
 i

Rui André Correia de Oliveira

SECURITY BENCHMARKING
FOR WEB SERVICE FRAMEWORKS

PhD Thesis in Doctoral Program in Information Science and Technology,

 supervised by Professor Nuno Laranjeiro and Professor Marco Vieira
 and presented to the Department of Informatics Engineering

of the Faculty of Sciences and Technology
of the University of Coimbra

August 2017

 ii

 iii

This research has been developed as part of the requirements of the Doctoral

Program in Information Science and Technology of the Faculty of Sciences and

Technology of the University of Coimbra. This work is within the Dependable

Systems specialization domain and was carried out in the Software and Systems

Engineering Group of the Center for Informatics and Systems of the University of

Coimbra (CISUC).

This work has been supervised by Professor Nuno Laranjeiro, Assistant Professor,

and Professor Marco Vieira, Full Professor, Department of Informatics Engineering,

Faculty of Sciences and Technology, University of Coimbra.

 iv

 v

“People have to be free to investigate computer security. People have to be

free to look for these vulnerabilities and create proof of concept code to show

that they are true vulnerabilities in order for us to secure our systems.”

- Edward Snowden, PBS (2015)

 vi

 vii

Abstract

As the business needs of organizations evolve, software applications and data must

be integrated to deliver higher value services. Service Oriented Architectures (SOAs)

appeared as an approach for system integration, attracting the attention of

researchers and developers. A SOA is essentially an architectural style that can be

built using many different technologies and platforms, including messaging services,

remote method invocation middleware, and web services. Due to its characteristics,

web services technology has become, by far, the most popular option for

implementing a SOA and is of crucial importance in business-critical environments.

SOAP Web Services (WS) are a platform-independent technology consisting of self-

describing software components, which enables business processes to be accessible

worldwide. Once coded and deployed, services are accessible to consumers that can

send requests and receive the respective responses. A web service is usually

deployed on top of a web server and additional middleware, including a web service

framework. This framework, besides supporting the deployment, performs crucial

functions at runtime, namely handling client requests, parsing messages, performing

error checking (e.g., compliance with the SOAP protocol), and building object

representations of the requests that are then passed to the service code.

Web service frameworks are mature software components, benefiting from years of

research, development, and deployment in production systems. Thus, developers

tend to focus on the quality of their code and assume that the middleware

supporting their applications is secure, which is not always the case. In fact, industry

reports have shown that frameworks are not more secure than other network-related

systems. Due to their on-line exposure and presence in business-critical scenarios,

web services are frequently the target of attacks that try to take advantage of the WS

specifications to exploit vulnerabilities potentially present in the deployment

platforms. A successful attack on a production system may result in infrastructure

damage, financial losses, or irrecoverable reputation losses.

To have secure service deployments, it is essential to provide developers and

researchers with tools and techniques for assessing the security of their platforms,

 viii

which are currently scarce and insufficient. These evaluation tools should also allow

comparing frameworks in terms of their security, so that service providers can select

the framework that best fits their security needs. Benchmarks have emerged as a

standardized tool for assessing and comparing systems according to particular

characteristics, such as performance or dependability. The problem is that

benchmarking security is a complex problem and is usually much more dependent

on aspects that are unknown about the system (e.g., unknown vulnerabilities) and

about the potential attackers, than on what is known about them.

This thesis first presents a tool that allows testing the security of web service

frameworks. WSFAggressor is a security testing tool, built on top of an existing tool

named WS-Attacker, and integrates two distinctive features. In practice, we

specialized the original tool by adding support for the implementation of a wide

range of Denial of Service (DoS) attacks. In addition to a few other changes, we also

added support for integration with the different stages of a security assessment

approach, which in general includes at least a part involving the execution of regular

requests and another involving malicious interactions.

The thesis proposes an approach for evaluating the security of web service

frameworks based on exposing the frameworks under testing to malicious requests

that target the exhaustion of the resources to deny service to legitimate clients. The

approach includes observing typical system parameters, including memory

allocation or CPU usage, and the services response to detect failures and anomalous

behaviors. The proposal is demonstrated against a set of widely used frameworks,

disclosing severe failures and a few dubious behaviors.

The thesis continues with an approach to assess the performance of web service

frameworks when handling both security attacks and regular requests. This allows

characterizing, from the perspective of legitimate clients that try to use the services

supported by the frameworks, how the performance is affected by attacks. A set of

experiments is carried out using several popular frameworks. Results show clear

discrepancies in the performance of the frameworks under attack.

Finally, the thesis proposes a benchmark that allows assessing and comparing the

security of web service frameworks. The benchmark includes two main phases:

security qualification and trustworthiness evaluation. In the security qualification,

the goal is to identify frameworks that have unacceptable vulnerabilities and that

should thus be disqualified from the evaluation. The remaining frameworks qualify

to the trustworthiness evaluation phase where we apply multi-criteria decision

making techniques to compute a trustworthiness score that can be used to rank the

frameworks. We demonstrate the benchmark by assessing and comparing seven

frameworks, which are ranked according to the behavior observed during the tests.

Keywords

Web services, frameworks, security, vulnerabilities, security testing, benchmarking

 ix

Resumo

À medida que as necessidades empresariais evoluem, aplicações e dados devem ser

integrados para que seja possível oferecer serviços de valor superior. As

Arquiteturas Orientadas a Serviços (SOAs) são uma abordagem apelativa para a

integração de sistemas, e atraem a atenção de investigadores e programadores. Uma

SOA é um estilo arquitetural baseado em muitas tecnologias e plataformas

diferentes, incluindo serviços de mensagens, middleware de invocação de métodos

remotos e serviços web. A tecnologia de serviços web tornou-se a implementação

mais popular de uma SOA e é crucial em ambientes críticos de negócio.

Os serviços web (WS) são uma tecnologia multi-plataforma que permite que

processos de negócios obtenham exposição mundial. Uma vez codificados e

instalados, os serviços ficam acessíveis a clientes que podem então enviar pedidos e

receber respostas. Um serviço web é geralmente instalado num servidor web, que

inclui uma framework. Esta framework, além de suportar a instalação de serviços,

desempenha funções cruciais em tempo de execução, em particular a receção de

pedidos, o processamento de mensagens, a verificação de erros e a criação de

representações dos pedidos, que são entregues ao código do serviço.

As frameworks de serviços Web são componentes de software maduros, resultantes

de anos de desenvolvimento e instalação em sistemas de produção. Como

consequência, os programadores de serviços tendem a concentram-se na qualidade

de seu código e assumem que o middleware que o suporta é seguro. Contudo, estudos

anteriores mostram que as frameworks não são mais seguras do que outros sistemas

distribuídos. Devido à sua exposição, os serviços web são alvo frequente de ataques

resultando em graves danos financeiros, reputacionais e ao nível da infraestrutura.

De modo a ter instalações seguras de serviços, é essencial disponibilizar aos

programadores e investigadores ferramentas e técnicas para avaliar a segurança das

suas plataformas, que são atualmente escassas e insuficientes. Estes meios de

avaliação devem também permitir comparar as frameworks em termos de

segurança, para que os fornecedores de serviços possam selecionar a que melhor se

ajusta às suas necessidades. As benchmarks surgiram como uma ferramenta

 x

padronizada para avaliar e comparar sistemas de acordo com características

específicas, como desempenho ou confiabilidade. A questão é que avaliação de

segurança é um problema bastante complexo e é geralmente muito mais dependente

de aspetos que são desconhecidos do sistema (e.g., vulnerabilidades desconhecidas) e

sobre os potenciais atacantes, do que sobre o que é conhecido.

Esta tese começa por apresentar uma ferramenta que permite testar a segurança

das frameworks de serviços web. WSFAggressor é uma ferramenta de testes de

segurança, construída com base na ferramenta WS-Attacker, e inclui duas

funcionalidades distintivas. Na prática, especializámos a ferramenta original,

adicionando suporte para a implementação de uma ampla gama de ataques de

negação de serviço (DoS). Além de outras mudanças, também adicionámos suporte

para a integração com as diferentes etapas de uma abordagem de avaliação de

segurança, que em geral inclui pelo menos uma fase de execução de pedidos

legítimos e outra que envolve interações maliciosas.

A tese propõe uma abordagem para avaliação de segurança de frameworks para

serviços web, que se baseia em expor as frameworks sob teste a pedidos maliciosos

que visam consumir os recursos de sistema de modo a negar o serviço a clientes

legítimos. A abordagem inclui a observação de parâmetros de sistema, incluindo

alocação de memória ou utilização de CPU, e das respostas dos serviços para detetar

falhas e comportamentos dúbios. A abordagem é demonstrada sobre um conjunto de

frameworks, revelando falhas graves e alguns comportamentos duvidosos.

A tese prossegue com uma abordagem para avaliar o desempenho de frameworks

de serviços web, na presença simultânea de ataques e pedidos legítimos. Esta

abordagem caracteriza como o desempenho é afetado por ataques, na perspetiva dos

clientes legítimos que tentam usar os serviços suportados pelas frameworks. Foram

executados um conjunto de experiências usando várias frameworks de serviços web.

Os resultados mostram discrepâncias no desempenho das frameworks sob ataque.

Por fim, a tese propõe uma benchmark que permite avaliar e comparar a segurança

de frameworks para serviços web. A benchmark inclui duas fases principais:

qualificação de segurança e avaliação de confiança. Na qualificação de segurança, o

objetivo é identificar claramente as frameworks que possuem vulnerabilidades

evidentes e que, portanto, devem ser desqualificadas da avaliação. As restantes

frameworks qualificam para a fase de avaliação de confiança onde aplicamos técnicas

de tomada de decisão multicritério, para calcular uma pontuação de confiança que

pode ser usada para ordenar as frameworks. Demonstramos a benchmark de segurança

avaliando e comparando sete frameworks para serviços web, que são ordenados de

acordo com o comportamento observado durante os testes.

Palavras-Chave

Serviços web, frameworks, segurança, vulnerabilidades, testes de segurança,

benchmarking.

 xi

Acknowledgements

This thesis is an important achievement in my life, and I am very grateful to the

people who help making it a reality. First, I would like to thank my advisors for

accepting me as their PhD Student, and all the support and motivation

demonstrated. I would like to thank to Professor Nuno Laranjeiro for his exceptional

guidance, competence, and constructive comments. I am also very grateful to

Professor Marco Vieira for his encouragement that has helped me developing

interest in research and for his outstanding guidance and expertize. Their human

qualities were very important in my integration and helped me to move forward.

I am also grateful to the colleagues that interacted with me during this time and

offered their sincere support and friendship. In particular, I would like to thank

Nuno Antunes, the two Ivano’s (Irrera and Elia) and, more recently, Naghmeh Ivaki.

I have to thank Miquel Martinez for his contribution to the work presented in this

thesis, for his friendly attitude and remarkable approach to problem solving. I would

also like to thank the other members from the Software and Systems Engineering

Group of the Centre for Informatics and Systems of the University of Coimbra who

always offered their help and availability.

I am very thankful to my closest family for supporting me during this long

marathon. Last but not least, I would like to thank Susana Dias for her tireless

support and understanding throughout these years helping me overcoming many

obstacles.

 xii

 xiii

List of Publications

This thesis relies on published scientific research presented in the following peer

reviewed papers:

Rui André Oliveira, Nuno Laranjeiro, and Marco Vieira, “Assessing the security of

web service frameworks against Denial of Service attacks”, Journal of Systems and

Software, Volume 109, Pages 18-31, ISSN 0164-1212, November 2015. doi:

10.1016/j.jss.2015.07.006.

Rui André Oliveira, Nuno Laranjeiro, and Marco Vieira, “Characterizing the

performance of web service frameworks under security attacks”, In Proceedings of

the 30th Annual ACM Symposium on Applied Computing (SAC '15), Pages 1711-

1718, Salamanca, Spain, 13-17 April 2015. doi: 10.1145/2695664.2695927.

Rui André Oliveira, Nuno Laranjeiro, and Marco Vieira, “WSFAggressor: an

extensible web service framework attacking tool”, In Proceedings of the Industrial

Track of the 13th ACM/IFIP/USENIX International Middleware Conference

(MIDDLEWARE '12), Montreal, Canada, 06-07 December 2012. doi:

10.1145/2405146.2405148.

Rui André Oliveira, Nuno Laranjeiro, and Marco Vieira, "Experimental Evaluation of

Web Service Frameworks in the Presence of Security Attacks", IEEE Ninth

International Conference on Services Computing (SCC 2012), Honolulu, Hawaii,

USA, Pages 633-640, 24-29 June 2012. doi: 10.1109/SCC.2012.52.

 xiv

 xv

Table of Contents

Chapter 1 Introduction ... 21
1.1 Assessing and Comparing the Security of Web Service Frameworks 23

1.2 Contributions of the Thesis ... 25

1.3 Thesis Structure ... 26

Chapter 2 Background and Related Work .. 29
2.1 Background on Web Services .. 29

2.2 Software Security Concepts ... 32

2.3 Software Security Testing .. 35

2.3.1 White Box Testing .. 36

2.3.2 Black Box Testing .. 38

2.4 Assessment and Benchmarking .. 42

2.4.1 Performance Benchmarking .. 47

2.4.2 Dependability Benchmarking ... 49

2.4.3 Security Benchmarking .. 53

2.5 Conclusion .. 56

Chapter 3 Security Testing Tool for Web Service Frameworks 59
3.1 The WSFAggressor Tool ... 60

3.2 WSFAggressor Architecture ... 62

3.3 Attacks Implemented by WSFAggressor .. 64

3.4 Comparing WSFAggressor with other Tools.. 69

3.5 Conclusion .. 71

Chapter 4 Assessing the Security of Web Service Frameworks 73
4.1 A Multi-Stage Security Testing Approach .. 74

4.1.1 Approach Stages ... 74

4.1.2 Analysing Framework Behavior .. 76

4.2 Experimental Setup ... 79

4.2.1 Web Service Frameworks Selected .. 79

4.2.2 Service Design and Configuration ... 81

4.2.3 Client Configuration .. 82

4.2.4 Executing and Monitoring the Tests .. 84

 xvi

4.3 Results and Discussion .. 85

4.3.1 Apache CXF .. 87

4.3.2 Oracle Metro ... 87

4.3.3 Apache Axis 2 ... 88

4.3.4 Apache Axis 1 ... 89

4.3.5 Spring WS .. 91

4.3.6 Spring JAX-WS ... 93

4.3.7 XINS ... 94

4.4 Further Discussion .. 95

4.4.1 Analyzing the Impact of the Attacks ... 96

4.4.2 Analyzing the Evolution across Versions ... 99

4.5 Conclusion .. 100

Chapter 5 Characterizing the Performance of Web Service Frameworks

under Attacks ... 103
5.1 Approach for Characterizing Performance under Attacks 104

5.1.1 Nodes ... 104

5.1.2 Procedure .. 107

5.1.3 Metrics ... 108

5.2 Experimental Setup ... 109

5.2.1 Nodes Configuration ... 109

5.2.2 Phases Configuration ... 110

5.3 Results and Discussion .. 111

5.3.1 Baseline Performance of Frameworks ... 111

5.3.2 Performance of Frameworks under Attacks .. 113

5.4 Lessons Learned ... 119

5.5 Conclusion .. 120

Chapter 6 Benchmarking the Security of Web Service Frameworks 121
6.1 Benchmark Overview ... 123

6.1.1 Security Qualification .. 123

6.1.2 Trustworthiness Evaluation .. 124

6.2 Security Qualification Phase ... 126

6.3 Trustworthiness Assessment Procedure ... 127

6.3.1 Defining the Attributes .. 127

6.3.2 Configuring Thresholds, Weights and Operators 128

6.3.3 Applying the LSP Technique .. 130

6.4 Experimental Evaluation .. 133

6.4.1 Security Qualification Results .. 135

6.4.2 Trustworthiness Assessment Results .. 136

6.4.3 Adjusting Weights to Satisfy Requirements ... 139

6.5 Fulfilling Benchmarking Properties .. 141

Chapter 7 Conclusion and Future Work ... 145

References ... 151

 xvii

 List of Figures

Figure 1.1 – Organization of the thesis main contributions. .. 27

Figure 2.1 – A typical Web Service environment .. 30

Figure 2.2 - Web services interactions and supportive infrastructure 31

Figure 3.1. Plugin selection and configuration .. 61

Figure 3.2 - Attack overview and execution. ... 62

Figure 3.3 - Internal architecture of WSFAggressor ... 63

Figure 3.4 – SOAP Array attack example. .. 68

Figure 3.5 – XML External Entities attack example. ... 69

Figure 4.1 – Approach overview. .. 75

Figure 4.2 – Allocated memory during a test run. .. 78

Figure 4.3 – CXF - Oversized XML Attack. .. 87

Figure 4.4 – Metro: Oversized XML attack. ... 88

Figure 4.5 – Axis 2: Soap Array attack. ... 89

Figure 4.6 – Axis1: Coercive Parsing attack. .. 90

Figure 4.7 – Axis 1: Soap Array attack. ... 90

Figure 4.8 – Axis 1: Oversized XML Attack. .. 90

Figure 4.9 – Spring-WS: Malicious Attachment Attack. ... 91

Figure 4.10 – Spring-WS: SOAP Array Attack... 92

Figure 4.11 – Spring-WS: Coercive Parsing Attack. .. 92

Figure 4.12 – Spring JAX-WS: Malformed XML Attack. .. 93

Figure 4.13 – XINS: Malicious Attachment. ... 94

Figure 4.14 – XINS: XML Bomb Attack. ... 95

Figure 4.15 – XINS: Soap Array Attack. ... 95

Figure 5.1 – Nodes used during the qualification phase of the benchmark 105

Figure 5.2 – The three stages of the Approach. ... 107

Figure 5.3 - Baseline performance of the frameworks ... 112

Figure 5.4 - Response time of the frameworks under attack ... 114

Figure 5.5 - Throughput of the frameworks under attack ... 117

Figure 6.1– Overview of the proposed WS Framework Benchmark 123

Figure 6.2 – A Generic LSP Quality Model .. 125

Figure 6.3 - Overall view of the approach. ... 131

file:///Z:/media/68BAE8F9BAE8C4A2/DEI/phd/Cadeiras/Tese/phd-racoliv-thesis-v21.docx%23_Toc484710851
file:///Z:/media/68BAE8F9BAE8C4A2/DEI/phd/Cadeiras/Tese/phd-racoliv-thesis-v21.docx%23_Toc484710852

 xviii

 List of Tables

Table 3.I – Attacks implemented by WSFAggressor. ... 65

Table 3.II – Comparison of security testing tools for web service frameworks. 70

Table 4.I – Infrastructure supporting the experiments. ... 79

Table 4.II – Frameworks and XML Parsers tested. ... 80

Table 4.III - Test Service Design. ... 81

Table 4.IV - Client Configuration. ... 84

Table 4.V - Summary of the Problems Detected. .. 86

Table 4.VI - Detected problems grouped by attack. ... 86

Table 4.VII - Relative Change values. ... 97

Table 5.I - WSTest service design & invocation configuration ... 106

Table 5.II - Metro baseline and under attack response times .. 116

Table 6.I - Security Qualification Results ... 135

Table 6.II - Entry Block Scores ... 137

Table 6.III - Stage and Final Framework block Scores. .. 139

Table 6.IV - Final results per scenario .. 140

 xix

 xx

 21

Chapter 1
Introduction

Web Services are a platform-independent technology consisting of self-describing

software components, which is being frequently used by enterprises to expose their

business operations to clients worldwide. Web services are supported by open XML-

based protocols and specifications, such as SOAP and WSDL, which allow providers

to offer a well-defined and platform-independent interface to consumers. Due to its

interoperability capabilities and architectural specificities, this technology is a

popular option for implementing Service Oriented Architectures (Curbera et al.

2002) and to integrate heterogeneous systems, being frequently used to support

business to business interactions. Nowadays, we can find services deployed in many

different contexts, including business-, mission- and safety-critical systems, such as

online retailers, air traffic control systems and railway operation management, just to

name a few.

Once a service application is coded, it is deployed in the context of an application

server (e.g., Apache Tomcat, JBoss AS), which is essentially an HTTP server packed

with additional middleware for providing enterprise features (e.g., supporting web

services, transactions, message queues). This middleware includes a web service

framework that, together with the application server, acts as a container for the web

service and plays a crucial part in the communication with clients. The application

server delivers SOAP messages arriving from clients (typically, via HTTP) to the

web services framework, which then processes (parses messages, checks for errors,

and builds programming language-level objects) and delivers the messages to the

web service application (U and Rao 2005).

As a central piece of software in a web services stack, frameworks are highly-

exposed software layers. Besides handling a large part of the processing work

necessary for communication to take place, they must also support advanced

features, such as integration with different XML parsers, encryption mechanisms,

reliable communication, and advanced addressing schemes. Thus, they have become

Chapter 1

 22

relatively complex software components that are prone to hold residual software

faults (i.e., bugs). Some of these internal faults represent security vulnerabilities, as

they enable external faults (e.g., a malicious request sent to the service) to harm the

system (Avizienis et al. 2004). Thus, a vulnerability in such a central component

might compromise the security of the whole system.

Several reports have shown the presence of vulnerabilities in web services

middleware, including critical vulnerabilities in popular XML libraries from Sun

Microsystems, Apache Software Foundation, and Python (Neves 2009). These

vulnerabilities enable Denial of Service (DoS) attacks or potential execution of

malicious code on the affected systems and are severe enough to attract the attention

of large corporations. Recently, researchers found vulnerabilities in services run by

Google, Facebook and Runkeeper (Sadeghipour 2015), which can be exploited by the

XML External Entities attack, a well-known DoS attack. Google alone has paid

researchers a minimum of $10,000 for each vulnerability found in their production

servers that would allow the successful execution of XML External Entities attacks.

Security is a key issue in web services, especially considering their use in critical

scenarios. The concept of security is quite broad, many times referring to aspects

such as availability, integrity, and confidentiality (Avizienis et al. 2004). In the case

of web services, availability (i.e., readiness for correct service (Avizienis et al. 2004))

is an essential attribute as a non-available service potentially translates to direct

losses (e.g., lost business transactions) or indirect losses (e.g., reputation or customer

dissatisfaction). Performance is related to this context, as a slow service handles less

transactions and might even be unable to conclude some operations in a timely

manner, again bringing losses for the service provider. Thus, it is not surprising that

most of the DoS attacks known in the literature target the XML handling capabilities

of web service frameworks, which are by themselves time-consuming and

processing-intensive operations.

Despite the importance of having secure deployments, the complexity of web service

frameworks, the general difficulty in detecting unknown vulnerabilities, the lack of

specialized security assessment tools for developers and providers, allied with the

fast-changing dynamics and high exposure of the web environment, make this kind

of environment very susceptible to security attacks. Thus, there are key issues that

need to be addressed, which map to the goals of this thesis, namely:

1. Tools able to emulate a wide range of attacks and that can be used for

security assessment of web service frameworks.

2. Approaches for assessing the security of web service frameworks in the

presence of attacks, including evaluating the impact in the performance as

perceived by regular clients.

