝟐, … , 𝑸    (3.3) 

          𝒍𝒑 ≤ 𝒙𝒑 ≤ 𝒖𝒑, 𝒑 = 𝟏, 𝟐, … , 𝒏                   (3.4) 

x is the decision (variable) vector 𝒙 = (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏), 𝒈𝒎(𝒙) is the vector of inequality constraints, 

𝒉𝒒(𝒙) is the vector of equality constraints, 𝒍𝒑and 𝒖𝒑 are the lower and upper bounds of the decision 

variables, respectively, and 𝒇𝒔(𝒙) is the objective function vector. Images of the decision vectors consist 

of objective function values defined in the objective space in ℝ𝒔. The image of the feasible region in the 

objective space is called feasible objective region. Figure 7 illustrates the representation of these two 

spaces and the mapping between them.  
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Figure 7 - Representation of the decision space and the corresponding objective space. 

 

The problem has M + Q functional constraints, M inequality constraints (3.2) and Q equality constraints 

(3.3), and n decision variables, x = (x1, x2, ..., xn) with lower and upper bounds. The solution x is feasible 

to the problem if and only if it satisfies the M + Q functional constraints and the decision variable bounds. 

The set of all feasible solutions to the problem is called feasible region 𝑿. 

When solving a single-objective optimization (SOP) problem (S=1), the aim is to determine the feasible 

solution that gives the best value for the objective function; this value is unique, even when alternative 

optimal solutions exist. According to the characteristics of the objective function, constraints and 

decision variables, various types of problems exist, which can affect the choice of the methodologies to 

solve the problem. The problem may become harder, or even impossible, to solve to optimality in case 

(some or all) variables can assume only discrete values, objective functions and/or constraints are 

strongly nonlinear, etc.  

 

3.2.1 Pareto Optimal Front 

The Pareto optimal front concept is fundamental in MOO. The Pareto optimal front, also called non-

dominated front, consists of solutions for which none of the objective functions can be improved without 

degrading, at least, one of the other objective function values. 
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MOO methods should be able to guide the search for the Pareto optimal front and to ensure its 

characterization in the most complete way possible to have representative solutions of different trade-

offs to be made between the objectives. Although the primary purpose is common to any optimization 

algorithm, the second is an MOO specific issue; since no solution of the Pareto optimal front can be 

considered better than another, it is important that the algorithm finds representative ranges of distinct 

solutions, which can allow a good characterization of the trade-offs at stake.  

In complex models, e.g. of combinatorial or/and nonlinear nature, the Pareto optimal front can be 

determined by making a population of solutions evolve using different techniques. There are methods 

that order the population of solutions by non-dominated fronts. The non-dominated solutions are placed 

in the first front, and then the non-dominated solutions of the remaining solutions are placed in the 

second front, and so on. In each front all solutions are dominated by at least one element of the previous 

front. 

An illustrative example of a problem with two functions (e.g., cost and losses) to minimize and a set of 

Pareto front solutions is presented in Figure 8. 

 

Figure 8 - Pareto Optimal Front - MOO 

For instance, the point A on the Pareto front represents a non-dominated solution of lower cost, but 

with significant losses; the point B represents a non-dominated solution of higher cost with a lower value 

of losses. It is impossible to say that solution A is better than B or the opposite without using preference 

information elicited from the decision maker. There are many other non-dominated solutions in the 

front, for example solution C, whose values of cost and losses establish another compromise between 



51 

 

the objectives. Points D and E represent dominated solutions of the problem; that is, there are solutions 

on the Pareto optimal front that are better than D and E for both objective functions. 

Searching for non-dominated solutions to the MOO model may require a careful analysis of both the 

decision variable and the objective function spaces. For instance, a certain displacement in the decision 

variable space may not correspond to a similar movement in the objective function space.  Then, it is 

necessary to map the behavior that the algorithm presents in the decision space into the objective 

function space. In some algorithms, the behavior exhibited in the objective space is used to guide the 

search in the decision space. Algorithms should in some way coordinate the search in both spaces, so 

that the generation of new solutions in the decision space is translated into the expected characteristics 

for the solutions in the objective space. 

The choice of a final solution to the MOO problem is generally understood as the identification of a 

compromise solution in the set of non-dominated solutions that best corresponds to the preferences 

expressed by the DM. In some cases, the main purpose is the characterization of the non-dominated 

solutions in the most comprehensive manner possible. 

3.3 EVOLUTIONARY MOO ALGORITHMS 

This section will discuss some of the most prominent approaches developed for solving MOO problems, 

with special focus on EA and Differential Evolutionary (DE), both used to solve the EBAg MOO model 

presented in Chapter 4.  

The adoption of principles based on the natural evolution has gained importance since the 1960s, 

specifically using Darwin’s theory as an analogy in the realm of optimization, consisting in the 

preservation of the characteristics of the best solutions in the population to give rise to solutions for the 

next generation [213]. EA are search and optimization techniques inspired on genetic evolution 

mechanisms of adaptation and survival of the fittest. In general, EA do not make requirements in terms 

of continuity, convexity or differentiability of the functions or search spaces. EA stands for a class of 

stochastic optimization methods that simulate the process of natural evolution that have been proving 

both efficiency, regarding the computational effort involved, and effectiveness, concerning the quality 

of results, in solving difficult optimization problems, namely with combinatorial or/and nonlinear 

features. Since EA work with a population of solutions, they have gained special relevance to solve MOO, 
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in which the aim is to converge to the Pareto optimal front [214], instead of having to perform multiple 

optimization runs with different parameter setting as it happens in the majority of mathematical 

programming methods for MOO [215]. We use the designation EA to encompass broadly also genetic 

algorithms, evolutionary programming and evolution strategies, which have particular characteristics. 

In general terms, the structure of an EA follows the steps: 

- The evolutionary process starts with the generation of an initial population of solutions, 

which can be done in a random manner or using some problem context knowledge. 

- The solutions are evaluated according to a fitness function, that is, the merit of a solution in 

relation to the objective functions or the position of the solution to achieve certain aims, 

which measures their quality and thus is used to guide the search for new solutions [216]. 

The fitness assignment mechanisms are: dominance-based (determine the fitness of an 

individual/solution based on the Pareto dominance concept); scalarizing-based (consists of 

the aggregation of the multiple objectives into a single objective function in order to assign 

a fitness value to each individual of the population); and indicator-based (performance 

indicators to give a fitness value to solutions in the current population). 

- A set of operators is applied to all or part of the population to create a new population for 

the next generation (iteration):  

o Selection - to select solutions from the current population to be subject to the 

genetic operators crossover and/or mutation or to select the solutions that will 

integrate the next generation population. As in natural selection, more apt solution 

(with better fitness) have a higher chance of survival and pass their characteristics 

to their offspring; 

o Crossover or recombination - to combine characteristics of two or more (parent) 

solutions to create one or more (descendant) solutions, hopefully fitter than their 

predecessors; 

o Mutation - to introduce changes at specific points (possibly randomly determined) 

in the structure of some solutions;  

o Replacement - to replace some solutions for the solutions modified with the 

crossover and mutation operators. Solutions with higher fitness are more likely to 
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stay in the population and those having a worse fitness have greater probability to 

be removed.  

This process ends when a stop condition is reached, usually the maximum number of generations or the 

absence of improvement of the population (e.g. the best individual or the average) between consecutive 

generations.  

Since they deal with a population of solutions and the aim is normally identifying the Pareto optimal 

front, EAs endowed with mechanisms to maintain the diversity of solutions present a major advantage 

in comparison to the use of scalarizing techniques commonly used in mathematical programming 

methods [217]. A Pareto front is found throughout the evolutionary process, which hopefully converges 

to the true non-dominated front for the problem under study. In real-world problems, typically a 

potential Pareto front can be found; however, no theoretical tools exist guaranteeing its true Pareto 

optimality. Guaranteeing the diversity of solutions in the Pareto front in order to display the range of 

trade-offs between the conflicting objective functions in different regions of the search space is an 

essential aspect of Multi-objective Evolutionary Algorithm (MOEAs) [218]. This feature is usually 

important to offer to the DM a broader view of the compromises that can be established in diverse 

regions of solutions with different features.  

 

3.3.1 Genetic Algorithm - Based Approach 

The concept of GA was first introduced by Holland in the early 1970s. As the name suggests, GA is 

inspired on the process of natural selection and genetics, using probabilistic computational models. A 

comprehensive description of GAs can be found in [213,219,220]. 

According to the findings presented by Darwin [221], the natural evolution process occurs based on two 

mechanisms: selection and reproduction (genetic variation). Selection ensures that the fittest solutions, 

the ones that have higher capability of adapting to the environment, have major probabilities of survival, 

being able to reproduce more often and giving origin to offspring with fittest characteristics along the 

successive generations.  

In GA, each individual represents a potential solution to the problem and is evaluated according to its 

performance in relation to the problem evaluation function (which can be just the objective function or 
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integrate further elements of analysis such as a penalty term to penalize infeasibilities). Based on the 

result of this evaluation, the genetic operators generate new solutions leading to the next generation. A 

GA works with a set of potential solutions that compete to be selected to generate the parents of the 

next generation. A new generation is created through operators that aim to replicate the genetic 

mechanisms. By recombining parents, new solutions are obtained maintaining some features of their 

predecessors, being the descendants a combination of the parents. Through mutation, new genetic 

material is introduced into the descendants, which allows the emergence of new features in the new 

generations.  

As it can be seen in nature, it is aimed that the evolutionary process generates populations presenting 

increasingly better solutions according to the aim of the optimization problem. Expectedly, the average 

quality of the population increases over generations.  

Considering some population P with NP solutions, a simple GA can be described as: 

Algorithm 1  
1: START 
2: t=0; 
3: Generate an initial population P(t) 
4: Evaluate the solution that compose the initial population P(t) 
5: Repeat: 
6:                Select parents P’(t) based on P (t) 
7:                Apply the genetic operators to P’(t) in order to obtain a new population P(t+1) 
8:                        Crossover P’(t) 
9:                        Mutation P’(t) 
                        Select individual to be inserted in the new population P(t+1) 
11:                t=t+1 
12: Until stop condition is verified 
13: END – Final population 

 

The evolutionary process is repeated until a certain stop condition is reached, for instance a maximum 

number of generations is achieved or the population quality stagnates.  

In each generation the population is evaluated and the solutions of the population are selected 

according to their performance. In a MOO setting, the evaluation procedure of each individual in the 

population requires assessing its merit in the various aspects of the evaluation that are made operational 
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by the objective functions. The selected solutions are recombined through the crossover operator and 

altered by the mutation operator to produce the offspring.  

The main concepts underlying some of these steps will be discussed below, such as encoding 

(representation) of solutions, fitness, selection mechanisms, crossover and mutation genetic operators, 

replacement mechanisms, stopping criteria, diversity preservation and elitism. 

 

3.3.1.1 Solution representation 

In general, the first step to apply a GA is to create a link between the original problem and the space 

where the evolutionary process happens [222] through the representation, or encoding, of solutions.  

The representation most frequently used, which corresponds to the original idea of Holland [219], is the 

binary alphabet to encode the values of each variable, both in its traditional version or in a version called 

the Gray code. This code allows adjacent values of the decision variables to differ by only one binary 

digit. The studies of Bäck [223] demonstrate the superiority of the Gray code in comparison with the 

binary code pattern. However, nothing prevents using representations consisting of real numbers, 

integers and even characters, since in some circumstances these types of representation bring 

advantages in terms of appropriateness to the problem, accuracy or decrease the computational effort. 

 

3.3.1.2 Evaluation of solutions  

The evaluation of solutions consists in the combination of values of individuals of a population 

corresponding to its usefulness in solving a problem. This association happens using an evaluation 

function.  

The evaluation function associates a fitness value to each individual (genotype), that is, this function 

returns, for each individual, a numerical value that reflects its merit, which can be used to obtain the 

individuals rank. While the evaluation function provides a measure of performance for a specific set of 

parameters, being the assessment of an individual independent from the evaluations of others, the 
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fitness function makes the match between the performance measure and the allocation of reproductive 

opportunities, being dependent of other individuals.  

3.3.1.3 Population  

One of the most important aspects is the population size, since this affects both the quality of the 

solutions obtained as well as the processing time of the algorithm. Populations may be of any size, which 

normally remains constant throughout the evolutionary process.  

Small populations have the advantage of imposing lower computational requirements, but generally 

present small genetic diversity of their elements, which can lead to premature convergence and poor 

quality of the solutions obtained. Large populations, in general, allow coping with the lack of diversity 

and prevent premature convergence, but increase the computational effort of the algorithm.  

3.3.1.4 Selection  

The selection is carried out to determine the individuals who will be the parents of the next generation 

through the mechanisms of crossover, and also for the purpose of choosing individuals (descendants) 

that must survive for the next generation. Probabilistic selection can be made in accordance with the 

ability of individuals, such that the ones with higher fitness value are more likely to be selected (thus 

mimicking the selection mechanisms based on the Darwin survival of the fittest principle).  

The mechanisms of selection can be based on the proportion of fitness values and the ordering of the 

fitness values (ranking). The selection ratio mechanism can be based on the individual’s own fitness value 

and the relationship with the fitness values of other individuals in the population. In the case of selection 

based on ordering, the selection is made considering only the position of individual in the sorted 

population, without regarding to its own fitness value. 

The most common selection mechanisms include the roulette wheel and the universal stochastic 

sampling methods. The roulette wheel method [213], Figure 9, is a stochastic selection mechanism in 

which a slice of the roulette wheel proportional to the individual performance is assigned to each 

individual. Thus, individuals with higher fitness have higher odds of being selected. This method has 

some drawbacks, namely it may promote reduced diversity and premature convergence, since the fittest 

individual can be selected many times.  
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Figure 9 - Roulette wheel selection [224] 

 

In the selection by stochastic universal sampling, individuals are associated with equal and contiguous 

portions of a wheel. The method is similar to the roulette wheel, the difference being that all the portions 

are equal, that is, in this case all individuals have the same probability of being selected.  

The selection techniques based on ordering include the tournament and the selection by truncation 

methods. In a tournament selection [213], a number of individuals is randomly chosen in the population 

and the individual with better fitness value is the winner. The tournament is repeated as many times as 

the number of individuals to choose. This method avoids premature convergence if the size of the 

tournament is small, thus preventing the stagnation of the population. In the truncation method, the 

individuals are ordered according to their fitness values and those whose fitness values are larger than 

a predefined threshold are selected. In general, the systematic selection of the best individuals degrades 

diversity.  

The balance between convergence and the exploration of the search space is a crucial issue in the design 

and implementation of evolutionary approaches. Diversity should be maintained to foster exploration 

but the best individuals across generations should not be lost.  
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3.3.1.5 Crossover 

The crossover mechanism is based on the natural biological process that occurs in sexual reproduction. 

The crossover operator allows producing new individuals (descendants) from the information of the 

parents. The underlying idea is to use genetic material (solution components) of individuals (parents) 

with good fitness values to generate new individuals with superior quality in the successive generations 

[225,226]. 

There are several methods of crossover; the most frequently used, according to Baker [227], are 

mentioned below. 

The crossover with a single cut-off point, also called simple crossover, randomly determines a point in 

the individual representation and exchanges the information at the left/right of that point between the 

two parent individuals to produce the descendants. In Figure 10, the application of this type of crossover 

is exemplified considering the cut-off point at position 4. 

 

Figure 10 - Crossover with a cut-off point 

This operator can be used with multiple cut-off points randomly determined. One of the descendants 

receives information sequences of odd indexes of one parent and even indexes of the other parent. In 

Figure 11 the application of this operator with 2 cut-off points at positions 1 and 4 is illustrated. 

 

Figure 11- Crossover with multiple cut-off points 

The uniform crossover method consists in the use of a randomly generated binary mask onto the parent 

individuals. One of the descendants inherits the information from one parent in the positions of the 
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mask with a value 1 and from the other parent in positions of the mask equal to 0. The same happens 

with the other descendant, but with exchanged mask values. 

The performance associated with the application of each of these types of crossover operator depends 

on the type of problem to solve. One aspect that should also be considered when using this genetic 

operator is the crossover probability assignment. The higher the probability, the greater is the possibility 

of new individuals entering into the population. The most common values for the probability of crossover 

lie between 0.6 and 1.0.  

3.3.1.6 Mutation  

Mutation is a genetic operator that consists of slightly disturbing, typically with low probability, the 

descendant individuals, in general after crossover. Mutation serves to introduce new information in the 

population and return lost information to the population. Mutation can consist in randomly determining 

a position in an individual representation and then replacing the value in that position by other value 

associated with the representation used. If there is more than one possible value, it should also be 

randomly chosen. The Figure 12 illustrates the application of uniform mutation to an individual in which 

the binary digit position 3 has been mutated. 

 

Figure 12 – Uniform Mutation 

 

3.3.1.7 Re-Insertion  

After generating and evaluating new solutions, they must be inserted into the population. It is then 

necessary to decide the number of descendants to be selected and the choice mechanisms of individuals 

of the current population that will be replaced.  

For the first decision, a replacement rate is generally defined, which indicates the proportion of 

individuals of the current population that can be replaced in each generation. A low replacement rate 

translates into lower differentiation between generations and implies a slower convergence.  
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There are several mechanisms of substitution, the simplest one generating the number of descendants 

equal to the size of the population and replacing the entire population by the new individuals. The new 

population will then consist of descendants only. This scheme is called pure replacement or re-insertion. 

In uniform replacement, descendants are generated in a smaller number than the size of population, 

replacing randomly chosen individuals of the current population.  

The replacement can also ensure that the best individuals found along the search remain in the 

population. In elitist replacement, an elite set is defined which is constituted by the best individuals 

found so far. The number of descendants generated is less than the size of the population. Descendants 

replace individuals in the population that are not part of the elite set. The choice of the number of elite 

individuals is directly related to the selection pressure, that is, the higher this number the more 

influential elite individuals tend to be in the search process and the diversity of the population may tend 

to decrease.  

3.3.1.8 Diversity  

A key feature for the proper functioning of an evolutionary approach is the existence of diversity 

between individuals of the population. The diversity of the population is a measure associated with 

differentiation of solutions in the space of solutions. If the individuals are very similar, diversity is low 

and the crossover operator has no ability to exchange useful information among individuals, thus making 

the progress of the search very slow or even the population to stagnate. If diversity is high, the possibility 

of escaping from just local optima increases because it is possible to explore more comprehensively the 

search space. Typically, a larger population shows greater diversity, but the computational effort to 

control a big population may be prohibitive.  

3.3.1.9 Stop Criteria 

The condition to stop the search process may be associated either to the point of evolution reached (i.e. 

quality of solutions already computed) or to the computational effort measured in execution time of the 

algorithm.  

According to Eiben and Smith [228], generally the end of the search process occurs when it hits one or 

more of the following conditions:  
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- Maximum number of generations;  

- No significant improvement of the solutions for a number of consecutive generations;  

- Minimum value for the standard deviation of the fitness value of the solutions in the 

population; 

- Maximum CPU time;  

- Minimum limit of population diversity;  

- A "good solution" has been obtained, if it is possible to make this assessment.  

 

3.3.2 Differential Evolution - Based Approach 

In this section, the Differential Evolution (DE) algorithm to solve optimization problems is presented, 

which was proposed in 1995 by Storn and Price [229]. DE is characterized by using a simple mutation 

operator based on the difference between vectors, that is, a pair of solutions, to find a search direction 

based on the solution distribution in the population. 

DE has been attracting the attention of researchers from different areas of knowledge, as can be seen 

by the increasing number of publications originating DE-based variants [229–232]. 

The algorithm incorporates a mutation operator, which is applied after crossover with a certain 

probability, in order to add a small variation to the variables. Moreover, DE uses a scheme similar to a 

replacement tool, where the new generated offspring (trial vector) enters into competition with its 

matching parent (old object vector) and substitutes it if the offspring has greater fitness value. DE shares 

some characteristic with evolutionary approaches and also some differences [233]. The similarities are 

the following: DE is a population-based approach, recombination and mutation are the variation 

operators used to generate new solutions and a replacement mechanism provides capabilities to 

maintain a fixed size population. The self-adapting characteristic of differential mutation gives DE very 

interesting qualities regarding optimization such as robustness, versatility and efficiency. 

Solutions in DE are generally encoded with real values but DE does not use a fixed distribution (as the 

Gaussian distribution adopted in Evolutionary Strategies) to control the behavior of the mutation 

operator; instead, the current distribution of solutions in the search space determines the step sizes and 

the search direction of each individual. This latter feature seems to be one of its main advantages [233].  
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A vector obtained by the difference of two randomly selected vectors is added to a third individual (base 

vector) also randomly selected, creating a new mutant solution: 

𝒗𝒕,𝒊 = 𝒙𝒕,𝒓𝟏
+ 𝑭(𝒙𝒕,𝒓𝟐

− 𝒙𝒕,𝒓𝟑
),     𝒓𝟏, 𝒓𝟐, 𝒓𝟑 ∈  {𝟏, . . . ,𝜨𝑷}     (4.3) 

Where F is a scale factor applied to the difference vector and NP is the population size. 

This procedure is used to obtain a mutant population Vt =  {vt,I; i= 1,…,NP}. Then the population individuals 

Xt are recombined with individuals of the mutant population producing test solutions Ut. 

3.3.2.1 Differential Evolution Variants 

There are some variants of the DE algorithm. The notation is defined by DE/x/y/z, where x denotes the 

donor vector, y denotes the number of different vectors used, and z represents the crossover method.  

The most popular variant is called “DE/rand/1/bin”, where “rand” indicates that the donor vector is 

chosen at random, “1” is the number of pairs of solutions chosen (often at random) to calculate the 

differential mutation and “bin” means that a binomial recombination is used.  

The corresponding algorithm of this variant is presented in: 

DE/rand/1/bin" algorithm pseudocode: 

1: G=0 
2: Create a random initial population xi,G ∀𝑖, 𝑖 = 1, … , 𝑁𝑃 
3: While a stopping criteria is not met Do 
4:     For i=1 to NP Do 
5:        Select randomly 𝑟1,𝑟2, 𝑟3 ϵ {1, 2, … , NP} 

6:        𝑗𝑟𝑎𝑛𝑑 : = 𝑟𝑎𝑛𝑑𝑖𝑛𝑡(1, 𝐷) 
7:       For j=1 to D Do 
8:           If (randj[0,1]<CR or j=jrand) Then 
9:                   𝑢𝑖,𝑗,𝐺+1: = 𝑥𝑟3,𝑗,𝐺 + 𝐹(𝑥𝑟1,𝑗,𝐺 − 𝑥𝑟2,𝑗,𝐺) 

10:           Else 
11:                  𝑢𝑖,𝑗,𝐺+1: = 𝑥𝑖,𝑗,𝐺 

12:          End If 
13:         End for 
14: End for 
15: For i=1 to NP Do 
16:      If (𝑓(𝑢𝑖,𝐺+1) ≤ 𝑓 (𝑥𝑖,𝐺)) 𝐓𝐡𝐞𝐧 

17:                𝑥𝑖,𝐺+1: = 𝑢𝑖,𝐺+1 

18:     Else 
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19:  𝑥𝑖,𝐺+1: = 𝑥𝑖,𝐺  

20:     End If 
21:   End for 
22:   G=G+1 
23: End while 

Where: 

Randint (min, max) is a function that returns an integer number between min and max.  

“rand” [0,1] is a function that returns a real number between 0 and 1.  

Both are based on a uniform probability distribution. 

NP is population dimension. 

“MAX_GEN” is the maximum number of generations. 

“D” number of variables.  

“CR” [0,1] is a parameter that controls the number of values of  𝒖𝒊,𝒋,𝑮+𝟏 that are copied from the mutation 

vector. As close to 1 the C value is, the higher is the chance that the new solution contains values from 

the mutation vector. 

F is a scalar factor applied to the difference vector that determines the influence of the pairs of solutions 

selected to compute the mutation value (one pair in the case of the DE/rand/1/bin algorithm) [234]. 

Figure 13 illustrates the DE mutation and recombination operator in its most popular variant 

(DE/rand/1/bin). In Figure 13, 𝒙𝒓𝟑
 is the donor individual chosen at random (but it can be the best 

solution in the population in other variants),  𝒙𝒓𝟏
 and 𝒙𝒓𝟐

are the individuals chosen at random to 

compute the difference vector in order to define a search direction. The black circles represents the 

mutation vector, which can be the location of the only offspring generated after performing 

recombination. Additionally, the filled squares are the other two possible locations for the only offspring 

after recombination 
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Figure 13 – Example of DE/rand/1/bin recombination and mutation operators [235]. 