3. Security benchmarks for assessing and comparing the security of different

frameworks in a standardized and sound manner.

Introduction

 23

1.1 Assessing and Comparing the Security of Web Service
Frameworks

Software vendors are becoming increasingly aware of security issues in web

services, as shown by the large number of vulnerability detection tools available

nowadays (Nuno Antunes and Vieira 2015). Some of these tools are based on the

analysis of the code to identify patterns that suggest the presence of vulnerable code,

while others use the execution of the code and rely on the observation of the system

(e.g., analyze responses). The problem is that most tools focus on the detection of

vulnerabilities at the application level (e.g., SQL Injection, XSS (Nuno Antunes et al.

2009; Bau et al. 2010)) and disregard the underlying framework, which is many times

(wrongly) assumed to be secure. Also, existing tools are known to be poor

performers (Nuno Antunes and Vieira 2009) and they eventually need the presence

of an expert to, at least, analyze the results. The few tools that allow testing WS

frameworks are very limited (Oliveira, Laranjeiro, and Vieira 2012b), as they

implement only a small set of attacks, allow little (or no) configuration and tuning,

and lack flexibility and documentation to be easily extended.

The lack of adequate tools to perform security evaluation is indeed a problem. In

practice, what we observe is that security researchers tend to focus on the security of

applications (Oliveira, Laranjeiro, and Vieira 2015d), probably due to the maturity of

the underlying middleware and its use in many production environments around

the world. Thus, research on the detection of vulnerabilities at the application level,

in particular in the web services domain, is a quite popular topic (Nuno Antunes et

al. 2009; Duchi et al. 2014; Vieira, Antunes, and Madeira 2009). However, if we move

to the middleware level, the studies that focus on assessing the behavior of

frameworks in the presence of attacks are actually exploratory and isolated examples

(Jensen, Gruschka, and Herkenhöner 2009), (Suriadi, Clark, and Schmidt 2010),

leaving open space for research.

A successful DoS attack on a system supported by web services may leave legitimate

clients with no means to carry out their business transactions. At best, the effect of a

successful attack is just instantaneous degraded performance, which occurs while

the attack is happening, but in more severe cases this impact can extend to periods

long after the attack has concluded. Even if the system experiences only performance

degradation, clients will still want to see their business transactions concluded in

due time. From the provider perspective, the expectation is that it is possible to

equip systems with the middleware that best masks the impact of DoS attacks,

maintaining acceptable performance for legitimate clients. The problem is that

current tools and assessment methodologies lack this perspective, focusing on either

evaluating the performance using non-malicious requests (Wickramage and

Weerawarana 2005; Govindaraju et al. 2004), or simply on understanding the

potential presence of vulnerabilities in frameworks by performing security attacks

(Suriadi, Clark, and Schmidt 2010; Oliveira, Laranjeiro, and Vieira 2012b; Oliveira,

Chapter 1

 24

Rui André, Laranjeiro, and Vieira 2012). To the best of our knowledge, no work

characterizes the impact that DoS attacks have in the frameworks from the point-of-

view of the performance perceived by legitimate clients.

The impact of attacks on a web service framework essentially depends on the

framework design (e.g., technology, architecture, API, optimizations) and

implementation (e.g., the presence of vulnerabilities). This essentially means that

different frameworks may achieve different levels of security (Oliveira, Laranjeiro,

and Vieira 2015d). As the number of web service frameworks available nowadays is

quite large, service providers face the challenge of selecting the one that best fits

their security needs. In practice, they need to assess alternative solutions to select the

one that handles the potential security attacks and stressful conditions in a more

effective way. Obviously, security is not the only factor involved in the selection, but

a practical way to compare security is needed to support the process, together with

other existing techniques and tools that focus on additional quality attributes (e.g.,

performance, dependability) (Dujmović and Nagashima 2006; Martinez, de Andres,

and Ruiz 2014).

A benchmark is a standardized procedure that allows assessing and comparing

systems and/or components in a domain according to a given aspect (e.g.,

performance, availability, scalability) (Gray 1993). Performance benchmarks have

achieved a considerable reputation in the computer industry (TPC 2012), (SPEC

2012) and, in recent years, benchmarks raised a considerable interest in the field of

dependability. Dependability benchmarks have been applied in a number of

different domains, including operating systems, databases and Web Servers

(Karama Kanoun and Spainhower 2008). However, benchmarking security is still an

emerging area of research, with a few initial efforts found in OLTP systems and Web

applications (Vieira and Madeira 2005; Neto and Vieira 2011b, 2009).

In theory, a security benchmark should provide a metric (or a small set of metrics)

able to characterize the degree to which security goals are met (Mendes, Madeira,

and Duraes 2014) by the system under testing, allowing comparing alternatives and

making informed decisions. The problem is that security is, usually, much more

dependent on aspects that are unknown about the system (e.g., unknown

vulnerabilities) and about the potential attackers, than on what is known about them.

Neto and Vieira (Neto and Vieira 2011b) proposed that a security benchmark should

include two phases (qualification for disqualifying systems with known

vulnerabilities and trustworthiness assessment for distinguishing systems without

known vulnerabilities based on evidences related to specific characteristics or

behaviors), considering a reference domain and representative threat vectors for that

domain.

The design and implementation of a security benchmark is, as mentioned, a non-

trivial task due to the uncertainty involved, but also due to the high number of

complex aspects that need to be addressed. These aspects begin with simply

Introduction

 25

emulating the behavior of legitimate clients and extend to the emulation of the

behavior of an attacker, which may use a large number of diverse attacks and many

more attack configurations. Other difficult aspects are also involved, including the

repeatability of the assessment procedure and the definition of the metrics to be

used, just to name a few. Up until now, research on security benchmarking was not

able to come up with an implementation of a security benchmark that can be

effectively used by service providers for selecting the framework that best fits their

needs.

1.2 Contributions of the Thesis

The key contribution of this thesis are tools and techniques for assessing and comparing

the security of web service frameworks. The tools and the techniques discussed

throughout the thesis represent elements that allow building a security benchmark

for web service frameworks, which is the core of this work, and is discussed by the

end of the document. In detail, the main contributions are as follows:

- The design and implementation of a tool for testing the security of web

service frameworks (named WSFAggressor). The tool supports the execution

of a broad range of DoS attacks (currently 9, but easily extendable) identified

in the state of art. Besides supporting the execution of more types of security

attacks than similar security testing tools, it adds special support for

integration with assessment approaches, including the possibility of being

remotely controlled (e.g., starting, pausing, or stopping a test) and the export

of test run data (e.g., request identification, response content, response time).

- The definition of an experimental approach to assess how well a given web

service framework is prepared to handle DoS attacks. The approach is

based on a set of distinct stages that include the execution of legitimate

requests, the execution of malicious requests of different types, observation

periods, and the classification of the behavior observed during the tests.

- The proposal of an experimental approach for assessing the performance of

web service frameworks when handling both security attacks and regular

requests. The characterization of the performance is done from the

perspective of the legitimate clients which interact with the system and try to

execute service operations. The behavior observed during several stages is

used to identify failures and dubious behaviors.

- The proposal of a security benchmark for assessing and comparing the

security of web service frameworks. This benchmark is based on the

concepts introduced in (Neto and Vieira 2011b) and is composed of a security

qualification phase and a trustworthiness evaluation phase. Conceptually, in

the first phase, the frameworks under benchmarking should be analyzed

Chapter 1

 26

and/or tested using state-of-the-art techniques and tools to detect

vulnerabilities, and the ones with vulnerabilities should be disqualified from

the evaluation. In the second phase, Multi Criteria Decision Making (MCDM)

techniques are used to compute a trustworthiness score that allows ranking

the frameworks in terms of security.

- The instantiation of the security benchmark to the concrete case of Denial

of Service attacks. The first phase is based on the execution of 9

representative security attacks against services deployed on the web service

frameworks being benchmarked, using the WSFAggressor tool; and the

second phase uses measurable run-time behavior in an instantiation of the

Logic Score of Preferences (LSP) technique (Dujmović and Nagashima 2006),

where data are arithmetically processed in a series of steps to calculate a final

trustworthiness score that represents an estimated quality (in terms of

security) of the frameworks being tested.

- The experimental security assessment of current web service frameworks,

according to the different abovementioned facets and including very popular

and widely used frameworks, such as Apache Axis 1, Apache Axis 2, Apache

CXF, Oracle Metro, Spring JAX-WS, Spring-WS, and XINS . In addition to the

application of the different techniques, we disclose severe failures in most of

the frameworks and several dubious behaviors that show the incapacity of

the middleware being tested of handling malicious requests and suggest

space for improvements in the implementation of these crucial web service

components. Also, using the proposed benchmark, we rank the different

frameworks from a security perspective.

1.3 Thesis Structure

This first chapter introduced the problem addressed and the main contributions of

the thesis.

Chapter 2 provides an overview of important concepts and the state of the art

relevant for this work. More specifically, it presents background on web services and

service based infrastructures, discusses the state of the art on software security and

testing (with a focus on web services), and discusses related work on computer

benchmarks, introducing their three main applications in software (i.e. performance

dependability, and security).

The next chapters go through each of the contributions mentioned before, and are

essentially the elements used to build the security benchmark for web service

frameworks proposed in Chapter 6, as illustrated in Figure 1.1.

Introduction

 27

Figure 1.1 – Organization of the thesis main contributions.

As we can see, each proposal builds on top of the previous ones. The exception is the

proposal in Chapter 3, which presents WSFAggressor, a security testing tool,

specially developed for assessing the security of web service frameworks. First, the

architecture is explained, including the main modules and the way they interact with

each other. Then, the chapter discusses the list of supported attacks and how the tool

compares with other competing security testing tools.

Chapter 4 presents a multi-stage approach for assessing the security of frameworks

in the presence of security attacks. The different stages of the approach are discussed

in terms of their usefulness and contribution to the effectiveness of the proposed

approach. This approach uses the WSFAggressor tool and is applied to study the

behavior of well-known web service frameworks in the presence of security attacks

targeting the core web services specifications, i.e., those enabling basic message

exchange functionalities.

Our approach for characterizing the performance of frameworks in the presence of

security attacks, from the perspective of legitimate clients, is discussed in Chapter 5.

The proposal, built on the experience of Chapter 4 (and, in part, using the tool

proposed in Chapter 3), is based on a client that exchanges non-malicious messages

with an infrastructure that includes the frameworks being assessed and several web

service applications. It is applied to characterize the performance of leading web

service frameworks, from the perspective of the clients.

Chapter 6 discusses our proposal for benchmarking the security of web service

frameworks. This chapter is of central importance in the context of this thesis and

builds on the elements provided by the previous chapters. The chapter describes in

detail the benchmark components and the procedures adopted by each phase of the

benchmark. It also discusses the implementation of the benchmark for a concrete

case of assessing and comparing several of the most well-known framework

implementations. The chapter finalizes with a detailed discussion of the results.

Chapter 7 concludes the thesis and proposes topics for future research directions.

Chapter 3

Performance
Assessment

Security
Assessment

WSFAggressor
Tool

Security
Benchmark

Chapter 4 Chapter 5 Chapter 6

 28

 29

Chapter 2
Background and Related Work

Research on security evaluation for web services gained ground in recent years.

However, most of the work in the area is related with the evaluation of particular

dependability or security properties (e.g., availability), with few works focusing on

benchmarking. This chapter starts by introducing basic concepts on web services

and frameworks and key notions regarding software security, with emphasis on web

services security. It then describes several assessment and benchmarking techniques,

namely for performance, dependability and security. The limitations of current

security evaluation approaches for web services are highlighted and the gaps

between the state of the art and the definition of a security benchmarking technique

for this domain are discussed.

The chapter is organized as follows. Section 2.1 introduces basic concepts on web

services and frameworks and Section 2.2 overviews security concepts with emphasis

on the web services domain. Section 2.3 overviews security testing techniques and

tools. Section 2.4 presents the related work on evaluation and benchmarking, with

emphasis on three key perspectives: performance, dependability, and security.

Finally, Section 2.5 concludes the chapter.

2.1 Background on Web Services and Frameworks

Web services are self-describing components that can be used by other software

across the web, in a platform-independent manner (Curbera et al. 2002). The

technology was designed to allow heterogeneous systems to communicate easily,

and, mostly due to this, they are a strategic vehicle for data exchange, being widely

used by multiple businesses. Ranging from local retail stores to large media

corporations, and encompassing different domains, such as automotive

Chapter 2

 30

manufacturing, air traffic control, or healthcare, web services are nowadays

fundamental parts of modern organizations (Gustavo Alonso et al. 2004).

In a web services environment, a provider supplies one or more services to

consumers (Curbera et al. 2002) and the discovery of services is optionally mediated

by a service broker. This scenario is depicted in Figure 2.1. Each service is composed

of a set of operations, and each operation accepts from none to several inputs and

returns an output. Each input and output parameter involved in the interaction also

has a data type, described in the XML Schema Datatypes specification. All the

information regarding the service interface is described in an interface description

document, namely a WSDL (Web services Description Language) file. This file may

be used by service consumers to understand basic aspects regarding the service,

including the available operations and their parameters, or where the service is

actually deployed. This information allows the consumer to write correct requests

for invoking a particular service operation.

Figure 2.1 – A typical Web Service environment

In a typical interaction, the consumer (i.e., the client) sends a request to the provider

(i.e., the server). After processing the request, the server sends back a response with

the results. These requests and responses are XML messages that comply with the

Simple Object Access Protocol (SOAP), and are typically exchanged using HTTP,

although another type of transport mechanism may be used (e.g., SMTP, JMS)

(Perera et al. 2006, 2).

To facilitate the discovery of a web service, it is possible to have a broker providing

the WSDL file to clients, which will then be able to use it to extract all necessary

information to consume the service (e.g., service address, transport bindings). It is

also visible in Figure 2.1 that, many times, services can make use of external systems

(sometimes they are part of a larger service composition), but this does not have any

impact on the client, who just needs the service interface to consume the service.

Background and Related Work

 31

At the service provider, we find a relatively complex infrastructure, which is

depicted in Figure 2.2. In addition to the typical mandatory parts (e.g., operating

system, a Java or Python virtual machine), the main parts involved are an

application server and a Web Service Framework (WSF). The application server is

essentially a server that is prepared to handle HTTP requests (i.e., it is a web server)

and that is generally equipped with different types of middleware to allow

deployment of different types of services (e.g., JMS services, Enterprise JavaBeans,

RESTful services, SOAP web services). Examples of this type of servers are Apache

Tomcat, Oracle WebLogic, and WildFly (“Apache Tomcat” 2012; “Application Server

- Oracle WebLogic Server” 2017; “WildFly Homepage” 2017).

A particular type of middleware that can be used within an application server is a

web service framework (e.g., Apache Axis, Metro, Apache CXF, Spring WS)

(“Apache Axis” 2006; “Metro” 2012; “Apache CXF” 2012; “Spring Web Services -

Home” 2013). Its role is to act as a container for the services, by being an

intermediate layer that, at runtime, is responsible for message processing. Most of

the times, a framework is a library that is already distributed with the application

server (for instance, an application server can only be marked as compliant with the

Java Enterprise Edition specification if, among other requirements, it contains this

type of library, thus supporting the deployment of SOAP web services). However, it

is also true that this component can typically be changed, even when already part of

the server. The decision to change it or not, depends on the criteria of the provider

(e.g., performance, security).

Figure 2.2 - Web services interactions and supportive infrastructure

At runtime, a client sends a SOAP message via HTTP to the server. The HTTP

connector handles and processes the incoming HTTP request, retrieves the SOAP

message and delivers it to the web service framework. The framework then

processes and delivers the SOAP message to the actual service implementation (i.e.,

the web service application). In short, the framework validates each message and

transforms it into an object that can be handled by the application. After this object is

processed by the application, the reverse path is taken, with the return object being

serialized into a SOAP response that is sent back via HTTP to the client (U and Rao

2005).

H
T

TP
C

o
n

n
e

ct
o

r

SOAP
envelope

Fr
am

ew
o

rk

Se
rv

ic
e

Application Server

Client
Application

SOAP
response

Input
object

Output
object

HTTP request
SOAP payload

HTTP response
SOAP payload

Chapter 2

 32

In general, and following the well-known Apache Axis 2 model (Perera et al. 2006, 2)

, we can say that a framework is composed of the following conceptual parts: a XML

processing part, a SOAP processing part, and an information part (Perera et al. 2006,

2). The XML processing part aims to manage the XML documents, and convert them

from the source form (i.e., as received by the consumer) to a specific format that can

be handled by the SOAP processing part. In turn, the SOAP processing part uses the

output of the previous one to extract the message headers that provide information

about the service behavior and the message body that includes the payload. Finally,

the information model supports additional capabilities, being responsible for

managing the services deployed, the modules used to extend the functionality of the

framework, and the global configuration used to adjust specific attributes of that

same framework. Overall, frameworks can be quite complex and, above all, they

have the role of performing critical communication functions that allow exposing the

service application to the outside world, making security a critical quality attribute.

2.2 Software Security Concepts

The definition of security holds a few similarities with the definition of dependability.

The term dependability is an integrative concept based on the following five

attributes (extracted from (Avizienis et al. 2004)):

 Availability: readiness for correct service;

 Confidentiality: absence of unauthorized disclosure of information;

 Integrity: absence of improper system alterations;

 Reliability: continuity of correct service;

 Safety: absence of catastrophic consequences on the user(s) and the

environment;

 Maintainability: ability to undergo modifications and repairs.

Security, like dependability, is also an integrative concept, but it refers to the

composition of availability, confidentiality, and integrity (Avizienis et al. 2004). Before

detailing these three attributes, it is important to clarify the concept of fault, which is

the cause of an error (a deviation of the system state) prone to cause a failure (the

transition from correct service to incorrect service). A vulnerability is a special kind of

fault, as it is an internal fault (e.g., a software bug) that enables an external fault (e.g.,

a malicious request sent to a service) to harm the system (Avizienis et al. 2004). We

now go through the three attributes that compose security.

Confidentiality – refers to the absence of unauthorized disclosure of information

(Avizienis et al. 2004). Information is highly valuable in today’s world and it is quite

Background and Related Work

 33

important to protect it, particularly when personal and sensitive data are at stake. A

system that assures confidentiality must provide mechanisms that assure that

throughout the system’s life span, any critical information, such as provider data

(e.g., administration credentials) or client data (e.g., credit card numbers), are not

disclosed to unauthorized sources. These mechanisms might include, for instance,

encryption of the communication channel (use of HTTPS for communication), and

message encryption (for messages that are bounced off to external systems). The

disclosure of sensitive information may have catastrophic consequences on the

provider reputation and on the consumer privacy.

Integrity – refers to the absence of improper system alterations (Avizienis et al.

2004). In our context, the information being exchanged between a client and a web

service must be correct and unchanged at all times. A system that assures integrity in

this context must be able to detect changes in requests and take adequate measures.

An attacker can alter requests travelling from a legitimate client to the service and

those alterations will pass unnoticed, if the proper mechanisms are not in place (e.g.,

digital signatures). A successful attack may have very different consequences: it may

simply damage the system (for instance, by making the system process invalid data),

or it may allow privileges escalation (if, for instance a user’s role is changed), among

others.

Availability – refers to readiness for correct service (Avizienis et al. 2004). Systems

must assure that the deployed services can be accessed at any time by legitimate

clients. However, systems must also deal with malicious users, that may craft special

requests (e.g., very large requests) with the intention of exploiting potential

vulnerabilities in the system. When successful, these requests may lead to, for

instance, wasted CPU cycles and/or high allocated memory that can ultimately result

in a Denial of Service (DoS). DoS attacks take advantage of the limited hardware

resources, inefficient implementations, and/or presence of vulnerabilities in the

system under attack. Such attacks can be greatly amplified when performed by

many malicious clients, which will then be actually performing a Distributed Denial

of Service (DDoS) attack (Ranjan et al. 2009). Successful DoS-based attacks can cause

service unavailability to legitimate users. The service downtime may represent

significant costs to the provider, ranging from direct financial losses to customer

dissatisfaction.

Other secondary attributes, such as authenticity (integrity of message content and

origin, and possibly of other data, such as the time of emission), accountability or

non-repudiation (availability and integrity of the identity of the person who performs

an operation), and reliability (consistency of the intended behavior and result), also

extended the definition of security (ISO/IEC 2009; Avizienis et al. 2004).

Considering the number and complexity of the attributes that can characterize

security, it is difficult to devise an approach for evaluating security as a whole. For

this reason and due to the typically high importance of being ready to provide correct

Chapter 2

 34

service in web services environments, in this thesis we focus on availability. The

reason is that, nowadays, DoS attacks are a major concern for service providers, not

only due to their direct impact in the services, but also due to their potential to cause

huge financial and reputation losses to vulnerable companies (Ashford 2016; Ragan

2016; Hulme 2016; Neves 2009).

A recent study from Imperva, a data security company, observed that DoS attacks

continue to move up the OSI Stack (Imperva 2012). According to this study, hackers

are moving DoS attacks up the stack and into the web application layer in order to

decrease the attack costs and access more critical resources. Furthermore, it claims

that DoS attacks are more efficient on web based applications (and their underlying

middleware) and often avoid detection, as most anti-DoS solutions are traditionally

focused on the lower layers. Besides the increasing number of DoS attacks, Arbor

Networks also reports that the size, speed, and complexity of such attacks are also

increasing (Ashford 2016).

In 2009, Bitbucket, a code hosting provider, remained 24 hours unavailable due to a

DDos attack aimed at Amazon Web Services (AWS) (Hulme 2016). Basically, a

massive flood of UDP packets was directed towards the IP addresses used by the

company’s site, consuming all the available bandwidth. Amazon was only able to

deal with the problem 17 hours after it was first reported. In 2014, a more severe case

happened to Code Spaces, another code hosting provider for software projects

hosted on an AWS infrastructure. The company suffered a massive a DDoS attack

(Ragan 2016), which turned out to be the first wave of other attacks that enabled

gaining access to the company’s infrastructure including the EC2 panel that

controlled all the cloud instances. This led most of Code Spaces data, backups,

machine configurations, and offsite backups to be either partially or completely

deleted. This ended up by terminating the company’s business.

In recent years, security organizations and the research community have

increasingly been interested in the security of Web Services infrastructures.

Sccording to OWASP’s latest vulnerability survey (OWASP 2013a), “Components with

Known Vulnerabilities”, such as libraries, frameworks (e.g., web service frameworks)

and other software modules, are among the 10 most critical source of security

vulnerabilities. Supporting this observation, in 2009, Codenomicon (a leading

vendor of software security testing solutions) announced that it found and helped

fixing multiple critical flaws in popular XML libraries (Neves 2009). Affected

libraries included implementations from Sun Microsystems, Apache Software

Foundation, and Python. In particular, multiple vulnerabilities were quickly

identified in libraries that support parsing XML data. The discovered vulnerabilities

would enable Denial of Service attacks or execution of code on the affected systems.

In the specific case of WS frameworks, malicious users frequently try to explore the

overhead that results from processing XML and SOAP messages (Gang Wang et al.

2006) by building large SOAP requests or SOAP requests holding special

Background and Related Work

 35

characteristics (Jensen, Gruschka, and Herkenhöner 2009). Among others, two

important XML based attacks are frequently mentioned in the literature: Coercive

Parsing and Oversized Payload. The work in (Intel 2006) presents an extensive threat

model for XML content, detailing attacks that extend the former two and including

other types of attacks (e.g., based in large arrays). One key aspect is that, most of the

known XML-based DoS attacks require minimum knowledge from the attacker

(Jensen, Gruschka, and Herkenhöner 2009).

In summary, although there are several studies that focus on the definition and

classification of attacks for the web services context (Jensen, Gruschka, and

Herkenhöner 2009; Suriadi, Clark, and Schmidt 2010; Intel 2006), few target the

evaluation of the behavior of the systems in presence of those attacks. Moreover,

research indicates that frameworks are not less vulnerable to attacks than other

network-related systems. Actually, they bring their own concerns related with their

specificities (e.g., XML processing) and understanding how well a given framework

is prepared to handle attacks raises challenges that current research has not yet

tackled.

2.3 Software Security Testing

Testing can be defined as the process of executing a program with the intent of

finding faults (Myers, Sandler, and Badgett 2011). In general, testing can be carried

out at different levels, targeting just one part of the application (e.g., a module), a set

of parts (e.g., a group of modules), or the complete system (Myers, Sandler, and

Badgett 2011).

The finest testing level is named unit testing and it has the purpose of verifying the

execution of small and isolated software pieces. The size of the pieces may vary,

depending on the context, but the idea is that they are parts that can be tested

separately. Also, this kind of testing is usually performed with access to the code

being tested (Myers, Sandler, and Badgett 2011) and nowadays there are numerous

testing platforms that allow developers to perform unit tests (e.g., Junit, CPPUnit,

NUnit, JUnitEE).

In integration testing, the goal is to verify the way interaction occurs between

software components. Components can be set up incrementally bottom-up or top-

down, but it is also frequent that they are integrated by function, which then allows

to test a particular function. This kind of testing is many times scattered throughout

the software development process and performed continuously, thus also being

known as continuous integration (Myers, Sandler, and Badgett 2011).

System testing is the largest granularity level and aims to test the behavior of the

complete system. This level of testing is quite adequate to understand how well a

given system complies with non-functional requirements (e.g., performance,

Chapter 2

 36

security). They are also many times executed to support acceptance tests, which

intend to confirm if a given system complies with the needs of the users (Myers,

Sandler, and Badgett 2011).

Software testing can also be classified depending on the visibility that the tester has

on the code of the program being tested. When there is no knowledge or access to

the internal details of a program, the testing activity is named black-box testing;

when there is knowledge or access to the program details (e.g., source code) it is

named white-box testing. Obviously, these concepts also apply to the case of security

testing, as a vulnerability is a software fault. The difference is that this software fault

allows an external fault to harm the system (Avizienis et al. 2004).

The purpose of security testing is to determine whether a system meets its specified

security requirements (ETSI 2015). One popular way to devise security test cases is

to study known security vulnerabilities in security reports, research papers, books,

or other sources, and generate test cases that may show the presence of a particular

vulnerability. As in traditional testing, we find two categories regarding the

knowledge or access to the program being tested, namely (ETSI 2015):

i) White box security testing: when there is access to the internal details of

the program. This is often referred to as Static Application Security

Testing (SAST), as many of these techniques do not require executing the

code;

ii) Black box security testing: when there is no access to the internals of the

program being tested. This kind of techniques is often referred to as

Dynamic Application Security Testing (DAST), as they involve executing

the code.

2.3.1 White Box Testing

White box approaches can be performed manually (e.g., with security experts

examining the source code of an application), or by using code analysis tools, which

analyze the code and require minimal human intervention. Manual code analysis

(e.g., code review) is a time-consuming activity that requires the presence of experts

(in our context, security experts). It is complex, as many times it is very difficult to

understand if there is a vulnerability in the code without executing it, and thus it is

error-prone. Due to this, automatic, or semi-automatic tools have received interest

from the industry and from the research community.

Some of the current static analysis tools require access to the source-code, while for

others, bytecode is sufficient. In practice, the tools analyze the code and try to match

parts of it against predefined patterns that represent bad practices, known to be the

origin of security problems (e.g., a concatenated string being used in an SQL

statement is usually flagged as an SQL Injection vulnerability). Obviously, this kind

Background and Related Work

 37

of issues depends on expert knowledge that is used precisely to define the bad

practice patterns. The consequence is that tools might miss particular types of

vulnerabilities, if the knowledge is incomplete (Bessey et al. 2010).

The patterns used by static code analyzers can be loose or tight. A tight pattern is

very precise, as it allows to accurately match a certain type of bug, but it may not be

able to detect the cases where the bug is not a perfect match, due to small variations.

On the other hand, a loose pattern allows finding more unknown issues; the

downside is that it tends to report false vulnerabilities where there are no real

problems (i.e., false positives). This kind of tools are actually known for producing a

high number of false-positives, which results in further work for the security expert,

as each detected problem will then have to be manually analyzed (Nuno Antunes

and Vieira 2015). The following paragraphs describe several static analysis tools that

provide some support for identifying security problems.

Findbugs (Findbugs 2012) is a static analyzer that tries to find bugs in Java

programs, operating on their bytecode. Potential vulnerabilities are ranked and

grouped in categories that represent different degrees of severity. The tool is based

on the use of code pattern detectors, which can be extended by using plugins. One of

the plugins available is intends to “Find Security Bugs” and includes a set of rules

that focus on security aspects. FindBugs allows the use of filters, which are used to

include or exclude bug reports for certain types of vulnerabilities, classes or

methods.

Fortify is a commercial static code analyzer from HP (“HP Fortify Static Code

Analyzer” 2013), that scans source code, identifies causes for software security

vulnerabilities and correlates and prioritizes the ones found according to the user

preferences. It supports analyzing programs written in a large variety of

programming languages, including Java, .NET Framework (ASP.NET, VB.NET, C#),

and JavaScript.

Jlint, is a java source code analyzer with the particularity of, according to the

authors, being extremely fast, even on large projects. It scans Java source code and

finds “bugs, inconsistencies and synchronization problems by doing data flow

analysis and building the lock graph”. Jlint is considered to be easy to use and

requires no changes to be applied to the class files being scanned (Knizhnik 2016).

PMD is a source code analyzer that aims at finding common programming bad

practices, such as unused variables, empty catch blocks, unnecessary objects being

created, among other types of problems (“PMD” 2013). PMD is an open source tool

that also includes a copy-paste detector that finds duplicated code in Java, C, C++,

C#, PHP, Ruby, Fortran and JavaScript.

Pixy is an open source implementation of source code analysis, and is targeted at

detecting cross-site scripting vulnerabilities in PHP scripts (Jovanovic, Kruegel, and

Chapter 2

 38

Kirda 2006). Pixy employs a static analysis technique able to detect taint-style

vulnerabilities automatically.

Rough Auditing Tool for Security (RATS) is a source code scanning tool developed

by Secure Software Inc., that flags common security-related programming errors,

such as buffer overflows and TOCTOU (Time Of Check, Time Of Use) race

conditions (Dunham 2013). RATS also supports security checks for risky built-

in/library function calls. According to the authors, this tool is not meant to be a

replacement of manual code reviews, but instead to serve as an auxiliary tool. The

supported programming languages for source scanning are C, C++, Perl, PHP,

Python and Ruby.

Yasca is a source code analysis tool that, instead of using its own static code analysis

algorithm, aggregates several other static analysis tools (Scovetta 2009). Supported

tools include the already mentioned FindBugs, J-Lint, Pixy, PMD and RATS. Yasca

supports integration with virtually any static analysis tool, as long as the tool is

developed in the following languages: Java, C/C++, HTML, JavaScript, ASP,

ColdFusion, PHP, COBOL and .NET (and there is the appropriate plugin to connect

the tool to Yasca).

The use of automated code analysis tools is often seen as an easy and fast way to

find bugs and vulnerabilities in web applications. However, the high number of false

positives reported by this type of tools, allied to the impossibility of identifying

certain kinds of problems that are only detectable at runtime (e.g., low performance

in presence of a DoS attack), lead them to be less useful in security testing contexts

(Nuno Antunes and Vieira 2009; ETSI 2015).

2.3.2 Black Box Testing

Black box approaches do not require source code access or knowledge of the

internals of the system being tested. This kind of tests can be performed manually or

using automated tools. When performed manually, the tester must manually create

and execute requests against the system being tested, which is quite costly, as many

times the tester needs to create a large variety of inputs (so that it gets enough code

coverage) and input conditions (e.g., parallel requests, specific order in requests),

and must analyze the behavior of the system, which is a non-trivial task. Fortunately,

in the case of black-box testing, there are numerous automated, or semi-automated,

tools for carrying creating and running testing campaigns. In the literature, we can

mainly find two black-box techniques for unveiling security problems: robustness

testing and penetration testing. The next paragraphs go through the two techniques,

discussing research and tools implementing each technique.

The goal of robustness testing is to characterize the behavior of a system in the

presence of erroneous input conditions (Vieira, Laranjeiro, and Madeira 2007a;

Koopman and DeVale 1999; Micskei et al. 2012). Robustness testing techniques

Background and Related Work

 39

usually use a combination of different valid and invalid inputs to trigger internal

errors, with the goal of exposing programming or design errors. Systems can be

distinguished according to the number and type of uncovered errors. Although

robustness testing techniques and tools were not originally created to be used for

assessing the security of software, previous studies have shown that these tools can

be helpful in finding security problems or used to assess availability (Laranjeiro,

Oliveira, and Vieira 2010; Laranjeiro, Canelas, and Vieira 2008; Zhu, Mauro, and

Pramanick 2003).

Robustness testing tools became popular due to prominent research that resulted in

the creation of Ballista and MAFALDA (Koopman and DeVale 1999; Rodríguez et al.

1999). Ballista is a robustness testing tool that combines software testing and fault

injection techniques. It was designed to test the robustness of software components,

having a particular focus on operating systems (Koopman and DeVale 1999). Tests

are automatically generated and include exceptional and valid parameter values,

which are used on calls to kernel system functions. This tool was later extended to

allow testing the robustness of CORBA ORB implementations (Pan et al. 2001).

MAFALDA (Microkernel Assessment by Fault injection AnaLysis and Design Aid) is

a tool that allows assessing the behavior of microkernels in the presence of faults

(Rodríguez et al. 1999). MAFALDA supports fault injection both into the parameters

of system calls and into the microkernel address space in memory. Similarly to

Ballista, MAFALDA was later adapted to support robustness testing of CORBA-

based middleware (Marsden and Fabre 2001) .

Considering web services, WebSob and wsrbench (Martin, Basu, and Xie 2007;

Laranjeiro, Canelas, and Vieira 2008) are two relevant cases of robustness testing

approaches implemented by concrete tools. WebSob is a robustness testing tool for

web services that takes as input a WSDL file, and uses a unit-test generation tool to

generate code to facilitate test generation and test execution (Martin, Basu, and Xie

2007). Once tests are executed, the results (i.e., the web service responses) are

manually analyzed. The authors used WebSob to test the robustness of 35 freely

available web services and were able to execute thousands of tests. The results

revealed robustness problems in 15 web services.

wsrbench (Laranjeiro, Canelas, and Vieira 2008) is an on-line tool for robustness

testing of web services. The input necessary for executing robustness tests is a WSDL

file and, optionally, information regarding the valid domains for the input

parameters of the operations to be tested. The tool was used to test the robustness of

100 public domain web services and the results revealed numerous problems,

showing that several web services had been deployed without being properly tested.

Most of all, some of the detected problems referred to vulnerabilities (e.g., SQL

Injection), which highlights the potential of the technique to disclose security issues.

Penetration testing is a particular case of robustness testing, in the sense that it is

based on sending exceptional input conditions to an application (Micskei et al. 2012).

Chapter 2

 40

The main difference is that the inputs are malicious and try to exploit vulnerabilities

present in the code. The penetration tester only has access to the system through

some interface for communication, which is used as entry point for the malicious

requests. Despite the apparent simplicity, research has shown that, in general, the

effectiveness of this type of tools is quite low (Nuno Antunes and Vieira 2015) and

that many classes of vulnerabilities are not detected (Doupé, Cova, and Vigna 2010).

An obvious difficulty is that the tester (or the tool) has to analyze the responses and

this is the only mean to understand if a vulnerability exists. The following

paragraphs describe some tools that allow executing penetration tests against

software systems.

WSFuzzer is a Python program that currently targets web services (WSFuzzer 2012)

and aims to automate penetration testing for SOAP web services. It is based on the

generation of unexpected inputs and tries to uncover some types of application-level

vulnerabilities, such as SQL and XPath injection. It also supports the execution of

attacks that target vulnerabilities at the middleware level, i.e., in web service

frameworks. The list of supported attacks includes: Coercive Parsing, Oversized XML,

XML Document Size and XML External Entities. WSFuzzer stores the requests sent

and responses received from the web service in a log file, which then holds the

execution history. Still, the log file must be manually analyzed by a security expert.

WSFuzzer is a command line tool that also requires some expertise about the

environment and necessary configuration before it can be effectively used.

SoapUI is a free open source tool that allows performing different types of tests over

different target systems (Smartbear 2012). The interfaces supported include SOAP,

REST, JMS, JDBC, HTTP, among others; the types of tests implemented target

functional, regression, compliance, load, and security aspects. The security support

is relatively recent, and currently SoapUI allows testing for vulnerabilities at the

application-level (i.e., by executing tests that try to exploit vulnerabilities present in

the application code) and at the framework level (i.e., by executing tests that target

the framework implementation, in particular the processing of SOAP messages). The

list of supported attacks against web services at the framework level is limited to

Malformed XML, Malicious Attachment, and XML Bomb (“SoapUI, Security Scans

Overview” 2011). The result of the tests requires the presence of a security expert to

interpret the outputs. However, to aid the tests analysis, SoapUI allows to define

“assertions”, which is a mechanism that can reduce this manual task by helping to

understand if the attack was successful or not (e.g., by defining expected responses,

or maximum response time). SoapUI is a Java-based tool that has an advantage over

WSFuzzer: it features a point and click graphical user interface. Despite this, the list

of supported attacks is more limited than the ones implemented by WSFuzzer.

WS-Attacker is a security testing application (Mainka, Somorovsky, and Schwenk

2012; “WS-Attacker” 2012) for web services. The concepts behind the tool and its

architecture are introduced in (Mainka, Somorovsky, and Schwenk 2012), including

details about the technologies used and how to develop new plugins. Its extensibility

Background and Related Work

 41

is a strong point when the goal is to develop more complex security testing

applications. During our research, WS-Attacker was further developed by including

additional plugins, featuring DoS attacks that specifically target web service

frameworks (see Chapter 3).

Most of the existing security testing tools for web services focus in finding

application-level vulnerabilities, such as SQL Injection and Cross-Site Scripting

(XSS), rather than vulnerabilities at the service framework level. Thus, these tools

are, in general, of little use for evaluating service frameworks: we discuss them in

the following paragraphs due to their relevance in the context of security testing. The

most well-known security testing solutions include Acunetix Web vulnerability

Scanner (Acunetix 2014), HP WebInspect (“HP WebInspect” 2013), and IBM Security

AppScan(“IBM Security AppScan Family” 2013). HP WebInspect is another web

application testing tool that is able to execute penetration tests in an automated way

(“HP WebInspect” 2013). The tool emulates real attacks and hacking techniques and

integrates dynamic and real-time analysis to be able to detect more vulnerabilities.

HP WebInspect features advanced web services security testing and is able to

process complex data types present in WSDL files and generate testing data

accordingly. It includes support for fuzzing and for web service attacks, including

Cross Site Scripting and SQL Injection.

IBM Security AppScan is an application for performing automated security testing

(“IBM Security AppScan Family” 2013). The tool is able to scan for several well-

known types of vulnerabilities, such as XSS, Document Object Module (DOM)-based

XSS, client-side open redirects, and SQL injection. It also combines the execution of

black box techniques with an internal agent that monitors application behavior

during the attacks, resulting in more accurate test results. IBM Security AppScan

applies security testing to web service-based technologies and supports advanced

standards, such as WS-Security v1.1, WS-Addressing, encrypted keys, and SOAP

messages with MIME and DIME attachments.

Acunetix Web Vulnerability Scanner (WVS) is a testing tool for web applications and

web services that tries to check for the presence of vulnerabilities by running tests in

an automated manner (Acunetix 2014). This penetration testing tool supports the

execution of different types of attacks, including Cross Site Scripting, SQL Injection,

DOM XSS, Blind Cross Site Scripting, among others. Responses are analyzed and the

tool signals the potential presence of a vulnerability and its severity, being able to

produce reports holding the details of the results of the tests. Recently, it added

support for the execution and detection of XML External Entities based-attacks,

which target vulnerabilities present at the web service framework level (Acunetix

2013). The inclusion of support for this attack in a major commercial security tool,

emphasizes how important it is to assess the security of web service frameworks and

further confirms that the trend towards attacking middleware software layers (e.g.

service frameworks) is increasingly important (Imperva 2012; OWASP 2013a).

Chapter 2

 42

The abovementioned techniques and tools allow assessing the security of web

services, but, as we can see, when the focus is set on the frameworks, the support

from tools is very scarce. In fact, only two tools allowed testing service frameworks

at the beginning or our research: WSFuzzer and SoapUI. Later, WS-Attacker, and

more recently (although with strong limitations), the Acunetix vulnerability scanner,

included features to evaluate the security of web service frameworks.

2.4 Assessment and Benchmarking

Several works focusing on the assessment of performance and security of

middleware can be found in the web services domain. The next paragraphs describe

relevant efforts in this area. Afterwards, we introduce the main concepts regarding

benchmarking (assessment with the goal of comparison), which are later detailed in

terms of research and tools on performance benchmarking (Section 2.4.1),

dependability benchmarking (Section 2.4.2), and security benchmarking (Section

2.4.3).

Regarding performance assessment, it is worth mentioning the work in

(Govindaraju et al. 2004), which has the goal of characterizing the performance of

SOAP frameworks. The work uses distinct arrays (including different sizes) to study

the cost of the serialization and deserialization processes of XML parsers. The

different parser implementation strategies are analyzed and the authors indicate that

naïve implementations can lead to considerable processing time (which can be

critical in DoS attack scenarios).

In (Gang Wang et al. 2006) the authors analyze and discuss the causes for low

performance observed in many XML-based applications (e.g., XML parsers and web

services). The conclusions include the fact that parsing XML documents frequently

generate intensive memory allocation operations and that the allocated objects are

typically long-lived. Arrays use large portions of memory space during regular XML

processing, thus being a problem when, for instance, facing security attacks that

target memory depletion.

In (Xie et al. 2008), a web service performance testing framework is proposed,

consisting of a client module and an application module. The client module scales

up to a large number of concurrent requests so that it is possible to test the

performance of the web service under high client loads. The application server

module contains a set of Web Services derived from the TPC-App benchmark (TPC

2008). The data model used includes a main table and attributes that can be

customized to better fit different commercial application characteristics. The

proposed framework supports measuring the number of Web Service Interactions

per Second (SIPS), as in the original TCP-App specification, and adds support for

measuring the response time.

Background and Related Work

 43

An extensive performance comparison of web service frameworks is presented in

(Suzumura et al. 2008). The study compares the C and Java versions of Axis 2 with

the PHP SOAP engine. The goal is to understand the impact that different

technologies have on the framework performance, by measuring the throughput,

memory footprint and CPU usage. The work measures performance under valid

conditions, and does not account for invalid or malicious requests. An study on the

characterization of the performance of a set of framework implementations

(including gSoap, Axis C++, Axis Java, .Net and XSOAP) is presented in

(Govindaraju et al. 2004). The goal is to understand how processing SOAP arrays

with different sizes impacts the response time of web service frameworks. Results

showed clear differences among the frameworks, with some frameworks performing

typical functions considerably fast (e.g., gSOAP handling arrays of integers), and

with some frameworks clearly behind (e.g., Axis Java).

In what concerns security evaluation, it is worth discussing the work presented in

(Suriadi, Clark, and Schmidt 2010), that studies the impact of Denial of Service

attacks on web service frameworks. The experiments conducted include tests with

Metro, Axis, .NET WCF, and Ruby, and are based on flooding attacks (requests sent

in sequence and in parallel). Results indicate that attacks tend to impact CPU

resources rather than memory. A key issue is that there is no reference in the work to

the specific versions of the platforms tested and containers used, which is a huge

limitation on the reproducibility of the experiments, preventing comparing their

results with future work.

An approach for automatic evaluation of the impact of Denial of Service attacks on

web service frameworks is presented in (Falkenberg et al. 2013). The authors assume

that there is no physical access to the machine being tested and, as such, the attack

executor is limited to sending payloads and measuring response times. The

approach is implemented as a plugin for the WS-Attacker tool (“WS-Attacker” 2012)

and consists of two phases. In the first phase the tool sends regular (i.e., non-

malicious) requests to the server and in the second phase the tool submits malicious

requests. In parallel, the tool simulates the presence of an additional client that sends

regular requests to the server and collects the response time. The work is very much

focused on identifying problems, and not so much on providing assessment data

that can be used for comparison (i.e., as in a benchmark). The data collected could

also be more diverse (it considers response time as the only metric), and the

approach also disregards the impact of the attacks after the second phase.

Trust is a concept closely related to security, as clearly perceptible in the works

discussed in the following paragraphs. The authors in (Omar Abdel Wahab et al.

2015) analyze and compare the main approaches that aim to build trust and

reputation models for web services. The different approaches discussed fit in three

main groups: single web services, compositions, and communities. Main challenges

in the case of single services (which is the case more closely related to this thesis) is

the quality and credibility of the approach that is used to build trust score. There are

Chapter 2

 44

key criteria that a trust or reputation model for web services should cover, and these

include involving different Quality of Service metrics (e.g., response time,

throughput, availability) in the model and also including the users preferences. The

authors also present a set of web service attacks and discuss the problem of having a

malicious service, acting as a client to other services, within a web service

composition. Coercive Parsing and Oversized XML are mentioned as examples of

attacks that have the potential to influence trust in web services environments.

In (H. Wang et al. 2015) it is proposed an approach to rank cloud-based big data

services that considers the user preferences regarding non-functional properties of

the services (e.g., Quality of Service) and also trust (e.g., the authenticity of Quality

of Service reported by the service provider). To deal with the multiple criteria being

considered in this context (e.g., price, response time), which are sometimes

conflicting and end up on a decision involving some trade-off, the problem is

modeled as a multi-objective optimization problem. At the core of the approach

there is a linear weighting function that calculates how well each service matches the

consumer’s preferences (in order to rank the service) and the variables of this

function are estimated through a Multi-objective Constrained Model. Experimental

results show that this trust-based approach is more effective than other related

approaches when taking into account user-defined non-functional properties.