 

As it was mentioned, the difference among the DE variants lies mostly on the technique the donor 

solution (from the pair chosen to compute the “mutation vector”) is selected, the number of pairs of 

randomly chosen solutions and the type of recombination operator adopted. The main variants are 

[234]: 

Variants with discrete recombination operator (either binomial or exponential): 

- DE/rand/1/bin 

- DE/rand/1/exp 

- DE/best/1/bin 

- DE/best/1/exp 

The “rand” variants select the donor solution (𝒙𝒓𝟑
) and the pair of solutions to calculate the differential 

mutation (𝒙𝒓𝟏
and 𝒙𝒓𝟐

) at random. In contrast, the “best” variants use the best solution in the population 

as the donor solution and the pair of solutions is chosen at random. 

Variants with arithmetic recombination: 

- DE/ current-to-rand/ 1 

- DE/ current-to-best/1 

The only difference between these variants is that the first one selects the donor solution (𝒙𝒓𝟑
) and the 

pair of solutions to calculate the differential mutation (𝒙𝒓𝟏
 and 𝒙𝒓𝟐

) at random. The second one uses the 

best solution in the population as the donor solution.  
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Variants with combined arithmetic discrete recombination: 

- DE/ current-to-rand/ 1/bin 

The implementation details of each DE variation are summarized in  

Table 4 , where perturbations of the donor vector by the mutation operator are presented.  

 

Table 4 - DE basic variants [235] 

Variant 

Rand/p/bin: 

𝑢𝑖,𝑗 =  {
𝑥𝑟3,𝑗 + 𝐹. ∑ (𝑥𝑟1

𝑝
,𝑗 − 𝑥𝑟2

𝑝
,𝑗)  𝑓𝑟𝑜𝑚 𝑈𝑗(0,1) < 𝐶𝑅 𝑜𝑟 𝑗 = 𝑗𝑟

𝑝

𝑘=1

𝑥𝑖,𝑗                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Rand/p/exp: 

𝑢𝑖,𝑗 =  {
𝑥𝑟3,𝑗 +  𝐹. ∑ (𝑥𝑟1

𝑝
,𝑗 − 𝑥𝑟2

𝑝
,𝑗)  𝑓𝑟𝑜𝑚 𝑈𝑗(0,1) < 𝐶𝑅 𝑜𝑟 𝑗 = 𝑗𝑟

𝑝

𝑘=1

𝑥𝑖,𝑗                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Best/p/bin: 

𝑢𝑖,𝑗 =  {
𝑥𝑏𝑒𝑠𝑡,𝑗 + 𝐹. ∑ (𝑥𝑟1

𝑝
,𝑗 − 𝑥𝑟2

𝑝
,𝑗)  𝑓𝑟𝑜𝑚 𝑈𝑗(0,1) < 𝐶𝑅 𝑜𝑟 𝑗 = 𝑗𝑟

𝑝

𝑘=1

𝑥𝑖,𝑗                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Best/p/exp: 

𝑢𝑖,𝑗 =  {
𝑥𝑏𝑒𝑠𝑡,𝑗 + 𝐹. ∑ (𝑥𝑟1

𝑝
,𝑗 − 𝑥𝑟2

𝑝
,𝑗)  𝑓𝑟𝑜𝑚 𝑈𝑗(0,1) < 𝐶𝑅 𝑜𝑟 𝑗 = 𝑗𝑟

𝑝

𝑘=1

𝑥𝑖,𝑗                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Current-to-rand/p: 

𝑢𝑖 =  𝑥𝑖 + 𝐾. (𝑥𝑟3 − 𝑥𝑖) + 𝐹. ∑ (𝑥𝑟1
𝑝 − 𝑥𝑟2

𝑝)

𝑝

𝑘=1

 

Current-to-best/p: 

𝑢𝑖 =  𝑥𝑖 + 𝐾. (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖) + 𝐹. ∑ (𝑥𝑟1
𝑝 − 𝑥𝑟2

𝑝)

𝑝

𝑘=1

 

Current-to-rand/p/bin: 

𝑢𝑖,𝑗 =  {
𝑥𝑖,𝑗 + 𝐾. (𝑥𝑟3,𝑗 − 𝑥𝑖,𝑗) + 𝐹. ∑ (𝑥𝑟1

𝑝
,𝑗 − 𝑥𝑟2

𝑝
,𝑗)

𝑝

𝑘=1

    𝑖𝑓  𝑈𝑗(0,1) < 𝐶𝑅   𝑜𝑟  𝑗 = 𝑗𝑟

𝑥𝑖,𝑗                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

jr is a random integer number generated in the interval [0,n], where n is the number of variables of the 

problem. Uj (0,1) is a real number generated at random between 0 and 1. Both numbers are generated 
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using a uniform distribution. p is the number of pairs of solutions used to calculate the differences in the 

mutation operator. ui is the offspring (or trial vector), xr3 is the donor solution chosen at random, xbest is 

the best solution in the population as donor solution, xi is the current parent (old object vector) and xr1
p 

and xr2
p are the pth pair to compute the differential mutation. 

3.4 EVOLUTIONARY MOO APPROACHES 

In the first applications of EA to solve MOO problems in practice, mostly weighted-sum approaches were 

used [236,237]. Goldberg [213] suggested the use of the dominance relation to sort individuals in a 

population. In the Multi-Objective GA (MOGA) [238], all individuals are assigned a rank depending on 

how many solutions dominate a specific solution. The selection procedure then chooses lower rank 

solutions to form the mating pool. Since the fitness of an individual is its rank, many population members 

have the same fitness. MOGA then uses a niching procedure to promote diversity in the population.  

The Niched-Pareto GA (NPGA) utilized a Pareto dominance tournament [239]. In this technique, a 

comparison set comprising a specific number of individuals is randomly chosen from the population at 

the beginning of the selection procedure. An individual is then randomly chosen from the population, 

being compared with a member of the comparison set for dominance assessment. The non-dominated 

individual is selected; if none individual dominates the other, the individual presenting the lower value 

of niche counting is selected to ensure a certain distance between individuals in the decision variable 

space.  

Elite-preserving operators favour the best individuals in the population by giving them the opportunity 

to be directly carried over to the next generation. In general, elitism improves convergence to the global 

optimal solution, in single objective problems, or to the Pareto optimal front, in MOO problems, because 

the preservation of very good solutions enhances the probability of creating better offspring. Although 

the presence of elitism can contribute to improve the performance of a MOO EA, it may also cause loss 

of diversity. The balance between the convergence to the Pareto front and solution diversity requires a 

controlled elitism in MOO with EA. The Non-dominated Sorting GA II (NSGA) is presently the most well-

known EA devoted to MOO [240]. Other examples of elitist approaches are the Strength Pareto EA (SPEA) 

[241] and SPEA 2 [242].  
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3.4.1 Non-elitist approaches  

3.4.1.1 Vector Evaluated Genetic Algorithm (VEGA)  

VEGA was the first approach of a GA for calculating non-dominated solutions to a MOO problem [243]. 

The population at any generation is divided into NP/M subpopulations, where M is the number of 

objectives and NP is the population size. A fitness value based on the corresponding objective function 

only is assigned to each individual in each subpopulation. The selection procedure emphasizes good 

solutions for each objective function. The crossover operator between two good solutions, each 

corresponding to a different objective, is used to generate offspring that are good compromise solutions.  

The proposed approach differs from a standard GA in the way fitness is assigned to each solution in the 

population. The rest of the algorithm (using stochastic universal selection, single point crossover, and 

bit-wise mutation) is the same as that in a classical GA. In order to maintain diversity among non-

dominated solutions, niching among solutions in each rank is introduced. Despite each solution is 

evaluated only for an objective function during the process of selection, which in general impairs 

reaching good convergence to Pareto optimal solutions, this algorithm is a reference for its simplicity 

and because it pioneered the implementation of GA to deal with MOO problems.  

3.4.1.2 Weight-based Genetic Algorithm (WBGA)  

The WBGA was introduced by Hajela and Lin [244]. In this algorithm each objective function fm (x) is 

multiplied by a weight wm (m = 1, ..., M). Every individual consists not only of the decision variables, but 

also their associated weights. The fitness values of individuals in the population are determined using a 

weighted-sum method in each iteration, leading to several non-dominated solutions corresponding to 

various combinations of weights.  

3.4.1.3 Multiple Objective Genetic Algorithm (MOGA)  

Fonseca and Fleming [238] proposed MOGA, which was the first approach to explicitly use the concept 

of non-dominance and simultaneously preserve the diversity of population. The main feature of MOGA 

lies on how fitness is assigned to each solution. The classification of a particular individual in the 

population is proportional to the number of individuals it dominates. MOGA uses stochastic universal 

selection, one-point crossover and simple binary mutation. In order to ensure diversity in the population, 
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Fonseca and Fleming [238] introduced a strategy based on a niche scheme between solutions with the 

same classification.  

3.4.1.4 Non-dominated Sorting EA (NSGA)  

The classification of the solutions by levels of dominance proposed by Goldberg [213] was implemented 

in its entirety by Deb and Srinivas [245], in an approach called Non-dominated Sorting GA (NSGA). As 

MOGA, this algorithm also uses selection based on the dominance concept to rank the solutions. In this 

algorithm, there is a mechanism to distribute solutions in levels of dominance and other to preserve the 

diversity among solutions in each non-dominated front. The fitness assignment process starts from the 

initial non-dominated set and consecutively goes to dominated sets. A solution i of the first non-

dominated set is assigned a fitness value Fi = NP, where NP is the population size. In order to promote 

diversity, the sharing function method is used, which degrades the fitness value based on the number of 

neighboring solutions. A sharing function is calculated based on the distance between solutions. After 

the computation of the sharing function values, the niche count of each solution is calculated, which 

denotes the number of solutions in its neighborhood. The procedure of debasing the fitness of a solution 

highlights solutions in less crowded regions of the search space. This procedure completes the fitness 

assignment procedure of all solutions in the first front. Thereafter, a fitness value slightly smaller than 

the minimum shared fitness in the first front is assigned to solutions in the second non-dominated front, 

guaranteeing that solutions in the first front present a shared fitness better than the solutions in the 

second front. Finally, the assigned shared fitness is used to select the mating pool and genetic operators 

are applied to produce a new population. The other genetic operators, crossover and mutation, are used 

in the usual way on the entire population.  

3.4.1.5 Niched-Pareto EA (NPGA)  

The Niched-Pareto GA (NPGA) was proposed by Horn [239], differing from the previous approaches 

essentially in the type of selection mechanism. Unlike other approaches (VEGA, NSGA and MOGA) 

applying the proportional fitness selection, NPGA combines the technique of sharing fitness value with 

a mechanism by tournament selection.  
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The algorithms mentioned in this section do not use any strategy of maintenance in the population of 

the best individuals found in the search. There are, however, several mechanisms to protect these 

solutions, which are used in approaches classified as elitist.  

3.4.2 Elitist approaches  

The non-elitist MOO EA do not implement explicit mechanisms to preserve the best individuals in the 

evolutionary process. The “second generation” MOO EA implement elite-preserving operators in 

different ways, such as NSGA-II [246], Strength Pareto EA (SPEA) [242], Pareto-archived ES (PAES) [247], 

and others. Algorithms with elitist behavior ensure that the best individuals are kept in the population, 

avoiding the possible degradation of the population performance. 

Unlike what happens in single-objective EA, incorporating elitism in MOEA may not be trivial. In the case 

of MOO problems, in general, a set of candidate (non-dominated) solutions exists in every generation 

and therefore it must be decided which and how solutions are selected. Simply choosing all non-

dominated solutions is not the most appropriate in situations where there are many solutions in these 

circumstances.  

Several mechanisms have been developed to implement elitism, although the most common is 

maintaining an external population with (a selection of) non-dominated individuals in the current 

generation. The way this population of elected individuals influences the main population varies from 

algorithm to algorithm.  

Here were only refer to three MOEA with elitist behavior (SPEA, NSGA II and SPEA 2), which are the ones 

most reported in the literature, with a large number of applications.  

3.4.2.1 Strength Pareto EA (SPEA)  

The Strength Pareto Evolutionary Algorithm (SPEA) was proposed in [241] as an elitist multi-objective EA 

based on non-dominance. An external population is maintained, keeping the non-dominated solutions 

that are obtained in each generation. The selection process uses a combination of the degree to which 

a candidate solution is dominated (strength) and an estimation of density of the non-dominated front 

to assign the fitness. Solutions that dominate more solutions have a better fitness. 
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3.4.2.2 Strength Pareto EA 2 (SPEA 2)  

An improved version of SPEA was presented in [242], which was called SPEA 2. 

The main differences of SPEA 2 with respect to SPEA are:  

1. The mechanism to determine the fitness of a given solution uses a strategy based on the number 

of solutions that dominate it and the number of solutions that are dominated by it.   

2. The mechanism incorporates an additional technique to estimate the density of non-dominated 

solutions in a given search space region, in order to discriminate solutions with similar 

characteristics in terms of the non-dominance relation.   

3. A method is applied to the external population to preserve the best extreme solutions in this 

population (solutions with the best values for each objective function). 

4. Only solutions in the external population participate in the selection process. 

5. A modified clustering algorithm is used based on the k-th nearest neighbors distance estimates 

for each cluster [248].  

6. As the size of the external population is constant, it can also contain dominated solutions.  

3.4.2.3 Elitist Non-dominated Sorting EA (NSGA - II)  

The Non-dominated Sorting GA II (NSGA II) is presently the most well-known EA devoted to MOO [240]. 

It diverges from MOGA in fitness assignment and the technique used to compute the niching. The Elitist 

Non-dominated Sorting Genetic Algorithm (NSGA-II) was presented in [246,249], which uses not just an 

elite-preserving strategy but also an explicit diversity-preserving mechanism.  

NSGA II implements an efficient procedure for introducing elitism into an MOO EA while also promoting 

diversity. In NSGA II, in generation (iteration) t, the offspring population Et is created by using the parent 

population Dt both of size NP. However, instead of finding the non-dominated front of Et only, first the 

two populations are combined together to form a population Rt of size 2NP. This population is classified 

with a non-dominated sorting algorithm. Although this requires more effort compared with performing 

a non-dominated sorting on Et alone, it allows a non-dominance check among offspring and parent 

solutions. Then the new population is filled by solutions of different non-dominated fronts, one at a time. 

The process begins with the best non-dominated front and proceeds with solutions of the second non-

dominated front (that is, the non-dominated front after the solutions of the first front have been 
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removed), and so on. Since the size of Rt is 2NP, not all fronts can be accommodated in the NP slots 

available in the new population. When the last front is being considered, there may be more solutions 

in the last front than the remaining slots in the new population. Instead of arbitrarily discarding some 

members from the last front, a niching strategy is used to choose the members of the last front that 

reside in the least crowded region in that front. This scheme is illustrated in Figure 14. 

Initially, a random population D0 is created. The population is sorted into different non-dominance levels. 

Each solution is assigned a fitness equal to its non-dominance level (1 will be assigned to the first non-

dominated front). Accordingly, it will be assumed the minimization of the fitness. Binary tournament 

selection, recombination and mutation operators are used to create an offspring population E0, of size 

N. The stopping criterion is the number of generations (iterations).  

Step 1 Combine parent and offspring populations to create Rt = Dt  Et. Perform a non-dominated sorting 

in Rt and identify different fronts Fi, i = 1, 2, …. 

Step 2 Set a new population Dt+1 :=  . Set counter i=1.  

While |Dt+1|+|Fi|  N, do Dt+1 :=  Dt+1  Fi and i := i +1. 

Step 3 Perform the Crowding-sort (Fi  c) procedure (mentioned below) and include the most widely 

spread solutions into Dt+1, by using the crowded distance values in the sorted Fi. 

Step 4 Create an offspring population Et+1 from Dt+1 by using the binary crowding tournament selection, 

crossover and mutation operators. 

The process of non-dominated sorting and filling the population Dt+1 steps can be performed together, 

so that every time a non-dominated front is found its size can be used to check if it can be included in 

Dt+1. If this is not possible, no more sorting is needed.  

In Step 3, the crowding-sorting of the solutions in front Fi, which is the last front that could not be 

completely accommodated, is performed by using a crowded-distance. The crowding comparison 

operator compares two solutions and returns the winner of the tournament. The winner is selected 

based on two attributes: the non-dominance ranking ri and the local crowding distance di, in the 

population. This crowding distance attribute of a solution i is a measure of the search space around i, 

which is not occupied by any other solution in the population. di is an estimate of the perimeter of the 
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cuboid formed by using the nearest neighbours as the vertices (which is called the crowding distance; 

Figure 15). Based on ri and di the binary crowding tournament selection operator works as follows - a 

solution i wins a tournament over another solution j if any of the following conditions are true:  

1. If ri  rj (this makes sure that the solution chosen lies on a better non-dominated front). 

2. If ri = rj and di > dj (this is applied when both solutions lie on the same front and the condition 

above cannot be applied; in this case the solution residing in a less crowded area, with a larger 

di, wins). 

A detailed explanation of NSGA II can be found in [246,249]. 

 

Figure 14 - Schematic operation of the NSGA-II procedure [250] 

 

Figure 15 - The crowded distance calculation [235] 
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3.4.2.4 Non-dominated Sorting Differential Evolution (NSDE) 

The Non-dominated Sorting Differential Evolution (NSDE) was proposed in [251], which is based on 

NSGA-II, with small modifications as presented in [246]. The crossover and mutation operators in NSGA-

II are replaced in NSDE by the DE operators. Novel individuals are generated using the DE/current-to-

rand/1/variant. 

3.5 CONCLUDING REMARKS 

This chapter briefly presented the characteristics of some MOEA that have gained a large acceptance in 

the scientific community. These evolutionary approaches have shown to be of great utility in solving 

complex MOO problems due to their adaptive nature to the particularities of the problems.  

In most complex MOO problems, the presence of conflicting and incommensurable objectives generally 

leads to a very high number of non-dominated solutions. EAs working with solution populations 

overcome the problem of calculating only one solution at each iteration (as in scalarizing approaches), 

inspecting the search space faster and more effectively.  
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4. CHAPTER 4 - A MULTI-OBJECTIVE MODEL FOR THE ENERGY BOX AGGREGATOR  

 

The aim of this chapter is to develop a model representing a framework for the EBAg role in the electric 

power system. This comprises the information that is transmitted from an LEB to the EBAg and the 

relationships between the LEB and the SO. 

The large-scale deployment of LEB imposes an essential challenge concerning the coordination of grid 

and end-user objectives. I.e., requests from the grid should be weighed against end-user flexibility to 

shift or shed loads. In this setting, the EBAg will gather flexibility from the end-users associated with it 

by means of LEB, requiring them to adjust their daily load profile, using a remuneration scheme specified 

in a contract with end-users associated in clusters. A critical issue is the incentive paid to the end-users 

to participate in these demand management programs and provide load operation flexibility in a cost 

effective way for all stakeholders.  

Thereby, the EBAg is able to sell the flexibility gathered from consumer clusters and presenting offers to 

the grid, according to its requests, in the form of ancillary services, with the aim of offering benefits to 

all entities involved (increasing retail profits, decreasing consumption costs). The EBAg will be able to 

receive signals from the SO and take appropriate actions to avoid violation of grid operational constraints. 

For instance, in case of abnormal operating conditions, the SO can request the EBAg load increasing or 

decreasing, in each time slot. The interaction with the SO may be also important for solving congestions 

in the distribution grid.  

4.1 MOO MODEL FOR THE EBAG 

The MOO model includes two objective functions: 

F1 (economic function) - the aim is to maximize the EBAg profits, taking into account the remuneration 

for selling the load flexibility obtained from the end-user clusters to the SO, the rewards paid to each 

cluster, the penalties paid to the SO for not meeting the flexibility requests and the sanctions applied to 

each cluster for the amount of flexibility compromised with the cluster and not made available. 
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The load flexibility provided by each cluster is considered as uncertain since the end-user can decide to 

use loads that were previously committed as available; in this way the cluster is considered as not 

entirely reliable and therefore a range of reliability applies, i.e. a degree of reliability associated with 

each cluster is generated within a certain pre-defined range or even for each time slot.  

F2 (Fairness function) – the aim is to minimize the inequity (imbalance) among clusters, i.e., minimizing 

the maximum relative difference between the load flexibility offered by the clusters and the one actually 

used by the EBAg, as a surrogate for fairness in the usage of end-user load flexibility. 

The data used in mathematical models are frequently uncertain [252], since data often result from 

assumptions done based on the context of the problem, prediction and forecast of occurrences, 

measurements subject to errors, etc. In our case, we used some real data from audits, gathered from 50 

end-users 24/7 during one year, which were useful to obtain a realistic sample, although with some 

dimension and representativeness limitations.   

Indices 

c = 1,2, …C – Identify the cluster, where C is the number of clusters associated with the EBAg. Each cluster 

gathers a set of end-users (LEB). 

t = 1,2,…T – Identify the time slot, considering a time resolution of 15 minutes (T=96 time slots in one 

day). 

Coefficients 

I+
t - Reward paid by the SO to the EBAg for the flexibility provided (load decrease, i.e., power decrease), 

in each time slot t. 

I-
t - Reward paid by the SO to the EBAg for the flexibility provided (load increase), in each time slot t. 

E+
t - Reward paid by the EBAg to the clusters (equal for all clusters) for the flexibility used (load shedding, 

i.e. effective load decreased), in each time slot t, according to the EBAg requests. 

E-
t - Reward paid by the EBAg to the clusters (equal for all clusters) for the flexibility used (load increase), 

in each time slot t. 
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F+
t - Penalty paid by the EBAg to the SO for not complying with the contracted flexibility (load shedding, 

i.e., power decrease), in each time slot t. 

F-
t - Penalty paid by the EBAg to the SO for not complying with the contracted flexibility (load increase), 

in each time slot t. 

C+
ct - Penalty applied by the EBAg to the cluster c for the amount of flexibility not used (load decrease), 

in each time slot t. 

C-
ct - Penalty applied by the EBAg to the cluster c for the amount of flexibility not used (load increase), in 

each time slot t. 

R+
t – Power reduction (load shedding/shifting) requested by the SO to the EBAg, in each time slot t.  

R-
t – Power increase requested by the SO to the EBAg, in each time slot t. 

Dmax
+

ct - Maximum value of power that cluster c can offer to the EBAg (decrease) in each time slot t. 

Dmax
-
ct - Maximum value of power that cluster c can offer to the EBAg (increase) in each time slot t. 

∂+
c - Minimum fraction of Dmax

+
ct that cluster c may offer to decrease load (positive flexibility margin). 

∂-
c - Minimum fraction of Dmax

-
ct that cluster c may offer to increase load (negative flexibility margin). 

D+
ct – Amount of power that cluster c can to decrease, in each time slot t, accounting for a range of 

variation in the cluster response.  

D-
ct – Amount of power that cluster c can to increase, in each time slot t, accounting for a range of 

variation in the cluster response. 

D+
ct = rand(∂+

c,1) Dmax
+

ct 

D-
ct = rand(∂-

c,1) Dmax
-
ct 

In this way, D+
ct and D-

ct account for the uncertainty associated with the flexibility effectively provided by 

end-user clusters. 
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Decision variables 

P+
t – Amount of power (kW) that the EBAg offers to the SO, in each time slot t, corresponding to load 

shedding/shifting (power decrease).  

P-
t – Amount of power (kW) that the EBAg offers to the SO, in each time slot t, corresponding to power 

increase.  

P+
t. P-

t = 0 

L+
ct – Amount of power that the EBAg uses from cluster c corresponding to power decrease (load 

shedding/shifting) in each time slot t.  

L-
ct – Amount of power that the EBAg uses from cluster c corresponding to power to increase in each 

time slot t.  

L+
ct . L-

ct = 0 

Objective functions 

Maximizing the EBAg profits, taking into account the revenues of selling the load flexibility obtained from 

the end-user clusters to the grid and the rewards given to the clusters as well as the penalties paid to 

the grid for not meeting the flexibility requested and to the clusters for flexibility made available and not 

used:  
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Minimizing inequity among clusters, i.e., minimizing the maximum relative difference between the load 

flexibility provided by the clusters and the one used by the EBAg: 

minz2 = max
c

(Lct - Dct )
t

å / Dct

 

Constraints 

The amount of power that the EBAg uses from cluster c to decrease/increase cannot be higher than the 

amount of power to decrease/increase offered by cluster c in time slot t: 
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L+
ct ≤ D+

ct , for all c,t 

L-
ct ≤ D-

ct , for all c,t 

The amount of power that the EBAg offers to the grid to decrease/increase cannot be higher than the 

amount of power required to decrease/increase in each time slot t: 

0 ≤ P+
t ≤ R+

t , for all t 

0 ≤ P-
t ≤ R-

t, for all t 

The amount of power that the EBAg offers to the grid to decrease/increase shall not be higher than the 

total amount of power used to decrease/increase from what is offered by the clusters in time slot t: 

0 ≤ 𝑃𝑡
+ ≤  ∑ ∑ 𝐿𝑐𝑡

+

𝑡𝑐

 

≤ 𝑃𝑡
− ≤ ∑ ∑ 𝐿𝑐𝑡

−

𝑡𝑐

  

4.2 CASE STUDY 

Experiments have been done based on real data collected using the Cloogy device (www.cloogy.pt) 

during one year, January 2013 to January 2014, of continuous (24/7) monitoring of electrical energy 

consumption with a time resolution of 15 minutes. These data provided a realistic basis for the 

specification of clusters, energy prices, baseline load profiles and load flexibility offered by each cluster.  