A trust-based approach for performing decisions regarding the definition of service

compositions and service binding is proposed in (Y. Wang et al. 2017). The approach

is designed to tackle the challenges of service-oriented mobile ad-hoc networks

(MANETs), which are essentially very dynamic and do not have a pre-defined

network structure (i.e., nodes typically join and leave the network at unknown

instants). This kind of dynamism shows clear similarities with typical web services

scenarios, which are frequently the technological choice to support service-oriented

architectures. In these scenarios, the presence of malicious nodes that provide

erroneous information is of great concern (i.e., a malicious node can impair the

whole composition). Thus, the evaluation of trust plays an important role here and

the authors emphasize that a trust score may derive from multiple metrics (e.g.,

response time, throughput), which is often disregarded in the literature. Thus,

understanding trust as a multidimensional concept and being able to identify the

components that should form this concept is a crucial aspect in any trust-based

approach.

The work in (O. Abdul Wahab et al. 2017) focuses on the problem of service

community formation in multi-cloud environments. A typical problem in this

context is the presence of malicious services that misbehave so that their benefits are

maximized (which is something quite hard to control, when services come from

different providers). The work is based on the following three main parts: i) it

defines a framework for establishing trust that is resistant to collusion attacks (where

malicious services, part of a community, try to produce misleading trust results); ii)

It proposes a bootstrapping mechanism that uses feedback from social networks to

Background and Related Work

 45

compute initial trust values for the services, and iii) it proposes a “trust-based

hedonic coalitional game” that aims to find the optimal alliance partition that

minimizes the number of malicious members that will be part of the community.

Experiments on a real cloud dataset revealed that this trust-based approach reduces

the number of malicious services to up to 30% compared to the state of the art

models, such as the ones based on availability and QoS. The authors also observed

improvements in terms of availability and performance (i.e., response time and

throughput). Overall, the work simply emphasizes the importance of considering

trust in computing (especially in cloud computing) and showcases the successful

application of trust in a security context.

The concept of trust has been used in (O. Abdel Wahab et al. 2017) to allow cloud

systems to deflect DDoS Attacks. The approach first defines a chain of trust between

guest Virtual Machines and their underlying hypervisor. This is performed by

considering two groups of trust sources – objective and subjective, which are

aggregated using Bayesian inference. For the objective sources, the hypervisor uses

monitored CPU usage, memory allocation, and network bandwidth consumption

of each virtual machine, to detect anomalous behaviors. For the subjective

sources, the hypervisor collects recommendations from other hypervisors and

virtual machines that had some past interaction with the virtual machine under

analysis. The second part of the approach is based on the application of a maximin

(Binmore 2007) trust-based game between the DDoS attackers which intend to

minimize the detection probability and the Hypervisor that tries to maximize the

minimization. The authors show the effectiveness of the approach in improving the

detection of attacks, successfully use trust as a multidimensional concept (for which

the component values are aggregated in higher level scores), and especially show the

link between trust and security, which is evermore a topic being studied by

researchers, with direct application in services environments.

Benchmarks are de-facto standards that allow assessing and comparing systems or

components according to specific characteristics (e.g., performance, dependability,

security) (Gray 1993). They became rather popular mostly due to the increasing need

for comparing the performance of different systems. However, the definition of a

benchmark is a non-trivial task, and to be useful and accepted by the community a

benchmark must respect an important set of criteria. According to (Gray 1993) a

benchmark must respect four criteria:

 Relevance – it must be able to measure the intended characteristic of the target

system, when performing typical operations within the problem domain.

 Portability – it must be easy to implement independently of the different

systems and architectures under benchmarking (in the benchmark domain).

 Scalability – it should be applicable in any computing system in the

benchmark domain, independently of the size (or at least, the scale limits

should be defined). The benchmark must scale up to benchmark larger

Chapter 2

 46

systems, and accommodate the advances in computer systems (e.g., in

performance and architecture).

 Simplicity – it must be easy to understand and implement, to foster credibility

and adoption. A complex benchmark, or one that outputs complex metrics,

might not appeal to the users and industry, impacting its usefulness.

These criteria were further developed within other research initiatives. One of such

efforts was the DBench European project (DBench 2004), that has laid the ground for

further benchmarking initiatives. According to the dependability benchmarking

concepts depicted in the final report of the DBench project (DBench 2004), in order

to be useful and accepted by the computer industry and user community, a

dependability benchmark should satisfy the following criteria: representativeness,

repeatability and reproducibility, portability, non-intrusiveness, scalability and

benchmarking time and cost. Portability and scalability retain the same definition as

introduced in (Gray 1993). Representativeness is essentially a more detailed

definition of relevance and, in particular, it adds that the measures, workload and

faultload of a benchmark should represent a typical and realistic set of activities

found in real systems, as much as possible.

Repeatability is related with the guarantee that the results of the benchmark will be

statistically similar, independently of how many times it is executed. Reproducibility

complements repeatability, assuring that the same results will be achieved if another

entity (e.g., a researcher, an industry specialist) decides to execute the benchmark.

Non-intrusiveness refers to the changes that the benchmark requires on the system

under benchmarking. These changes should be as little as possible in order to avoid

adding an artificial bias that can impact the results obtained. This is particularly

relevant when applying fault injection techniques (Hsueh, Tsai, and Iyer 1997).

Finally, benchmarking time and cost refer particularly to the time needed to execute

the benchmark and the time needed for analyzing the results. Obviously, this time

(or cost) should be the minimum possible, ideally a few hours per system. However,

it is acceptable that larger systems take more time to be benchmarked, e.g., a few

days.

In general, and despite a few differences in the relative importance of each of the

above criteria (e.g., simplicity is relatively better accepted than time and cost), most

of them are nowadays generally accepted, and need to be considered when defining

any benchmark (e.g., performance, dependability). Such properties should be

validated after the benchmark definition.

Benchmarking initiatives stem from the need for comparing performance (Gray

1993), but quickly extended to other characteristics, namely dependability (DBench

2004). Benchmarking security is a very recent research area (Neto and Vieira 2011a),

in which there is a lot of open space for research. The following sections detail

Background and Related Work

 47

relevant contributions in the field of benchmarking, under these three areas:

performance, dependability, and security.

2.4.1 Performance Benchmarking

Performance benchmarks established a great reputation in the industry. In

particular, performance benchmarks managed by the Transaction Processing

Performance Council (TPC) (TPC 2013b) and by the Standard Performance

Evaluation Corporation (SPEC) (SPEC 2013) had a critical role in the evaluation and

evolution of different systems in diverse domains. TPC currently specifies

performance benchmarks for several domains, including transaction processing,

decision support, virtualization, and big data. Of these domains, transaction

processing is the one closer to the domain of this thesis. SPEC develops performance

benchmarks for applications in several different domains, ranging from hardware

performance (e.g., CPU and graphics) to software performance measurement (e.g.,

Web servers and distributed Java applications). SPEC provides benchmarks in the

form of applications that are ready to execute, while TPC only provides benchmark

specifications in the form of documents. In this latter case, it is up to the benchmark

user to develop the necessary applications, which must follow the benchmark

specification rules.

TPC-C is a well-established and well-known Online Transaction Processing (OLTP)

performance benchmark that simulates a complete computing environment where a

set of users executes transactions against a database (TPC 2015a). Some of the

operations of the benchmark include entering and delivering orders, recording

payments, checking the status of orders, and monitoring the level of stock. tpm-C is

the performance metric reported by this benchmark, which refers to the number of

New-Order transactions per minute generated by the system, while it is executing

other types of transactions (payment, order status checking, delivery, and stock

level).

TPC-App (TPC 2008) is a performance benchmark for application servers and web

services that emulates an Internet retail distributor including ordering and product

browsing functionalities (i.e., a typical B2B scenario). Some of the characteristics of

the emulated environment include the use of SOAP/XML for exchanging data,

generation of web services responses dynamically based on database access, and

simultaneous execution of different types of transactions that encompass several

business functions. The metric reported by this benchmark is the number of Service

Interactions Per Second (SIPS) completed by the system under testing during a given

measurement interval.

SPECweb2009 (SPEC 2009) is a benchmark designed to evaluate the performance of

web servers. It features workloads for banking, e-commerce, support, and power.

This benchmark measures peak performance as the maximum number of

Chapter 2

 48

simultaneous user sessions that a web server is able to support while meeting

specific throughput and error-rate requirements.

The SPEC jAppServer2004 benchmark (“SPECjAppServer2004” 2004) was created to

measure the performance of Java 2 Enterprise Edition (J2EE) technology-based

application servers. The workload emulates an automobile manufacturing company

and its associated dealerships. Dealers interact with the system using web browsers

(these are emulated by a driver), while the actual manufacturing process is

accomplished via RMI (also emulated by a driver). This benchmark uses jAppServer

Operations Per Second (JOPS) as performance metric, which corresponds to the

number of operations successfully concluded per second during the measurement

interval. SPECjAppServer2004 also heavily exercises other parts of the software

infrastructure, including hardware, Java Virtual Machine, databases, JDBC drivers,

and the system network. SPEC retired JappServer2004 in favor of

SPECjEnterprise2010 (“SPECjEnterprise2010” 2010), which allows performance

measurement and characterization of Java EE 5 servers. This benchmark uses

Enterprise jAppServer Operations Per Second (EjOPS), which is a metric that

considers both Dealer Transactions per second and Work Orders per second.

WSTest (Sun Microsystems 2004) is a synthetic performance benchmark initially

developed by Sun Microsystems and later extended by Microsoft. WSTest includes a

sample web service with operations that, together with a client emulation tool,

emulate a distributed application, with the server-side processing a set of different

client requests. WSTest reports the number of transactions per second achieved and

the average latency. A few years ago, there was a dispute between Sun Microsystems

and Microsoft, involving the performance of web service technologies in J2EE and

.NET. Sun Microsystems argued in a technical report (Sun Microsystems 2004) that

the J2EE platform allowed to achieve better performance than the .NET framework

(WSTest was the benchmark used). Microsoft disputed this claim in a later work

(Microsoft 2004) using a modified version of WSTest with more operations, arguing

that the .NET framework was able to achieve better performance.

In (Daniel F. García et al. 2006), researchers implement the TPC-App benchmark and

use it to evaluate two web services platforms, namely J2EE and .NET. The

benchmarks were developed following the typical programming practices for each

platform. The results show a very clear advantage of the .NET implementation

against J2EE.

A performance benchmark for web service frameworks is presented in (Wickramage

and Weerawarana 2005). The main goal was to define a benchmark that would

closely represent real world business services. The benchmark focuses on the Round

Trip Time as the key metric to characterize performance, disregarding more common

metrics like throughput and latency. The approach excludes the XML parser

operation (among a few other time consuming factors) in the performance

assessment (the claim is that any parser can be used and the focus is placed on other

Background and Related Work

 49

parts of the software), thus eliminating a frequent source of performance problems

(G. Wang et al. 2006).

In (Head et al. 2005), the authors proposed a fairly complete benchmarking suite for

testing the performance and scalability of web service frameworks with a focus on

data structures used in grid services. This suite includes a set of individual

benchmarks to test specific configurations of frameworks. A serialization benchmark

measures the serialization performance of various frameworks for arrays and

different data types and sizes. The deserialization benchmark measures the

deserialization time of messages of different sizes and holding frequently used data

types (strings, integers and doubles). The end-to-end benchmark combines the two

in order to test the performance of the full communication between the client and

services endpoint. The streaming benchmark quantifies the performance of the

framework when using streaming communication, helping to understand potential

benefits comparing to non-streaming communication. It is also relevant to mention

the namespace benchmark that consists of various SOAP payloads with variable

levels of nested data structures, and allows understanding if frameworks are able to

correctly resolve them according to the namespace definitions. A latency benchmark

defines echoVoid() operations to assess the latency imposed by the framework.

There are a few other benchmarks included in the suite, but the ones mentioned

above are the most relevant in the context of web services performance.

2.4.2 Dependability Benchmarking

Building on the success of performance benchmarking, dependability benchmarks

appeared as an appealing option to assess and compare systems dependability. The

concept of dependability can generically be defined as “the ability to deliver a

service that can justifiably be trusted” (Avizienis et al. 2004). As mentioned before, it

includes a set of attributes: availability (readiness for correct service); confidentiality

(non-occurrence of unauthorized disclosure of information); integrity (absence of

improper system alterations); maintainability (ability to undergo modifications and

repairs); reliability (regarding the continuity of correct service); and safety (absence of

catastrophic consequences on the user(s) and the environment).

Dependability benchmarks (DBench 2004) have proven to be useful in a number of

different fields ranging from web servers (Durães, Vieira, and Madeira 2004) to

automotive embedded systems (Ruiz et al. 2004). Nevertheless, dependability

benchmarks (as their predecessors) initially started to become popular in the field of

transactional systems. In (Vieira and Madeira 2003) it is proposed a dependability

benchmark for OLTP (On-Line Transaction Processing) systems. This proposal

defines components for a dependability benchmark, which were also considered ater

in other dependability benchmarks. The components are as follows (extracted from

(Vieira and Madeira 2003)):

Chapter 2

 50

 Workload: represents the work that the system must perform during the

benchmark execution.

 Faultload: represents a set of faults and stressful conditions that emulate real

faults experienced by systems in the field.

 Measures/Metrics: characterize the dependability of the system being

benchmarked, in the presence of the faultload and when executing the

workload. The measures must be easy to understand and allow the

comparison between different systems.

 Benchmark procedure and rules: describes the procedure and rules that

must be followed to execute the benchmark.

 Experimental setup: describes the setup required to run the benchmark.

Two different versions of database management systems (DBMS) were benchmarked

in three different operating systems in (Vieira and Madeira 2003). Performance was

measured in terms of transactions per minute, price per transaction (both in terms of

baseline performance and performance in the presence of faults) and availability.

Results showed that the availability of the tested systems depends mostly on their

configuration, and the availability from the clients point-of-view is typically much

lower than the availability from the server point-of-view.

Dependability benchmarks also became very popular in the operating systems

domain. In (Kalakech, Jarboui, et al. 2004) it is proposed a dependability benchmark

suitable for a general purpose operating system. The work proposes a prototype

dedicated to benchmark Windows 2000. The authors opted to use the TPC-C client

to emulate a realistic workload and the work is based on two types of measures:

robustness measures and temporal measures in the presence of faults. Robustness

measures refer to several outcomes, such as: error codes, exceptions, erroneous

completion of the workload, OS and application hangs. Temporal Measures refer to

system call and workload execution times, as well as OS restart time. Later, the

authors expanded their benchmark to be able to assess and compare Windows NT4,

Windows XP, and Windows 2000 (Kalakech, Kanoun, et al. 2004). The comparison of

the three OSs showed that, although they are equivalent from a robustness point of

view, Windows XP had the shortest reaction and restart times.

In (K. Kanoun et al. 2005) it is proposed a dependability benchmark and a set of

operating systems is assessed to show the usefulness of the benchmark. The authors

opted to use PostMark (a tool for file system performance testing) as workload. The

benchmark measures include a robustness measure (POS) and two temporal

measures (Texec and Tres). POS is defined as the percentage of experiments leading

to a set of predefined outcomes (i.e., an error code is returned, an exception is raised,

Panic state, hang state, and no-signaling state). Texec corresponds to the average

time necessary for the OS to respond to a system call in presence of faults. Finally,

Background and Related Work

 51

Tres corresponds to the average time necessary for the OS to restart after the

execution of the workload in the presence of faults.

The abovementioned benchmark uses a faultload that includes corrupted parameters

on system calls. A total of six versions of the Windows operating system and four

versions of Linux were benchmarked. Results showed that none of the catastrophic

states of the OS (panic or hang) occurred for any of the Windows and Linux based

OSs considered. Linux OSs reported more error codes (59-67%) than Windows (23-

27%), while more exceptions were raised with Windows (17-22%) than with Linux

(8-10%). There were more non-signaling cases observed in Windows (55-56%) than

in Linux (25-32%). Concerning the OS reaction time, Windows outperformed Linux.

A dependability benchmark for engine control applications in automotive embedded

systems is presented in (Ruiz et al. 2004). The benchmark allows the characterization

of the impact of faults on the control software embedded in Electronic Control Units

(ECUs). The faultload adopted by this benchmark is based on the injection of

transient hardware faults, which ECU memory can experience during its normal

operation. This benchmark also provides a set of measures that estimate the impact

of the ECU control loop failures on the engine. The workload used to stimulate the

ECU is based on the speed reference the driver imposes to the engine through the

throttle, and is also based on the set of engine internal variables, monitored by the

ECU to obtain feedback for control computation.

The DS-Bench toolset allows assessing and comparing the dependability of both

physical and virtual machines (e.g., in a cloud computing environment) (Fujita et al.

2012). The toolset is composed of three elements: D-Case Editor, DS-Bench, and D-

Cloud. DS-Bench allows extracting dependability measurements in scenarios

composed of programs for benchmarking and for generating anomalies. D-Case

Editor exploits the results of executing the benchmarks, extracting information

regarding the dependability of the target system. D-Cloud is essentially the test

environment, providing support for physical and virtual machines that will be used

in the benchmarking scenario.

DS-Bench is responsible for emulating erroneous states with the use of anomalies

produced by anomaly generators. These anomaly generators refer to: i) programs

that run on the target machines and that consume computing resources, such as CPU

or memory; and ii) the injection of external faults (e.g., network disconnection). The

toolset also provides support for several other types of faults (e.g., bit flips, network

packet drops). The work represents a very interesting environment for dependability

benchmarking, although it is not a benchmark on its own. The extension for security

is not obvious, but the some of the concepts may be useful (e.g., the separation

between the workload generation and the injection of faults).

In (Sangroya, Serrano, and Bouchenak 2012) it is presented a comprehensive

benchmarking suite (MRBS) for evaluating the dependability of MapReduce

systems. MRBS is a configurable benchmark based on the injection of software and

Chapter 2

 52

hardware faults of several types in map-reduce systems. The idea is that it should be

possible to emulate common failures that the Hadoop MapReduce platform should

tolerate, including node crashes, process crashes, and hanging tasks. MBRS also

supports a Faultload Builder that provides testers with a useful tool that allows

building synthetic faultloads to fit specific scenarios and allows randomly

generating a faultload.

The MBRS suite allows measuring the availability, performance and reliability of

MapReduce systems and was used to evaluate a cluster running on six Amazon EC2

instances, and four Grid’5000 instances. This ten-node cluster was tested in the

presence of 20 concurrent clients running in four external Grid’5000 instances. The

results showed that the Hadoop cluster remained available 96% of the time and was

able to successfully handle 94% of client requests. One of the experimental cases

analyzed showed the Hadoop cluster loosing 3 nodes and performing fail-over, but

at the expense of higher response time and a lower throughput.

A benchmark is proposed in (Durães, Vieira, and Madeira 2004) to assess and

compare the dependability of Web Servers. The authors derived the proposed

benchmark from the SPECWeb99, adopting the workload and performance

measures from this benchmark, and added a faultload and new metrics related to

dependability. The dependability metrics include: autonomy (quantifies the need for

external administrative intervention to repair the web server); accuracy (quantifies

the error rate in presence of faults); and availability (represents the time the system

is available to execute the workload). The faultload includes software faults,

hardware faults and network faults. The proposed benchmark was used to

benchmark two prominent web servers at the time of the study, Apache and Abyss,

running on top of four different versions of the Microsoft Windows operating

system. Results showed a clear advantage of Apache and demonstrated the

usefulness of dependability benchmarks for assessing and comparing web servers.

In (Marsden et al. 2002) it is proposed a benchmark for characterizing the

dependability of service middleware implementations. The work is based on the use

of corrupt method invocations over the network to assess middleware in terms of

dependability. The authors mention the key components to be used in a fault

injection campaign: a fault model (which defines the faults and conditions to apply

them); the workload (that reflects the operating profile of the system being assessed);

the oracle (for understanding the behavior); and the observations (which refer to

how to observe and classify failures). This kind of observation may apply to security

evaluation, with some adjustments, as discussed in the next section.

In the case of the work in (Marsden et al. 2002), a key component is the Injector,

which sends corrupted requests to the target once the workload has been running

for a certain time frame. The fault injector mutates the requests using a bit-flip fault

model or a double-zero fault model. Monitors observe the behavior of the CORBA

infrastructure, and offline data analyzers identify the various failure modes by

Background and Related Work

 53

examining the data collected by the monitoring components. The experiments

evaluated 5 different implementations of CORBA middleware. Results showed a

predominance of exceptions returned to the client; in particular, a wide range of

exceptions in the experiments targeting the CORBA Name Service in the various

implementations was detected.

A dependability benchmark for evaluating the robustness of popular SOAP-RPC

middleware is proposed in (Silva, Madeira, and Silva 2006). The work first tries to

understand if SOAP-based servers are prone to experience software aging. Then it

proposes a software rejuvenation technique based on service level agreements (one

simple SLA contract is used during the experiments). The main components of the

proposal are the Benchmark Management System and the System Under Test. The

former includes a module for the definition of the benchmark, procedures and rules,

a definition of the workload, and a module for collecting metrics that describe the

behavior of the system. The system under test includes an application server, the

middleware (e.g., SOAP-RPC middleware) and a web service. The work

benchmarked four different Java middleware implementations: raw TCP-IP sockets,

Java RMI, Java Servlets and XML, and SOAP-RPC (Tomcat and Apache Axis v1.3).

In addition to showing some performance overhead regarding the SOAP-RPC

middleware, in what concerns dependability, the version of Apache Axis tested

showed to be very susceptible to memory leaks, which is not desirable when the goal

is to deploy a highly available system.

2.4.3 Security Benchmarking

The first attempt at security benchmarking is more than a decade old (Vieira and

Madeira 2005). However, in this case, there is still open space for research mostly

due to the inherent difficulties of evaluating security. On one hand, there are

numerous techniques for detecting vulnerabilities (e.g., static analysis, penetration

testing), or for analyzing threats to the security of a system (e.g., STRIDE (J.D. Meier

et al. 2003, 3)), but on the other hand security is dependent not only on what we

know about a system and environment (e.g., presence of known vulnerabilities,

likelihood of attack), but also on what is unknown (unknown vulnerabilities, profile

of attackers, real effectiveness of protection mechanisms). The next paragraphs

discuss the few research efforts carried out in this domain.

One of the first contributions in this domain, was in the field of transactional systems

(Vieira and Madeira 2005). The work proposes an approach for characterizing

security mechanisms of database systems and database applications, which is

achieved by using set of security classes. The benchmark defines a set of tests that

are used to characterize the mechanisms, and from the results of these tests a class is

assigned to the system under test. An additional metric, that represents how well the

Chapter 2

 54

system complies with security requirements, is also part of the proposal, as a means

to distinguish systems that are classified as belonging to the same class.

In (Vieira and Madeira 2005) the authors mention their previous work in

dependability (Vieira and Madeira 2003), highlighting the fact that there are five key

components to define, when creating a security benchmark: a workload, an attackload,

a set of measures, procedures and rules and an experimental setup. The attackload is

derived from the definition of faultload (Vieira and Madeira 2003), and refers to a set

of attacks that should emulate real and representative security attacks that could be

carried out against the tested system. The measures should now meaningfully

describe the security of the system.

Security benchmarks have also been used to assess and compare different computer

architectures. In (Poe and Li 2006) the authors propose BASS, an open source

benchmark suite to evaluate the security of architectural security mechanisms, when

exposed to a set of malicious attack scenarios. The authors developed a set of

programs containing vulnerabilities and scripts for generating exploits against those

programs. The idea is to cover a wide range of different architectural attack

characteristics and provide a way for evaluating systems.

An approach for benchmarking availability is proposed in (Zhu, Mauro, and

Pramanick 2003). The authors propose a general “framework” for implementing

availability benchmarks applicable to a wide range of systems. Three attributes are

identified has having a significant impact on system availability: fault and

maintenance rate, robustness, and recovery. The approach allows quantifying the

previous attributes by defining the following metrics for each one, respectively:

outage resilience index, outage source index, and outage duration index. These

indexes are further decomposed in sub-level metrics. A relevant aspect of the work is

its link to security, as it allows creating benchmarks that are dedicated to measure

one of the three security attributes (availability). Although the framework does not

bring in a practical implementation, it is still is an interesting contribution and some

concepts may be reused in the definition of a security benchmark (e.g., the idea of

using composed metrics in the evaluation).

The field of security benchmarking also raises some controversy. In (Neto and Vieira

2011a) it is presented a study with a strong argumentation against applying

dependability benchmarking approaches in security. The authors argue that some of

the main challenges of dependability benchmarks include the difficulty of defining

quantifiable metrics to estimate the degree of security, and how to create a

representative attackload/faultload. Based on this argument, the authors actually

propose a new type of benchmark, named a trustworthiness benchmark. This

departs from the traditional model of dependability benchmarking, and estimates

the security of a system based on the amount of evidence available that the system is

secure.

Background and Related Work

 55

In (Neto and Vieira 2011b), and based on the work in (Neto and Vieira 2011a), a

two-step process is proposed to address the problem about how to benchmark

security in web applications. In the first step, named security qualification, the goal

is to eliminate competing web applications with security vulnerabilities. To find

these vulnerabilities the authors propose to use penetration testing and/or static code

analysis tools. In the second step, named trustworthiness benchmarking, a metric to

estimate the existence of hidden or hard to detect bugs is proposed, based on

evidences collected from the competing web applications under benchmarking. In

the case of the work in (Neto and Vieira 2011b), the approach is illustrated in a case

study, where the authors apply three static analyzers over a set of applications and

then make use of the output of the analyzers (i.e., vulnerability warnings) to

compute the trustworthiness metric for each application. The formula used is the

following:

Trustworthiness = (# Lines of Code / 100) / (F *0.93+Y *0.64+I *0.33)

In the above formula, the factors F, Y, and I are calibration factors (for three different

static analyzers), which have been proposed in previous work (N. Antunes and

Vieira 2010). F is the number of security warning reported by the Findbugs

(Findbugs 2012), Y is the number of warnings reported by the Yasca (Scovetta 2009)

and I is the number of warnings reported by Intellij Idea (JetBrains 2012).

In (Mendes, Duraes, and Madeira 2011) it is proposed a benchmark for assessing the

security of web serving systems. The proposed methodology allows evaluating the

security risk of software components and systems based on exploitability and impact

of known vulnerabilities. According to the authors, the security risk evaluation is

based on the knowledge of known vulnerabilities. Information about these

vulnerabilities is extracted from the Common Vulnerability Scoring System (CVSS)

(“Common Vulnerability Scoring System (CVSS-SIG)” 2013) – a public database with

information about known vulnerabilities. This methodology, however, is not capable

of dealing with estimating hidden or hard to detect bugs that belong to an unknown

vulnerability type.

A security benchmark for web servers is proposed in (Mendes, Madeira, and Duraes

2014) with the goal of covering two cases of vulnerabilities: known and unknown.

The approach is based on two parts: a static part, based on risk-assessment; and a

dynamic part, based on penetration testing. The static part is aimed at measuring

security risk posed by known vulnerabilities. The dynamic part is based on the

principles of dependability benchmarking (e.g., it includes the definition of a

workload, faultload/attackload, and metrics), and uses penetration testing for

analyzing the behavior of the system in the presence of security attacks. In a sense,

this approach is similar to trustworthiness benchmarking, as it estimates the security

of a system based on evidences.

In (Nuno Antunes and Vieira 2015) it is proposed a benchmark whose focus is not

directly on the security of systems, but is instead on the evaluation of tools for

Chapter 2

 56

detecting vulnerabilities in systems, e.g., penetration testers, static code analyzers,

and anomaly detectors. The approach assumes a clear definition of the

benchmarking domain and defines the elements needed to define specific

benchmarks. Three typical elements of a dependability benchmark are present: a

workload, a procedure, and a set of metrics to characterize the effectiveness of the

tools (F-Measure, Precision, Recall). Results indicate that the benchmarks accurately

portray the effectiveness of vulnerability detection tools. Moreover, the successful

application of this benchmark in a domain relatively close to the one in this thesis,

suggests that at least part of the concepts may find application in security

benchmarking of web service frameworks.

2.5 Conclusion

This chapter discussed the state of the art on web services and frameworks security,

with particular emphasis on security testing tools and techniques, and security

evaluation and benchmarking. The analysis in this chapter made the limitations of

the current state of the art very clear at several different levels, which we now

highlight.

The limitations regarding security testing tools for web service frameworks are very

obvious. Only a few tools allow testing frameworks using Denial of Service attacks,

but even so the limitations are quite strong. The few tools that support this kind of

tests allow executing just a few types of attacks and do not offer much configuration

possibilities (e.g., executing attacks for predefined periods of time, or easily

alternating between periods of attack and periods of regular requests). Most of the

tools also lack support for typical needs of assessment approaches, such as logging

test data in and format that is easy to process, deployment of test tools in machines

and allowing remote control (e.g., for initiating tests at particular moments, or

stopping them).

Many security assessment approaches follow the same trend and focus on detecting

application-level vulnerabilities, disregarding the importance of the security of the

underlying platforms. This leads to a relatively small set of research carried out

specifically on web service frameworks. Thus, we found in many cases reduced or

exploratory work using either a particular type of attack or a relatively small set of

attacks and targeting specific aspects of frameworks. There is a need, not only

understanding the capacity of current web service frameworks to resist DoS attacks,

but also for broader approaches that analyze more than the usual response time and

throughput metrics. Also, security assessment approaches in the literature rarely

open the ground for enabling quantitative comparison between different systems,

which makes the process of understanding the assessment results more complex.

In what concerns performance assessment, there is a large amount of research or

initiatives that either assess systems in terms of performance, or specify benchmarks

Background and Related Work

 57

for assessing systems in terms of performance. However, combining this

performance assessment with security attacks is something quite rare in the

literature. The point is that systems deploying web services serve multiple clients,

some of those clients are legitimate and expect a given quality of service, while

others are malicious. Understanding performance from the point of view of the

legitimate clients, while the system is being attacked, is generally disregarded in the

literature (although it represents an important quality property of a framework).

In what concerns benchmarking security, the scenario is even worse. Although

benchmarking is a very well-known concept, applications are found essentially in

the performance and dependability domains. Security is a much more complex

concept that involves greater challenges. The problem that the literature frequently

mentions is the security of a given system is much dependent on unknown aspects

regarding the system (e.g., unknown vulnerabilities). In this context, we can find a

few initial efforts in the literature, but, to the best of our knowledge, none that is

specific of frameworks or allows not only assessing but also comparing the security

of web service frameworks.

This thesis focuses on the abovementioned issues and brings in contributions in each

of these key topics.

 58

 59

Chapter 3
Security Testing Tool for

Web Service Frameworks

In this chapter, we present WSFAggressor, a security testing tool for Web service

frameworks. The tool was built based on WS-Attacker (“WS-Attacker” 2012), with

the main purpose of overcoming the main limitations found in similar tools (e.g.,

small number of implemented attacks or little configuration possibilities) and of

adding special support for security assessment, such as allowing remote control of

tests, logging relevant test data (e.g., the identification of requests, response content,

or response time), and allowing writing testing campaign results in an format

adequate for later analysis).

Despite the evident need for security in the platforms that support web services,

existing security testing tools hold, as discussed in Chapter 2, many limitations.

Static code analysis tools typically show high false positive rates and are inadequate

to assess if a web service framework can efficiently process a given SOAP payload,

as this is something that can only be fully understood at runtime (Curbera et al.

2002). On the other hand, the security testing tools that execute tests at run time

mostly focus on application level vulnerabilities. The few that allow testing the

middleware, at the time of writing, implement a very limited set of attack types. If

we restrict the tools to those that focus on Denial of Service, which is extremely

important in business-critical environments based on web services, then the options

are even scarcer. WSFAggressor supports a wide range of attacks, which have been

collected from the literature and similar tools (Jensen, Gruschka, and Herkenhöner

2009; Intel 2006; Orrin 2007; Smartbear 2012), with the ultimate goal of having a tool

that can support various security assessment approaches (e.g., the ones discussed in

this thesis) that require the execution of security tests at runtime.

This chapter is organized as follows. Section 3.1 introduces the WSFAggressor

application. Section 3.2 details the architecture of the tool, with emphasis on the

Chapter 3

 60

facets that are different from WS-Attacker. Section 3.3 describes the security attacks

supported, including implementation details, and Section 3.4 positions

WSFAggressor against other existing security testing tools. Finally, Section 3.5

concludes the chapter.

3.1 The WSFAggressor Tool

WSFAggressor, available at (Oliveira, Laranjeiro, and Vieira 2012a), was built based

on WS-Attacker (“WS-Attacker” 2012), as this tool already provides an interface for

security testing of WS frameworks (thus, the user interface is the same as the one

found in WS-Attacker). Although the features of WSFAggressor do not focus on the

user interface, we present two screenshots to provide an easier-to-follow explanation

of its capabilities (Figure 3.1 and Figure 3.2).

As shown in Figure 3.1, the user interface is organized in a set of tabs that group and

separate the main operations. After the application is launched, the ‘WSDL Loader’

tab is selected by default, providing options for retrieving information regarding the

target web service (i.e., its WSDL). The user needs to enter the URL location of the

WSDL file and the application retrieves the interfaces and operations available from

the web service. The user can then select the operation that will be used as entry

point for the security test and visualize the required operation input parameters. It is

important to mention that, in the case of WSFAggressor, and although the entry

point is always an application-level operation, the tests will focus on the processing

carried out by the supporting web service framework (e.g., deserializing an array

from SOAP to an object), and not by any particular operation logic at the

application-level.

Figure 3.1 presents the main test configuration screen, the ‘Plugin Config tab’. The

application is built on top of a plugin system, where each plugin (visible in Figure

3.1) represents one type of attack. An attack can include one or more malicious

requests that are sequentially executed at runtime. The exception to this is the

’Automated Request’ plugin, which allows sending regular (i.e., non-malicious)

SOAP messages to a given service. We built all the attack plugins shown due to the

fact that WS-Attacker (“WS-Attacker” 2012), at the time of analysis, did not

implement any DoS attack. Also, the ‘Automated Request’ plugin was added to

allow understanding the service behavior in presence of regular requests (which can

later be used as baseline information).

Security Testing Tool for Web Service Frameworks

 61

Figure 3.1. Plugin selection and configuration

WSFAggressor allows individual or batch selection of plugins, exactly in the same

manner as WS-Attacker. Each selected plugin presents information regarding the

author, version, and specific attack implemented. One of the new features of

WSFAggressor, that fits our assessment approaches discussed later in this thesis, is

the presence of test control options that allow fine-tuning the security tests to better

fit the needs of the user. These configurable options include the time interval

between requests, the number of requests to be sent during the execution of a test,

and the maximum duration of each executed attack. These options are transversal to

all plugins, although some of plugins of WSFAggressor also allow the configuration

of options that are specific to a given attack.

After selecting the attacks that the tool will perform during the execution of a

security test, the user can select the ‘Attack Overview’ tab, as shown in Figure 3.2, to

review their execution order before starting the test. The user can start a security test

in this tab. The test ends when all plugins complete their execution, when the test

exceeds the maximum time or maximum request count specified by the user in the

test configuration options, or when the user explicitly aborts it.

Chapter 3

 62

Figure 3.2 - Attack overview and execution.

3.2 WSFAggressor Architecture

From a conceptual point-of-view, the WSFAggressor architecture is composed of

three layers, which we have named Core Layer, Plugins Layer, and SOAP Engine Layer.

Each layer consists of a set of components with well-defined functions (described in

the following paragraphs). Figure 3.3 represents a view of this layered organization.

The Core Layer represents the core functionality that WSFAggressor inherits from

WS-Attacker and is based on a Model-View-Controller (MVC) software architectural

pattern (Gamma et al. 1994). The Controller (represented by the GUIController

component in Figure 3.3) interacts with two components on behalf of the client: a

Model (TestSuite in Figure 3.3), which is the component responsible for storing and

separating relevant application data; and a View (GUIView), which renders the

model in the graphical interface. The Model (TestSuite) stores web service

information from the WSDL file (operation, request and interface). The

GUIController also calls an additional module responsible for managing and loading

the default plugin structure, referred to as PluginManager, which invokes all plugins

that implement the AbstractPlugin component. The GUIController invokes the

TestSuite, retrieves the web service stored data, and delivers it to the implemented

plugins.

The Plugins Layer extends WS-Attacker with a set of plugins that represent the core

functionality of WSFAggressor. These plugins are represented by the AttackPlugins

module in Figure 3.3, and correspond to the implementation of the attacks

supported by WSFAggressor. In short, two mechanisms are used. WSFAggressor

can use automatic generation of attack signatures (configured by the user) or explicit

load of external signatures at runtime. The attacks that have low computation

requirements use dynamic generation of attack signatures based on the user

configuration (specified in the graphical interface). There are, however, attacks that

are static, as their generation on demand would require a large amount of

computation and memory. These attacks are stored externally in signature files

(represented as WSFAggressor signatures in Figure 3.3) and loaded at runtime. In

Security Testing Tool for Web Service Frameworks

 63

practice, all signatures supplied with the application are stored in text files and can

be reused or extended to create other plugins.

The PluginWrapper is the other component included in the Plugins Layer. Its goal is

to enable the execution of frontend plugins – components with minimal internal

logic that can be used to execute attacks already developed by third party

developers. For instance, the XMLBomb attack is a frontend plugin to the attack with

the same name already implemented by the SOAP Engine Layer.

Figure 3.3 - Internal architecture of WSFAggressor

Tthe SOAP Engine Layer uses the soapUI application engine via its API. The SoapUI

libraries are invoked on behalf of WSFAggressor to send and receive SOAP

messages to a web service provider. In short, TestSuite invokes soapUI to retrieve

and store the web service interface, AttackPlugins invoke soapUI to send the

malicious requests (and to receive the responses) to the web service provider, and

the PluginWrapper interacts with SoapUI to enable the execution of soapUI’s

Chapter 3

 64

internal security attacks. Since SoapUI only supports security attacks since version

4.0, we updated the soapUI engine (version 4.0.1) in WSFAggressor, which required

a few code adaptations to the WS-Attacker tool that originally used SoapUI 2.5.

The SOAP Engine Layer includes (in addition to internal soapUI components) the

RequestListener component (built specifically for WSFAggressor). This module

implements the RequestFilter interface from the soapUI API and acts as a listener to

all outgoing SOAP requests. When WSFAggressor executes an attack, the request

containing the malicious content is passed to the lower layers until it reaches the

soapUI libraries. However, the structure of some attacks is not as expected by

soapUI, which generates internal errors (aborting the dispatch of the request). For

these cases, the application includes a unique token in the request (corresponding to

the attack). RequestListener is called immediately before the request is sent to the

service provider (at the HTTP transport layer), which places the corresponding

WSFAggressor attack signatures (replacing the token) in the HTTP SOAP payload.

To create a new attack, a developer simply needs to create a class that extends the

AbstractPlugin and place it in the wsfagressor.plugin package. The methods to

implement are straightforward and code examples can be found in the

implementation of the attacks available in (Oliveira, Laranjeiro, and Vieira 2012a) .

The main task to perform is to implement the

attackImplementationHook(RequestResponsePair) method, which allows the developer

to extract a regular (non-malicious) request object from the method argument and

manipulate it as desired, with the help of other easy-to-use methods.

3.3 Attacks Implemented by WSFAggressor

WSFAggressor implements a set of 9 attacks with multiple configuration

possibilities. To identify and select the attacks to test the WS frameworks, we carried

out a study focusing not only on the research performed in the web services security

area (Intel 2006; Jensen, Gruschka, and Herkenhöner 2009; Suriadi, Clark, and

Schmidt 2010), but also on software applications that can be used for testing and

attacking web services (Falkenberg et al. 2013; Smartbear 2012; WSFuzzer 2012). The

selected attacks are summarized in Table 3.I and detailed in the following

paragraphs.

Security Testing Tool for Web Service Frameworks

 65

Table 3.I – Attacks implemented by WSFAggressor.

Attack Description Example

Coercive

Parsing

SOAP body is set with a large

quantity of nested open XML tags

named after the operation arguments

names

100000 nested open XML tags

named with the target operation

argument name

Malformed

XML

A combination of XML malformations

in each malicious request (e.g., tags

not closed, invalid characters)

Two interlaced tags; one tag open

but not closed; one attribute open

but not closed; invalid characters

Malicious

Attachment

A large quantity of binary data is sent

with the request

A 100MB gziped binary file

(randomly generated)

Oversized

XML

The malicious request includes 3 types

of oversized XML components: i)

large XML tag names; ii) large values

enclosed in regular tags; and iii) large

attribute names

Alternate invocations of the

following request configurations: i)

XML tag oversized until a total size

of 1.9Mb is reached; ii) XML tag

filled with one regular attribute

repeated until a total size of 1.9Mb is

reached; and iii) XML tag with a

large attribute name (until 1.9Mb)

Soap Array
A large number of regular XML

elements (e.g., a million elements)

1000000 regular XML elements with

a 6-byte String as value

Repetitive

Entity

Expansion

Compact recursive definition of DTD

entities, which the XML parser

expands into a set of large entities

The expansion of 100 references to a

3-byte entity, with each reference

defined in terms of the previous one,

expanding to (2101-1) * 3 bytes, i.e.,

requiring 7e+21 Gb in memory

XML Bomb

Combination of 3 types of requests

that include: i) definition of a large

external DTD entity (e.g., 100Mb) that

is loaded by the framework; ii) a large

entity (hundreds of Kb) is defined and

referenced thousands of times in

sequence in the request; and iii) a

compact recursive definition of DTD

entities, which the XML parser

expands into a large set of entities

A combination of malicious requests

sent alternately that include: i) a 92.2

Mb external entity; ii) 30000

references to a 100Kb entity; and iii)

a billion references to 3-byte entities

defined recursively in less than 1Kb

but expanding to nearly 3Gb in

memory

XML

Document

Size

A valid large SOAP header or body

(Mb size)

Requests including (sent alternately

to the server): i) a valid 1.9 Mb

SOAP header; and ii) a valid 1.9Mb

SOAP body

XML

External

Entities

Requests that reference well-known

system files

A request referencing:

/etc/password; /etc/shadow;

C:\boot.ini;

C:\windows\System32\MRT.exe;

and /dev/random

Chapter 3

 66

The Coercive Parsing attack targets a specific component of the web service

frameworks, the XML parser. For this attack to be performed successfully, a

malicious user creates a SOAP message with a significant number of elements

opened in the SOAP Body (although it might be performed in other areas of the

SOAP request). The main goal is to trigger a recursive parsing of the request

message when being processed by the web service framework, potentially leading to

high consumption of system resources and possibly resulting in service

unavailability (Jensen, Gruschka, and Herkenhöner 2009). In our implementation of

the Coercive Parsing attack, the SOAP body of each request includes a large quantity

of deeply nested XML tags named after the operation arguments names. The default

nesting depth is 100.000 levels, but the user can set this value according to its

preferences.

The Malformed XML attack consists of a set of XML malformations that are

included in each malicious request (e.g., tags open but not closed, invalid

characters). In the case of service frameworks, the XML parser has the responsibility

to reject syntactically invalid documents (e.g., when a request does not comply with

the XML format rules). For this, a parser needs to go through the entire XML

document to understand if the XML is well-formed. A malicious attacker can explore

the XML nature of SOAP messages and create a malformed SOAP request that is

then CPU and memory intensive to process (OWASP 2013b). A repetitive execution

of this attack can, when vulnerabilities are present, lead to a DoS. This attack, which

is implemented by SoapUI, offers no specific configuration to the user.

The Malicious Attachment attack targets the ability of the frameworks to process

attachments in SOAP messages. There are two options to attach a file to a web

service request: embed it in the SOAP request message or package it separately

using MIME. Conventional XML parsers cannot parse efficiently documents that

have a deep or complex structure, or those that are simply huge in size (Oracle 2005).

If the web service framework allows a binary file to be embedded in the SOAP

request and is not able to handle it efficiently (e.g., the technique used to process the

MIME message stores the full content of the file in memory for manipulation), then it

is possible to exhaust the memory resources of the server quite easily. A malicious

user can then create an attack by repeatedly sending requests holding a large

embedded file. The implementation of the Malicious Attachment attack in our tool is

thus based on sending a large quantity of binary data within a SOAP request. By

default, WSFAggressor includes a binary zipped file attachment (a total of 100MB),

but the user can specify other files with dimensions that are more adequate to his

testing goals.

The Oversized XML attack is based on exploiting the length of XML tags, targeting

again potential vulnerabilities in the XML Parser used by the framework. This attack

is allowed because the XML Standard does not limit the size of the names of

elements, attributes and namespaces. Therefore, a malicious user can explore the

length of these items (Intel 2006) and send a request involving any combination of

Security Testing Tool for Web Service Frameworks

 67

oversized items. The implementation of the Oversized XML attack in our tool is based

on the inclusion of very large XML elements that are sent in a malicious SOAP

request. This malicious request can include 3 types of oversized XML elements: i)

large XML tag names; ii) large values enclosed in regular tags; and iii) large attribute

names. The implementation of this attack is currently based on three signature files

that store each of the three variants, occupying approximately 1.9MB each. The

malicious content can be configured by simply changing these attack signature files.

The XML Document Size attack, also known as Oversize Payload, is very similar to

the Oversized XML. Both attacks try to target the XML Parser of the web service

framework, using brute force techniques. However, while in Oversized XML the

attacker uses very large names, in the XML Document Size attack a very large SOAP

message is sent to the attacked web service (Orrin 2007; Jensen, Gruschka, and

Herkenhöner 2009). This request is normally composed of a large number of XML

tags with the goal of exhausting the memory resources of a vulnerable XML parser,

while trying to parse these malicious requests. One interesting aspect is that such

message is still a valid one, as the SOAP specification does not limit the request size.

In the case of our tool, the implementation of the XML Document Size attack is based

on a large content that is sent in the SOAP message header or body. The signature of

this attack is stored in a local file with an approximate size of 1.9 MB. The user can

easily change this size with a simple text-editing tool.