Cloogy is an HEMS for the residential sector, based on a fully interactive ICT infrastructure, which allows 

the end-user to monitor global and individual consumption and control electrical appliances, helping 

them to optimize the use of electricity by appliances and reduce the energy bill. Cloogy was developed 

be ISA – Intelligent Sensing Anywhere, S.A. with the aim to be an easy plug and play solution that any 

homeowner can quickly install. The global architecture of the solution can be seen in Figure 16 and the 

technical specifications in Figure 17. 

 

http://www.cloogy.pt/
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Figure 16 - Cloogy Global Architecture [33] 

 

Figure 17 - Cloogy Technical Specifications[33] 
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The sample was composed of 30 end-users in the region of Coimbra and 20 in the region of Lisbon, in 

Portugal, with 18 250 daily load diagrams analyzed. 

A selection of 9 000 daily load diagrams was used. These load diagrams were aggregated into clusters, 

i.e. groups of end-users with similar features of their electricity consumption profile based on their 

consumption average and load factor (ratio average load/peak load in a specific time period), as can be 

seen in Figure 18. The cluster A includes the end-users with a load factor between 0-5% and the cluster 

T contain the clients with load factor of 95-100% (Table 5).  

The EBAg requires information about the response of each cluster to the request signals. Since this may 

be uncertain there is a confidence parameter associated with each cluster to take into account human 

factors and variability of energy consumption behaviors. Each cluster indicates to the EBAg its load 

flexibility margin for each time slot, reflecting the cluster availability to reduce/increase the load thus 

changing the load profile. This information derives from historical data. The positive and negative load 

flexibility margins are displayed from Figure 28 to Figure 36, which means that the clusters are able to 

reduce and increase their load, respectively.  

These flexibility margins were assumed according to previous work of categorization of the load in 

households. Although some studies [253–255] indicate that with the use of HEMS it is possible to reduce 

30% of consumption, we have adopted more conservative values with a maximum of consumption 

deviation of 12.5% and only in the cluster presenting a load factor between 40% and 60%. 

Table 5 - Clusters: load factor, load flexibility range 

Cluster  Load Factor 
Flexibility 
range 

Cluster  Load Factor 
Flexibility 
range 

A 0-5% 0-2.5% M 60-65% 7.5-10% 

(…) (…) (…) N 65-70% 7.5-10% 

I 40-45% 10-12.5% O 70-75% 5-7.5% 

J 45-50% 10-12.5% P 75-80% 5-7.5% 

K 50-55% 10-12.5% (…) (…) (…) 

L 55-60% 10-12.5% T 95-100% 0-2.5% 

 

Eight clusters were created based on the analysis of the 9 000 daily load diagrams. The baseline load 

profile is displayed in Figure 18. 
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To obtain the amount of flexibility for each cluster throughout the planning period, this flexibility margin 

is applied to its load profile. For instance, when the cluster load factor is 45% and the consumption is 

higher than the average consumption, then it is possible to have load shedding (i.e., decrease in the load) 

up to 12.5% (positive flexibility); when the consumption is lower than the average consumption it is 

possible to have an increase of up to 10% (negative flexibility). The flexibility margin is applied to the 

baseline load profile in each time-slot to obtain the amount of load flexibility, with some uncertainty.  

The revenues received by the EBAg from the grid and rewards given to the EBAg to the cluster are based 

on the electricity tariffs, but considering significant variations (in frequency and amplitude) along the 

day in some way mimicking the wholesale electricity market.  

 

Figure 18 - Baseline load diagram of each cluster 

 

Figure 18 displays the baseline energy consumption of each cluster with an average aggregate power of 

2 739 kW/day (sum of all clusters) and a total energy consumption of 65 742 kWh during one day.  

Cluster 1 is composed of 865 load diagrams with load factor of 28% (Figure 19), average power 148.25 

kW, total consumption 3 558 kWh during one day; the maximum power is 329.96 kW and the minimum 

power is 74 kW.  
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Figure 19 - Baseline Energy Consumption of Cluster 1. 

Cluster 2 is composed of 800 load diagrams with load factor 45% (Figure 20), average power 461.57 kW, 

total consumption 11 078 kWh during one day; the maximum power is 889.84 kW and the minimum 

power is 241.96 kW.  
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Figure 20 - Baseline Energy Consumption of Cluster 2. 

Cluster 3 is composed of 1 780 load diagrams with load factor 52% (Figure 21), average power 613.47 

kW, total consumption 14 723.22 kWh during one day, the maximum power is 1 068.87 kW and the 

minimum power is 389.57 kW. 

 

Figure 21 - Baseline Energy Consumption of Cluster 3. 
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Cluster 4 is composed of 1 485 load diagrams with load factor 60% (Figure 22), average power 586.98 

kW, total consumption 14 087.55 kWh during one day, the maximum power is 980.44 kW and the 

minimum power of 400.32 kW. 

 

Figure 22 - Baseline Energy Consumption of Cluster 4 

Cluster 5 is composed of 1 069 load diagrams with load factor 62% (Figure 23), average power 478.83 

kW, total consumption 11 491.99 kWh during one day, the maximum power is 770.69 kW and the 

minimum power of 354.34 kW. 
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Figure 23 - Baseline Energy Consumption of Cluster 5 

Cluster 6 is composed of 651 load diagrams with load factor of 68% (Figure 24), average power 273.74 

kW, total consumption 6 569.77 kWh during one day, the maximum power is 403.08 kW and the 

minimum power is 179.91 kW. 

 

Figure 24 - Baseline Energy Consumption of Cluster 6 
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Cluster 7 is composed of 387 load diagrams with load factor 72% (Figure 25), average power 169.25 kW, 

total consumption 4 062.08 kWh during one day, the maximum power is 234.90 kW and the minimum 

power is 121.59 kW. 

 

Figure 25 - Baseline Energy Consumption of Cluster 7 

Cluster 8 is composed of 1 953 load diagrams with a load factor 88% (Figure 26), average power 82.12 

kW, total consumption 2 139 kWh during one day, the maximum power is 121.73 kW and the minimum 

power is 68.63 kW.  

 

 



88 

 

 

Figure 26 - Baseline Energy Consumption of Cluster 8 

 The data to feed the coefficients of the MOO model are presented below. Figure 27 displays the 

requests (R+
t  and R-

t) of the SO to the EBAg.  

 

Figure 27 - SO requests to the EBAg 

Figure 28 to Figure 37  present the maximum value of power that each cluster can decrease (Dmax
+

ct ) or 

increase (Dmax
-
ct) in each time slot.  

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

00
:0

0

01
:0

0

02
:0

0

03
:0

0

04
:0

0

05
:0

0

06
:0

0

07
:0

0

08
:0

0

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

18
:0

0

19
:0

0

20
:0

0

21
:0

0

22
:0

0

23
:0

0

SO
 R

eq
u

es
ts

 (N
eg

at
iv

e:
 In

cr
ea

se
 

C
o

n
su

m
p

ti
o

n
; P

o
si

ti
ve

: D
ec

re
as

e 
C

o
n

su
m

p
ti

o
n

)

Time Slots t



89 

 

 

Figure 28 - Positive and Negative flexibility of cluster 1 

 

Figure 29 - Positive and negative flexibility of cluster 2 
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Figure 30 - Positive and Negative flexibility of cluster 3 

 

Figure 31 - Positive and Negative Flexibility of cluster 4 
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Figure 32 - Positive and Negative Flexibility of cluster 5 

 

 

Figure 33 - Positive and Negative Flexibility of cluster 6 
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Figure 34 - Positive and Negative Flexibility of cluster 7 

 

 

Figure 35 - Positive and Negative Flexibility of cluster 8 
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Figure 36 - Maximum Load Flexibility provided by all clusters to the EBAg. 

Figure 37 presents the values of variation of the amount of power provided by all clusters (D+
ct, D-

ct), 

when they are subject to uncertainties of 5% and 10%. 

 

Figure 37 – Load Flexibility considering uncertainty from clusters 
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4.3 EBAG BUSINESS MODEL CANVAS 

The Business Model Canvas is a strategic management and entrepreneurial tool allowing to describe, 

design, challenge, and pivot a business model [256,257]. It is a visual chart with elements describing a 

firms or product’s value, infrastructure, customers, and finances. The business model describes the 

rationale of how an organization creates, delivers, and captures value, in the economic, social, cultural 

or other contexts. The process of business model construction is part of the business strategy. 

The term business model is used for a broad range of informal and formal description to represent core 

aspects of a business, including purpose, business process, target customers, offering strategies, 

infrastructure, organizational structures, trading practices, and operational processes and policies. 

As a way to organize our concept of EBAg, we filled the business model canvas as displayed in Figure 38.  
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Figure 38 – Business Model Canvas [258]
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Key Partners: The EBAg has as main partners the power system utilities, including retail companies selling 

electricity to end-users, as well as ESCOs, ICT companies, R&D institutes cooperating to improve EBAg 

computational intelligence aimed at enhancing profits and services provided. The EBAg business model 

is highly dependent of the government and regulatory authorities, which establish the legal/regulatory 

framework. Finally, yet importantly, the EBAg needs to offer attractive commercial proposals to end-

users to exploit load flexibility and offer economic gains without jeopardizing the quality of the energy 

services provided (i.e. comfort or requiring engaging in very distinct energy behaviors and routines).  

Key Activities: The EBAg key activity consists in balancing demand and supply enhancing a strategy of 

“demand follows supply” by giving incentives to end-users for their provision of load flexibility that will 

allow responding to grid requests and providing ancillary services. The EBAg will interact with HEMS 

(Home Energy Management System) able to control the appliances in the household from which the 

EBAg will gather the load flexibility, give economic rewards to end-users for their load availability / 

flexibility (load effectively managed) and apply a penalty to end-users for not complying with the load 

flexibility committed.  

Key Resources: The key resource required by this value proposition is the knowledge about load flexibility 

from end-users. 

Value Proposition: The EBAg is able to optimize the energy consumption in the residential sector, 

delivering advantages for the end-user, including economic incentives, better quality of service and 

potential reduction of energy bills. The optimization of residential consumption will be made also to 

satisfy power system requirements, including the provision of system services.  

Customer Relationship: Cooperative relationship. The EBAg will use resources from the end-user to 

satisfy the SO requirements. Therefore, the EBAg will give economic incentives to end-users for the use 

of their loads, according to their preferences and constraints.  

Channels: A communication infrastructure is needed to exchange information and for the successful 

implementation of a smart grid. The communication technologies (ex. ZigBee, WLAN, cellular, WiMAX, 

Power Line Communication, etc.) will allow an optimization of the smart grid coordination and will 

enable the coordination between the grid components from production to the HEMS to manage end-

use loads.  
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Customer Segment: The customer segment consists of residential (and possibly small 

commerce/services) energy users and the SO as the entity of the power system responsible to ensure 

AS. 

Cost Structure: The costliest item in the EBAg business model is the economic incentives to pay to the 

end-user for the load flexibility provided as well as penalties to pay the SO for not complying with the 

services previously committed.   

Revenue Streams: End-users will not pay to benefit from the EBAg service (they may only receive 

economic benefits for changing consumption patterns according to EBAg requests). The EBAg receives 

revenues from the SO when it is able to commit with the flexibility previously agreed upon. 

4.4 CONCLUDING REMARKS 

This section presented a MOO model for the EBAg, which uses the load flexibility provided by each end-

user to respond to the grid requests and facilitate a load follows supply strategy in a Smart Grid setting, 

with potential benefits for all participants involved. The role of the EBAg is twofold: it 

makes the most of demand responsive loads according to in-house load flexibility and it provides system 

services contributing to improve the system operation. The optimization model from the aggregator 

perspective presents multi-objective evaluation aspects (economic, quality of service, fairness) of the 

merits of potential solutions.  
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5. CHAPTER 5 – EBAG ALGORITHM IMPLEMENTATION, RESULTS AND DISCUSSION
5 

 

This chapter presents the implementation and analysis of results of the hybrid EA, which combines GA 

and DE. In this chapter, the process of obtaining the results is briefly described and illustrative results 

obtained from the model and algorithmic approach implemented are presented.  

5.1 ALGORITHM IMPLEMENTATION AND ANALYSIS 

The algorithmic approach has been designed to deal with the main characteristic of the EBAg model, 

namely its combinatorial nature, conflicting objective functions and uncertainty of the load flexibility 

provided by end-user clusters. Evolutionary algorithms are stochastic search and optimization methods 

that have proved very efficient and effective in dealing with combinatorial multi-objective models. 

Whereas (multi-objective) EA inspiration is from nature, i.e., where uncertainty is a communal 

occurrence, it cannot be assumed that these algorithms will be intrinsically robust to several sources of 

uncertainty [259]. To solve the model presented in Chapter 4 [194], an hybrid EA approach combining 

GA and DE was developed based on previous experience on solving problem with those characteristics, 

taking the advantages of both approaches, which are referred to in the literature as prominent 

approaches to solve MOO problems, specifically complex problems [260] [261] [262].  

A non-dominated sorting genetic algorithm (NSGA-II) [246] coupled with a non-dominated sorting 

differential evolution algorithm (NSDE), which combines DE with the non-dominated selection 

procedure of NSGA-II  [263–271], was developed to characterize the non-dominated front and explore 

the trade-offs between the conflicting objectives (maximizing the EBAg profits and minimizing the 

inequity among clusters). DE has revealed to be an efficient, effective and robust evolutionary 

optimization method, which has been applied in several studies [272–275] including in MOO problems 

[251,276–282]. DE differs from other EA essentially in the mutation and crossover operator; in DE the 

                                                             

5 This chapter is partially based on Carreiro A.M., Oliveira C., Antunes C.H., Jorge H.M. (2015) An Energy Management System Aggregator 
Based on an Integrated Evolutionary and Differential Evolution Approac h. In: Mora A., Squillero G. (eds) Applications of Evolutionary 
Computation. EvoApplications 2015. Lecture Notes in Computer Science, vol . 9028, 252-264. Springer, Cham. 
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perturbation mechanisms use weighted differences of decision space vectors to modify the population 

in subsequent iterations [262]. NSGA-II ranks solutions in terms of non-dominance levels, and provides 

each one with a crowding distance, which measures how much each individual contributes to diversity 

within a dominance rank, so being a measure of diversity of solutions in a given neighbourhood [246,271].  

A hybrid evolutionary approach aimed at obtaining non-dominated fronts displaying a good spread and 

expected convergence to the Pareto optimal front (which is unknown) was developed, enabling to study 

the trade-offs between the two competing objective functions. 

The hybrid algorithmic approach coupling EA and DE has the following main features: 

1. Generation of the initial population – The initial population A0 is created and sorted based on 

non-dominance, where each individual is assigned a fitness (rank) equal to its non-dominance 

level (where 1 is the best level, 2 the second-best level, and so on). The population is composed 

by NP=100 individuals generated based on the real data collected, as mentioned in section 4.2. 

For each time slot, a consumption value (kW) is randomly generated between -12% and 12% 

with respect to the load diagram baseline, ensuring that during one day (planning period) the 

total energy consumption can only change between -5% and 5% according to the load diagram 

baseline.   

2. Generation of an offspring population – The offspring population B0 is generated through 

tournament selection, crossover and mutation operators when using NSGA-II. 

2.1. When using EA: The crossover operator is executed with a probability 0.05 (NSGA-II). As the 

individual is composed of 4 real decision variables, where each consists of 96 time slots 

(resolution of 15 minutes), the crossover operator respects this structure, in the sense that 

each variable (physical) information is never broken. The mutation operator with a 

probability 0.05 works in each decision variable composing the individuals by randomly 

increasing/decreasing the amount of power within the range ±12% with respect to the load 

diagram baseline, while ensuring that during one day the total energy consumption can only 

change ±5%, also according to the measured baseline; 

2.2. When using DE: The mutant individuals are created using difference vectors based on the 

DE/rand/1/bin variant, since it consistently presented the best performance in comparison 

with other mutation strategies of the base vector [283]. The adoption of DE operators in the 
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multi-objective EA occurs when after 50 generations with NSGA-II, the values of the 

objective functions do not change.  

3. A combined population 𝑪𝒈 = 𝑨𝒈 ∪ 𝑩𝒈 of size 2NP (2x100) is formed, where g is the generation 

counter, g=1,…, G; 

4. Population 𝑪𝒈 is sorted according to the non-dominance ranking procedure presented in [246] 

and hypervolume6 calculation; 

5. Population 𝑨𝒈+𝟏 of size NP is created using an elitist selection mechanism of the best solutions 

of 𝑪𝒈. The process starts by the selection of the Pareto front of level 1, denoted 𝑭𝟏. If  𝑭𝟏 has a 

size smaller than NP, then all solution of 𝑭𝟏  stay in 𝑨𝒈+𝟏 . The remaining members of the 

population 𝑨𝒈+𝟏 are chosen from subsequent non-dominated fronts 𝑭𝟏, 𝑭𝟐, … in the order of 

their ranking until 𝑨𝒈+𝟏 is composed by NP individuals. When just a few solutions need to be 

selected from a population, the crowding comparison operator is used. As larger is the crowding 

distance, the better the solution is since it is located in a less crowded region, as can be seen in 

Figure 39. 

6. 𝑩𝒈+𝟏 is created from 𝑨𝒈+𝟏   using crossover and mutation operators; 

7. This process continues until a stop condition is reached; in our case, the stop condition is verified 

when no evolution of the solutions is achieved after 50 generations. We assume that in these 

circumstances the convergence to the Pareto optimal front (which is unknown) is concluded. 

 

                                                             

6 The hypervolume indicator is a set measure used in evolutionary multiobjective optimization to evaluate the performance of search algorithms 

and to guide the search [324]. 
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Figure 39 - NSGA-II and NSDE procedure of selection/elitism [250] 

 

The diversity in non-dominated solutions is introduced by the crowding procedure, which is used in the 

tournament selection and during the population reduction phase. The parameters were tuned after 

extensive experimentation. Sets of 400 independent runs were carried out.  

The main features of the solutions obtained using this hybrid algorithmic approach were: 

- The EA consistently provided good extreme solutions for both objective functions, although 

displaying just a few solutions in the non-dominated front. The EA component was able to rapidly 

find good extreme solutions for both objective functions, namely regarding the profit objective 

function. The front then evolved in an intermittent manner with groups of (slightly) dominated 

solutions being outperformed by, in general, a single non-dominated solution. Then, the final non-

dominated front was well spread (in the sense of good individual optimal solutions) but irregularly 

filled (few solutions in the front) in comparison to NSDE (see Figure 40, as an illustrative example). 

- The DE component provided a well-spread and well-populated non-dominated front in a 

significant number of runs, but with major defaulting in the achievement of good extreme 

solutions and always less good in comparison to NSGA-II. The evolution of the front was quite 

regular. However, in a non-negligible number of runs the front was of low quality because no 

positive values of the profit objective function could be obtained. NSDE presented a better 

evolution regarding NSGA-II solutions when the initial population was not created randomly but 

rather using feasible solutions only.   
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The hybrid approach allowed a rapid convergence taking advantage of the best features of each 

multi-objective stochastic optimizer (see Figure 40 as an illustrative example).  

 

Figure 40 - Pareto front; (a) NSGA-II; (b) NSDE 

 

The analysis of this behaviour of the algorithms in different instances of the problem led to the 

conclusion that, once solutions with positive values for the profit objective function were attained, NSDE 

then smoothly evolved to a packed and well-spread front. This goal was effortlessly accomplished by 

NSGA-II, which, in turn, computed improved solutions with better values for the objective functions, 

consequently expanding the front. These features led to the development of the hybrid approach. NSGA-

II is used in a first phase to compute good extreme values and a few solutions spread along the Pareto 

front, which already present satisfactory values for both objective functions. After a few number of 

generations without improving both objective results (50 generations were considered in computational 

experiments), NSDE is used to further expand and fill up the front. 

After the implementation of the hybrid EA, further tests have been done by varying the control 

parameters to analyze its performance according to different sets of parameters. The hypervolume 

indicator has been used throughout this algorithm refinement process to assess and compare the quality 

of the fronts obtained in the computational experiments.  

Moreover, the behavior of the hybrid algorithm was evaluated with data subject to uncertainties. As 

mentioned previously, the load flexibility provided by each cluster for each time slot (𝐿𝐹𝑐𝑡) is considered 
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uncertain input data, to account for circumstances in which the end-user is not able to provide to the 

EBAg the load flexibility previously committed.  

 Three scenarios were created to evaluate the algorithm behavior in each of them: 1. Baseline Scenario 

- reliability equal to 100% is considered, that is, there is no uncertainty (𝜃𝑐𝑡 = 0) in the load flexibility 

provided in each time slot by each cluster; 2. Daily Scenario - a range of reliability (90% ≤ 𝜃𝑐  ≤ 100%) 

is considered in the load flexibility provided by each cluster and this value is the same in all time slots 

( 𝐿𝐹𝑐𝑡
′ = 𝐿𝐹𝑐𝑡 + 𝐿𝐹𝑐𝑡 . 𝜃𝑐  ) ; 3. Real-time Scenario - a range of reliability ( 90% ≤ 𝜃𝑐𝑡  ≤ 100% ) is 

considered in the load flexibility provided by each cluster in each time slot, that is, the reliability in each 

time slot can be different (𝐿𝐹𝑐𝑡
′ = 𝐿𝐹𝑐𝑡 + 𝐿𝐹𝑐𝑡 . 𝜃𝑐𝑡  ).  

After the execution of 100 tests for each scenario, it was possible to conclude that the algorithm had a 

good performance in all scenarios, with the Pareto optimal front presenting generally a good spread. 

Illustrative results (of an average run) can be seen in Figure 41 to Figure 42. 

 

Figure 41 – Pareto Front in scenario 1 

 

 The hybrid algorithm presents a better performance in scenario 1, achieving the extreme solutions 

faster and with better objective function values in comparison to the other scenarios. Scenario 3 is the 
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one in which the worst performance was verified, since it was difficult to achieve the extreme solutions 

and the results were more diverse, displaying a higher standard deviation. That is, the higher the 

uncertainty less good is the algorithm performance. 

The maximum value obtained for F1 was 197.65€, while the average value of the solutions of F1 is 

193.37€. 53.64% of the best solutions of each test present a value superior to the average, and 14.55% 

present a profit higher than 195€. The minimum value of profit achieved is 186€ and the corresponding 

standard deviation for all tests is 3.17€ (Figure 41). 

In scenario 2 the maximum value obtained for F1 was 195.48€, while the average value of the solutions 

of F1 is 175.37€. 40.02% of the best solutions of each test present a value superior to the average and 

11.16% present a profit higher than 180€. The minimum value of profit achieved is 151.59€ and the 

standard deviation for all tests is 11.9€ (Figure 42). 

 

Figure 42 - Pareto Front in scenario 2 

In scenario 3 the maximum value obtained for F1 was 193.93€, while the average value of the best 

solutions of F1 is 148.76 €. 36.26% of the best solutions of each test present a value superior to the 

average, and 6.62% present a profit bigger than 130€. The minimum value of profit achieved is 105.6€ 

and the medium standard deviation of all tests is 25.76€ (Figure 43). 
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Figure 43 - Pareto Front in scenario 3 

 

Figure 44 shows the hypervolume obtained in each iteration of the algorithm. After 500 iterations, it can 

be seen that the hypervolume gets stable, in some way enabling to conclude that the algorithm 

converged to the Pareto front.  

 

Figure 44 - Hypervolume for 1000 runs of the algorithm 
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5.2 MODEL RESULTS AND DISCUSSION 

This section presents some illustrative results of the optimization model created for an EBAg with multi-

objective evaluation aspects (economic and fairness) of the merits of potential solutions. The hybrid 

approach based on an EA coupled with DE displayed an improved performance to obtain a well-spread 

and populated Pareto optimal front.  

These results are illustrative of the extensive computational experiments carried out. More tests in real-

world conditions should be performed to assess the true value of the EBAg concept. Also, the selection 

of a solution from the Pareto optimal front to be implemented is out of scope of the thesis. However, 

this is an important component that needs to be incorporated in future research. 

The Pareto optimal front selected for the analysis is displayed in Figure 41. The individual optimal 

solutions (maximizing EBAg profits – F1 and minimizing inequity – F2) and three other solutions selected 

as good compromise solutions are displayed in black.  

In solution A, the one that maximize the EBAg profits, the best value of F1 is obtained with 14 278 kWh 

of flexibility provided by load shedding with remnant of 16.53 kWh that could not be offered due to the 

cluster unavailability, leading to a profit of 197.6 € and 0.8% for the inequity indicator. 

Solution B on the Pareto front could offer a flexibility of 14 222 kWh, with a remnant of 16.25 kWh not 

provided, achieving a profit of 196.78€ and 0.49% for the inequity indicator. 

Solution C establishes a compromise between the objective functions offering a flexibility of 13 989 kWh, 

with a remnant of 16.17 kWh not provided, achieving a profit of 193.37€ and 0.32% for the inequity 

indicator. 

Solution D on the Pareto optimal front could offer a flexibility of 13 735 kWh, with a remnant of 16.06 

kWh not provided, achieving a profit of 190.29€ and 0.15% for the inequity indicator. 

In solution E, the one that minimizes inequity among clusters, 13 736 kWh of flexibility were provided 

by load shedding in clusters with a remnant of 15.9 kWh not provided, leading to a profit of 186.03€ and 

0% for the inequity objective function. 
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These results illustrate the conflicting nature of the objective functions maximizing the EBAg profit and 

minimizing the inequity among the end-user clusters in offering load flexibility. The higher the load 

flexibility provided by the end-users is, the higher the EBAg profit is.  

Figure 45 displays the physical representation of solution C, i.e. the amount of power that the EBAg is 

capable to offer to the SO in each time slot (Pt), the amount of power that the EBAg effectively uses from 

all clusters in each time slot (Lct), and the remnant which consists in the power available from the end-

user but not used by the EBAg to offer to the SO. To better understand the results and figures we remind 

that positive flexibility means that there exists flexibility to decrease consumption and negative flexibility 

means that there exists flexibility to increase consumption. 

 

Figure 45 - Physical representation of solution C  
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In Figure 46 the positive flexibility of all clusters is presented, i.e., the amounts all clusters compromised 

to offer to the EBAg an energy consumption of 1 416.89 kWh during one day with a maximum power 

of 498.78 kW. The aggregation of all clusters compromised its offer in 98%, since the global flexibility 

provided to the EBAg was 1 388.89 kWh, with a remnant, that is, positive flexibility not used, of 27.99 

kWh in one day. 

 

Figure 46 – Positive Flexibility of all clusters 
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In Figure 47 the negative flexibility of all clusters is presented, i.e. the amount all clusters compromised 

to offer to the EBAg an energy consumption of 2 468.83 kWh during one day with a maximum power of 

323.9 kW. The aggregation of all clusters compromised its offer in 98.92%, since the global flexibility 

provided to the EBAg was 2 442.21 kWh, with a remnant, that is, positive flexibility not used of 26.63 

kWh in one day. 

 

 

Figure 47 – Negative Flexibility of all clusters  
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In Figure 48 the load diagram before and after the algorithm execution is presented for cluster 1. 

 In the left-hand side, the positive flexibility of cluster 1 is presented, i.e. the amount cluster 1 

compromised to offer to the EBAg an energy consumption of 108.48 kWh during one day, achieving a 

maximum power of 49.49 kW during that period. This cluster compromised its offer in 100%, since all 

the flexibility provided by cluster 1 was used by the EBAg to provide AS to the SO. 

In the right-hand side the negative flexibility of cluster 1 is presented, i.e. the amount cluster 1 

compromised to offer to the EBAg an energy consumption of 216.08 kWh one day, achieving a maximum 

power of 31.99 kW during that period. This cluster compromised its offer in 97.8%, since from the total 

flexibility provided by cluster 1 to the EBAg 211.28 kWh were used b, with a remnant not used of 4.79 

kWh in one day. 

 

Figure 48 - Cluster 1 Results 

 

In Figure 49 the load diagram before and after the algorithm execution is presented for cluster 2. 
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In the left-hand side the positive flexibility of cluster 2 is presented, i.e. the amount cluster 2 

compromised to offer to the EBAg an energy consumption of 281.54 kWh during one day, achieving a 

maximum power of 110.84 kW during that period. This cluster compromised its offer in 99.4%, since 

from the total flexibility offered by cluster 2 279.95kWh were used by the EBAg, with a remnant not used 

of 1.59 kWh in one day. 

In the right-hand side the negative flexibility of cluster 2 is presented, i.e. the amount cluster 2 

compromised to offer to the EBAg an energy consumption of 646.79 kWh during one day, achieving a 

maximum power of 97.18 kw during that period. This cluster compromised its offer in 100%, since the 

total flexibility provided by cluster 2 was used by the EBAg.  

 

 

Figure 49 - Cluster 2 Results 

In Figure 50 the load diagram before and after the algorithm execution is presented for cluster 3. 

In the left-hand side the positive flexibility of cluster 3 is presented, i.e. the amount cluster 3 

compromised to offer to the EBAg an energy consumption of 354.91 kWh during one day, achieving a 
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maximum power of 133.61 kW during that period. This cluster compromised its offer in 100%, since the 

total flexibility provided by cluster 3 was used by the EBAg.  

In the right-hand side the negative flexibility of cluster 3 is presented, i.e., the amount cluster 3 

compromised to offer to the EBAg an energy consumption of 664.31 kWh during one day, achieving a 

maximum power of 101.89 kW during that period. This cluster compromised its flexibility offer in 99.14%, 

since 658.58 kWh were used by the EBAg, with a remnant not used of 5.73 kWh in one day. 

 

 

Figure 50 - Cluster 3 Results 

In Figure 51 the load diagram before and after the algorithm execution is presented for cluster 4. 

In the left-hand side the positive flexibility of cluster 4 is presented, i.e. the amount cluster 4 

compromised to offer to the EBAg an energy consumption of 309.54 kWh during one day, achieving a 

maximum power of 122.55 kW during that period. This cluster compromised its flexibility offer in 99.5%, 

since 308.00 kWh were used by the EBAg, with a remnant not used of 1.54 kWh in one day. 
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In the right-hand side the negative flexibility of cluster 4 is presented, which the cluster 4 compromised 

to offer to the EBAg  an energy consumption of 521.01 kWh during one day, achieving a maximum power 

of 87.02 kW during that period. This cluster compromised its offer in 100%, since the total flexibility 

provided was used by the EBAg.  

 

 

Figure 51 - Cluster 4 Results 

In Figure 52 the load diagram before and after the algorithm execution is presented for cluster 5. 

In left-hand side the positive flexibility of cluster 5 is presented, i.e. the amount cluster 5 compromised 

to offer to the EBAg an energy consumption of 182.28 kWh during one day, achieving a maximum power 

of 77.07 kw during that period. This cluster compromised its offer in 98.5%, since from the total flexibility 

provided 179.58 kWh were used by the EBAg, with a remnant not used of 2.70 kWh in one day. 

In right-hand side the negative flexibility of cluster 5 is presented, i.e., the amount cluster 5 compromised 

to offer to the EBAg an energy consumption of 262.65 kWh during one day, achieving a maximum power 
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of 50.38 kW during that period. This cluster compromised its offer in 100%, since the total flexibility 

provided was used by the EBAg.  

 

Figure 52 - Cluster 5 Results 

 

In Figure 53 the load diagram before and after the algorithm execution is presented for cluster 6. 

In the left-hand side the positive flexibility of cluster 6 is presented, i.e. the amount cluster 6 

compromised to offer to the EBAg an energy consumption of 112.09 kWh during one day, achieving a 

maximum power of 39.80 kW during that period. This cluster compromised its offer in 93.4%, since 

104.65 kWh of flexibility were used by the EBAg, with a remnant not used of 7.44 kWh in one day. 

In the right-hand side the negative flexibility of cluster 6 is presented, i.e. the amount cluster 6 

compromised to offer to the EBAg an energy consumption of 92.69 kWh during one day, achieving a 

maximum power of 25.96 kW during that period. This cluster compromised its offer in 96.5%, since from 

the total flexibility provided 89.43 kWh were used by the EBAg, with a remnant not used of 3.26 kWh in 

one day. 
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Figure 53 - Cluster 6 Results 

 

In Figure 54 the load diagram before and after the algorithm execution is presented for cluster 7. 

In the left-hand side the positive flexibility of cluster 7 is presented, i.e., the amount cluster 7 

compromised to offer to the EBAg an energy consumption of 40.45 kWh during one day, achieving a 

maximum power of 17.61 kw during that period. This cluster compromised its offer in 63.6%, since from 

the total flexibility provided 25.73 kWh were used by the EBAg, with a remnant not used of 14.72 kWh 

in one day. 

In the right-hand side the negative flexibility of cluster 7 is presented, i.e., the amount cluster 7 

compromised to offer to the EBAg an energy consumption of 42.15 kWh during one day, achieving a 

maximum power of 11.33 kW during that period. This cluster compromised its offer in 69.53%, since 

29.31 kWh of flexibility were used by the EBAg, with a remnant not used of 12.84 kWh in one day. 
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Figure 54 - Cluster 7 Results 

 

In Figure 55 the load diagram before and after the algorithm execution is presented for cluster 8. 

In the left-hand side the positive flexibility of cluster 8 is presented, i.e., the amount cluster 8 

compromised to offer to the EBAg an energy consumption of 27.60 kWh during one day, achieving a 

maximum power of 9.06 kW during that period. This cluster compromised its offer in 100%, since the 

total flexibility provided by cluster 8 was used by the EBAg.  

In the right-hand side the negative flexibility of cluster 8 is presented, i.e., the amount cluster 8 

compromised to offer to the EBAg an energy consumption of 23.16kWh during one day, achieving a 

maximum power of 5.13 kW during that period. This cluster compromised its offer in 100%, since all the 

flexibility provided was used by the EBAg.  
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Figure 55 - Cluster 8 Results 

5.3 CONCLUDING REMARKS 

This section presented the analysis of results of the hybrid approach based on an evolutionary algorithm 

coupled with a differential evolution algorithm, which displayed an improved performance to obtain a 

well-spread and populated Pareto front, to deal with the main characteristic of the EBAg model. 

Extensive computational experiments have been carried out, which contributed to tune the main 

technical parameters of the algorithms, such as crossover and mutation probabilities, uncertainty 

scenarios, etc. The combination of NSGA-II and NSDE proved to be the best approach after numerous 

attempts to increase the performance of each algorithm individually. NSGA-II quicky finds good extreme 

solutions and NSDE provides a well-spread and populated front.  

It is possible to conclude that the hybrid algorithm also presents a good performance even when subject 

to uncertainties, i.e., the load flexibility provided by the end-user (thus accounting for human factors).  

Real data information gathered during one year from households to obtain the load diagrams was used 

to supply some coefficients of the model in the case study herein presented.  
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The illustrative results were presented to demonstrate the viability of the of the EBAg concept, from the 

points of view of responding to grid requests and using end-user’s flexibility provided.  
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6. CHAPTER 6 - UNCERTAINTY AND ROBUSTNESS IN OPTIMIZATION 7 

6.1 INTRODUCTION 

This chapter presents background information and concepts regarding uncertainty and robustness 

analysis. A brief literature review is presented regarding approaches to robustness analysis in MOO 

models.  

Most real-world optimization problems are characterized by various forms of uncertainty stemming 

from factors such as data variable in time, incomplete data, data that is contradictory between diverse 

sources or controversy for different players of the process, solutions that cannot be implemented exactly, 

etc.  [284–286]. The concept of degree of robustness proposed in [287,288,288–292], which is based on 

the behavior of a solution in its neighborhood, is presented as the basis of our methodological approach 

to robustness analysis. The degree of robustness is normally incorporated into EAs, being 

operationalized in the computation of the fitness value assigned to solutions. Non-dominated solutions 

are classified according to their degree of robustness. The information on the degree of robustness of 

solutions is provided to support the selection of a robust compromise solution. This concept of degree 

of robustness allows to exert a control on the desired level of robustness of the solution obtained.  

6.1.1 Characterization of Uncertainty 

Decision making in a context of uncertainty is a frequent situation in real problems, namely in what 

respects activity planning in several fields. The modeling of uncertain data in mathematical models 

through probability distributions has been the main approach to incorporate in an explicit way 

information that is not completely known in the model construction phase. However, uncertainty can 

stem from different sources or be classified in different types, not being adequate, in general, to 

represent probabilistically all the uncertain information associated with mathematical models, especially 

                                                             

7 This chapter is partially based on Carreiro, A., Jorge, H., Antunes, CH., 2016. Assessing the robustness of solution to multi -objective 
model for an energy management system aggregator. 2016 IEEE Symposium Series on Computational Intelligence (IEEE SSCI 2016), 
https://doi.org/10.1109/SSCI.2016.7849845 
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if the available information is insufficient for that purpose [293]. Therefore, models should cope with 

distinct forms to capture uncertainty in order to offer robust solutions, i.e. solutions that present a good 

performance for a plausible range of variation of uncertain information. 

6.1.1.1 Models that incorporate uncertainty 

Dealing with uncertainty includes building models that incorporate uncertain data and subsequently 

using approaches to determine solutions to these models that exhibit a certain degree of performance 

for a range of variation of those data. Although there is no single model that can incorporate any type 

of uncertainty, the model developed should be appropriate to the types of uncertainty at stake and/or 

the quantity and quality of information available. The most common approaches to deal uncertainty in 

(single and multiple objective) optimization models are: fuzzy programming [294], interval programming  

[295,296],  based on scenarios [284,293,297], stochastic programming [298] and robust programming 

[299]. 

In fuzzy programming, the uncertainty is captured through fuzzy sets, which are generally used when 

there is no statistical information available or when it is necessary to deal with qualitative descriptions 

corresponding to expert’s statements about the data or the impact of alternatives. While in the classical 

model of sets the relationship between an object and a set is of belonging or not belonging, in a fuzzy 

model an object can also belong partially to a set, a degree of belonging existing in this relationship. The 

theory of fuzzy sets developed by Zadeh [300] is an extension of classical set theory, in which the degree 

of belonging of an element to a set takes a value in the range [0, 1] instead of just 0 or 1. A fuzzy set is a 

class of objects where there is not a well-defined border between the objects belonging to the class and 

the ones outside the class. This theory was developed to deal with the underlying complexity 

descriptions of subjective processes or misunderstandings. 

Interval programming considers that some or all the uncertain data of the problem are described 

through intervals rather than a single value. In its basic formulation, intervals are more similar to 

scenarios, attempting to capture every possible future value of the relevant data (i.e., uncertain but 

bounded). Intervals can be considered as a special case of fuzzy values or uniform distribution 

corresponding to no additional information beyond the range of possible values. 
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In scenario-based models the uncertain data is estimated globally to consider their correlations and build 

different structured futures. Although this approach does not require a probability distribution, the 

concept of "most likely scenario" is often invoked in a qualitative sense, which sometimes means that all 

other settings will be ignored. The scenarios are possible (future) sets of data instances, always requiring 

a model that provides the means to evaluate the consequences of a decision in every possible scenario. 

Assigning probabilities to scenarios is a common practice, usually through a set of values estimated by 

an expert. 

Stochastic programming requires the existence of sufficient statistical data for developing the probability 

distribution functions of uncertain data or using subjective probabilities. Stochastic programming can be 

seen as an approach to model uncertainty considering scenarios that occur with different probabilities 

to describe the problem data [298]. The two major difficulties with this kind of approach are that it is 

not easy to obtain in practice the exact distribution for the data and so enumerate the scenarios that 

collect this distribution, as well as the size of the resulting optimization model drastically increases 

according to the number of scenarios, which entails major challenges in terms of computational effort. 

A technique commonly used to tackle this kind of uncertainty is to transform the non-deterministic 

problem into a deterministic one, by substituting all the parameters of the stochastic model for their 

expected values. Thus, the optimal solution is the one with the best expected value. 

Kouvelis and Yu [299] introduced robust programming based on the concept of robustness in the sense 

of min-max solutions, i.e. determining the solution that, in the worst case, has the best value of the 

attribute under evaluation. The basic robustness formulation ignores any additional information, such 

as possible probability distributions. The purpose is to determine robust solutions that are somehow 

immune to disturbances in the values of model data. 

6.1.2  Concepts of Robustness  

The notion of robustness is not used uniformly in the literature, probably due to the diversity of 

situations of the real-world problems, in which uncertainty is an inherent feature. One of the first 

concepts of robustness in optimization problems was presented by Gupta and Rosenhead [301] and 

several meanings of robustness and ways to deal with uncertainty to derive robust solutions have been 

introduced by different authors with several robustness interpretations [302,303], Vincke [304] 



126 

 

distinguishes four different concepts of robustness, the starting point for future developments: robust 

decision [301,305], robust solution [299,306,307], robust conclusion and robust method [252,308–310]. 

Robust decision: The notion of robustness applied to decision problems was first introduced by Gupta 

and Rosenhead [301] in the context of sequential planning problems. In this type of problems, decisions 

are built over time in face of different sources of uncertainty. In this way, all decisions will affect future 

plans, limiting the number of good plans that can be achieved in the future. The robustness of a given 

decision is therefore based on maintaining flexibility. A decision is considered as more flexible as least it 

limits the number of good plans in the future. The ideal situation would be to be able to make decisions 

at a given time without limiting the different possible future decisions [305]. 

Robust solution: Mulvey [307] presented a general formulation for a model of single-objective robust 

optimization based on scenarios. In this formulation, a solution of an optimization model is defined as a 

robust solution if it remains close to the optimal solution in all scenarios. A model is classified as a robust 

model if it remains feasible in all scenarios. Kouvelis and Yu [299] use robustness in a more conservative 

sense, that is, the DM is at minimum risk (in the setting of discrete optimization problems using 

scenarios). For these authors, robust solutions are those whose values are the best in the worst scenario 

(which can be defined in various ways).  

Robust conclusion: Roy [303] proposed the concept of strength, not only to solutions but, more generally, 

to conclusions (statements, recommendations). One conclusion is information inferred from the model 

and given to the DM during the decision process. This can be a proposition for a solution to the problem, 

but can also be a property or fact that may be useful to the DM. One conclusion is said robust if it is valid 

in all or almost all scenarios, a scenario being a set of possible values for the model data used to solve 

the problem. 

Robust method: Vincke [252] proposed a formal definition of robustness also related to procedures and  

method. A procedure is an application that associates a solution to every instance of a problem. A 

method is a sequence of procedures, which allows obtaining different solutions for different 

implementations, for example, with different expressions of preferences. A method is robust if it 

provides valid results in all or most scenarios and where a scenario is a set of possible values for the 

model data and the method parameters [252,308,309]. 
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In [299] robustness signifies that the solution is good in all or most scenarios, where a scenario is a group 

of possible values for the data model, and not bad in none.  

As a conclusion, a common interpretation of robustness can be found in the literature: a solution is 

robust when it is immune to small perturbations, this is, when exposed to different conditions 

comparatively to a nominal one due to the uncertainty of some parameters (input data, decision variable 

values, etc.) the solution still performs well enough in terms of the objective function values.  

6.1.3 Robustness in Multi-objective Optimization 

The importance of robust optimization in the framework of meta-heuristics is recognized by Kouvelis 

and Yu who state that a considerable effort should be placed on the development of schemes to be 

applied to a large class of optimization problems [299]. 

MOO in face of uncertainties is very relevant for the exploitation of the results in practice, since slight 

difference in environmental conditions or variations in the solution structure after implementation can 

be crucial to overall operational success or failure. The thorough characterization of the whole set of 

non-dominated solutions is important to offer a global overview of the tradeoffs between the multiple 

objective functions for solutions located in different regions of the search space. However, some of these 

solutions, which could be of interest for the DM as adequate compromise solutions, in the sense they 

present a satisfactory balance between the multiple, conflicting and incommensurate objective 

functions, may be very susceptible to perturbations. Since the data to be supplied to the model is subject 

to several sources of uncertainty, solutions should be assessed for robustness, i.e., their performance in 

the multiple objective functions in face of data perturbations should be analyzed. In fact, data supplied 

to mathematical models often suffers from distinct sources of uncertainty due to difficulties associated 

with data estimation and collection, and even the dynamic and variable nature of some data, thus 

influencing the coefficients of objective functions, coefficients of constraints, and bounds of decision 

variables. Therefore, it is necessary to identify non-dominated solutions displaying not just satisfactory 

values for the conflicting objective functions but also being somehow insensitive to slight variations in 

the model data. That is, the algorithm to solve the MOO model should strive for robust solutions [292].  

Some studies focused on robustness in MOO models and a comprehensive view of evolutionary MOO in 

uncertain environments is provided in [259,289,290,292,311–314]. Results regarding the design and 
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applications of EA for MOO in the presence of uncertainty are presented in [315] and a survey of 

optimization in uncertain environments is presented in [316]. The need to generate robust solutions 

from EA is discussed in [317], proposing changes to standard EA to produce robust solutions. In  [312] a 

reformulation of the ranking process associated with the selection operator is developed taking into 

account uncertainties in data and noise in the objective functions. An extension to Pareto dominance 

considering the uncertainty of the multi-objective functions within intervals is presented in [313], 

deriving a theory of “probabilistic dominance” able to orient the selection operators to obtain the Pareto 

set. The Robust Multi-Objective Genetic Algorithmic (RMOGA) is proposed in [314] to optimize two 

objectives: a fitness value and a robustness index enabling to analyze the tradeoffs among performance 

and robustness of solutions using distance metrics. Two robust MOO procedures are presented in 

[311,318] with the aim of finding a robust frontier composed by robust solutions instead of the global 

Pareto optimal front, by extending the techniques used in single objective robust optimization, assuming 

that the DM is not interested in finding global best solutions which may be too sensitive to small 

environmental changes. The concept of degree of robustness of non-dominated  solutions is 

incorporated into an EA in [287,292], which is based on the behavior of the solution in its neighborhood 

when subject to perturbations in the decision variable space and the objective function coefficients. Two 

EA approaches to robustness analysis in MOO involving the degree of robustness concept imbedded in 

the fitness assessment of solutions are used in [290] and experiments were carried out in the problem 

of locating and sizing capacitors for reactive power compensation in electric radial distribution networks. 

An approach based on the classification of robustness regions of the Pareto optimal front is proposed in 

[319], distributing the solutions along the most robust regions according to parameter values and degree 

of robustness with the aim of finding the most robust Pareto front.  

The next section briefly reviews an approach to evaluate non-dominated solutions based on the degree 

of robustness proposed in [287,290,292]. 

6.1.4 Degree of Robustness 

In this section the approach using the degree of robustness associated with solutions developed in 

[287,288,288–291] is reviewed, which is the basis of our analysis. According to [287,288,288–291], a 

robust solution shall “behave well” in (slightly) different conditions, meaning that it is immune to small 

changes in the conditions it was designed for [292]. A robust solution must guarantee a good 
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performance (regarding both feasibility and objective function values) even if (a slightly) different model 

coefficient is applied, vis-à-vis a nominal situation, due to the uncertainty associated with data gathering, 

estimates, etc. [288,290,292].  

The degree of robustness of solution x is a value k, such that (see Figure 56):  

 

Figure 56 - Definition of neighborhoods in the decision variable space and objective function space [289] 

 

(a) the percentage of solutions in the kδ-neighborhood of x, whose objective function values belong to 

the η neighborhood of f(x), is greater than or equal to a pre-specified threshold p; 

(b) the percentage of solutions in the (k+1)δ neighborhood of x, whose objective function values belong 

to the η-neighborhood of f(x), is lower than p. The threshold p may be understood as a measure of 

exigency of the concept of degree of robustness. The degree of robustness k of a solution x is gradually 

computed as k increases (neighborhoods δ, 2δ, …, kδ), as well as the number of neighboring points of x 

(h, h+qh, …, h+(k-1)qh), such that h+(t-1)qh neighboring points (t ∈ {1, …, k}) are analyzed in the tδ-

neighborhood of x. The p, η and q parameter values can be different depending on the solution type (if 

solutions are non-dominated , or solutions are dominated or non-feasible).  
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6.1.4.1 Perturbation of the Objective Function Coefficients 

It is assumed that perturbations may occur in any coefficient of objective function fr 

(cr1, cr2,…, crm), for r = 1, …, M.  The assessment of the degree of robustness of a solution x entails analyzing 

the neighborhood of the reference scenario s, where x is a solution to the problem and fs(x) is the point 

in the objective space for the reference scenario s. The underlying idea is to determine a set of 

neighborhoods kδ around the reference scenario s, such that the images of x for these neighborhood 

scenarios are better than fs(x), for all objective functions, or still belong to a pre-specified neighborhood 

η around fs(x) in the objective space. The process begins by analyzing scenarios (coefficient 

instantiations) randomly generated inside a hyperbox of radius δ around s. This neighborhood 

(hyperbox) is then progressively enlarged, in multiples of δ (δ, 2δ ,…), until the percentage of scenarios 

for which the images of x in the objective space that are better than fs(x) or belong to the neighborhood 

of fs(x) is not greater than a pre-defined threshold. This enables to assign a degree of robustness to 

solutions according to the number of hyperbox enlargements for which that condition is fulfilled (Figure 

57). 