The SOAP Array attack tries to take advantage of the fact that the SOAP

specification does not impose limits on the number of elements in SOAP arrays. This

scenario enables a malicious user to define an array with a huge amount of elements

and use it in a SOAP request (Jensen, Gruschka, and Herkenhöner 2009)(Orrin 2007).

Once the malicious request is received at the server side, the XML parser starts

parsing the elements that are inside the array. If the web service framework tries to

reserve memory space for the complete set of elements present in the array, it may

be left without further resources for regular operation (Jensen, Gruschka, and

Herkenhöner 2009). The following example, in Figure 3.4, illustrates a typical request

that explores the abovementioned XML Parser weaknesses. In our implementation

of the Soap Array attack, we initialize an array with 1.000.000 string elements and

place it in a SOAP message. Again, the user can define the size of the array.

Chapter 3

 68

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:myw="http://MyWebService.dei.uc.pt">

 <soapenv:Header/>

 <soapenv:Body>

 <myw:getArray>

 <myw:param>attack</myw:param>

 <myw:param>attack</myw:param>

 <myw:param>attack</myw:param>

 <myw:param>attack</myw:param>

 <!-- repeat the previous line N times -->

 </myw:getArray>

 </soapenv:Body>

</soapenv:Envelope>

Figure 3.4 – SOAP Array attack example.

The Repetitive Entity Expansion attack can be found in several variants in the

literature (e.g., XML Entity Expansion attack) (Sullivan 2009; Orrin 2007). This attack

is based on the definition of entities, which are variables that represent constant

strings or special characters (and can be declared internally or externally to the XML

document). When a parser finds an entity in an XML document, it replaces the

reference to the entity with the respective value. This attack recursively defines

internal Document Type Definition (DTD) entities (which are essentially text

shorthands), which the XML parser will expand into a set of large entities at runtime.

For instance, the expansion of 100 references to a 3-byte entity, with each reference

defined in terms of the previous one, can result in a total of (2101-1) * 3 bytes, i.e.,

occupying 7e+21 GB in memory. In our implementation, the attack is stored in a

signature file and the user can change the amount of references (or size of the

defined entity).

In the case of the XML External Entities attack, the entity is defined in an external

document and a reference to the external document is given (Sullivan 2009; Orrin

2007). The goal is to cause a DoS by making the XML parser to retrieve a very large

amount of external data during the parsing process. The example in Figure 3.5,

shows a malicious request that targets a Linux based system, where the /dev/random

file is referenced. If the attack is successful, then the XML parser of the framework

will try to process the huge amount of random data produced by this special file,

which can lead to an excessive consumption of system resources. The

implementation of the XML External Entities attack in WSFAggressor consists of a set

of requests that reference well-known system files and, in our case, targets the

allocation of server resources. The user can add more files to this attack by changing

the respective attack signature file in the customSecurityScans/attacks folder of the

application.

Security Testing Tool for Web Service Frameworks

 69

<?xml version="1.0"?>

<!DOCTYPE order [

<!ELEMENT foo ANY >

<!ENTITY xxe SYSTEM "file:///dev/random" >

]>

<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 <soap:Body xmlns:m="http://www.example.org/order">

 <foo>&xxe;</foo>

 </soap:Body>

</soap:Envelope>

Figure 3.5 – XML External Entities attack example.

The XML Bomb attack is currently non-configurable (it was extracted from SoapUI

(Smartbear 2012)) and is based on a combination of 3 types of requests that include:

i) the definition of a large external DTD entity (e.g., 100MB) that is loaded by the

framework; ii) the definition of a large entity (hundreds of KB) that is referenced

thousands of times in sequence in the request; and iii) a compact recursive definition

of DTD entities, which the XML parser expands to a large set of entities.

3.4 Comparing WSFAggressor with other Tools

To better understand the relevance of WSFAggressor, it is important to compare it

against other free tools that also allow executing DoS attacks against web service

frameworks. These tools are SoapUI (Smartbear 2012), WSFuzzer (WSFuzzer 2012),

and WS-Attacker (“WS-Attacker” 2012). The Acunetix vulnerability scanner

(Acunetix 2014), discussed in Chapter 2, currently supports a single type of DoS

attack, but is excluded from the analysis for being a commercial tool, which would

limit the analysis (as we do not have free unlimited access to its features). Also,

supporting just one type of attack makes it relatively irrelevant in our context.

Security tools focusing on application-level vulnerabilities (e.g., SQL Injection, XSS)

are also out of the scope of this comparison, as they target a different objective.

We use two main criteria with the goal of positioning WSFAggressor with regard to

the other tools. The first criterion directly refers to the main functionality of the tool,

i.e., the types of attacks that are supported; the second refers to relevant properties

that should be considered when selecting a black-box security testing tool (Michael

and Radosevich 2012). These properties are: i) customization - characterizes a tool in

terms of its configuration possibilities, in particular: how the tool handles the

selection of the available attacks, how they can be combined, and how they can be

configured (e.g., to execute for a given amount of time, until a certain amount of

invocations, etc.); ii) ease of use - the tool should be intuitive and easy to use, even

for users with scarce experience in security testing (tasks should be accomplished

quickly, assuming basic user competences); iii) extensibility - the tool should allow

native add-ins or extensions that connect to third party applications, and such

Chapter 3

 70

extensions must be easy to maintain even when the application is updated; and iv)

vendor support - the tool provider releases upgrades on a regular basis, providing

software patches for bug correction or frequent updates for feature extension.

We defined a numeric scale to describe how well the tools fulfill the above

properties, based on a ranking system from 1 to 3 (a higher value is better). We chose

this scale granularity as it is large (and therefore easy to apply) but still good enough

to distinguish the tools. Table 3.I summarizes the comparative analysis targeting

soapUI, WSFAggressor, and WSFuzzer. As we can see, WSFAggressor supports

more attacks than the union of the remaining tools and generally scores higher in the

tool selection properties. Note that, we opted not to rank the Vendor Support

property for WSFAggressor since this is the first release, although we plan to

continue actively developing it (Oliveira, Laranjeiro, and Vieira 2016).

It is worth emphasizing that, at the time of implementation of WSFAggressor, WS-

Attacker did not implement any of our DoS attacks, and it was more recently that a

few XML-based DoS attacks were added to WS-Attacker (Falkenberg et al. 2013).

Also, there are a few additional features implemented in WSFAggressor (i.e., not

present in WS-Attacker), which are quite useful for large experiments. These include:

i) the storage of test data (e.g., request identification, response content, response

time) in CSV files; ii) the support for external control, so that it is possible to

automate experiments allowing WSFAggressor to be invoked using a console

command with configuration options that specify which plugins (i.e., attacks)

should be executed (i.e., skipping the need to interact with the GUI); and iii) the

possibility to remotely control the operation of WSFAggressor by allowing the

reception of messages sent to a specific port (these messages support starting,

pausing and stopping the execution of a particular plugin).

Table 3.II – Comparison of security testing tools for web service frameworks.

Criteria
Tools

soapUI WSFuzzer WS-Attacker WSFAggressor

S
u

p
p

o
rt

ed
 A

tt
ac

k
s

Coercive Parsing X X X

Malformed XML X X

Malicious Attachment X X

Oversized XML X X X

Soap Array X X

XML Bomb X X

XML Document Size X X

Repet. Ent. Expansion X

Xml External Entities X X X

P
ro

p
er

ti
es

Customization 3 1 2 3

Ease of Use 2 1 3 3

Extensibility 2 2 3 3

Vendor Support 3 1 - -

Security Testing Tool for Web Service Frameworks

 71

Due to the abovementioned reasons, WSFAggressor receives the highest score for

the customization property, only matched by SoapUI, which also provides developers

with much flexibility (e.g., by allowing the easy integration of Groovy scripts for

automating or customizing tests). WSFuzzer does not allow basic customization

options (e.g., configuring the duration of attacks), and therefore is set on the

opposite end. Regarding the ease of use, we mark both WSFAggressor and WS-

Attacker with the highest scores, as it is possible to use both tools in a security

assessment context just by performing a few clicks on the user interface. Doing the

same operations in SoapUI, may involve writing scripts and this is aggravated in

WSFuzzer, which is a command-line tool. The extensibility property is a perfect fit for

the possibility of extending the tool by using plugins. These, at the time of writing,

are not available in WSFuzzer and SoapUI. Finally, there is the vendor support, in

which SoapUI is best positioned, mostly due to the support available online and

active development, which is not the case for WSFuzzer.

With exception of vendor support, WSFAggressor is highly ranked in all attributes.

This happens, mostly due to the specificity of the context being used for comparison.

Obviously, a tool like SoapUI will rank better if we consider other types of tests or

properties (e.g., load tests, ability to test different interfaces).

3.5 Conclusion

This chapter presented a tool for web service frameworks security testing, which is

freely available at (Oliveira, Laranjeiro, and Vieira 2016) and requires little

configuration effort and expertise knowledge to be used. We started with a general

description of the features of WSFAggressor, including the necessary steps to

execute it, and of its architecture. Afterwards, we presented the list of attacks

supported by WSFAggressor and their implementation details. The chapter

concluded by positioning WSFAggressor among its main competitors, emphasizing

the main differences.

The tool presented in this chapter fills a very visible gap found in current security

tools, in particular the limited support for testing with DoS attacks. To the best of

our knowledge, the set of DoS attacks implemented by WSFAggressor is the largest

found in security testing tools for web services. This is something vital when the goal

is to detect the presence of vulnerabilities in systems, as the diversity of the attacks

potentially exercise different parts of the code, increasing the likelihood of finding

vulnerabilities. Another relevant aspect is that the features added to WSFAggressor,

discussed in the previous section (e.g., remote control, external script support), are

especially adequate for experimental security assessment, and provide great support

for the assessment approaches presented in the following chapters.

As a summary, the tool can be quite useful for providers to assess the security of

their service platforms, but also for developers to disclose potentially severe issues

Chapter 3

 72

before deployment. But most of all, WSFAggressor is one of the main technical

means that support the approaches described in the rest of this thesis, which further

emphasizes its usefulness in research contexts.

 73

Chapter 4
Assessing the Security of Web

Service Frameworks

In this chapter, we propose an experimental approach that allows studying how well

a given web service framework is prepared to handle DoS attacks. The approach

builds on top of the tool presented in the previous chapter, especially on the variety

of implemented attacks and customization options.

The problem addressed in this chapter essentially refers to the limitations found in

the literature regarding assessing the capabilities of web service frameworks in

presence of DoS attacks. Most of the research in this context is merely exploratory or

focused on either a particular type of attack or on a small set of attacks (Jensen,

Gruschka, and Herkenhöner 2009), (Suriadi, Clark, and Schmidt 2010). To the best of

our knowledge, none actually tries to understand how frameworks deal with a large

number of different of attacks. Associated with this, the definition of metrics that can

be used to describe the behavior of a framework when handling DoS attacks are

generally overlooked and reduced to generic parameters, such as throughput or

response time. Thus, the few existing tools for security testing of web service

frameworks become rather useless for both practitioners (e.g., to assess the security

of their platforms) and researchers (e.g., to study frameworks in terms of different

security properties).

Our proposal is based on the execution of DoS attacks in combination with regular

requests in a set of runtime tests. This is carried out during three distinct phases, in

which we collect metrics about the service behavior before attacks, during attacks,

and after attacks. The failures observed are classified using an adaptation of the

CRASH scale (Koopman et al. 1997) and dubious behaviors (that indicate abnormal

allocation of system resources) are also analyzed, as they may provide rich

information for developers to correct or optimize their framework code.

We illustrate the application of the approach proposed in this chapter to well-known

and widely used frameworks, namely: Apache Axis 1, Apache Axis 2, Apache CXF,

Oracle Metro, Spring JAX-WS, Spring-WS and XINS. The results show that most of

the frameworks are quite resistant to the large set of security attacks executed by our

tool, but the problems detected (e.g., high CPU/memory usage and unexpected

Chapter 4

 74

exceptions) also indicate the potential presence of security vulnerabilities in the

frameworks, requiring attention from developers.

The chapter is organized as follows. Section 4.1 describes the approach used to test

the security of web service frameworks. Section 4.2 presents the experimental

scenarios designed to demonstrate the proposed approach and Section 4.3 presents

the results obtained for each of the tested frameworks. Section 4.4 discusses the

quantitative impact of the attacks and compares the behavior of different versions of

the same framework. Finally, Section 4.5 concludes the chapter.

4.1 A Multi-Stage Security Testing Approach

Our approach to evaluate the behavior of web service frameworks when facing DoS

attacks is based on multiple stages. In practice, as an approach based only on

attacking a web service with malicious requests does not provide a view of the

service behavior that is accurate enough (with exception of very clear cases, where

for instance the service platform crashes), we created a compound procedure that

includes a set of distinct stages that allow understanding the regular behavior of the

service (i.e., in presence of normal requests), the behavior of the service in the

presence of attacks, and the effects of an attack on the regular service behavior (by

comparing the behavior observed after the attack with the observations before the

attack). In the next subsections, we explain the different stages of the approach

(Section 4.1.1) and the behavior analysis procedure (Section 4.1.2).

4.1.1 Approach Stages

Figure 4.1 presents an overview of the approach, showing the sequence of stages

(which we designate as Pre-attack, Attack, and Post-attack) and the periods (Warm-

up, Normal, Attack, Regular, and Keep) within each stage. Figure 4.1 also shows

important relations between pairs of periods (for instance, {N,A} to represent the

relation between the Normal and Attack periods).

Assessing the Security of Web Service Frameworks

 75

Figure 4.1 – Approach overview.

The stages are defined as follows:

1) Pre-attack stage: includes two periods, a Warm-up period, where no requests

are sent to the service, and a Normal invocation period, where valid requests

(non-malicious) are sent to the web service. The goal of this stage is to

understand the behavior of the service framework when idle and when

handling normal requests.

2) Attack stage: is composed of a single period (Attack), where malicious

requests (of a given attack type) are submitted. This stage is carried out with

the purpose of understanding how the service framework behaves when

facing security attacks.

3) Post-attack stage: includes two periods, a Regular invocation period, where

non-malicious valid requests are sent to the server, and a Keep period, in

which no requests are sent to the provider. The goal is to study if the attack

stage has any effect on the regular service framework operation.

The execution of these three stages is configurable, namely regarding the number of

requests sent (regular or malicious requests), the time interval used between

requests, and the duration of each stage. During the execution of each stage, several

parameters representing the state of operation of the server are monitored, such as

used memory, CPU usage, and number of allocated threads, among others (Gang

Wang et al. 2006; Suriadi, Clark, and Schmidt 2010). Thus, for each period, we collect

data to analyze later the framework behavior, either targeting each period

individually or a combination of periods. The goal is to identify failures and dubious

behaviors (e.g., high memory usage). This procedure is overviewed in Section 4.1.2.

The pre-attack stage includes two distinct periods: warm-up and normal. The warm-

up period leads the service platform (i.e., the application server) to start up and

allows collecting data regarding the idle behavior of the server (e.g., amount of used

memory, number of allocated threads, CPU usage). Comparing this information

with the Keep period of the Post-attack stage (relation {W, K}), helps understanding if

a particular attack type affects the server behavior, even when there are no requests

to handle. The normal invocation period serves the purpose of providing data

Chapter 4

 76

regarding the simple operation of the service platform (i.e., when handling non-

parallel requests). During this stage, valid requests are sent to the server and runtime

data are collected. These data allow later checking if a given attack impacts the

service or not (relation {N, A}), or if its effects are visible even after the server has

handled the attack (relation {N, R}).

During the attack stage, a set of malicious requests implementing a given attack type

is delivered to the service framework. The goal is to understand, not only what is the

direct impact of attacks on a framework, but also the behavior of the framework in

the presence of attacks and then compare that behavior with the one previously

observed when handling normal requests (i.e., non-malicious). This is represented in

Figure 4.1 by the relation {N, A} that links the Normal and the Attack periods. The

attacks used in this stage are the ones implemented by WSFAggressor, as described

in Chapter 3.

During the post-attack stage, we observe the behavior of the service framework after

being attacked. In some cases, the previous Attack stage is enough to cause a clear

failure of the server; for instance, turning it unresponsive. This means that the Post-

Attack stage cannot be performed, since the server is unavailable to process requests.

However, in other cases it is possible that an attack stage affects the server in a

different way by, for instance, decreasing the amount of available memory. In these

situations, the Post-Attack stage becomes crucial.

The Post-attack stage consists of a Regular invocation period and a Keep period. The

former is useful to observe if the attack stage indeed had any effects on the service

platform, namely if it is still capable of handling valid requests in a normal way (this

is represented by the relation {N,R} in Figure 4.1). To verify this, we analyze the data

collected during the Regular period and compare them with the data collected

previously in the Normal period of the Pre-Attack stage, as discussed in the next

Section. Ideally, there should be no observable difference between these periods. The

Keep period is used to detect if the service platform shows any dubious behavior

when not handling requests anymore. It is also useful to compare the behavior of

this period with the one observed for the Warm-up period (this is represented by the

relation {W,K} in Figure 4.1), which allows understanding if, even after the attack

stage finished and the execution of normal requests stopped, the framework shows

signs of being affected by the attacks (e.g., by not being able to release previously

allocated memory).

4.1.2 Analyzing Framework Behavior

As mentioned before, the goal is to identify (and classify) failures or dubious

behaviors (deviations from expected behaviors). As software systems may fail in

distinct ways, it is useful to identify and classify failures, as a first step towards

enabling the comparison of distinct systems (Koopman et al. 1997). In this chapter

Assessing the Security of Web Service Frameworks

 77

we adopt the CRASH severity scale, which has been originally applied with success

in the operating systems domain (Koopman et al. 1997), and more recently in the

web services domain (Vieira, Laranjeiro, and Madeira 2007b). The scale is

summarized in the following points:

 Catastrophic: the service is not available to provide correct service and it

becomes corrupted, or the server or operating system crashes or reboots.

 Restart: the service becomes unresponsive (i.e., it does not respond to

requests) and must be terminated by force.

 Abort: an abnormal termination is detected when executing a service

operation. This refers to the cases where the service shows an unexpected

exceptional behavior (e.g., an out of memory exception or message is

triggered by the framework).

 Silent: no error is indicated by the service framework on an operation that

cannot be concluded or is concluded in an abnormal way. For example, this

corresponds to a web service client not receiving a response.

 Hindering: the returned error code is incorrect. In this last case, a given

service framework would reply with an error message that does not

correspond to the expected error condition.

In some cases, we may not be able to clearly identify failures. For example, when

testing a framework, we may observe some fluctuation of the system parameters

(high memory or CPU usage), yet the service provider continues to operate (i.e., it

does not fail). In our approach, such dubious behaviors are the subject of further

analysis, where the goal is to understand, in a quantitative manner, how different is

the observed behavior from the normal one (e.g., the memory usage might duplicate

while processing regular requests as a consequence of a previous attack, but still the

service provider continues to operate).

To analyze dubious behaviors, we profile the use of a particular system resource

(e.g., memory allocated, or CPU used) during an experiment run (which goes

through the 3 stages) and register the data. These data might then be plotted, to

facilitate any visual analysis. Figure 4.2 is an example plot of a test run that shows

the variation of allocated memory during a test run and also highlights the different

periods that take place during the run. The figure uses the following references for

the different periods: W=Warmup, N=Normal; A=Attack; R=Regular; and K=Keep.

Chapter 4

 78

Figure 4.2 – Allocated memory during a test run.

We measure what visually corresponds to the area of the different periods in the

graph, which provides numbers that can be used for comparison. The area for a

given period P can be determined using the following formula:

In formula (1) a and b correspond to the start time and finish time of a given period

P. For instance, for the warm-up period in our experiments, these two values will be

0 and 5, respectively.

After calculating the areas of all periods in a particular experiment run, we then

determine the relative change (RC) (O. Bennett and L. Briggs 2010) between the three

key pairs of periods: Normal and Attack {N,A}; Normal and Regular {N,R}, and Warm-up

and Keep {W,K}. In practice, this relative change describes the difference between a

reference value and a new one, thus being suitable for understanding the impact of

the attacks, in this case, in terms of changes in the system parameters (O. Bennett

and L. Briggs 2010). For a given pair of periods {P1, P2}, the relative change (RC) is

calculated using:

A RC value of 0 indicates that there is no difference between the two cases, whereas

large differences indicate that there is a behavior difference, that might then be

analyzed or used as reference for comparison with other frameworks (refer to

Section 4.4.1 for the application of this technique to real cases). It is up to the tester to

empirically define thresholds so that any large differences observed are highlighted -

(small variations are expectable due to the general non-deterministic nature of the

software). Note that, the Relative Change and special cases of it, like the Relative

Error, which quantifies an error ratio between a true and a measured value using the

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80 90

(MB)

(minutes)

W N A R K

Area P = ∫ 𝑓(𝑡)
𝑏

𝑎
𝑑𝑡

(1)

RC{P1, P2} =
Area P2 – Area P1

Area P1

(2)

Assessing the Security of Web Service Frameworks

 79

same formula as RC (Abramowitz and Stegun 1965), are widely accepted in the

research community and are applied in different areas like Signal and Image

Processing (Zhang and Yang 2012).

4.2 Experimental Setup and Configuration

The experimental setup consisted in deploying a client running WSFAggressor to

attack a server configured with a set of service frameworks. The two test nodes

(client and server) were setup into separate machines connected using an isolated

Fast Ethernet network. Table 4.I describes the nodes in terms of hardware and

supporting software infrastructure.

Table 4.I – Infrastructure supporting the experiments.

Node Software Hardware

Client Ubuntu 12.04 (32-bit)

OpenJDK 1.6.0_20

Intel core 2 duo T6500 (2.1GHz)

3Gb RAM

Server Windows XP (64-bit)

Oracle Java 1.6.0_30-b12

AMD Athlon X2 Dual Core 4200

(2.21GHz). 4 Gb RAM

As we can see, we did not assess the frameworks in combination with different

operating systems. Although such setup might help providing a broader view of the

behavior of the frameworks (including its combination with different operating

systems), the focus here is on the design of the proposed approach and on showing

its usefulness. Providing more results is simply a matter of extending the

experiments (which does not change the overall approach). We also do not consider

a different network topology (i.e., more machines), as the focus is on the basic

behavior, using direct, isolated interactions with services. The frameworks and

remaining configurations are discussed in the following sections.

4.2.1 Web Service Frameworks Selected

To demonstrate the proposed approach, we selected seven well-known web service

frameworks. As container (i.e., application server) we selected Tomcat 7.0.23

(“Apache Tomcat” 2012) due to its large use and popularity among developers and

providers (Zeichick 2008). The frameworks considered are Metro, Apache CXF,

Apache Axis 2, Apache Axis 1, Spring JAX-WS, Spring-WS, and XINS . In addition

to the latest stable versions we also tested a previous version of three of the

frameworks, to study whether issues found in older versions are fixed in the newest

ones. Table 4.II summarizes the selected frameworks, including the XML Parsers

they use by default, as these play the key role of processing the messages passing

between the container and the application.