 

 

Figure 57 - Definition of neighborhoods in the scenario space and objective function space associated with a solution 
x (for 2-dimension spaces) [289] 

 

The degree of robustness depends on the size of a δ-neighborhood of scenario s and the percentage of 

the h neighboring points whose objective function values for x are better than fs(x) or belong to the η-

neighborhood of fs(x). Those h neighboring points are randomly generated around scenario s (see also 

[288,290,311]). The degree of robustness of solution x is a value k, such that (see Figure 57):  
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a) the percentage of scenarios s’ in the kδ-neighborhood of s, for which the objective function values 

fs’(x) that are better than fs(x) or that belong to the η-neighborhood of fs(x), is greater than or equal to a 

pre-specified threshold p1;  

b) the percentage of scenarios s’ in the (k+1)δ-neighborhood of s, for which the objective function values 

fs’(x) that are better than fs(x) or that belong to the η-neighborhood of fs(x), is lower than p1. The degree 

of robustness k of a solution x determined in the reference scenario s is gradually computed as k 

increases (neighborhoods δ, 2δ, …, kδ), as well as the number of neighboring points of s (h, h+qh, …, h+(k-

1)qh), such that h+(t-1)qh neighboring points (t ∈{1, …, k}) are analyzed in the tδ -neighborhood of s. 

6.1.4.2 Perturbations of the Constraint Coefficients 

For this case, a scenario is a set of possible values for the constraint coefficients (it can include the 

decision variable bounds) subject to perturbations. The computation of the degree of robustness of a 

solution x involves the analysis of the feasibility of x for the neighborhood of the reference scenario s. 

f(x) is the point in the objective space for the reference scenario s, as well as for all possible scenarios. 

The feasibility of x varies for distinct scenarios, since each scenario (constraint coefficient instantiation) 

may correspond to distinct feasible regions. The aim is to compute a set of k neighborhoods around the 

reference scenario s, the radius of which is a multiple of a value (kδ), such that x still is a feasible solution 

for those coefficient instantiations around the nominal (reference scenario).  

Randomly generated scenarios inside a hyperbox of radius δaround reference scenario s are analyzed. 

This neighborhood is then progressively enlarged (δ, 2δ, …) until the percentage of scenarios for which 

the solution x is a feasible solution is not greater than a pre-defined threshold. Again, this enables to 

assign a degree of robustness to solutions according to the number of hyperbox enlargements for which 

that condition is satisfied, which depends on the size of a δ-neighborhood of reference scenario s and 

the percentage of the h neighboring points for which the solution x is a feasible solution. The degree of 

robustness of solution x is a value k, such that:  

a) The percentage of scenarios s’ in the kδ-neighborhood of s, for which the solution x is a feasible 

solution, is greater than or equal to a pre-specified threshold p2;  

b) The percentage of scenarios s’ in the (k+1)δ-neighborhood of s, for which the solution x is a feasible 

solution, is lower than p2.  
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The degree of robustness k of a solution x is determined in the same way as explained above for the case 

of perturbations of the objective function coefficients. 

6.1.4.3 Robustness Parameters 

The radius of each neighborhood (around a solution or the reference scenario) is a multiple of the 

parameter δ (δ ,2δ , ...). This parameter reflects the DM’s preferences about the base dimension of the 

neighboring solutions in the solutions space or the neighboring scenarios in the scenario space, such 

that the DM is indifferent for solutions or scenarios located therein. The parameter h sets the number 

of neighboring points of a solution or the reference scenario that are generated and analyzed. The higher 

the value of h, more extensive the analysis is (however, the execution time of the algorithm will be 

higher). The vector parameter η reflects the threshold of indifference for each objective function. This 

parameter is used as the upper bound for the distance between the images of a solution x in a given 

scenario and in the reference scenario. Increasing the values of η (meaning that the DM is more tolerant 

to the differences in the objective function values) tends to increase the number of solutions with a 

higher degree of robustness. The thresholds p1 and p2 control the exigency of the degree of robustness. 

The parameter q is a value between 0 and 1, which is associated with the increase of the number of 

neighboring points that are analyzed in successive enlargements of the neighborhood of a solution or 

the reference scenario. 

The values of the parameters p1, p2, η and q may be different depending on the solution type, that is, 

whether solutions are non-dominated or they are dominated or non-feasible. Due to the significant run 

time of this approach, it is advisable that the value of p1 and p2 should be higher for dominated and 

infeasible solutions, and the values of η and q should be higher for non-dominated solutions. The 

underlying rationale is that the algorithm seeks for non-dominated solutions, which are more relevant 

than dominated and infeasible solutions, and therefore a more exhaustive analysis is necessary for those 

solutions. The computation of the (absolute or relative) distance between the images of solution x  

according to the scenarios s and s’ in the objective space, fs’(x) and fs(x), fs’(x) belonging to the η-

neighborhood of fs(x), can be done using any metric. The number of parameters required may be 

reduced by establishing some dependence between them. 
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6.2 IMPLEMENTATION OF THE ROBUSTNESS METHODOLOGY FOR THE EBAG MODEL 

The purpose of this section is to present an approach that analyzes whether the non-dominated 

solutions computed by the hybrid genetic/differential evolution algorithm are robust based on a degree 

of robustness concept. The assessment of solution robustness is done considering perturbations in the 

nominal coefficient of the model within a pre-specified range and evaluating the corresponding changes 

in the objective function space for a given solution structure.  

The aim of this robustness analysis is to assess the quality of solutions for different plausible 

configurations of model data, changes in decision variable values and possibly also parameters 

controlling the algorithm approach. 

The degree of robustness, as proposed in [288,291,320], is based on assessing the effects of 

perturbations (𝜹) in the decision variables space and model coefficients regarding the objective function 

values. The parameter (𝜹) is associated with the amplitude of the perturbation applied in the non-

dominated solution  x, which is assessed by inspecting successively expanding neighborhoods of possible 

values.  

This perturbation may be assigned to each time slot of the load flexibility aggregated from each cluster 

by the EBAg. 

Figure 58 (bottom) displays the maximum deviation of consumption regarding the daily baseline 

consumption. This maximum deviation may have: positive values, which correspond to load flexibility 

representing the amount of load available to decrease the consumption, and negative values, which 

correspond to load flexibility representing the amount of load available to increase the consumption in 

each time slot. This maximum deviation considered was [-5%; +5%], since this is a conservative deviation 

of consumption mentioned in the literature related to behavioral changes influencing energy savings 

[321].  
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Figure 58 - Load Flexibility gathered and the maximum admissible deviation [𝜹𝒕 =-5%, 𝜹𝒕 =+5%] 

After the execution of the hybrid approach and the identification of the non-dominated front, solutions 

(𝒙) dispersed along this front are randomly selected for the robustness analysis in face of perturbations. 

These solutions are randomly perturbed in the range [-5%, +5%] in each time slot, thus originating 

neighbor (perturbed) solutions (𝒙𝜹𝒕). 

The assessment of the degree of robustness of a solution is based on its behavior around its nominal 

point, i.e., the position of the selected solution without perturbation and the perturbed solutions derived 

from the application small perturbations in each time slot. The images of these solutions in the objective 

function space belong to a pre-specified η-neighborhood degree surrounding f(x), where η means the 

level of tolerance with respect to changes in the objective function values regarding to the nominal 

solution.  

The displacement of the perturbed solutions is assessed according to the quadrant, which is centered 

on the selected solution. In the 1st quadrant (Q. I) and in the 3rd quadrant (Q. III) the solution presents 

better performance according to one objective function and worse performance for the other objective 

function; in the 2nd quadrant (Q. II) the solution presents worst performance for both objective functions; 
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in the 4th quadrant (Q. IV) the perturbed solution presents better performance for both objective 

functions. The level of the perturbation is progressively enlarged, starting with a random rate bounded 

in [𝜹𝒕 =-1%, 𝜹𝒕 =+1%] until [𝜹𝒕 =-5%, 𝜹𝒕 =+5%], with an increment of 1%. 

The degree of robustness (Figure 59) of the selected solution x is a value 𝒌, 𝒌 ∈ (𝟏, 𝟐, 𝟑, 𝟒, 𝟓), when at 

least 80% of the perturbed solutions belong to the 𝜼𝒌- neighborhood around f(x), see Table 6.  

Table 6 - Degree of robustness k 

𝒌 𝜼𝒌- neighborhood around f(x) 

1 𝜼𝟏 ∈ ]−𝟎, 𝟎𝟓. 𝒇(𝒙);  𝟎, 𝟎𝟓. 𝒇(𝒙)] 

2 𝜼𝟐 ∈  ]−𝟎, 𝟏𝟎. 𝒇(𝒙);  𝟎, 𝟏𝟎. 𝒇(𝒙)] 

3 𝜼𝟑 ∈  ]−𝟎, 𝟏𝟓. 𝒇(𝒙);  𝟎, 𝟏𝟓. 𝒇(𝒙)] 

4 𝜼𝟒 ∈  ]−𝟎, 𝟐𝟎. 𝒇(𝒙);  𝟎, 𝟐𝟎. 𝒇(𝒙)] 

5 𝜼𝟓 ∈  ]−𝟎, 𝟐𝟓. 𝒇(𝒙);  𝟎, 𝟐𝟓. 𝒇(𝒙)] 

 

The location of more robust solutions on the non-dominated front is a relevant insight to aid the 

selection of a compromise solution.  

 

Figure 59 - Representation of the selected solution x, η-neighborhood degree around the nominal solution f(x)  
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6.3 EBAG ROBUSTNESS ANALYSIS RESULTS 

Illustrative results of the computational experiments are herein presented. The Pareto front is displayed 

in Figure 60, identifying 6 compromise solutions to be subject to perturbations and study their behavior 

in the objective function space to evaluate robustness.  

 

Figure 60 - Pareto front indicating the solution that are subject to robustness analysis 

Table 7 displays the maximum deviations (%) of the objective functions for each selected solution when 

subject to small perturbations in all time slots with respect to the nominal values, i.e., the maximum 

deviation (𝝶max) that will be possible to occur when the selected solution is subject to perturbations 

within the range [-5%, 5%] regarding the load flexibility indeed provided. 

Table 7- Maximum deviation in the objective function w.r.t. the nominal situation (%) 

 F1 F2*104 (%) F1 F2*104 (%) F1 F2*104 (%) 

  Solution 1 Solution 2 Solution 3 

δ
t
 = -1% -6.08% -3.00E-05 -6.49% -4.26E-05 -6.78% -4.64E-05 

δ
t
 = 1% 6.08% 3.00E-05 6.49% 4.26E-05 6.78% 4.64E-05 

δ
t
 = -2% -12.15% -9.00E-05 -12.99% -1.28E-04 -13.56% -1.39E-04 

δ
t
 = 2% 12.15% 9.00E-05 12.99% 1.28E-04 13.56% 1.39E-04 

δ
t
 = -3% -18.23% -1.00E-04 -19.48% -1.42E-04 -20.34% -1.55E-04 

δ
t
 = 3% 18.23% 1.00E-04 19.48% 1.42E-04 20.34% 1.55E-04 

δ
t
 = -4% -24.31% -1.20E-04 -25.98% -1.71E-04 -27.12% -1.86E-04 
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δ
t
 = 4% 24.31% 1.20E-04 25.98% 1.71E-04 27.12% 1.86E-04 

δ
t
 = -5% -30.38% -1.50E-04 -32.47% -2.13E-04 -33.90% -2.32E-04 

δ
t
 = 5% 30.38% 1.50E-04 32.47% 2.13E-04 33.90% 2.32E-04 

 
Solution 4 Solution 5 Solution 6 

δ
t
 = -1% -7.23% -5.08E-05 -7.86% -5.39E-05 -8.27% -5.59E-05 

δ
t
 = 1% 7.23% 5.08E-05 7.86% 5.39E-05 8.27% 5.59E-05 

δ
t
 = -2% -14.45% -1.52E-04 -15.73% -1.62E-04 -16.,54% -1.68E-04 

δ
t
 = 2% 14.45% 1.52E-04 15.73% 1.62E-04 16.54% 1.68E-04 

δ
t
 = -3% -21.68% -1.69E-04 -23.59% -1.80E-04 -24.81% -1.86E-04 

δ
t
 = 3% 21.68% 1.69E-04 23.59% 1.80E-04 24.81% 1.86E-04 

δ
t
 = -4% -28.90% -2.03E-04 -31.46% -2.16E-04 -33.08% -2.24E-04 

δ
t
 = 4% 28.90% 2.03E-04 31.46% 2.16E-04 33.08% 2.24E-04 

δ
t
 = -5% -36.13% -2.54E-04 -39.32% -2.69E-04 -41.34% -2.79E-04 

δ
t
 = 5% 36.13% 2.54E-04 39.32% 2.69E-04 41.34% 2.79E-04 

 

The cells in grey indicate that the perturbations applied to the selected solution lead the derived 

perturbed solution to an inadmissible region (since η>25%). The most common perturbation range that 

keeps solution robustness is  [𝛿𝑡 =-3%, 𝛿𝑡 =+3%]. 

The (nominal) solution selected suffers a random perturbation bounded by [𝛿𝑡 =-3%, 𝛿𝑡 =+3%] in the 96 

time slots of the load flexibility diagram, in order to analyze the degree of robustness of each selected 

solution. In this way, in the solution selected, a perturbation between [𝜹𝒕  =-3%, 𝜹𝒕  =+3%] will be 

randomly applied along the load flexibility diagram, to analyze its degree of robustness.  

Table 8 presents the maximum and minimum admissible deviation (ηmax) in the objective space for each 

selected solution, its degree of robustness and deviation.   
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Table 8 - Maximum and minimum values of the objective functions (OF)  

Degree Deviation F1 F2*104 (%) F1 F2*104 (%) F1 F2*104 (%) 

  ηt Solution 1 Solution 2 Solution 3 

 ηt = 0 1 191.58 1 087.01 1 109.77 628.76 1 053.74 491.83 

1 ηt = -5% 1 132.00 1 032.66 1 054.28 597.33 1 001.05 467,24 

ηt= 5% 1 251.16 1 141.36 1 165.26 660.20 1 106.43 516.42 

2 ηt = -10% 1 072.42 978.31 998.79 565.89 948.37 442.65 

ηt = 10% 1 310.74 1 195.72 1 220.75 691.64 1 159.11 541.01 

3 ηt = -15% 1 012.84 923.96 943.31 534.45 895.68 418.06 

ηt= 15% 1 370.32 1 250.07 1 276.24 723.08 1 211.80 565.61 

4 ηt= -20% 953.27 869.61 887.82 503.01 842.99 393.46 

ηt=20% 1 429.90 1 304.42 1 331.72 754.52 1 264.49 590.20 

5 ηt= -25% 893.69 815.26 832.33 471.57 790.30 368.87 

ηt= 25% 1 489.48 1 358.77 1 387.21 785.96 1 317.17 614.79 

  Solution 4 Solution 5 Solution 6 

 ηt = 0 966.33 334.02 841.00 221.33 702.11 149.01 

1 ηt = -5% 918.01 317.32 798.95 210.27 659.4 140.0 

ηt= 5% 1014.64 350.72 883.05 232.40 744.8 158.1 

2 ηt = -10% 869.69 300.62 756.90 199.20 616.8 130.9 

ηt = 10% 1062.96 367.43 925.10 243.47 787.4 167.1 

3 ηt = -15% 821.38 283.92 714.85 188.13 574.1 121.8 

ηt= 15% 1111.28 384.13 967.15 254.53 830.1 176.2 

4 ηt= -20% 773.06 267.22 672.80 177.07 531.4 112.8 

ηt=20% 1159.59 400.83 1009.20 265.60 872.8 185.2 

5 ηt= -25% 724.75 250.52 630.75 166.00 488.8 103.7 

ηt= 25% 1207.91 417.53 1051.25 276.67 915.4 194.3 

 

Figure 61 to Figure 66  present the results of the analysis done for six solutions (1, 2, 3, 4, 5 and 6), i.e., 

two extreme solutions (the individual optima of each objective function) and four intermediary solutions. 

The position of randomly perturbed solutions within the admissible perturbation range is displayed for 

comparison with the nominal solution (at the center). The dispersion of solutions in each quadrant and 

the amount of solutions in each η-kth neighborhood around f(x), which determine the degree of 

robustness, offer information about the expected behavior of the solution when subject to changes. 
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Figure 61 - Robustness behavior of solution 1 

 

Solution 1, which is illustrated in Figure 61, presents a degree of robustness of 3, since 86% of the 100 

perturbed solutions generated have been allocated between -15%, to 15% (𝜼𝟑 ∈  ]−15%, 15%]): 31% 

of the solutions lie within 𝜼𝟏 ∈  ]−5%, 5%];  63% of the solutions between  𝜼𝟐 ∈  ]−10%, 10%];  86% 

between 𝜼𝟑 ∈  ]−15%, 15%] and 100% of the solutions perturbed between 𝜼𝟒 ∈  ]−20%, 20%]. 

Therefore, solution 1 is a robust solution of degree 3. According to the quadrants, the solution derived 

from the solution 1 has been allocated 21% in the Q. I, 25% in the Q.II, 26% in the Q.III and 28% in the 

Q.IV. 

 

Figure 62 – Robustness behavior of solution 2 
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Solution 2, which is illustrated in Figure 62, presents a degree of robustness of 3, since 80% of the 100 

perturbed solutions generated have been allocated between -15%, to 15% (𝜼𝟑 ∈  ]−15%, 15%]): 32% 

of the solutions lie within 𝜼𝟏 ∈  ]−5%, 5%]; 58% between 𝜼𝟐 ∈  ]−10%, 10%]; 80% of the solution 

between 𝜼𝟑 ∈  ]−15%, 15%]; and 100% of the solutions perturbed between 𝜼𝟒 ∈  ]−20%, 20%]. 

Therefore, solution 2 is a robust solution of degree 3. According to the quadrants, the solution derived 

from the solution 2 has been allocated 28% in the Q. I, 20% in the Q.II, 31% in the Q.III and 21% in the 

Q.IV. 

 

Figure 63 - Robustness behavior of solution 3 

Solution 3, which is illustrated in Figure 63, presents a degree of robustness of 4, since 80% of the 100 

perturbed solutions generated have been allocated between -20%, to 20% (𝜼𝟒 ∈  ]−20%, 20%]): 28% 

of the solutions lie with 𝜼𝟏 ∈  ]−5%, 5%]; 50% of the solution between  𝜼𝟐 ∈  ]−10%, 10%] ; 77% 

between 𝜼𝟑 ∈  ]−15%, 15%]; 99% of the solution perturbed between 𝜼𝟒 ∈  ]−20%, 20%], 100% of 

the solution perturbed allocation between 𝜼𝟓 ∈  ]−25%, 25%].  

Therefore, solution 3 is a robust solution of degree 4. According to the quadrants, the solution derived 

from the solution 3 has been allocated 35% in the Q. I, 23% in the Q.II, 22% in the Q.III and 20% in the 

Q.IV. 
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Figure 64 – Robustness behavior of solution 4 

Solution 4, which is illustrated in Figure 64, presents a degree of robustness of 4, since 80% of the 100 

perturbed solutions produced have been allocated between -20%, to 20% (𝜼𝟒 ∈  ]−20%, 20%]):  28% 

of the solutions lie within 𝜼𝟏 ∈  ]−5%, 5%]; 50% of the solution between  𝜼𝟐 ∈  ]−10%, 10%]; 67% 

between 𝜼𝟑 ∈  ]−15%, 15%]; 93% of the solutions perturbed between  𝜼𝟒 ∈  ]−20%, 20%] and 6% 

allocated between 𝜼𝟓 ∈  ]−25%, 25%]. 

 Therefore, solution 4 is a robust solution of degree 4. According to the quadrants, the solution derived 

from the solution 4 has been allocated 28% in the Q. I, 28% in the Q.II, 19% in the Q.III and 25% in the 

Q.IV. 

 

Figure 65 - Robustness behavior of solution 5 
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Solution 5, which is illustrated in Figure 65, presents a degree of robustness of 4, since 80% of the 100 

perturbed solutions generated have been allocated between -20%, to 20% (𝜼𝟒 ∈  ]−20%, 20%]): 19% 

of the solutions lie within 𝜼𝟏 ∈  ]−5%, 5%];  39% of the solution between  𝜼𝟐 ∈  ]−10%, 10%]; 59% 

between 𝜼𝟑 ∈  ]−15%, 15%]; 88% of the solutions perturbed between 𝜼𝟒 ∈  ]−20%, 20%] and 12% 

allocated between 𝜼𝟓 ∈  ]−25%, 25%].  

Therefore, solution 5 is a robust solution of degree 4. According to the quadrants, the solution derived 

from the solution 5 has been allocated 0% in the Q. I, 0% in the Q.II, 45% in the Q.III and 55% in the Q.IV. 

 

Figure 66 - Robustness behavior of solution 6 

Solution 6, which is illustrated in Figure 66, presents a degree of robustness of 4, since 64% of the 100 

perturbed solutions generated have been allocated between -10% to 10% (𝜼𝟐 ∈  ]−10%, 10%]): 33% 

of the solutions lie within 𝜼𝟏 ∈  ]−5%, 5%];  64% of the solution between  𝜼𝟐 ∈  ]−10%, 10%]; 100% 

between 𝜼𝟑 ∈  ]−15%, 15%]. 

Therefore, solution 6 is a robust solution of degree 4. According to the quadrants, the solution derived 

from the solution 6 has been allocated 24% in the Q. I, 33% in the Q.II, 31% in the Q.III and 12% in the 

Q.IV. 

Based on this analysis it may be concluded that solution 1, 2, 3, 4, 5 and 6 present a degree of robustness 

of 3, 3, 4, 4, 4 and 3, respectively, when subject to small random perturbations around the nominal 
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values. The extreme solutions (i.e. the non-dominated solutions that individually optimize each objective 

function) present a better degree of robustness in comparison to the intermediate solutions.  

6.4 CONCLUDING REMARKS 

The robustness analysis of non-dominated solutions computed by the hybrid evolutionary approach 

coupling NSGA-II and DE is based on the degree of robustness concept, taking into account the changes 

in the performance of the objective function when small perturbations of the model nominal coefficient 

occur. This section presented the application of this methodology for robustness analysis of non-

dominated solutions of the multi-objective optimization model considering maximizing the EBAg profits 

and minimizing the inequity between the amounts of load flexibility provided by the end-user clusters 

to satisfy SO requests.  

The non-dominated solutions were considered robust until a certain level of perturbation, i.e., until a 

perturbation [-3%, 3%] is applied in the coefficients of the nominal solutions. In this range, the derived 

perturbed solutions are considered admissible whenever they lie in the interval [-0.25. f(x); 0.25. f(x)] in 

the objective function space. Solutions out of this interval are considered non-robust. This scenario only 

happens when the perturbation is higher than ±3% in all solutions obtained in the (nominal) Pareto 

optimal front.   
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7. CHAPTER 7 – CONCLUSIONS AND FUTURE WORK  

The setting of the most adequate operating reserve levels is one of the main concerns of the System 

Operator, mainly due to the integration of a large share of intermittent generation, in order to balance 

generation and load, assuring both the quality of the service and the security of the supply. The 

involvement of end-users is a key element for the implementation of demand response as a way to 

enhance the efficiency of the system infrastructure, also enabling the cope with the intermittency of 

renewable energy sources. Although the participation of end-users may result in a higher complexity of 

the system management, it may have a real positive impact on overall system efficiency also contributing 

to mitigate the volatility of electricity prices.  

End-users may become an important element for the provision of ancillary services, by using demand 

side resources to offer the system operator additional means to enhance system flexibility, robust 

planning, constraints management and operation scheduling, therefore contributing to the balance 

between load and supply under a load follows supply strategy.  

A comprehensive literature review has been done regarding DR programs and models, including 

regarding current DR implementations. The experience of aggregators has also been reviewed. This 

revealed to be an emerging and particularly challenging topic in the context of smart grids. DR strategies 

can be used to influence end-users and manage demand according to SO requests, the end-users being 

compensated for their energy consumption behaviour changes and load flexibility provided to be 

controlled. For making these schemes operational, EMS technologies and infrastructures allowing real-

time and bi-directional communication between the grid and the end-users are necessary, in favourable 

regulatory settings.  

This thesis presented the EBAg as a global architecture concept of a system to be connected to individual 

HEMS in an aggregated level, endowed with optimization algorithms. The EBAg responds to the system 

operator requests by managing the load flexibility provided by each end-user, considering both profits 

and the equity of the usage of resources of the end-users involved. The EBAg has the potential to 

facilitate a load following the supply strategy in a smart grid context, with potential benefits for all the 

participants involved. 
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EBAg has a double role: it makes the most of demand responsive loads according to in-house load 

flexibility, giving incentive and motivating the end-users to change its energy consumption behaviour 

and it provides system services contributing to improve the system operation, contributing to deal with 

the increased penetration of renewables which in turn contributes to decreasing environmental impacts 

and the consequent electricity price variability. The information provided to end-users enables to 

influence the consumption profile, optimizing the demand profile according to the power system needs. 

The optimization model from the EBAg perspective presents multi-objective evaluation aspects 

(economic and fairness in the usage of resources) of the merits of potential solutions. The model 

considers the maximization of the EBAg profit and the minimization of the inequity among clusters of 

end-users, that is, the maximum relative difference between the load flexibility provided by the cluster 

and the one used by the EBAg, as a surrogated for fairness in the usage of end-user load flexibility. An 

approach based on a hybrid EA algorithm, making the most of the features of EA and DE, has been 

developed to solve the EBAg optimization model and to provide hopefully usable solutions in a 

reasonable computational time. This approach displayed an improved performance, regarding individual 

EA and DE approaches, to obtain a well-spread and populated Pareto front, able to deal with changes in 

the input data, SO requests, consumption changes profiles, end-user preferences, restrictions and load 

flexibility provided, as well as uncertainty in data and parameters. 

This research also led to the development of an evaluation methodology to analyze the robustness of 

non-dominated solutions obtained using the EBAg model and the hybrid EA approach. The non-

dominated solutions were considered robust until a certain level of perturbation is applied in the 

coefficients of the model.  

7.1 FUTURE WORK 

Some future research directions to further develop the EBAg concept are the following: 

- The bill savings achieved by the end-user through the local HEMS should be taken into account. 

For this purpose, it is necessary to work on the connection between the EBAg and the HEMS, 

including the interaction with the loads. 

- Alternative DR strategies, inclusion of storage systems (Electric Vehicle and static batteries) 

should also be considered. 
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- Case studies for service buildings or energy communities should be performed. 

- Inclusion of robustness analysis in the creation of solutions, that is, operationalized in the 

computation of the fitness value assigned to solutions. 

-  Exhaustive analysis of the behavior of the algorithm, based on the variation of the input 

parameters and the corresponding impact on the solutions. 

- Inclusion of real-time prices in the input parameters and real-time preferences of the end-user. 

- Application of the EBAg concept in a micro isolated system (namely islands). 

- Analysis of the energy consumption behavior of end-users in order to better define the incentive 

schemes to promote engagement and loyalty, guaranteeing the implementation of the required 

changes in the load diagram. 

- Study of the regulatory frameworks more adequate to enhance the role of the EBAg in the Smart 

Grid context. 

 

 

  



148 

 

  



149 

 

References 

[1] Verschueren T, Haerick W, Mets K, Develder C, De Turck F, Pollet T, et al. Architectures for smart end-user services in 
the power grid. 2010 IEEE/IFIP Netw Oper Manag Symp Work 2010:316–22. doi:10.1109/NOMSW.2010.5486557. 

[2] Joo JY, Ahn SH, Yoon YT, Choi JW. Option valuation applied to implementing demand response via critical peak pricing. 
2007 IEEE Power Eng Soc Gen Meet PES 2007:1–7. doi:10.1109/PES.2007.385559. 

[3] Eurelectric. Ancillary Services Unbundling Electricity Products – an Emerging Market 2004:84. 

[4] European Commission Directorate-General for Energy. The future role and challenges of Energy Storage 2013:1–36. 

[5] Eurelectric. Flexibility and Aggregation Requirements for their interaction in the market 2014:13. 

[6] Moura PS, Almeida AT De. The role of demand-side management in the grid integration of wind power. Appl Energy 
2010;87:2581–8. doi:10.1016/j.apenergy.2010.03.019. 

[7] Eu Commission Tf For Smart Grids Expert Group. Functionalities of smart grids and smart meters. Group 2010;23:1–
69. 

[8] U.S. Department of Energy. the SMART GRID. Communication 2010;99:48. doi:10.1016/B978-1-59749-570-7.00011-X. 

[9] Vagropoulos SISI, Simoglou CKCK, Bakirtzis AG a. G. Synergistic supply offer and demand bidding strategies for wind 
producers and electric vehicle aggregators in day-ahead electricity markets. 2013 IREP Symp Bulk Power Syst Dyn 
Control - IX Optim Secur Control Emerg Power Grid 2013:1–13. doi:10.1109/IREP.2013.6629390. 

[10] Livengood D, Larson R. The Energy Box: Locally Automated Optimal Control of Residential Electricity Usage. Science 
(80- ) 2009;1:1–16. 

[11] Doe USD of E. Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them. US Dep 
Energy 2006:122. doi:citeulike-article-id:10043893. 

[12] Sioshansi FP. Demand-side management. Energy Policy 1995;23:111–4. doi:10.1016/0301-4215(95)91414-8. 

[13] Boshell F, Veloza OP. Review of developed demand side management programs including different concepts and their 
results. 2008 IEEE/PES Transm. Distrib. Conf. Expo. Lat. Am., IEEE; 2008, p. 1–7. doi:10.1109/TDC-LA.2008.4641792. 

[14] Alizadeh M, Li X, Wang Z, Scaglione A, Melton R. Demand-Side Management in the Smart Grid: Information Processing 
for the Power Switch. IEEE Signal Process Mag 2012;29:55–67. doi:10.1109/MSP.2012.2192951. 

[15] Palensky P, Dietrich D. Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads. 
Ind Informatics, IEEE Trans 2011;7:381–8. doi:10.1109/TII.2011.2158841. 

[16] Enernoc. Demand Response : A Multi-Purpose Resource For Utilities and Grid Operators - White Paper 2009:10–2. 

[17] Gellings CW. The concept of demand-side management for electric utilities. Proc IEEE 1985;73:1468–70. 
doi:10.1109/PROC.1985.13318. 

[18] Carreiro AM, Antunes CH, Jorge HM. An optimization model for the aggregation of end-user energy management 
systems in a residential setting. SMARTGREENS 2014 - Proc 3rd Int Conf Smart Grids Green IT Syst 2014:191–7. 

[19] Agnetis A, Dellino G, De Pascale G, Innocenti G, Pranzo M, Vicino A. Optimization models for consumer flexibility 
aggregation in smart grids: The ADDRESS approach. 2011 IEEE First Int. Work. Smart Grid Model. Simul., IEEE; 2011, p. 
96–101. doi:10.1109/SGMS.2011.6089206. 

[20] Entsoe. ENTSO-E Network Code on Electricity Balancing 2013;6:1–59. 

[21] Oosterkamp P van den, Koutstaal P, Welle A van der, Joode J de, Lenstra J, Hussen K van, et al. The role of DSOs in a 
Smart Grid environment 2014:146. 

[22] Smart Grids European Technology Platform n.d. http://www.smartgrids.eu/. 



150 

 

[23] European Technology Platform SmartGrids. Strategic Deployment Document for Europe’s Electricity Networks of the 
Future. 2010. 

[24] Lewandowski CM, Co-investigator N, Lewandowski CM. COMMUNICATION FROM THE COMMISSION TO THE 
EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE 
OF THE REGIONS. Eff Br Mindfulness Interv Acute Pain Exp An Exam Individ Differ 2015;1:1689–99. 
doi:10.1017/CBO9781107415324.004. 

[25] Smart Grid Task Force. 2015 Regulatory Recommendations for the Deployment of Flexibility - EG3 REPORT 2015. 

[26] Platform ET. SmartGrids 2006. 

[27] JRC. Assessing Smart Grid Benefits and Impacts : EU and U . S . Initiatives. 2012. doi:10.2790/63747. 

[28] Torriti J, Hassan MG, Leach M. Demand response experience in Europe: Policies, programmes and implementation. 
Energy 2010;35:1575–83. doi:10.1016/j.energy.2009.05.021. 

[29] Actions MS. Horizon 2020 Work Programme 2016 - 2017 ( European Commission Decision C ( 2015 ) 6776 of 13 
October 2015 ). 2016. 

[30] Strategic Energy Technology Plan n.d. http://ec.europa.eu/energy/en/topics/technology-and-innovation/strategic-
energy-technology-plan. 

[31] ETP-SG. Consolidated view of the ETP SG on Research, Development and Demonstration needs in the Horizon H2020 
Work Programme 2016-2017 2015:38. 

[32] European Commission. Study on the effective integration of demand energy recourses for providing flexibility to the 
electricity system 2014. 

[33] ISA Energy Efficiency S. Cloogy by ISA 2012. http://www.cloogy.com/en/. 

[34] Holttinen H, Kiviluoma J, Cutululis N, Gubina A, Keane A, Van Hulle F. Ancillary services : technical specifications , system 
needs and costs. Deliverable D2.2 2012:69. 

[35] Gjerde O. Ancillary services - State of the art in the Nordic market. 2007 Ieee Power Eng Soc Gen Meet Vols 1-10 
2007:4131–4132\r4962. doi:10.1109/PES.2007.386151. 

[36] Hirst E, Kirby B. Unbundling Generation and Transmission Services for Competitive Electricity Markets 1998. 

[37] Daniela A, Antonio N, Version D. Technical Feasibility of Ancillary Services provided by ReGen Plants. 2015. 

[38] Kirschen D, Strbac G. Fundamentals of Power System Economics. Chichester, UK: John Wiley & Sons, Ltd; 2004. 
doi:10.1002/0470020598. 

[39] Baldick R, Helman U, Hobbs BF, O’Neill RP. Design of Efficient Generation Markets. Proc IEEE 2005;93:1998–2012. 
doi:10.1109/JPROC.2005.857484. 

[40] Rebours YG, Kirschen DS, Trotignon M, Rossignol S. A survey of frequency and voltage control ancillary services - Part 
II: Economic features. IEEE Trans Power Syst 2007;22:358–66. doi:10.1109/TPWRS.2006.888965. 

[41] Eissa MM. Demand side management program evaluation based on industrial and commercial field data. Energy Policy 
2011;39:5961–9. doi:10.1016/j.enpol.2011.06.057. 

[42] Santacana E, Rackliffe G, Tang L, Feng X. Getting Smart. IEEE Power Energy Mag 2010;8:41–8. 
doi:10.1109/MPE.2009.935557. 

[43] Lisovich MA, Mulligan DK, Wicker SB. Inferring Personal Information from Demand-Response Systems. IEEE Secur Priv 
Mag 2010;8:11–20. doi:10.1109/MSP.2010.40. 

[44] Yusta JM, Khodr HM, Urdaneta AJ. Optimal pricing of default customers in electrical distribution systems: Effect 
behavior performance of demand response models. Electr Power Syst Res 2007;77:548–58. 
doi:10.1016/j.epsr.2006.05.001. 



151 

 

[45] Medina J, Muller N, Roytelman I. Demand Response and Distribution Grid Operations: Opportunities and Challenges. 
IEEE Trans Smart Grid 2010;1:193–8. doi:10.1109/TSG.2010.2050156. 

[46] Vardakas JS, Zorba N, Verikoukis C V. A Survey on Demand Response Programs in Smart Grids: Pricing Methods and 
Optimization Algorithms. IEEE Commun Surv Tutorials 2015;17:152–78. doi:10.1109/COMST.2014.2341586. 

[47] Pina A, Silva C, Ferrão P. The impact of demand side management strategies in the penetration of renewable electricity. 
Energy 2011:1–10. doi:10.1016/j.energy.2011.06.013. 

[48] Pourmousavi SA, Nehrir MH, Sastry C. Providing ancillary services through demand response with minimum load 
manipulation. 2011 North Am. Power Symp., IEEE; 2011, p. 1–6. doi:10.1109/NAPS.2011.6024876. 

[49] Gkatzikis L, Koutsopoulos I, Salonidis T. The Role of Aggregators in Smart Grid Demand Response Markets. IEEE J Sel 
Areas Commun 2013;31:1247–57. doi:10.1109/JSAC.2013.130708. 

[50] Molderink A, Bakker V, Bosman MGC, Hurink JL, Smit GJM. Domestic energy management methodology for optimizing 
efficiency in Smart Grids. 2009 IEEE Bucharest PowerTech 2009:1–7. doi:10.1109/PTC.2009.5281849. 

[51] Molderink A, Bakker V, Bosman MGC, Hurink JL, Smit GJM. A three-step methodology to improve domestic energy 
efficiency. Innov Smart Grid Technol Conf ISGT 2010 2010:1–8. doi:10.1109/ISGT.2010.5434731. 

[52] Fang X, Misra S, Xue G, Yang D. Smart Grid &#x2014; The New and Improved Power Grid: A Survey. IEEE Commun Surv 
Tutorials 2012;14:944–80. doi:10.1109/SURV.2011.101911.00087. 

[53] Yan Y, Qian Y, Sharif H, Tipper D. A Survey on Smart Grid Communication Infrastructures: Motivations, Requirements 
and Challenges. IEEE Commun Surv Tutorials 2013;15:5–20. doi:10.1109/SURV.2012.021312.00034. 

[54] Lo C-H, Ansari N. The Progressive Smart Grid System from Both Power and Communications Aspects. IEEE Commun 
Surv Tutorials 2011. doi:10.1109/SURV.2011.072811.00089. 

[55] Gungor VC, Sahin D, Kocak T, Ergut S, Buccella C, Cecati C, et al. A Survey on Smart Grid Potential Applications and 
Communication Requirements. IEEE Trans Ind Informatics 2013;9:28–42. doi:10.1109/TII.2012.2218253. 

[56] Mohagheghi S. Communication services and data model for demand response. 2012 IEEE Online Conf. Green Commun., 
IEEE; 2012, p. 80–5. doi:10.1109/GreenCom.2012.6519620. 

[57] Seung-Jun Kim, Giannakis GB. Scalable and Robust Demand Response With Mixed-Integer Constraints. IEEE Trans 
Smart Grid 2013;4:2089–99. doi:10.1109/TSG.2013.2257893. 

[58] Fang X, Misra S, Xue G, Yang D. Managing smart grid information in the cloud: opportunities, model, and applications. 
IEEE Netw 2012;26:32–8. doi:10.1109/MNET.2012.6246750. 

[59] Moslehi K, Kumar R. A Reliability Perspective of the Smart Grid. IEEE Trans Smart Grid 2010;1:57–64. 
doi:10.1109/TSG.2010.2046346. 

[60] Liu J, Xiao Y, Li S, Liang W, Chen CLP. Cyber Security and Privacy Issues in Smart Grids. IEEE Commun Surv Tutorials 
2012;14:981–97. doi:10.1109/SURV.2011.122111.00145. 

[61] Yan Y, Qian Y, Sharif H, Tipper D. A Survey on Cyber Security for Smart Grid Communications. IEEE Commun Surv 
Tutorials 2012;14:998–1010. doi:10.1109/SURV.2012.010912.00035. 

[62] Fan Z, Kulkarni P, Gormus S, Efthymiou C, Kalogridis G, Sooriyabandara M, et al. Smart Grid Communications: Overview 
of Research Challenges, Solutions, and Standardization Activities. IEEE Commun Surv Tutorials 2013;15:21–38. 
doi:10.1109/SURV.2011.122211.00021. 

[63] Khalifa T, Naik K, Nayak A. A Survey of Communication Protocols for Automatic Meter Reading Applications. IEEE 
Commun Surv Tutorials 2011;13:168–82. doi:10.1109/SURV.2011.041110.00058. 

[64] Ming H, Xie L. Analysis of coupon incentive-based demand response with bounded consumer rationality. 2014 North 
Am. Power Symp., IEEE; 2014, p. 1–6. doi:10.1109/NAPS.2014.6965456. 

[65] Baboli PT, Eghbal M, Moghaddam MP, Aalami H. Customer behavior based demand response model. 2012 IEEE Power 



152 

 

Energy Soc. Gen. Meet., IEEE; 2012, p. 1–7. doi:10.1109/PESGM.2012.6345101. 

[66] Shengchun Yang, Jianguo Yao, Beibei Wang, Hongfa Ding, Jiantao Liu. An integrated generation-demand response 
scheduling model on supporting high penetration of renewable energy generation. 2014 Int. Conf. Power Syst. Technol., 
IEEE; 2014, p. 1701–5. doi:10.1109/POWERCON.2014.6993500. 

[67] Mohagheghi S, Stoupis J, Wang Z, Li Z, Kazemzadeh H. Demand Response Architecture: Integration into the Distribution 
Management System. 2010 First IEEE Int. Conf. Smart Grid Commun., IEEE; 2010, p. 501–6. 
doi:10.1109/SMARTGRID.2010.5622094. 

[68] Parvania M, Fotuhi-Firuzabad M. Demand Response Scheduling by Stochastic SCUC. IEEE Trans Smart Grid 2010;1:89–
98. doi:10.1109/TSG.2010.2046430. 

[69] Iwayemi A, Yi P, Dong X, Zhou C. Knowing when to act: an optimal stopping method for smart grid demand response. 
IEEE Netw 2011;25:44–9. doi:10.1109/MNET.2011.6033035. 

[70] Alizadeh M, Yuanzhang Xiao, Scaglione A, van der Schaar M. Incentive design for Direct Load Control programs. 2013 
51st Annu. Allert. Conf. Commun. Control. Comput., IEEE; 2013, p. 1029–36. doi:10.1109/Allerton.2013.6736638. 

[71] Kostková K, Omelina Ľ, Kyčina P, Jamrich P. An introduction to load management. Electr Power Syst Res 2013;95:184–
91. doi:10.1016/j.epsr.2012.09.006. 

[72] Albadi MH, El-Saadany EF. A summary of demand response in electricity markets. Electr Power Syst Res 2008;78:1989–
96. doi:10.1016/j.epsr.2008.04.002. 

[73] Faria P, Vale Z. Demand response in electrical energy supply: An optimal real time pricing approach. Energy 
2011;36:5374–84. doi:10.1016/j.energy.2011.06.049. 

[74] Aalami H a., Moghaddam MP, Yousefi GR. Demand response modeling considering Interruptible/Curtailable loads and 
capacity market programs. Appl Energy 2010;87:243–50. doi:10.1016/j.apenergy.2009.05.041. 

[75] Aalami HA, Moghaddam MP, Yousefi GR. Modeling and prioritizing demand response programs in power markets. 
Electr Power Syst Res 2010;80:426–35. doi:10.1016/j.epsr.2009.10.007. 

[76] Tarasak P, Chai CC, Kwok YS, Oh SW. Demand Bidding Program and Its Application in Hotel Energy Management. IEEE 
Trans Smart Grid 2014;5:821–8. doi:10.1109/TSG.2013.2287048. 

[77] Khajavi P, Abniki H, Arani AB. The role of incentive based Demand Response programs in smart grid. 2011 10th Int. 
Conf. Environ. Electr. Eng., IEEE; 2011, p. 1–4. doi:10.1109/EEEIC.2011.5874702. 

[78] Lyzwa W, Olek B, Wierzbowski M, Mielczarski W. Why do we need capacity markets? 11th Int. Conf. Eur. Energy Mark., 
IEEE; 2014, p. 1–5. doi:10.1109/EEM.2014.6861267. 

[79] Cheung KW. Ancillary Service Market design and implementation in North America: From theory to practice. 2008 
Third Int. Conf. Electr. Util. Deregul. Restruct. Power Technol., IEEE; 2008, p. 66–73. doi:10.1109/DRPT.2008.4523381. 

[80] Felix TA, Cuervo P. A multi-objective price-based model in a combined market of energy with uncertain capacity 
availability. 2013 IEEE Grenoble Conf., IEEE; 2013, p. 1–6. doi:10.1109/PTC.2013.6652126. 

[81] Zandesh GRS. TOU (time of use pricing)-based supply/demand management for the bulk power consumers in the 
distributed networks. Electr. Distrib. - CIRED 2005, 18th International Conference and Exhibition; 2005, p. 1–4. 

[82] Aghaei J, Alizadeh M-I. Demand response in smart electricity grids equipped with renewable energy sources: A review. 
Renew Sustain Energy Rev 2013;18:64–72. doi:10.1016/j.rser.2012.09.019. 

[83] Gottwalt S, Ketter W, Block C, Collins J, Weinhardt C. Demand side management—A simulation of household behavior 
under variable prices. Energy Policy 2011;39:8163–74. doi:10.1016/j.enpol.2011.10.016. 

[84] Shao S, Zhang T, Pipattanasomporn M, Rahman S. Impact of TOU rates on distribution load shapes in a smart grid with 
PHEV penetration. IEEE PES T&D 2010, IEEE; 2010, p. 1–6. doi:10.1109/TDC.2010.5484336. 

[85] Faruqui A, Sergici S, Sharif A. The impact of informational feedback on energy consumption—A survey of the 



153 

 

experimental evidence. Energy 2010;35:1598–608. doi:10.1016/j.energy.2009.07.042. 

[86] Dalkilic O, Eryilmaz A, Xiaojun Lin. Stable real-time pricing and scheduling for serving opportunistic users with 
deferrable loads. 2013 51st Annu. Allert. Conf. Commun. Control. Comput., IEEE; 2013, p. 1200–7. 
doi:10.1109/Allerton.2013.6736662. 

[87] Webber G, Warrington J, Mariethoz S, Morari M. Communication limitations in iterative real time pricing for power 
systems. 2011 IEEE Int. Conf. Smart Grid Commun., IEEE; 2011, p. 445–50. 
doi:10.1109/SmartGridComm.2011.6102364. 

[88] Wang Z, Li F. Critical peak pricing tariff design for mass consumers in Great Britain. 2011 IEEE Power Energy Soc. Gen. 
Meet., IEEE; 2011, p. 1–6. doi:10.1109/PES.2011.6039603. 

[89] Qun Zhou, Wei Guan, Wei Sun. Impact of demand response contracts on load forecasting in a smart grid environment. 
2012 IEEE Power Energy Soc. Gen. Meet., IEEE; 2012, p. 1–4. doi:10.1109/PESGM.2012.6345079. 

[90] Herter K. Residential implementation of critical-peak pricing of electricity. Energy Policy 2007;35:2121–30. 
doi:10.1016/j.enpol.2006.06.019. 

[91] Newsham GR, Bowker BG. The effect of utility time-varying pricing and load control strategies on residential summer 
peak electricity use: A review. Energy Policy 2010;38:3289–96. doi:10.1016/j.enpol.2010.01.027. 

[92] Faruqui A, Hledik R, Sergici S. Piloting the Smart Grid. Electr J 2009;22:55–69. doi:10.1016/j.tej.2009.06.012. 

[93] Jinsoo Han, Chang-Sic Choi, Ilwoo Lee. More efficient home energy management system based on ZigBee 
communication and infrared remote controls. IEEE Trans Consum Electron 2011;57:85–9. 
doi:10.1109/TCE.2011.5735485. 

[94] Yang D, Chen Y. Demand response and market performance in power economics. 2009 IEEE Power Energy Soc. Gen. 
Meet., IEEE; 2009, p. 1–6. doi:10.1109/PES.2009.5275733. 

[95] Lu S, Samaan N, Diao R, Elizondo M, Jin C, Mayhorn E, et al. Centralized and decentralized control for demand response. 
ISGT 2011, IEEE; 2011, p. 1–8. doi:10.1109/ISGT.2011.5759191. 

[96] Kuzlu M, Pipattanasomporn M, Rahman S. Hardware Demonstration of a Home Energy Management System for 
Demand Response Applications. IEEE Trans Smart Grid 2012;3:1704–11. doi:10.1109/TSG.2012.2216295. 

[97] Khan AAA, Razzaq S, Khan AAA, Khursheed F, Owais. HEMSs and enabled demand response in electricity market: An 
overview. Renew Sustain Energy Rev 2015;42:773–85. doi:10.1016/j.rser.2014.10.045. 