Chapter 4

 80

Table 4.II – Frameworks and XML Parsers tested.

Framework Name XML Parser Latest Version tested Older Version tested

Apache Axis 1 Xerces 1.4.1 -

Apache Axis 2 AXIOM 1.6.2 1.6.1

Apache CXF Woodstox 3.0.3 2.5.1

Oracle Metro Woodstox 2.3.1 2.1.1

Spring JAX-WS Woodstox 1.9 -

Spring WS Xerces 2.2.0 -

XINS Xerces 3.1 -

Apache Axis 1 (“Apache Axis” 2006) is a quite old and highly matured web service

framework still used in many production systems. It is distributed with its own

standalone server, although it can be deployed in other containers. Currently, there

are no plans to introduce additional features to the latest version.

Apache Axis 2 was designed with the goal of creating a more XML-oriented and

modular platform that easily supports the addition of plugins to extend its

functionality (“Apache Axis2/Java” 2012, 2). Axis 2 can be used with most popular

servers or with its own standalone server.

Apache CXF is an open-source services framework that can be used to create SOAP

web services, but can also use other protocols such as CORBA or RESTful HTTP

(“Apache CXF” 2012). It can be deployed in a large variety of containers such as

Tomcat, Jetty, JBoss AS, among others. CXF supports all of the latest usual web

service standards, most notably the JAX-WS API (Sun Microsystems Inc. 2010).

Metro is an open-source web services stack whose development is managed by the

Glassfish community, which is under supervision of Oracle Corporation (“Metro”

2012). Metro is currently being bundled with the Glassfish server but, like most

frameworks, can be used in other containers. The server choice depends on the

specific requirements of each service and, as mentioned before, Tomcat is frequently

the option due to the presence of core web application features and absence of

enterprise features that are only used in very specific cases.

Spring JAX-WS is a sub-project of the Glassfish project aiming at facilitating the

deployment of web services using the Spring Framework (Metro 2015). The main

feature is that it supports the deployment of the service application on top of the

Spring framework and thus allows the application to benefit from the advanced

features of that framework (e.g., injection of Spring beans, using handlers, custom

transports).

Spring-WS is the official project of the Spring community focused on creating

“contract-first SOAP service development” (“Spring Web Services - Home” 2013). This

framework supports an easy integration with the highly popular Spring Framework

Assessing the Security of Web Service Frameworks

 81

and the focus is on allowing developers to focus on the service contract, by easily

providing the means for creating services starting from their description (i.e., the

WSDL document). Spring WS provides easy support for using different XML parsers

(Xerces, Axiom, JDom, Woodstox, etc.) and, if not explicitly configured, by default it

uses the XML parser included in the Java Virtual Machine (Xerces).

XINS is an open source Java-based WS framework that provides support for

multiple protocols, including REST, XML-RPC, JSON, JSON-RPC and SOAP (XINS

2013). XINS allows the users to specify a schema configuration that describes the

service, but it also supports the automatic generation of the WSDL file.

It is worth noting that, despite we are testing two Spring based implementations, for

the context of our study they present substantially different characteristics. Spring

JAX-WS is implemented based on the JAX-WS Reference Implementation allowing

the automatic generation of the WSDL file that describes the service. This approach

to web service development/deployment is commonly referred as “Contract-last

development”. On the other hand, Spring-WS requires the web service developer to

design the XML schemas and the WSDL file that describes the service (besides the

code implementation). This approach to web service development is commonly

referred as “Contract-first development”.

4.2.2 Service Design and Configuration

To use and attack a WS framework we need to deploy a service application that

allows exercising the system. Several choices must be made when designing this

service, including the interface that each operation provides (type and number of

input parameters and type of output parameter), and the work that should be

performed by each operation (i.e., what should be the code executed in each

invocation). For the current experimental evaluation, we designed a test service that

includes four operations with distinct input types, as summarized in Table 4.III and

discussed in the following paragraphs.

Table 4.III - Test Service Design.

Operation name Input Operation Behavior Output

getInt Integer Assigns the value of the input

parameter to the output parameter,

without further transformations

Integer

getString String Calculates a hashcode over the input

(using Java’s hashcode() method) and

sets the output parameter with the

resulting value

Integer

getArray String Array Sets the output parameter with the

length of the incoming array

Integer

Chapter 4

 82

getFile Data

Handler

Calculates a MD5 hash over the

incoming data

String

The design of this service was inspired by performance benchmarks for web

services, namely Sun Microsystems WSTest 1.0 (Sun Microsystems Inc. 2004)

Microsoft’s WSTest 1.5 (Microsoft 2008), and The Transaction Processing Council

TPC-App (TPC 2008). Most WSTest operations use Integers, Strings, and Arrays as

parameters. The names of the operations were defined based on the concatenation of

the word “get” with the datatype supplied as parameter. The interfaces in TPC-App

are also mostly based in these data types. Thus, we defined three service operations

that use these common data types and added an operation that can receive a

message attachment. This represents the cases where, for instance, a client sends a

file to a server (e.g., an image or video).

As our target is not to test the web service application, there are no

representativeness requirements regarding the actual code for the services described

above (we simply need an entry point to the framework, and this is provided by the

web service interface). In fact, any specific function added to the service code would

cause overhead (both in terms of CPU and memory usage), and we are interested in

reducing such overhead so that the observed behavior is related, as much as

possible, with the supporting platform, rather than with the service implementation.

Note also that the decisions taken for designing the operations (described in Table

4.III) represent one possible setup and many other options are possible (this is why

the service design is part of the experimental setup and not of the overall approach),

such as distinct implementations of the operations, the use of extra data types,

among others. Our goal was primarily to define a basic service entry point and then

to implement useful operations (from the tests point-of-view) with minimal

overhead.

4.2.3 Client Configuration

In addition to the service, the experiment requires a client that is embedded in the

WSFAggressor tool and is responsible for invoking and attacking each service

operation. The choices associated with the client configuration can hence be divided

in the options regarding the valid invocations and the ones related with malicious

invocations (i.e., the attack configuration). These configuration aspects are discussed

next.

Before running the client, we need to select the values used in each regular service

call (i.e., calls that do not try to attack the framework). In general, we selected the

maximum values found in all operations defined by the WSTest and TPC-App

benchmarks, so that the stack (i.e. framework) is exercised as much as possible, even

with a regular request. Although of little relevance when considering, for instance,

Assessing the Security of Web Service Frameworks

 83

numbers (due to the small number of bytes required to represent them), this can

have particular relevance when a stack needs to deserialize an array, which essentially

multiplies a given number of bytes (that represents an element type) by the number

of array elements. Anyway, the values used are kept under acceptable limits,

according to what is defined by the benchmarks. All values used are summarized in

Table 4.IV.

Chapter 4

 84

Table 4.IV - Client Configuration.

Operation name Input value

getInt 10

getString 6-byte string with random content

getArray Two-hundred 6-byte strings with random

content

getFile A 700Kb JPEG image file

All the attacks considered were applied during the invocation of the getInt and

getString operations, except for the SOAP Array and Malicious Attachment attacks that

make sense only for the getArray and getFile operations, respectively. In the case of

these experiments, we used the attack configuration values presented in Chapter 3,

which were based on existing studies and security tools (Intel 2006; Jensen,

Gruschka, and Herkenhöner 2009; Smartbear 2012; “WS-Attacker” 2012; WSFuzzer

2012; Suriadi, Clark, and Schmidt 2010). Full details regarding the attacks and overall

configuration can be found in (Oliveira, Laranjeiro, and Vieira 2015b).

Note that the goal here is not to study the best attack configurations or to fine-tune

the associated parameters. In fact, other values or combination of values are possible

for configuring the attacks, but these common configurations serve our experimental

goals, although giving a potentially optimistic view of the behavior of frameworks

when facing attacks. From the perspective of the approach, it is important that its

basic building blocks support this kind of variations, and it is easy to observe that

the tool used and experimental setup easily fit such scenarios.

4.2.4 Executing and Monitoring the Tests

We applied our testing approach to test the seven service frameworks mentioned

earlier, all deployed on top of Apache Tomcat. We used the following durations for

each test run:

 Pre-attack stage: warm-up period (5 minutes); normal period (5 minutes);

 Attack stage: 15 minutes;

 Post-attack stage: normal period (5 minutes); rest period (5 minutes).

The above can be configured to different values, depending on the specificities of the

platforms being tested, testing environment, or experimental goals. However, these

values, empirically defined, are sufficient to disclose security issues, and should be

kept practical, since using high durations is usually not an option for developers that

frequently have time limits for testing tasks. In some cases, these durations are not

enough to fully understand the behavior of the service platform that, being affected

Assessing the Security of Web Service Frameworks

 85

by an attack (displaying a dubious behavior, such as high memory use), presents no

clear indication of a failure. Therefore, in such cases, we extended the duration of the

rest period to one hour. The goal is to detect if the dubious behavior (e.g., high

memory use) remains or if the platform returns to normal patterns with, for instance,

garbage collector calls decreasing high values of allocated memory to regular levels.

Client requests were generated and sent in a synchronous non-parallel fashion every

7 seconds after receiving each response, following the approach from (Ranjan et al.

2009). The timeout value of each request was set to 1 hour to detect the cases where

the web service does not provide a timely response. This high value gives us more

confidence that a response will in fact not be received. All experiments were

repeated 3 times, with the goal of verifying possible deviations, but no significant

deviations to the behavior observed during the first run were found (detailed

information regarding all tests is available at (Oliveira, Laranjeiro, and Vieira

2015b)).

During the tests, the server platform was continuously monitored using JConsole

1.6.0_30-b12. Based on previous studies (Gang Wang et al. 2006; Suriadi, Clark, and

Schmidt 2010), we opted to observe the following parameters: Java virtual machine

memory heap size, number of allocated threads, and CPU usage. These can provide

important information regarding the behavior of a given system in this kind of

environments (Gang Wang et al. 2006; Suriadi, Clark, and Schmidt 2010) and it is

likely that there is an observable variation of these parameters when an insecure

system is processing malicious requests.

Note that the decisions presented above respect to the experimental setup and are an

instantiation of the approach to a specific Java-based environment. Due to the

generality of our approach, web service providers or developers can instantiate it to

suit the needs of other specific environments (e.g., .NET based systems, Python web

services).

4.3 Results and Discussion

Table 4.V presents the classification of the failures observed using the CRASH scale

(see Section 4.1.2), and includes a count of dubious behaviors (behaviors that do not

represent clear failures) observed for the latest versions of the frameworks tested.

Chapter 4

 86

Table 4.V - Summary of the Problems Detected.

Framework
Failures Dubious

behavior C R A S H

Apache CXF

Metro 1

Axis 2 1 1

Axis 1 2 2

Spring JAX-WS 1 1

Spring-WS 1 2

XINS 2 1

As we can see, 5 out of the 7 frameworks presented at least one type of failure, which

in practice means that services deployed using these frameworks may be vulnerable

to security attacks. We also observed dubious behaviors in 5 of the 7 frameworks.

Although the tests only unveiled Abort and Silent failures, we believe that other

kinds of failures may occur, if other frameworks are tested or other types of attacks

are used during the tests. The high number of Abort failures found is in agreement

with previous research on robustness testing (Koopman et al. 1997; Laranjeiro,

Vieira, and Madeira 2012) and it is expectable that more severe failures, such as the

corruption of a framework, are rare events, especially in mature middleware, such as

web service frameworks.

Table 4.VI presents an overview of the results from the attack perspective, showing

the total number of failures and dubious behaviors detected for each different type

of attack. Coercive Parsing and Malicious Attachment attacks are the ones that lead to

more failures in the frameworks under test. The Soap Array attack type was the one

that allowed uncovering more dubious behaviors. In total, six out of nine types of

attacks caused some kind of failure in the frameworks tested. Notice that these

attacks have been known for several years now and, as such, existing frameworks

should provide some form of protection against them.

Table 4.VI - Detected problems grouped by

attack.

Attack
Occurrence

Failures Dubious

Coercive Parsing 2 1

Malformed XML 1 -

Malicious Attachment 2 1

Oversized XML 1 1

Repetitive Entity Expansion - -

Soap Array 1 3

XML Bomb 1 -

XML Document size - 1

XML External Entities - -

Assessing the Security of Web Service Frameworks

 87

Although we detected variations in CPU usage and memory allocation during the

experiments, we never observed any relevant issues regarding the number of live

threads. Due to this, the following discussion focuses on the former parameters

(CPU usage and memory allocation). Also, the behaviors observed were consistent

in all the repetitions executed. The next sections present an overview of the behavior

of each framework, by picking up examples of experimental runs and explaining the

observed failures and dubious behaviors in detail.

4.3.1 Apache CXF

No failures or dubious behaviors were observed in Apache CXF. As an example,

Figure 4.3 presents a test run using the Oversized XML attack against the getString

operation. As we can see, although the overall behavior changes when the attack is

started, with variations in CPU use (Figure 4.3.a) and memory allocation (Figure

4.3.b), there is no perceptible increase in these parameters during the execution of

the attacks.

Figure 4.3 – CXF - Oversized XML Attack.

4.3.2 Oracle Metro

We did not observe any failure in the latest version of Metro (see Figure 4.4, for an

example of the observation during a test run), however a potentially critical dubious

behavior was identified. When a malicious attachment is sent to the service, such as

the 100MB file in the Malicious Attachment Attack, the framework creates a replica of

the file in a server directory and it repeats the procedure if another identical file is

sent (which does not occur with a regular sized attachment). Although this is not a

failure on its own, it is easy to notice that, unless there is a mechanism that

automatically deletes those files (and that mechanism has to be certain that the files

are not needed), this can eventually fill up the storage space, potentially damaging

the regular service operation (which typically uses disk based-services, such as a

database), or other disk-dependent applications executing in the same machine,

ultimately affecting the regular behavior of the operating system.

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

a) CXF - CPU Usage (getString) (%)

(minutes)

0
100
200
300
400
500
600
700
800
900

0 10 20 30 40 50 60 70 80 90

b) CXF - Used MB (getString) (MB)

(minutes)

Chapter 4

 88

Figure 4.4 – Metro: Oversized XML attack.

4.3.3 Apache Axis 2

One failure was observed in Axis2. During the execution of the Coercive Parsing

attack, the CPU usage reached nearly 50% (which occurs for both the getInt and

getString operations) and the server continuously logged a message that indicated

that an error occurred in org.apache.axiom.om.impl.llom.OMElementImpl.

findNamespaceURI(OMElementImpl.java:497). Moreover, the client received

consecutive responses with a java.lang.StackOverflowError error, confirming that there

was an internal failure while handling the request. We classified this behavior as an

Abort failure.

A dubious behavior was detected when executing the tests on the Axis 2

framework. The Soap Array attack led this framework to consume in average 400MB

of memory during the attack period (see Figure 4.5), which is twice the amount

observed during the same attack in Metro and CXF (not visible in Figure 4.3 or

Figure 4.4, which present runs using another attack, but available at (Oliveira,

Laranjeiro, and Vieira 2015b)). Also, Axis 2 raised the CPU usage frequently up to

80% during the attack, approximately five times more than the peak values that were

observed in Metro and CXF, which consumed about 15% of CPU in the same period.

Despite the observed behavior for Axis 2, the framework was able to recover to

normal values around 1 hour after starting the rest period. As we will see in the

following section, the previous version of Axis, shows even greater difficulties when

handling this attack, essentially doubling the amount of memory required, using

more time to reply to the client, and becoming unresponsive during the attack

period.

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

a) Metro - CPU Usage (getString) (%)

(minutes)

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90

b) Metro - Used MB (getString) (MB)

(minutes)

Assessing the Security of Web Service Frameworks

 89

Figure 4.5 – Axis 2: Soap Array attack.

4.3.4 Apache Axis 1

Axis 1 presented two failures and one dubious behavior. Figure 4.6 represents the

behavior of Axis 1 when facing the Coercive Parsing attack targeting the getInt

operation. As we can see, the CPU usage reaches high values, touching around 50%

during the attacks and 100% in the 10 minutes that immediately follow the attack

stage (this also occurs with the getString operation). During these 10 minutes, there is

a continuous output of a StackOverflowException to the server logs, which is an

indication of the occurrence of an internal error, and was classified as an Abort

failure.

We observed another Abort failure in Axis 1 when executing the Soap Array attack

(see Figure 4.7). Shortly after sending the first attack, the allocated memory rises and

maintains itself close to 750MB, with the CPU achieving an approximate average

usage of 50%, with sporadic peaks reaching 100%. In the meantime, the

WSFAggressor client remains idle, waiting for a response and the Tomcat logs report

the occurrence of OutOfMemory exceptions, with an indication of the failure of

internal Tomcat components. After about 8 minutes an OutOfMemory exception is

finally delivered to the client that then issues another attack. The same behavior is

observed and is followed by a steep decrease of both CPU and memory usage (short

after the start of the Post-Attack stage).

During the abovementioned anomalous periods, we tried to check if the server was

still responsive and thus issued regular requests to the Axis service with an external

tool (SoapUI 4.0.1 (Smartbear 2012)), with no response being obtained. Furthermore,

we tried to confirm if the failure affected other services in Tomcat. For this we issued

a new request to another framework (simultaneously deployed in Tomcat), with no

response being obtained (although the container should provide isolation among

applications, that is not the case). We finally performed an extra verification to check

if Tomcat’s web page service engine could still serve HTTP requests (we issued a

request to the Tomcat’s default webpage), which was also not the case. However,

despite these unresponsiveness periods and failures, we observed that the whole

system was able to recover after dealing with each attack during 8 minutes.

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

a) Axis2 - CPU Usage (getArray) (%)

(minutes)

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90

b) Axis2 - Used MB (getArray) (MB)

(minutes)

Chapter 4

 90

Figure 4.6 – Axis1: Coercive Parsing attack.

Figure 4.7 – Axis 1: Soap Array attack.

Finally, when executing the tests with the Oversized XML and XML Document Size

attacks we detected a dubious behavior reflected by high CPU usage and memory

allocation. As we can see in Figure 4.8, the CPU usage increases during the attack

period to about 40% and there is also an increase of the allocated memory in this

period to nearly 500MB. The allocated memory remains close to this level during the

Post-Attack stage. To better understand the problem, we extended the Keep period

with an observation period of one hour. During this time (i.e., the post-attack stage)

the CPU usage remained close to zero with small sporadic usage peaks. However,

we verified that the memory continues allocated, being released only at the end of

the observation period (i.e., after almost one hour). This is far from being an ideal

behavior since it diminishes the resources available for the framework and other

applications deployed in the server.

Figure 4.8 – Axis 1: Oversized XML Attack.

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

a) Axis 1 - CPU Usage (getInt)
(%)

(minutes)

0
100
200
300
400
500
600
700
800
900

0 10 20 30 40 50 60 70 80 90

b) Axis 1 - Used MB (getInt)

(minutes)

(MB)

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

Axis1 - CPU Usage (getArray)(%)

(minutes)

0
100
200
300
400
500
600
700
800
900

0 10 20 30 40 50 60 70 80 90

Axis1 - Used MB (getArray)

(minutes)

(MB)

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

a) Axis 1 - CPU Usage (getString)(%)

(minutes)

0
100
200
300
400
500
600
700
800
900

0 10 20 30 40 50 60 70 80 90

b) Axis 1 - Used MB (getString)(MB)

(minutes)

Assessing the Security of Web Service Frameworks

 91

4.3.5 Spring WS

We encountered one failure and two dubious behaviors in Spring-WS. Figure 4.9

presents the behavior of Spring-WS in the presence of the Malicious Attachment

attack, which is executed against the getFile Operation. In particular, Figure 4.9 b)

shows that, within one minute after the first request with a SOAP attachment is

received, the framework reaches 900 MB of allocated memory, and CPU usage

increases up to approximately 55%. Consequently, a java.lang.OutOfMemoryError:

Java heap space error message is returned to the client and for each malicious request

sent afterwards, the framework returns the same exception as a response.

During the execution of the attack, we tried to confirm if the server was still

responsive and thus issued regular requests to the Spring-WS service with an

external tool (SoapUI 4.0.1 (Smartbear 2012)). This confirmed that the service was

able to respond accordingly (contrarily to the failure observed in Axis 1 during the

Soap Array attack with the same error message). We also observed that the services

that were available on other frameworks installed in the same server were also able

to respond, and the application server (Tomcat) administration web page was

available. The framework was able to recover to normal memory values

approximately 1 hour after starting the rest period. The unexpected exception that

resulted from consuming most of the memory allocated for the framework was

classified as an Abort failure.

The first of the two dubious behaviors detected occurred when the Soap Array attack

was executed. As we can see in Figure 4.10.a), this attack led the framework to use

between 80% and 90% of CPU. In terms of memory, the attack caused the framework

to consume consistently 600MB of memory during the attack period (see Figure

4.10.b), with sporadic 700 MB peaks. Despite this behavior, the framework was able

to recover to normal values about 1 hour after the beginning of the rest period.

Figure 4.9 – Spring-WS: Malicious Attachment Attack.

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

a) Spring-WS - CPU Usage (getFile) (%)

(minutes)

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90

b) Spring - Used MB (getFile) (MB)

(minutes)

Chapter 4

 92

Figure 4.10 – Spring-WS: SOAP Array Attack.

The second dubious behavior was found during the attack stage, when the Coercive

Parsing attack was being executed. Spring-WS was only able to process three

requests from the attackload, taking approximately 7 minutes to handle each one

(the attack stage was extended from 15 to approximately 21 minutes). We conducted

some tests to check if the framework was able to respond to concurrent requests

while the attack was being processed and found out that this behavior did not have

any impact on other clients (i.e., the service was not affected). Despite we did not

observe any abnormal memory usage while the framework was processing the

attacks, it used frequently up to 50% of the CPU (see Figure 4.11.a).

A close inspection of the Tomcat logs revealed that, after processing each request,

Spring-WS logged the following error message SAAJ0511: Unable to create envelope

from given source, and that WSFAggressor received the following response: The

request sent by the client was syntactically incorrect. Although the framework response

is acceptable and we did not found a real indication of an internal error (e.g., an

unexpected exception) we consider that the amount of CPU used by the framework

in these circumstances and its inability to process more than three sequential

malicious requests during 21 minutes, are not acceptable behaviors.

Figure 4.11 – Spring-WS: Coercive Parsing Attack.

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

a) Spring-WS - CPU Usage (getArray) (%)

(minutes)

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90

b) Spring-WS - Used MB (getArray) (MB)

(minutes)

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

a) Spring-WS - CPU Usage (getInt) (%)

(minutes)

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90

b) Spring-WS - Used MB (getInt) (MB)

(minutes)

Assessing the Security of Web Service Frameworks

 93

4.3.6 Spring JAX-WS

The typical behavior of Spring JAX-WS when handling the Malformed XML attack is

show in Figure 4.12. Although no perceptible deviations can be seen (the same

happens for the other types of attacks), two failures were observed. The first was an

Abort failure when executing the Malformed XML attack. In this case, a

javax.xml.bind.UnmarshalException was thrown and delivered to the client. This

exception includes a reference to a WstxParsingException, raised by the XML parser

used by Spring-WS (Woodstox), which is related to an unexpected closure of an

XML tag. We investigated this behavior in the server logs and discovered that a

NullPointerException was also raised during the attacks (and wrapped in the

UnmarshalException), indicating the incapability of the framework to handle an

unexpected case.