[98] Ikäheimo J, Evens C, Kärkkäinen S. DER Aggregator Business : the Finnish Case 2010:38. 

[99] Shariatzadeh F, Mandal P, Srivastava AK. Demand response for sustainable energy systems: A review, application and 
implementation strategy. Renew Sustain Energy Rev 2015;45:343–50. doi:10.1016/j.rser.2015.01.062. 

[100] Wolak FA. Residential Customer Response to Real-Time Pricing: The Anaheim Critical-Peak Pricing Experiment. Science 
(80- ) 2006. 

[101] Herter K, McAuliffe P, Rosenfeld A. An exploratory analysis of California residential customer response to critical peak 
pricing of electricity. Energy 2007;32:25–34. doi:10.1016/j.energy.2006.01.014. 

[102] Rocky Mountain Institute. Automated demand response system pilot: final report. Boulder, Colorado: 2006. 

[103] Energy Insights Inc. Xcel energy TOU pilot final impact report. 2008. 

[104] Foundation H, Foundation E, Markets E, Series WP, Berkeley UC. CSEM WP 105 Dynamic Pricing , Advanced Metering 
and Demand Response in Electricity Markets Severin Borenstein , Michael Jaske , and Arthur Rosenfeld October 2002. 
Energy 2002. 

[105] Company IP. Analysis of the residential time-of-day and energy watch pilot programs: final report. 2006. 

[106] Summit Blue Consulting. Evaluation of the 2006 Energy-Smart Pricing Plan. Evaluation 2007. 



154 

 

[107] RLW Analytics. AmerenUE Residential TOU Pilot Study Load Research Analysis: First Look Results 2004. 

[108] Braithwait S. Residential TOU Price Response in the Presence of Interactive Communication Equipment. Pricing Compet. 
Electr. Mark., Boston, MA: Springer US; 2000, p. 359–73. doi:10.1007/978-1-4615-4529-3_22. 

[109] PSE&G. Final Report for the MyPower Pricing Segments Evaluation 2007. 

[110] Ontario Energy Board. Ontario Energy Board Smart Price Pilot Final Report. Retrieved Oct 2007;23:2007. 

[111] Al DHE, Olympic Peninsula Project NTIS. Pacific Northwest GridWiseTM Testbed Demonstration Projects, Part I 2007. 

[112] Gkatzikis L. Optimization and game theory techniques for energy-constrained networked systems and the smart grid 
2014:1–137. 

[113] Nezamabadi P. Electrical energy management of virtual power plants in distribution networks with renewable energy 
resources and energy storage system. Electr. Power Distrib. Networks (EPDC), 2011 16th Conf., 2011, p. 1–5. 

[114] Yu Z, Jia L, Murphy-Hoye MC, Pratt A, Tong L. Modeling and Stochastic Control for Home Energy Management. IEEE 
Trans Smart Grid 2013;4:2244–55. doi:10.1109/TSG.2013.2279171. 

[115] Mackey K, McCann R, Rahman K, Winkelman R. Evaluation of a battery energy storage system for coordination of 
demand response and renewable energy resources. 2013 4th IEEE Int. Symp. Power Electron. Distrib. Gener. Syst., 
IEEE; 2013, p. 1–8. doi:10.1109/PEDG.2013.6785650. 

[116] Shahidehpour M, Hongyu Wu. Stochastic operation security with demand response and renewable energy sources. 
2012 IEEE Power Energy Soc. Gen. Meet., IEEE; 2012, p. 1–2. doi:10.1109/PESGM.2012.6345752. 

[117] Baboli PT, Moghaddam MP, Haghifam MR, Shafie-khah M, Catalao JPS. Serving flexible reliability in hybrid AC-DC 
microgrid using demand response and renewable energy resources. 2014 Power Syst. Comput. Conf., IEEE; 2014, p. 
1–7. doi:10.1109/PSCC.2014.7038441. 

[118] Pazouki S, Haghifam M-R, Pazouki S. Short term economical scheduling in an energy hub by renewable and demand 
response. 2013 3rd Int. Conf. Electr. Power Energy Convers. Syst., IEEE; 2013, p. 1–6. doi:10.1109/EPECS.2013.6713024. 

[119] Jiang L, Low S. Real-time demand response with uncertain renewable energy in smart grid. 2011 49th Annu. Allert. 
Conf. Commun. Control. Comput., IEEE; 2011, p. 1334–41. doi:10.1109/Allerton.2011.6120322. 

[120] Ikeda Y, Ikegami T, Kataoka K, Ogimoto K. A unit commitment model with demand response for the integration of 
renewable energies. 2012 IEEE Power Energy Soc. Gen. Meet., IEEE; 2012, p. 1–7. doi:10.1109/PESGM.2012.6344788. 

[121] Zeng B, Zhang J, Yang X, Wang J, Dong J, Zhang Y. Integrated Planning for Transition to Low-Carbon Distribution System 
With Renewable Energy Generation and Demand Response. IEEE Trans Power Syst 2014;29:1153–65. 
doi:10.1109/TPWRS.2013.2291553. 

[122] Liu M, Quilumba FL, Lee W-J. A collaborative design of aggregated residential appliances and renewable energy for 
demand response participation. 2014 IEEE Ind. Appl. Soc. Annu. Meet., IEEE; 2014, p. 1–8. 
doi:10.1109/IAS.2014.6978381. 

[123] Jin T, Jimenez J, Tian Z. Managing demand response for manufacturing enterprises via renewable energy integration. 
2013 IEEE Int. Conf. Autom. Sci. Eng., IEEE; 2013, p. 645–50. doi:10.1109/CoASE.2013.6653961. 

[124] Wada K, Yokoyama A, Kawauchi S, Ishikawa F. Frequency control using fast demand response in power system with a 
large penetration of renewable energy sources. 2014 Int. Conf. Power Syst. Technol., IEEE; 2014, p. 1150–6. 
doi:10.1109/POWERCON.2014.6993991. 

[125] Wu H, Al-Abdulwahab A, Shahidehpour M. Hourly demand response in day-ahead scheduling for managing the 
variability of renewable energy. IET Gener Transm Distrib 2013;7:226–34. doi:10.1049/iet-gtd.2012.0186. 

[126] Nikolic D, Negnevitsky M, de Groot M, Gamble S, Forbes J, Ross M. Fast demand response as an enabling technology 
for high renewable energy penetration in isolated power systems. 2014 IEEE PES Gen. Meet. | Conf. Expo., IEEE; 2014, 
p. 1–5. doi:10.1109/PESGM.2014.6939282. 



155 

 

[127] Finn P, Fitzpatrick C. Demand side management of industrial electricity consumption: Promoting the use of renewable 
energy through real-time pricing. Appl Energy 2014;113:11–21. doi:10.1016/j.apenergy.2013.07.003. 

[128] Mazidi M, Zakariazadeh A, Jadid S, Siano P. Integrated scheduling of renewable generation and demand response 
programs in a microgrid. Energy Convers Manag 2014;86:1118–27. doi:10.1016/j.enconman.2014.06.078. 

[129] Bouckaert S, Mazauric V, Maïzi N. Expanding Renewable Energy by Implementing Demand Response. Energy Procedia 
2014;61:1844–7. doi:10.1016/j.egypro.2014.12.226. 

[130] Daoxin L, Lingyun L, Yingjie C, Ming Z. Market Equilibrium Based on Renewable Energy Resources and Demand 
Response in Energy Engineering. Syst Eng Procedia 2012;4:87–98. doi:10.1016/j.sepro.2011.11.053. 

[131] Stadler I. Power grid balancing of energy systems with high renewable energy penetration by demand response. Util 
Policy 2008;16:90–8. doi:10.1016/j.jup.2007.11.006. 

[132] Wang Q, Zhang C, Ding Y, Xydis G, Wang J, Østergaard J. Review of real-time electricity markets for integrating 
Distributed Energy Resources and Demand Response. Appl Energy 2015;138:695–706. 
doi:10.1016/j.apenergy.2014.10.048. 

[133] Kirby BJ. Load Response Fundamentally Matches Power System Reliability Requirements. 2007 IEEE Power Eng. Soc. 
Gen. Meet., IEEE; 2007, p. 1–6. doi:10.1109/PES.2007.386227. 

[134] Samad T, Kiliccote S. Smart grid technologies and applications for the industrial sector. Comput Chem Eng 2012;47:76–
84. doi:10.1016/j.compchemeng.2012.07.006. 

[135] Bode JL, Sullivan MJ, Berghman D, Eto JH. Incorporating residential AC load control into ancillary service markets: 
Measurement and settlement. Energy Policy 2013;56:175–85. doi:10.1016/j.enpol.2012.12.024. 

[136] Lu N. An Evaluation of the HVAC Load Potential for Providing Load Balancing Service. IEEE Trans Smart Grid 
2012;3:1263–70. doi:10.1109/TSG.2012.2183649. 

[137] Hovgaard TG, Larsen LFS, Edlund K, Jørgensen JB. Model predictive control technologies for efficient and flexible power 
consumption in refrigeration systems. Energy 2012;44:105–16. doi:10.1016/j.energy.2011.12.007. 

[138] Lu N, Zhang Y. Design Considerations of a Centralized Load Controller Using Thermostatically Controlled Appliances for 
Continuous Regulation Reserves. IEEE Trans Smart Grid 2013;4:914–21. doi:10.1109/TSG.2012.2222944. 

[139] Sullivan M, Bode J, Kellow B, Woehleke S, Eto J. Using Residential AC Load Control in Grid Operations: PG&amp;E’s 
Ancillary Service Pilot. IEEE Trans Smart Grid 2013;4:1162–70. doi:10.1109/TSG.2012.2233503. 

[140] Walawalkar R, Fernands S, Thakur N, Chevva KR. Evolution and current status of demand response (DR) in electricity 
markets: Insights from PJM and NYISO. Energy 2010;35:1553–60. doi:10.1016/j.energy.2009.09.017. 

[141] Chen Y, Li J. Comparison of security constrained economic dispatch formulations to incorporate reliability standards 
on demand response resources into Midwest ISO co-optimized energy and ancillary service market. Electr Power Syst 
Res 2011;81:1786–95. doi:10.1016/j.epsr.2011.04.009. 

[142] Navid N, Rosenwald G. Market Solutions for Managing Ramp Flexibility With High Penetration of Renewable Resource. 
IEEE Trans Sustain Energy 2012;3:784–90. doi:10.1109/TSTE.2012.2203615. 

[143] Cappers P, MacDonald J, Goldman C, Ma O. An assessment of market and policy barriers for demand response 
providing ancillary services in U.S. electricity markets. Energy Policy 2013;62:1031–9. doi:10.1016/j.enpol.2013.08.003. 

[144] Sortomme E, El-Sharkawi M a. Optimal scheduling of vehicle-to-grid energy and ancillary services. IEEE Trans Smart 
Grid 2012;3:351–9. doi:10.1109/TSG.2011.2164099. 

[145] Ilić MD, Popli N, Joo JY, Hou Y. A possible engineering and economic framework for implementing demand side 
participation in frequency regulation at value. IEEE Power Energy Soc Gen Meet 2011. doi:10.1109/PES.2011.6039498. 

[146] Kempton W, Tomic J, Letendre S, Brooks A, Lipman T. Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as 
Resources for Distributed Electric Power in California. Fuel Cell 2001;IUCD-ITS-R:95. 



156 

 

[147] Brooks A. Integration of electric drive vehicles with the power grid-a new application for vehicle batteries. Seventeenth 
Annu. Batter. Conf. Appl. Adv. Proc. Conf. (Cat. No.02TH8576), IEEE; 2002, p. 239. doi:10.1109/BCAA.2002.986406. 

[148] Saboori H, Mohammadi M, Taghe R. Virtual Power Plant (VPP), Definition, Concept, Components and Types. 2011 Asia-
Pacific Power Energy Eng. Conf., IEEE; 2011, p. 1–4. doi:10.1109/APPEEC.2011.5749026. 

[149] Brooks A, Lu E, Reicher D, Spirakis C, Weihl B. Demand Dispatch. IEEE Power Energy Mag 2010;8:20–9. 
doi:10.1109/MPE.2010.936349. 

[150] Tomić J, Kempton W. Using fleets of electric-drive vehicles for grid support. J Power Sources 2007;168:459–68. 
doi:10.1016/j.jpowsour.2007.03.010. 

[151] Guille C, Gross G. A conceptual framework for the vehicle-to-grid (V2G) implementation. Energy Policy 2009;37:4379–
90. doi:10.1016/j.enpol.2009.05.053. 

[152] Shafie-khah M, Neyestani N, Damavandi MY, Gil FAS, Catalão JPS. Economic and technical aspects of plug-in electric 
vehicles in electricity markets. Renew Sustain Energy Rev 2016;53:1168–77. doi:10.1016/j.rser.2015.09.079. 

[153] Bessa RJ, Matos MA. Economic and technical management of an aggregation agent for electric vehicles: a literature 
survey. Eur Trans Electr Power 2012;22:334–50. doi:10.1002/etep.565. 

[154] Bessa RJ, Matos MA, Soares FJ, Lopes JAP. Optimized Bidding of a EV Aggregation Agent in the Electricity Market. IEEE 
Trans Smart Grid 2012;3:443–52. doi:10.1109/TSG.2011.2159632. 

[155] Han S, Soo HH, Sezaki K. Design of an optimal aggregator for vehicle-to-grid regulation service. Innov Smart Grid 
Technol Conf ISGT 2010 2010;1:65–72. doi:10.1109/ISGT.2010.5434773. 

[156] Quinn C, Zimmerle D, Bradley TH. The effect of communication architecture on the availability, reliability, and 
economics of plug-in hybrid electric vehicle-to-grid ancillary services. J Power Sources 2010;195:1500–9. 
doi:10.1016/j.jpowsour.2009.08.075. 

[157] Caramanis MC, Foster JM, Goldis EA. Load Participation in Electricity Markets: Day-Ahead and Hour-Ahead Market 
Coupling with Wholesale/Transmission and Retail/Distribution Cost and Congestion Modeling. 2010 First IEEE Int. Conf. 
Smart Grid Commun., IEEE; 2010, p. 513–8. doi:10.1109/SMARTGRID.2010.5622096. 

[158] Yixing Xu, Singh C. Operation strategies of the load aggregator with electric energy storage. 2012 IEEE Int. Conf. Power 
Syst. Technol., IEEE; 2012, p. 1–6. doi:10.1109/PowerCon.2012.6401254. 

[159] Xu Y, Xie L, Singh C. Optimal Scheduling and Operation of Load Aggregators With Electric Energy Storage Facing Price 
and Demand Uncertainties. North Am Power Symp 2011:1–7. doi:10.1109/NAPS.2011.6024888. 

[160] Yixing Xu, Le Xie, Chanan Singh. Optimal scheduling and operation of load aggregator with electric energy storage in 
power markets. North Am. Power Symp. 2010, IEEE; 2010, p. 1–7. doi:10.1109/NAPS.2010.5619601. 

[161] Kefayati M, Baldick R. PEV demand flexibility and its impact on the electric power system. 2013 IEEE Transp. Electrif. 
Conf. Expo, IEEE; 2013, p. 1–2. doi:10.1109/ITEC.2013.6574500. 

[162] Kefayati M, Baldick R. Anticipative charging of Plug-in Electric Vehicles and its impact on the grid. 2014 IEEE Transp 
Electrif Conf Expo 2014:1–6. doi:10.1109/ITEC.2014.6861805. 

[163] Schafer  a, Moser  a. Dispatch optimization and economic evaluation of distributed generation in a virtual power plant. 
Energytech, 2012 IEEE 2012:1–6. doi:10.1109/EnergyTech.2012.6304655. 

[164] Xu Z, Hu Z, Song Y, Zhao W, Zhang Y. Coordination of PEVs charging across multiple aggregators. Appl Energy 
2014;136:582–9. doi:10.1016/j.apenergy.2014.08.116. 

[165] Tavakoli A, Negnevitsky M, Muttaqi KM. A coordinated approach to energy exchange between electric vehicle load 
aggregators and wind generation companies under uncertainty. 2015 IEEE Power Energy Soc. Gen. Meet., IEEE; 2015, 
p. 1–5. doi:10.1109/PESGM.2015.7285807. 

[166] Shafie-khah M, Moghaddam MP, Sheikh-El-Eslami MK, Catalão JPS. Optimised performance of a plug-in electric vehicle 



157 

 

aggregator in energy and reserve markets. Energy Convers Manag 2015;97:393–408. 
doi:10.1016/j.enconman.2015.03.074. 

[167] Gonzalez Vaya M, Andersson G. Optimal Bidding Strategy of a Plug-In Electric Vehicle Aggregator in Day-Ahead 
Electricity Markets Under Uncertainty. IEEE Trans Power Syst 2015;30:2375–85. doi:10.1109/TPWRS.2014.2363159. 

[168] Shafiullah M, Al-Awami AT. Maximizing the profit of a Load Aggregator by Optimal Scheduling of Day ahead Load with 
EVs. 2015 IEEE Int Conf Ind Technol 2015:1342–7. 

[169] Roos A, Ottesen SØ, Bolkesjø TF. Modeling Consumer Flexibility of an Aggregator Participating in the Wholesale Power 
Market and the Regulation Capacity Market. Energy Procedia 2014;58:79–86. doi:10.1016/j.egypro.2014.10.412. 

[170] Gonzalez Vaya M, Andersson G. Self Scheduling of Plug-In Electric Vehicle Aggregator to Provide Balancing Services for 
Wind Power. IEEE Trans Sustain Energy 2015:1–14. doi:10.1109/TSTE.2015.2498521. 

[171] Ayon X, Usaola J. An optimal scheduling for aggregators in smart grids. 2015 12th Int. Conf. Eur. Energy Mark., IEEE; 
2015, p. 1–5. doi:10.1109/EEM.2015.7216694. 

[172] Nguyen DT, Le LB. Risk-Constrained Profit Maximization for Microgrid Aggregators With Demand Response. IEEE Trans 
Smart Grid 2015;6:135–46. doi:10.1109/TSG.2014.2346024. 

[173] Lu H, Jeon W, Mount T, Lamadrid AJ. Can Energy Bids from Aggregators Manage Deferrable Demand Efficiently? 2015 
48th Hawaii Int. Conf. Syst. Sci., IEEE; 2015, p. 2530–9. doi:10.1109/HICSS.2015.304. 

[174] Kirschen DS, Rosso A, Juan Ma, Ochoa LF, Ma J, Ochoa LF. Flexibility from the demand side. 2012 IEEE Power Energy 
Soc. Gen. Meet., IEEE; 2012, p. 1–6. doi:10.1109/PESGM.2012.6344828. 

[175] Kirby BJ, Kueck JD. Spinning Reserve from Pump Load : A Technical Findings Report to the California Department 
Prepared by. Contract 2003. 

[176] Samadi P, Mohsenian-Rad A-H, Schober R, Wong VWS, Jatskevich J. Optimal Real-Time Pricing Algorithm Based on 
Utility Maximization for Smart Grid. 2010 First IEEE Int. Conf. Smart Grid Commun., IEEE; 2010, p. 415–20. 
doi:10.1109/SMARTGRID.2010.5622077. 

[177] Samadi P, Schober R, Wong VWS. Optimal energy consumption scheduling using mechanism design for the future 
smart grid. 2011 IEEE Int. Conf. Smart Grid Commun., IEEE; 2011, p. 369–74. 
doi:10.1109/SmartGridComm.2011.6102349. 

[178] Chen L, Li N, Jiang L, Low SH. Optimal Demand Response: Problem Formulation and Deterministic Case. Control Optim. 
Methods Electr. Smart Grids, New York, NY: Springer New York; 2012, p. 63–85. doi:10.1007/978-1-4614-1605-0_3. 

[179] Koutsopoulos I, Tassiulas L. Optimal Control Policies for Power Demand Scheduling in the Smart Grid. IEEE J Sel Areas 
Commun 2012;30:1049–60. doi:10.1109/JSAC.2012.120704. 

[180] Gkatzikis L, Salonidis T, Hegde N, Massoulie L. Electricity markets meet the home through demand response. 2012 IEEE 
51st IEEE Conf. Decis. Control, IEEE; 2012, p. 5846–51. doi:10.1109/CDC.2012.6426193. 

[181] Gatsis N, Giannakis GB. Cooperative multi-residence demand response scheduling. 2011 45th Annu. Conf. Inf. Sci. Syst., 
IEEE; 2011, p. 1–6. doi:10.1109/CISS.2011.5766245. 

[182] Huang L, Walrand J, Ramchandran K. Optimal smart grid tariffs. 2012 Inf. Theory Appl. Work., IEEE; 2012, p. 212–20. 
doi:10.1109/ITA.2012.6181799. 

[183] Hindi H, Greene D, Laventall C. Coordinating regulation and demand response in electric power grids using multirate 
model predictive control. ISGT 2011, IEEE; 2011, p. 1–8. doi:10.1109/ISGT.2011.5759168. 

[184] Papavasiliou A, Hindi H, Greene D. Market-based control mechanisms for electric power demand response. 49th IEEE 
Conf. Decis. Control, IEEE; 2010, p. 1891–8. doi:10.1109/CDC.2010.5717572. 

[185] Kim H, Thottan M. A two-stage market model for microgrid power transactions via aggregators. Bell Labs Tech J 
2011;16:101–7. doi:10.1002/bltj.20524. 



158 

 

[186] Srikantha P, Rosenberg C, Keshav S. An analysis of peak demand reductions due to elasticity of domestic appliances. 
Proc. 3rd Int. Conf. Futur. Energy Syst. Where Energy, Comput. Commun. Meet - e-Energy ’12, New York, New York, 
USA: ACM Press; 2012, p. 1–10. doi:10.1145/2208828.2208856. 

[187] Biegel B, Westenholz M, Hansen LH, Stoustrup J, Andersen P, Harbo S. Integration of flexible consumers in the ancillary 
service markets. Energy 2014;67:479–89. doi:10.1016/j.energy.2014.01.073. 

[188] Ali M, Alahäivälä A, Malik F, Humayun M, Safdarian A, Lehtonen M. A market-oriented hierarchical framework for 
residential demand response. Int J Electr Power Energy Syst 2015;69:257–63. doi:10.1016/j.ijepes.2015.01.020. 

[189] Ruiz N, Cobelo I, Oyarzabal J. A Direct Load Control Model for Virtual Power Plant Management. IEEE Trans Power Syst 
2009;24:959–66. doi:10.1109/TPWRS.2009.2016607. 

[190] Joo J. Adaptive Load Management : Multi-Layered And Multi-Temporal Optimization Of The Demand Side In Electric 
Energy Systems Adaptive Load Management : Multi-Layered And 2013. 

[191] Joo J-Y, Ilic MD. Adaptive load management (ALM) in electric power systems. 2010 Int. Conf. Networking, Sens. Control, 
IEEE; 2010, p. 637–42. doi:10.1109/ICNSC.2010.5461584. 

[192] Ilić MD, Joo JY, Xie L, Prica M, Rotering N. A decision-making framework and simulator for sustainable electric energy 
systems. IEEE Trans Sustain Energy 2011;2:37–49. doi:10.1109/TSTE.2010.2074217. 

[193] Joo J, Ili M. Multi-Temporal Risk Minimization Of Adaptive Load Management In Electricity Spot Markets. Innov Smart 
Grid Technol Conf Eur (ISGT Eur 2011 IEEE PES 2011. 

[194] Carreiro AM, Oliveira C, Antunes CH, Jorge HM. An Energy Management System Aggregator Based on an Integrated 
Evolutionary and Differential Evolution Approach. Appl. Evol. Comput., Springer International Publishing; 2015, p. 252–
64. doi:10.1007/978-3-319-16549-3_21. 

[195] Agnetis A, De Pascale G, Detti P, Vicino A. Load Scheduling for Household Energy Consumption Optimization. IEEE Trans 
Smart Grid 2013;4:2364–73. doi:10.1109/TSG.2013.2254506. 

[196] Mahmoudi N, Saha TK, Eghbal M. A New Trading Framework for Demand Response Aggregators 2014. 

[197] PPA - Power Purchase Agreements 2015. http://ppp.worldbank.org/public-private-partnership/sector/energy/energy-
power-agreements/power-purchase-agreements#key_features. 

[198] Mahmoudi N, Saha TK, Eghbal M. Modelling demand response aggregator behavior in wind power offering strategies. 
Appl Energy 2014;133:347–55. doi:10.1016/j.apenergy.2014.07.108. 

[199] CPLEX Optimizer n.d. http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/. 

[200] General Algebraic Modeling System (GAMS) n.d. https://www.gams.com/. 

[201] NordREG. Development in the Nordic Electricity Market Nordic Market Report 2014:60. 

[202] Koliou E, Eid C, Chaves-Ávila JP, Hakvoort RA. Demand response in liberalized electricity markets: Analysis of aggregated 
load participation in the German balancing mechanism. Energy 2014;71:245–54. doi:10.1016/j.energy.2014.04.067. 

[203] Jacobsen RH, Gabioud D, Basso G, Alet P-J, Azar AG, Ebeid ESM. SEMIAH: An Aggregator Framework for European 
Demand Response Programs. 2015 Euromicro Conf. Digit. Syst. Des., IEEE; 2015, p. 470–7. doi:10.1109/DSD.2015.96. 

[204] EnerNOC n.d. http://www.enernoc.com/ (accessed January 5, 2013). 

[205] Comberge, Inc. n.d. 

[206] CPower - Energy Intelligence at Work n.d. 

[207] Energy Connect n.d. http://www.energyconnectinc.com/. 

[208] ECS - Energy Custailment Specialists, Inc n.d. 



159 

 

[209] NAPP - North America Power Partners n.d. http://www.nappartners.com/. 

[210] SEAM. LEADING ENERGY INTO THE FUTURE. n.d. http://www.seam-group.com/en/. 

[211] SAVE MONEY, INCREASE COMFORT & HAVE COMPLETE CONTROL n.d. https://ngenic.se/en/. 

[212] Zitzler E, Laumanns M, Bleuler S. A Tutorial on Evolutionary Multiobjective Optimization, 2004, p. 3–37. 
doi:10.1007/978-3-642-17144-4_1. 

[213] Goldberg DE. Genetic Algorithms in Search, Optimization, and Machine Learning. Alabama: ADDISON-WESLEY 
PUBLISHING COMPANY, INC.; 1989. 

[214] Branke J, Deb K, Miettinen K, Slowiński R. Multiobjective Optimization. vol. 5252. Berlin, Heidelberg: Springer Berlin 
Heidelberg; 2008. doi:10.1007/978-3-540-88908-3. 

[215] Wehrens R, Buydens L. Classical and nonclassical optimization methods. Encycl Anal Chem 2000:1–12. 
doi:10.1002/9780470027318.a5203. 

[216] Rothlauf F. Design of Modern Heuristics. 2011. doi:10.1007/978-3-540-72962-4. 

[217] VII ALIO/EURO Workshop on Applied Combinatorial Optimization. VII ALIO/EURO Work Appl Comb Optim 2011. 

[218] Pires DF, Antunes CH, Martins AG. NSGA-II with Local Search for a Multi-Objective VAR Planning Problem 2009. 

[219] John Henry Holland. Adaptation in natural and artificial systems. MIT Press, Ann Arbor, MI; 1975. 

[220] Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs. Berlin, Heidelberg: Springer Berlin 
Heidelberg; 1996. doi:10.1007/978-3-662-03315-9. 

[221] Darwin C. On the origins of species by means of natural selection. London: Murray 1859:247. 
doi:10.1126/science.146.3640.51-b. 

[222] Eiben AE, Smith JE. What is an Evolutionary Algorithm? Introd to Evol Comput 2003:15–35. doi:10.1007/978-3-662-
05094-1_2. 

[223] Bäck T. Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic 
algorithms. Oxford University Press Oxford, UK; 1996. 

[224] Merz Court NU. Newcastle Engineering Design Centre. Ewcastle upon Tyne NE1 7RU, UK 2005. 
http://www.edc.ncl.ac.uk/highlight/rhjanuary2007g02.php (accessed December 1, 2015). 

[225] Gavrilova ML, Gervasi O, Kumar V, Tan CJK, Taniar D, Laganá A, et al., editors. Computational Science and Its 
Applications - ICCSA 2006. vol. 3981. Berlin, Heidelberg: Springer Berlin Heidelberg; 2006. doi:10.1007/11751588. 

[226] Coley DA. An Introduction to Genetic Algorithms for Scientists and Engineers. 1999. 

[227] Baker JE. Adaptive Selection Methods for Genetic Algorithms. L. Erlbaum Associates Inc. Hillsdale, NJ, USA; 1985. 

[228] Eiben AE, Smith JE. Introduction to Evolutionary Computing. Berlin, Heidelberg: Springer Berlin Heidelberg; 2003. 
doi:10.1007/978-3-662-05094-1. 

[229] Storn R, Price K. Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous 
spaces. Tech Report, Int Comput Sci Inst 1995;11:1–15. doi:10.1023/A:1008202821328. 

[230] Price K, Storn RM, Lampinen JA. Differential Evolution. Berlin/Heidelberg: Springer-Verlag; 2005. doi:10.1007/3-540-
31306-0. 

[231] Das S, Suganthan PN. Differential Evolution: A Survey of the State-of-the-Art. IEEE Trans Evol Comput 2011;15:4–31. 
doi:10.1109/TEVC.2010.2059031. 

[232] Neri F, Tirronen V. Recent advances in differential evolution: a survey and experimental analysis. Artif Intell Rev 
2010;33:61–106. doi:10.1007/s10462-009-9137-2. 



160 

 

[233] Reyes-sierra M, Coello C a C, Mezura-Montes E. Multi-objective Optimization Using Differential Evolution : A Survey of 
the State-of-the-Art. Adv Differ Evol SCI 143 2008:173–96. 

[234] Chakraborty UK. Advances in Differential Evolution. vol. 143. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008. 
doi:10.1007/978-3-540-68830-3. 

[235] Cunha, Antonio Gaspar C, Takahashi, Ricardo C, Antunes, Carlos Henggeler C. Manual de computação evolutiva e 
metaheurística. 2012. doi:http://dx.doi.org/10.14195/978-989-26-0583-8. 

[236] ROSENBERG RS, ROSENBERG RS. Simulation of genetic populations with biochemical properties. MICHIGAN: 1967. 

[237] Fogel, L. J., A.J. Owens MJW. Artificial Intelligence through Simulated Evolution. New York, New York, USA: Wiley-IEEE 
Press; 1966. 

[238] Fonseca CM, Fleming PJ. Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and 
Generalization. Icga 1993;93:416–23. doi:citeulike-article-id:2361311. 

[239] Horn J, Nafpliotis N, Goldberg DE. A niched Pareto genetic algorithm for multiobjective optimization. Proc. First IEEE 
Conf. Evol. Comput. IEEE World Congr. Comput. Intell., IEEE; 1993, p. 82–7. doi:10.1109/ICEC.1994.350037. 

[240] Srinivas, N. DK. Multi-objective Optimization using Non-dominated Sorting in Genetic Algorithm. Evol Comput 1994;Vol. 
2 No.:221–48. 

[241] Zitzler E, Thiele L. An Evolutionary Algorithm for Multiobjective Optimization : The Strength Pareto Approach 1998:43. 
doi:10.1.1.40.7696. 

[242] Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm 2001:95–100. 
doi:10.1.1.28.7571. 

[243] Schaffer JD. Some experiments in machine learning using vector evaluated genetic algorithms. Vanderbilt University 
Tenessee, 1984. 

[244] Hajela P, Lin C-Y. Genetic search strategies in multicriterion optimal design. Struct Optim 1992;4:99–107. 
doi:10.1007/BF01759923. 

[245] Srinivas N, Deb K. Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evol Comput 
1994;2:221–48. doi:10.1162/evco.1994.2.3.221. 

[246] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol 
Comput 2002;6:182–97. doi:10.1109/4235.996017. 

[247] Knowles JD, Corne DW. Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy. Evol 
Comput 2000;8:149–72. doi:10.1162/106365600568167. 

[248] Eckart Zitzler , Marco Laumanns LT. SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Proc EUROGEN 
2001 – Evol Methods Des Optim Control with Appl to Ind Probl 2001. doi:10.1.1.22.4617. 

[249] Deb K. Multi-Objective Optimization using Evolutionary Algorithms. WILEY; 2001. 

[250] Deb K, Agrawal S, Pratap A, Meyarivan T. A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective 
Optimization: NSGA-II, 2000, p. 849–58. doi:10.1007/3-540-45356-3_83. 

[251] Iorio AW, Li X. Solving Rotated Multi-objective Optimization Problems Using Differential Evolution, 2004, p. 861–72. 
doi:10.1007/978-3-540-30549-1_74. 

[252] Vincke P. Robust solutions and methods in decision-aid. J Multi-Criteria Decis Anal 1999;8:181–7. 
doi:10.1002/(SICI)1099-1360(199905)8:3<181::AID-MCDA242>3.3.CO;2-G. 

[253] Buswell RA, Mitchell VA. Identifying the opportunities for ICT based energy demand re- duction in family homes n.d.:1–
11. 

[254] Shinde SA, Khule RS. HOME ENERGY MANAGEMENT SYSTEM FOR DEMAND RESPONSE APPLICATIONS 2015:270–9. 



161 

 

[255] Rossell A, Kardaras G. Towards Efficient Energy Management : Defining HEMS , AMI and Smart Grid Objectives 
2011:335–40. 

[256] Barquet APB, Cunha VP, Oliveira MG, Rozenfeld H. Business Model Elements for Product-Service System. Funct. Think. 
Value Creat., Berlin, Heidelberg: Springer Berlin Heidelberg; 2011, p. 332–7. doi:10.1007/978-3-642-19689-8_58. 

[257] DE REUVER M, BOUWMAN H, HAAKER T. BUSINESS MODEL ROADMAPPING: A PRACTICAL APPROACH TO COME FROM 
AN EXISTING TO A DESIRED BUSINESS MODEL. Int J Innov Manag 2013;17:1340006. doi:10.1142/S1363919613400069. 

[258] Business Model Canvas. AG, Copyr 2016 - Strateg n.d. http://www.businessmodelgeneration.com/canvas/bmc 
(accessed January 25, 2016). 

[259] Goh C-K, Tan KC. Evolutionary Multi-objective Optimization in Uncertain Environments. vol. 186. Berlin, Heidelberg: 
Springer Berlin Heidelberg; 2009. doi:10.1007/978-3-540-95976-2. 

[260] Fonseca CM, Fleming PJ. An Overview of Evolutionary Algorithms in Multiobjective Optimization. Evol Comput 
1995;3:1–16. doi:10.1162/evco.1995.3.1.1. 

[261] Smith AE. Multi-objective optimization using evolutionary algorithms [Book Review]. IEEE Trans Evol Comput 
2002;6:526–526. doi:10.1109/TEVC.2002.804322. 

[262] Coello CC, Lamont GB, Veldhuizen DA van. Evolutionary Algorithms for Solving Multi-Objective Problems. Boston, MA: 
Springer US; 2007. doi:10.1007/978-0-387-36797-2. 

[263] Angira R, Babu B V. Non-dominated Sorting Differential Evolution ( NSDE ): An Extension of Differential Evolution for 
Multi- objective Optimization Multi Objective Optimization Problems ( MOOPs ) 2005:1428–43. 

[264] Xiaoying P, Jing Z, Hao C, Xuejing C, Kaikai H. A differential evolution-based hybrid NSGA-II for multi-objective 
optimization. 2015 IEEE 7th Int. Conf. Cybern. Intell. Syst. IEEE Conf. Robot. Autom. Mechatronics, IEEE; 2015, p. 81–6. 
doi:10.1109/ICCIS.2015.7274552. 

[265] Robič T, Filipič B. DEMO: Differential Evolution for Multiobjective Optimization, 2005, p. 520–33. doi:10.1007/978-3-
540-31880-4_36. 

[266] Xianpeng Wang, Lixin Tang. Multi-objective optimization using a hybrid differential evolution algorithm. 2012 IEEE 
Congr. Evol. Comput., IEEE; 2012, p. 1–8. doi:10.1109/CEC.2012.6256478. 

[267] Zhao M, Liu R, Li W, Liu H. Multi-objective Optimization Based Differential Evolution Constrained Optimization 
Algorithm. 2010 Second WRI Glob. Congr. Intell. Syst., IEEE; 2010, p. 320–6. doi:10.1109/GCIS.2010.50. 

[268] Peng CPC, Sun HSH, Guo JGJ, Li HLH. A new algorithm based on non-dominated sorting differential evolution for multi-
objective optimal load dispatch. 2009 2nd IEEE Int Conf Comput Sci Inf Technol 2009:0–4. 
doi:10.1109/ICCSIT.2009.5234886. 

[269] Li K, Zheng J, Zhou C, Lv H. An Improved Differential Evolution for Multi-objective Optimization. 2009 WRI World Congr. 
Comput. Sci. Inf. Eng., IEEE; 2009, p. 825–30. doi:10.1109/CSIE.2009.181. 

[270] Zielinski K, Laur R. Variants of Differential Evolution for Multi-Objective Optimization. 2007 IEEE Symp. Comput. Intell. 
Multi-Criteria Decis., IEEE; 2007, p. 91–8. doi:10.1109/MCDM.2007.369422. 

[271] Iorio AW, Li X. Incorporating directional information within a differential evolution algorithm for multi-objective 
optimization. Proc 8th Annu Conf Genet Evol Comput - GECCO ’06 2006:691. doi:10.1145/1143997.1144119. 

[272] Wang F-S, Chiou J-P. Optimal Control and Optimal Time Location Problems of Differential-Algebraic Systems by 
Differential Evolution. Ind Eng Chem Res 1997;36:5348–57. doi:10.1021/ie9702486. 

[273] Chiou J-P, Wang F-S. Hybrid method of evolutionary algorithms for static and dynamic optimization problems with 
application to a fed-batch fermentation process. Comput Chem Eng 1999;23:1277–91. doi:10.1016/S0098-
1354(99)00290-2. 

[274] Babu B., Sastry KK. Estimation of heat transfer parameters in a trickle-bed reactor using differential evolution and 



162 

 

orthogonal collocation. Comput Chem Eng 1999;23:327–39. doi:10.1016/S0098-1354(98)00277-4. 

[275] Lu J-C, Wang F-S. Optimization of low pressure chemical vapour deposition reactors using hybrid differential evolution. 
Can J Chem Eng 2001;79:246–54. doi:10.1002/cjce.5450790207. 

[276] Feng Xue, Sanderson AC, Graves RJ. Pareto-based multi-objective differential evolution. 2003 Congr. Evol. Comput. 
2003. CEC ’03., vol. 2, IEEE; n.d., p. 862–9. doi:10.1109/CEC.2003.1299757. 

[277] Babu BV, Chakole PG, Syed Mubeen JH. Multiobjective differential evolution (MODE) for optimization of adiabatic 
styrene reactor. Chem Eng Sci 2005;60:4822–37. doi:10.1016/j.ces.2005.02.073. 

[278] Babu BV, Jehan MML. Differential evolution for multi-objective optimizatior. 2003 Congr. Evol. Comput. 2003. CEC ’03., 
vol. 4, IEEE; n.d., p. 2696–703. doi:10.1109/CEC.2003.1299429. 

[279] Chang CS, Xu DY. Differential evolution based tuning of fuzzy automatic train operation for mass rapid transit system. 
IEE Proc - Electr Power Appl 2000;147:206. doi:10.1049/ip-epa:20000329. 

[280] Abbass HA. The self-adaptive Pareto differential evolution algorithm. Proc. 2002 Congr. Evol. Comput. CEC’02 (Cat. 
No.02TH8600), vol. 1, IEEE; n.d., p. 831–6. doi:10.1109/CEC.2002.1007033. 

[281] ABBASS HA, SARKER R. THE PARETO DIFFERENTIAL EVOLUTION ALGORITHM. Int J Artif Intell Tools 2002;11:531–52. 
doi:10.1142/S0218213002001039. 

[282] Abbass HA, Sarker R, Newton C. PDE: a Pareto-frontier differential evolution approach for multi-objective optimization 
problems. Proc. 2001 Congr. Evol. Comput. (IEEE Cat. No.01TH8546), vol. 2, IEEE; 2001, p. 971–8. 
doi:10.1109/CEC.2001.934295. 

[283] Li GY, Liu MG. The summary of differential evolution algorithm and its improvements. ICACTE 2010 - 2010 3rd Int Conf 
Adv Comput Theory Eng Proc 2010;3:153–6. doi:10.1109/ICACTE.2010.5579677. 

[284] Zimmermann H-J. A Fresh Perspective on Uncertainty Modeling: Uncertainty Vs. Uncertainty Modeling, 1998, p. 353–
64. doi:10.1007/978-1-4615-5473-8_24. 

[285] Limbourg P, Salazar Aponte DE. An Optimization Algorithm for Imprecise Multi-Objective Problem Functions. 2005 IEEE 
Congr. Evol. Comput., vol. 1, IEEE; 2005, p. 459–66. doi:10.1109/CEC.2005.1554719. 

[286] Oberkampf WL, Helton JC, Joslyn CA, Wojtkiewicz SF, Ferson S. Challenge problems: uncertainty in system response 
given uncertain parameters. Reliab Eng Syst Saf 2004;85:11–9. doi:10.1016/j.ress.2004.03.002. 

[287] Antunes CH, Barrico C, Gomes Á. On the Use of Evolutionary Algorithms for Reactive Power Compensation in Electrical 
Distribution Networks – Experiments on a Case Study 2005:1–8. 

[288] Barrico C, Antunes CH. An Evolutionary Approach for Assessing the Degree of Robustness of Solutions to Multi-
Objective Models, 2007, p. 565–82. doi:10.1007/978-3-540-49774-5_25. 

[289] Barrico CMCS. Optimização Evolucionária Multi-Objectivo em Ambientes Incertos - Pesquisa de Soluções Robustas 
2007. 

[290] Barrico C, Antunes CH, Pires DF. Robustness Analysis in Evolutionary Multi-Objective Optimization. Proc 9th Eur Conf 
Evol Comput Comb Optim 2009:1–36. 

[291] Barrico C, Antunes C, Pires D. Robustness Analysis in Evolutionary Multi-Objective Optimization Applied to VAR 
Planning in Electrical Distribution Networks. Evol Comput Comb Optim 2009;5482:216–27. 

[292] Barrico C, Antunes CH. Robustness analysis in multi-obejective optimization Using a degree of robustness concept. IEEE 
Congr Evol Comput 2006:1887–92. doi:10.1109/CEC.2006.1688537. 

[293] Agarwal H, Renaud JE, Preston EL, Padmanabhan D. Uncertainty quantification using evidence theory in 
multidisciplinary design optimization. Reliab Eng Syst Saf 2004;85:281–94. doi:10.1016/j.ress.2004.03.017. 

[294] Bellman RE, Zadeh L a. Decision-making in a fuzzy environment. Manag Sci Sci 1970;17:141–64. 
doi:10.1287/mnsc.17.4.B141. 



163 

 

[295] Oliveira C, Antunes CH. Multiple objective linear programming models with interval coefficients – an illustrated 
overview. Eur J Oper Res 2007;181:1434–63. doi:10.1016/j.ejor.2005.12.042. 

[296] Inuiguchi M, Sakawa M. Minimax regret solution to linear programming problems with an interval objective function. 
Eur J Oper Res 1995;86:526–36. doi:10.1016/0377-2217(94)00092-Q. 

[297] Matos MA. Decision under risk as a multicriteria problem. Eur J Oper Res 2007;181:1516–29. 
doi:10.1016/j.ejor.2005.11.057. 

[298] Dantzig GB. Linear Programming under Uncertainty. Manage Sci 1955;1:197–206. doi:10.1287/mnsc.1.3-4.197. 

[299] Kouvelis P, Yu G. Robust Discrete Optimization and Its Applications. vol. 14. Boston, MA: Springer US; 1997. 
doi:10.1007/978-1-4757-2620-6. 

[300] Zadeh LA. Fuzzy sets. Inf Control 1965;8:338–53. doi:10.1016/S0019-9958(65)90241-X. 

[301] Gupta SK, Rosenhead J. Robustness in Sequential Investment Decisions. Manage Sci 1968;15:B-18-B-29. 
doi:10.1287/mnsc.15.2.B18. 

[302] Roy B, Hugonnard JC. Ranking of suburban line extension projects on the Paris metro system by a multicriteria method. 
Transp Res Part A Gen 1982;16:301–12. doi:10.1016/0191-2607(82)90057-7. 

[303] Roy B. A missing link in OR-DA : robustness analysis. Found Comput Decis Sci 1998;Vol. 23, N:141–60. 

[304] Vincke P. European Working Group “Multiple Criteria Decision Aiding.” About Robustness Anal 2003:3(8). 

[305] Rosenhead J, Elton M, Gupta SK. Robustness and Optimality as Criteria for Strategic Decisions. Oper Res Q 1972;23:413. 
doi:10.2307/3007957. 

[306] ROSENBLATT MJ, LEE HL. A robustness approach to facilities design. Int J Prod Res 1987;25:479–86. 
doi:10.1080/00207548708919855. 

[307] Mulvey JM, Vanderbei RJ, Zenios SA. Robust Optimization of Large-Scale Systems. Oper Res 1995;43:264–81. 
doi:10.1287/opre.43.2.264. 

[308] Vincke P. Robust and neutral methods for aggregating preferences into an outranking relation. Eur J Oper Res 
1999;112:405–12. doi:10.1016/S0377-2217(97)00439-6. 

[309] Sörensen K. Tabu searching for robust solutions. 4th Metaheuristics Int Conf 2001:707–12. 

[310] Kenneth Sörensen. A framework for robust and flexible optimisation using metaheuristics. Q J Belgian, French Ital Oper 
Res Soc 2003;1:341–5. 

[311] Deb K, Gupta H. Introducing robustness in multi-objective optimization. Evol Comput 2006;14:463–94. 
doi:10.1162/evco.2006.14.4.463. 

[312] Hughes EJ. Evolutionary Multi-objective Ranking with Uncertainty and Noise. Evol Multi-Criterion Optim SE  - 23 
2001;1993:329–43. doi:10.1007/3-540-44719-9_23. 

[313] Teich J. Pareto-front exploration with uncertain objectives. Evol Multi-Criterion Optim 2001:314–28. doi:10.1007/3-
540-44719-9_22. 

[314] Li M, Azarm S, Aute V. A multi-objective genetic algorithm for robust design optimization. Proc 2005 Conf Genet Evol 
Comput - GECCO ’05 2005:771. doi:10.1145/1068009.1068140. 

[315] Chi-Keong Goh, Tan KC. Evolutionary Multi-objective Optimization in Uncertain Environments. vol. 186. Berlin, 
Heidelberg: Springer Berlin Heidelberg; 2009. doi:10.1007/978-3-540-95976-2. 

[316] Jin YJY, Branke J. Evolutionary optimization in uncertain environments-a survey. IEEE Trans Evol Comput 2005;9:303–
17. doi:10.1109/TEVC.2005.846356. 

[317] Branke J. Creating robust solutions by means of evolutionary algorithms, 1998, p. 119–28. doi:10.1007/BFb0056855. 



164 

 

[318] Deb K, Gupta H. Searching for robust Pareto-optimal solutions in multi-objective optimization. Evol Multi-Criterion 
Optim 2005:150–164. doi:10.1007/978-3-540-31880-4_11. 

[319] Gaspar-Cunha A, Ferreira J, Recio G. Evolutionary robustness analysis for multi-objective optimization: benchmark 
problems. Struct Multidiscip Optim 2014;49:771–93. doi:10.1007/s00158-013-1010-x. 

[320] Yang S, Ong Y-S, Jin Y, editors. Evolutionary Computation in Dynamic and Uncertain Environments. vol. 51. Berlin, 
Heidelberg: Springer Berlin Heidelberg; 2007. doi:10.1007/978-3-540-49774-5. 

[321] Lopes MAR, Antunes CH, Martins N. Energy behaviours as promoters of energy efficiency: A 21st century review. 
Renew Sustain Energy Rev 2012;16:4095–104. doi:10.1016/j.rser.2012.03.034. 

[322] Höller J, Tsiatsis V, Mulligan C, Karnouskos S, Avesand S, Boyle D. Part I. The Vision for Moving from M2M to IoT. From 
Mach. to Internet Things, Elsevier; 2014, p. 1. doi:10.1016/B978-0-12-407684-6.00031-0. 

[323] Almeida AT De, Moura PS, Gellings CW, Parmenter KE. Distributed Generation and Demand-Side Management. Handb 
Energy Effic Renew Energy 2006:1–54. 

[324] Auger A, Bader J, Brockhoff D, Zitzler E. Theory of the hypervolume indicator. Proc. tenth ACM SIGEVO Work. Found. 
Genet. algorithms - FOGA ’09, New York, New York, USA: ACM Press; 2009, p. 87. doi:10.1145/1527125.1527138. 

 

 