Figure 4.12 – Spring JAX-WS: Malformed XML Attack.

The second failure observed was a Silent failure: after launching the first Oversized

XML attack request, the client did not obtain a response from the server until the end

of the Keep period. Therefore, we extended the Keep period to one hour to verify if

the service platform could still (although late) deliver a response to the client, which

did not occur. This was classified as a Silent failure since the operation did not

conclude and the server indicated no error. Despite this, we verified that the

platform was still able to respond, during this time, to other regular requests

(submitted in parallel), which means that it was not blocked to all requests (or

otherwise this could be classified as a more severe Restart failure).

Although in some cases it can be acceptable that a framework ignores an attack, the

behavior described above seems to indicate that some internal problem has occurred,

since the framework did not log or report the occurrence of an anomalous situation

(the identification of a suspicious request, or the eventual countermeasure taken that

results in no response being delivered to the client). We then tried to understand

what could be happening during that period and used Wireshark (“Wireshark”

2012), a TCP eavesdropping tool, to verify if the framework received the attack or

not. Based on the information collected by Wireshark, we realized that, although the

server platform received the attack, it started to continuously reply with TCP Zero

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

a) Spring JAX-WS - CPU Usage (getInt) (%)

(minutes)

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90

b) Spring JAX-WS - Used MB (getInt)

(minutes)

(MB)

Chapter 4

 94

Window packets, which essentially indicates a resource issue in the receiver, as the

application is not retrieving data from the TCP buffer in a timely manner (Wireshark

2011). This behavior was observed until the end of the experiment and confirms the

inability of the framework to handle this attack.

4.3.7 XINS

Two failures and a dubious behavior were observed in XINS. Figure 4.13 presents

the CPU and memory used by XINS when processing the Malicious Attachment

attack. As we can see, XINS is not particularly optimized to handle SOAP

attachments as it allocates nearly 300 MB to handle a normal 700KB file (twice as

much as Apache CXF). When a 100MB file is sent in the attack stage, the CPU

increases to nearly 50% and the allocated memory reaches almost 800MB. XINS logs

an OutOfMemoryError for each request received (the client receives an InternalError

message) and becomes unable to process parallel requests (the Tomcat

administration console also becomes unavailable after the occurrence of that

exception). This was classified as an Abort failure.

Figure 4.13 – XINS: Malicious Attachment.

The second failure detected was also an Abort failure and was caused by the XML

Bomb attack (see Figure 4.14). At the beginning of the attack stage, the allocated

memory increased up to 800MB, ultimately resulting in an OutOfMemoryError

exception being thrown by the server. After this, it was not possible to continue

monitoring the execution of the attack stage (and remaining stages) using JConsole,

since this tool also crashed as a result of the server behavior. However, using the

Windows task manager we could observe that the Tomcat process kept the allocated

memory at 887 MB after the first exception, and reached 1.38GB when the second

exception occurred (memory allocation oscillated between these two values during

the entire attack stage). We also observed that XINS was able to deliver responses to

non-malicious requests during the attack stage (i.e., the server was accepting

requests), although those responses included an InternalError message indicating an

internal failure. After the conclusion of the attack stage, XINS was again able to

return valid messages in response to non-malicious requests.

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

a) XINS - CPU Usage (getFile) (%)

(minutes)

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90

b) XINS - Used MB (getFile)

(minutes)

(MB)

Assessing the Security of Web Service Frameworks

 95

Figure 4.14 – XINS: XML Bomb Attack.

Finally, we observed a dubious behavior while executing the Soap Array attack. As

we can see in Figure 4.15.a), during the attack stage, the CPU usage increased up to

80%, which is a large increase when considering, for example, the behavior of

Apache CXF in the same situation. During this period, the allocated memory reached

approximately 650MB and it took more than 1 hour for the framework to release the

memory, as shown in Figure 4.15.b).

Figure 4.15 – XINS: Soap Array Attack.

4.4 Further Discussion on the Results

In this section, we present a general discussion of the impact of the attacks in the

frameworks from a quantitative perspective. Also, to study the evolution of the

security characteristics of the frameworks over time, we compare the failure modes

and dubious behaviors observed in two different versions of three of the frameworks

in the presence of DoS attacks. The versions analyzed are Axis2 1.6.1 and 1.6.2,

Apache CXF 2.6.1 and 3.0.3, and Metro 2.1.1 and 2.3.1.

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15

XINS - CPU Usage (getInt)(%)

(minutes)

0

100

200

300

400

500

600

700

800

900

0 5 10 15

XINS - Used MB (getInt)

(minutes)

(MB)

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

a) XINS - CPU Usage (getArray) (%)

(minutes)

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90

b) XINS - Used MB (getArray)

(minutes)

(MB)

Chapter 4

 96

4.4.1 Analyzing the Impact of the Attacks

For better understanding the impact of DoS attacks on the tested frameworks, and

since in some cases it can be quite difficult to assess whether an attack actually

impacts the system under testing (e.g., due to small or non-perceptible variations of

the parameters being observed), we studied the total CPU usage and allocated

memory for each period of the tests (i.e., Warm-up, Normal, Attack, and Rest). To do

so, we measured the areas of the graphs, as explained earlier in Section 4.1.2.

After calculating the 8 areas for each framework tested (4 periods per each of the two

2 system parameters, CPU and memory), we determined the relative change (RC)

(O. Bennett and L. Briggs 2010) between the three key pairs of periods: Normal and

Attack {N,A}; Normal and Regular {N,R}, and Warm-up and Keep {W,K}.

Table 4.VII presents the relative change values (rounded to the units), grouped by

framework. For each framework we show the results for the three pairs of periods

({N,A}, {N,R}, and {W,K}) and then by CPU and memory. For presentation clarity,

we do not show any relative change values inferior to 1. In addition, we highlight in

color the top 7 values found for all frameworks, in each of the six different cases: 1)

{N,A} for CPU; 2) {N,A} for memory; 3) {N,R} for CPU; 4) {N,R} for Memory; 5)

{W,K} for CPU; and 6) {W,K} for Memory.

 97

Table 4.VII - Relative Change values.

Attack

Axis 1 Spring JAX-WS Spring WS XINS

{N,A} {N,R} {W,K} {N,A} {N,R} {W,K} {N,A} {N,R} {W,K} {N,A} {N,R} {W,K}

C

P

U

M

E

M

C

P

U

M

E

M

C

P

U

M

E

M

C

P

U

M

E

M

C

P

U

M

E

M

C

P

U

M

E

M

C

P

U

M

E

M

C

P

U

M

E

M

C

P

U

M

E

M

C

P

U

M

E

M

C

P

U

M

E

M

C

P

U

M

E

M

Coercive Parsing 1749 5 - - 35 3 - 10 - 4 2 6 711 3 - 1 - 1 16 2 - - - 1

Malformed XML 31 6 - - - - 9 3 - - - 2 3 3 - - - - 2 3 - 1 - 1

Malicious Attachment 7 4 16 1 - - 34 3 - - - - 17 21 - 4 1 8 18 9 - 2 - 11

Oversized XML 163 14 1 - - 10 - 3 - - - 1 17 5 - 1 - 1 8 1 - - - -

Repetitive Entity Expansion 1 4 5 - - 1 2 2 - - - 2 1 2 - - - - 2 2 - - - 1

Soap Array 551 38 1 1 - 1 133 7 - 1 - 2 415 12 - 4 - 4 273 16 - 4 - 7

XML Bomb 3 3 1 - - 3 8 3 - - - - 5 2 - 1 - -- - - - - - -

XML Document Size 278 21 1 - - 9 3 3 - - - 1 48 4 - 1 - 1 25 4 - - - -

XML External Entities 19 4 - - - 1 3 3 - - - 2 3 3 - - - - 5 3 - - - 1

Attack Axis 2 CXF Metro

{N,A} {N,R} {W,K} {N,A} {N,R} {W,K} {N,A} {N,R} {W,K}

C

P

U

M

E

M

C

P

U

M

E

M

C

P

U

M

E

M

C

P

U

M

E

M

C

P

U

M

E

M

C

P

U

M

E

M

C

P

U

M

E

M

C

P

U

M

E

M

C

P

U

M

E

M

Coercive Parsing 748 - - - - - 1 - - - - - 37 - - 2 - 2

Malformed XML 8 5 -- - - - 9 3 - - - - 16 5 2 - 1 -

Malicious Attachment 33 7 - 1 - - 32 3 - - - - 43 2 - - - -

Oversized XML 12 3 - - - - 6 2 - - - - 2 6 - 1 1 -

Repetitive Entity Expansion 8 4 - 1 - - 3 4 - - - - 2 4 - - - -

Soap Array 495 20 - 4 - 9 6 4 - 1 1 1 49 9 - 1 - 1

XML Bomb 5 5 - 1 - - 6 4 - 1 - 2 4 - - 1 -

XML Document Size 32 6 - 1 - 1 6 4 - - - - 20 4 - - - -

XML External Entities 18 5 - 2 - 1 14 3 - - - - 7 5 -- 2 - -

 Assessing the Security of Web Service Frameworks

 98

In general, we can see that the Soap Array attack has some impact on 4 out of the 7

frameworks (the exceptions are CXF, Metro and Spring JAX-WS, which are not

present at the top values). The attack results in particularly high RC values for CPU

and memory usage in Axis1, Axis2, Spring-WS and XINS, especially for {N,A}.

Concerning the impact of this attack in {N,R} we did not detect any visible changes

in the memory usage. Clearly, the handling and processing of SOAP arrays is an

aspect that the developers of these frameworks must improve.

The Coercive Parsing attack also impacts three frameworks: Axis 1, Axis 2, and

Spring-WS. Axis 1 presented the highest value observed during the experiments (an

RC value of 1749), while Axis2 and Spring-WS showed lower, but still considerably

high, RC Values (748 and 711, respectively). Developers and service providers need

to understand the impact of these two attacks and additional protection measures

should be put in place when using these frameworks.

Overall, we can also see that the XML External Entities and Repetitive Entity Expansion

attacks are the ones that cause fewer problems to the frameworks, which, in general,

appear to have the mechanisms needed to adequately handle this kind of requests.

Concerning the results of the frameworks individually, Axis 1 shows the greatest

number of top issues, including potentially severe behaviors that manifest even after

the regular period has finished (i.e., relative to the RC{W,K} values). This is the case

of the results obtained for the Coercive Parsing, Oversized XML, and Document Size

attacks. In addition to the impact of the Soap Array attack mentioned before, the

RC{N,A} for CPU usage in Axis 2 is also quite high for the Coercive Parsing attack, an

aspect that should be handled properly by such a popular framework.

Spring-WS also presents very high values in terms of RC{N,A}, namely in what

regards: i) CPU values when executing the Coercive Parsing Attack, ii) the memory

values during Malicious Attachment attacks, and iii) the CPU and memory values

during the SOAP Array attack. The RC{W,K} value for memory consumption after

executing Malicious Attachment attacks is also significant and shows the difficulty of

the framework in releasing the allocated memory. These values emphasize the

observations presented in Section 4.3.5 and are a topic of particular concern as

Spring-WS is actively maintained (which is not the case of Axis1, for example).

As mentioned before, the XINS framework has difficulties in handling the Malicious

Attachment attack. Such difficulties were observed for more than one hour after the

end of the attack stage, which translates into one of the top detected memory issues

for RC{W,R} (holding a final value of 11). The remaining values, in particular the

CPU usage RC values, are not in the top issues, but that is simply because the

framework also has difficulties handling the regular size attachments (as mentioned

in the previous section). This decreases the overall RC value, but does not remove

the problem detected before.

Assessing the Security of Web Service Frameworks

 99

An interesting aspect that it is worth mentioning is that there seems to be some

relation between the XML Parser used by the frameworks and the existence of

failures and dubious behaviors. Axis 1, Spring-WS and XINS used the XML parser

Xerces and were the frameworks more prone to allocate significant system resources.

In fact, the tests performed uncovered an OutOfMemoryException in these three

frameworks (although with different attacks), which suggests that Xerces might be

more vulnerable to brute force attacks. On the other hand, CXF, Metro and Spring

JAX-WS were the most resource efficient frameworks, and the three used the

Woodstox XML Parser. The difference in terms of the XML Parsers might also be the

reason why Spring-WS and Spring JAX-WS presented so different behaviors during

our security tests.

Note that in this work, we consider the framework as a whole (e.g., as a black box)

and tracing the cause of the failures to particular components inside a framework is

out of scope. Anyway, the impact that the XML parser and other internal

components of the frameworks have in the security is a topic that may be further

explored in future studies.

4.4.2 Analyzing the Evolution across Versions

To study the evolution of the frameworks over time we tested a previous version of

three of the frameworks: Axis 2, CXF and Metro (see Table 4.II). In practice, the goal

is to compare the failure modes and dubious behaviors observed in the two different

versions of each of the three frameworks in the presence of DoS attacks. These

frameworks were selected due to their prevalence in real installations.

In general, we did not found considerable improvements when comparing the latest

versions with the older ones. In fact, regarding Axis 2 it was quite the opposite: for

example, we observed a clear increase in the CPU usage (from 60% in version 1.6.1 to

80% in version 1.6.2) in the presence of the SOAP Array attack. Also, the Abort

failure observed in the latest version of Axis 2 during the execution of the Coercive

Parsing attack (in the form of a java.lang.StackOverflow exception) was not observed in

the older version. As between versions, the internals of the frameworks are changed,

differences in performance or overall behavior are expectable. Also, we again

emphasize that all tests were repeated, and the behaviors observed were always

consistent.

When comparing versions 2.6.1 and 3.0.3 of Apache CXF we observed a behavior

that we consider as an improvement in the way SOAP Array attacks are handled.

While the latest version logs the error message Unmarshalling Error: Maximum

Number of Child Elements limit (50000) Exceeded when this attack is performed, in the

older version the expected result is returned (i.e. the size of the array) after a few

seconds with a minimal impact on the server resources (i.e. the CPU usage remained

consistently below 10% while the memory allocation never exceeded 250MB). From a

Chapter 4

 100

security perspective, we consider that the validation/limitation of the size of the

array in version 3.0.3 is an important security improvement as it becomes more

difficult for the malicious users to take advantage of extremely large arrays to cause

a DoS. This may obviously limit the usefulness of the framework in certain (very

specific) scenarios but, in what concerns security, it is quite important and shows the

concerns of the developers regarding this matter.

A clear improvement was observed when comparing versions 2.1.1 and 2.3.1 of

Metro. A Silent failure was observed in the older version after an Oversized XML

attack was issued. In practice, although the framework was able to process requests

from concurrent clients, it became unable to respond to the client that issued the

attack and remained in that state until the end of the rest period. In the latest

version, the framework aborts the execution of the malicious request about 3

minutes after the attack and issues a ClientAbortException that is recorded in the

Tomcat logs. The client receives a java.net.SocketException: Connection reset error and

the framework returns to a state in which it is again able to accept requests from the

same client. This indicates that Metro 2.3.1 tries to process the received requests

during a given period of time and aborts the execution after a timeout. Although

three minutes may not be an adequate value for all cases, one can consider that this

corresponds to a more adequate behavior.

There is still one problem that needs to be addressed urgently in Metro. After the

experiments were concluded, we noticed that Metro 2.3.1 created a temporary file on

the remote machine for each Malicious Attachment attack that was sent (i.e. a request

with a 100 MB file as attachment). Although Metro 2.3.1 was able to handle a

combined payload of 300MB per minute (i.e. three files were stored in the server disk

per minute), the temporary files remained at the server and were not deleted after

the attack. Malicious users can exploit this issue and send a very large number of

requests with hundreds of megabytes in attachments and force the operating system

to slow down or even crash (due to a full disk). Version 2.1.1 had the exact same

problem as version 2.3.1, which means that this problem is not new and has

persisted during different versions of Metro. If not addressed it may bring

catastrophic consequences to service providers.

4.5 Conclusion

In this chapter, we presented a multi-stage testing approach for understanding the

behavior of service platforms during DoS attacks and understanding later attack

effects, during normal service or idle operation of the system. The approach builds

on the capabilities of the WSFAggressor tool (described in Chapter 3), in particular

on its implementation of DoS attacks, and is a step towards a standardized

procedure for assessing the behavior of frameworks from a security perspective,

namely in what concerns service availability.

Assessing the Security of Web Service Frameworks

 101

Results show that web service frameworks are in general resistant to attacks, with

Apache CXF and Oracle Metro displaying no failures at all. However, they also

pointed out severe failures and dubious behaviors in the remaining frameworks,

suggesting the presence of security vulnerabilities, that require urgent attention and

corrective measures from developers. Moreover, we presented a quantitative

analysis of the behavior of the frameworks, providing a more objective and easy way

for understanding how well they handle attacks. During our tests, we only observed

abort and silent failure modes, but we believe that all failure modes defined by the

CRASH scale are useful and might be observable when testing other frameworks, or

using other types of attacks.

Our approach analyzes frameworks from a particular facet, which directly considers

the observable service behavior (e.g., service responses) and takes into account the

overall system behavior (e.g., resource usage at the server). These are crucial aspects

that should be considered when the goal is to provide a meaningful description of

the framework being tested. However, we did not yet consider the presence of

legitimate clients and their perception regarding the behavior of the system when it

is being attacked. This perspective is discussed in the next chapter.

 102

 103

Chapter 5
Characterizing the Performance

of Web Service Frameworks
under Attacks

This chapter discusses the problem of evaluating the performance of a web service

framework in the presence of attacks, while executing legitimate requests. The main

problem to be dealt with here is that attacks may lead to inconsistent states, with

some clients perceiving a failure and others possibly experiencing only degraded

performance. Some other clients may not even notice a change in the service

behavior. In the case of DoS, and considering the typical business-critical

environments where frameworks are nowadays used, the perspective of clients that

are executing legitimate business transactions is of utmost importance. Thus, it is

essential to be able to distinguish a framework that can sustain a given level of

performance to legitimate clients, from another that is unable to do so, because it is

severely affected when attacked.

In practice, we propose an experimental approach for characterizing the

performance of web service frameworks when handling both security attacks and

regular requests. This performance characterization is done from the perspective of

the legitimate clients and includes three stages. In the first stage, a legitimate client

executes a set of valid (i.e., non-malicious) requests to assess the baseline

performance of the framework under testing (i.e., the performance in the absence of

attacks). In the second stage, a malicious client executes malicious requests in parallel

with the valid requests issued by a legitimate client. Finally, in the third stage, a

legitimate client again executes a set of valid requests to assess whether the baseline

performance is affected by the attacks issued in the previous stage. The WS

applications running on top of the framework under test are based on WSTest (Sun

Microsystems 2004), a benchmark for evaluating the performance of web service

with varying SOAP object sizes.

We illustrate the application of the approach by testing five well-known WS

frameworks: Apache Axis1 v1.41, Apache Axis 2 v1.6.1, Apache CXF 2.51, Oracle

Metro 2.1, and Spring WS 1.5.9. During the evaluation, it becomes clear that some of

Chapter 5

 104

the attack scenarios created pose performance problems that have impact on

legitimate operations. However, at the same time, all frameworks tested also show

the ability to recover after being attacked. Still, results suggest that improvements

are needed, in particular, in the way frameworks process complex data types and

malformed requests could be greatly improved.

The chapter is organized as follows. Section 5.1 describes the approached used to

characterize the performance of web service frameworks in the presence of attacks.

Section 5.2 presents the experimental scenarios designed to demonstrate the

proposed approach, and Section 5.3 presents and discusses the results obtained for

each framework tested. Section 5.4 discusses the lessons learned from this study and

pinpoints possible explanations for the results obtained. Finally, Section 5.5

concludes the chapter.

5.1 Approach for Characterizing Performance under
Attacks

This section presents our approach for assessing the performance of web service

frameworks in the presence of attacks, including: a) the different elements that

interact during the execution of the approach (named nodes); b) the three different

execution stages of the procedure; and c) the metrics used to characterize the

behavior of the frameworks.

5.1.1 Nodes

Three different nodes interact at runtime, according to a specific procedure (see

Section 5.1.2). Figure 5.1 presents the three nodes (we refer to a node as an active

entity, with a set of associated resources, that plays a given role in the context of the

experiments (Silberschatz and Gagne 2009)) and their relations, which are explained

in the next paragraphs.

Characterizing the Performance of Web Service Frameworks under Attacks

 105

Figure 5.1 – Nodes used during the qualification phase of the

benchmark

The Application Server (AS) node includes the web service framework to be

benchmarked and the infrastructure needed to deploy the WS applications. At least

one web service application needs to be deployed on top of the framework. In this

work, we propose the use of a well-known set of services, the industry WSTest

benchmark specification (Sun Microsystems 2004), which we successfully adapted in

Chapter 4, but other services can be used. The selection of the WSTest services is

related with their simplicity of use and easy extraction of data. Table 10 presents the

WSTest Service design (for non-malicious use), including operation names, a short

description of its internal logic, parameter configuration, and identification (this

identification is shown to facilitate the explanation of the results in Section 5.3).

The Regular Client (RC) node represents a legitimate client that executes a set of

regular non-malicious requests (i.e., a workload), which are sent to the WSTest

services (or any other services the user wishes to deploy). Obviously, a primary

concern is the use of a representative workload (i.e., one that realistically represents

the calls made by real clients to the service). The values used for the Regular Client

Node invocations are defined in the WSTest benchmark specification (Sun

Microsystems 2004) and are set in the client implementation. However, as some

service invocation parameters can still be configured, we propose the WSTest

implementation to be further configured to generate workloads of different sizes in

order to emulate a more realistic scenario (refer to Table 5.I, under the size column,

for the default values proposed).

Application Server (AS)

Regular Client
(RC)

Malicious Client
(MC)

WS App.

Frameworks

Workload
Attackload

Chapter 5

 106

Table 5.I - WSTest service design & invocation configuration

Operation Description Size Id

echoVoid Sends and receives an empty

message

 -
i1

echoInteger Sends and receives a integer - i2

echoFloat Sends and receives a Float - i3

echoString Sends and receives a String - i4

echoDate Sends and receives a Date - i5

echoStruct Sends and Receives a Struct - i6

echoSynthetic Sends and receives a Synthetic

object with multiple parameters

of different types

4000 i7

8000 i8

12000 i9

echoArray Sends and receives an array 40 i10

80 i11

120 i12

getOrder Receives an Order object with

multiple parameters and types

 -
i13

echoOrder Sends and Receives an Order

object with multiple parameters

and different types

200 i14

500 i15

We also propose the use of an additional web service to provide an entry point for

the malicious requests, as the interface of the WSTest set of services may not

sufficient (e.g., a malicious request based on a large array should be sent to an

operation accepting an array as input, which does not exist in the WSTest services).

In general, even low quality frameworks reject requests for operations that, in

practice, do not exist. Our goal is to observe the effect of the attacks in the

framework while processing a malicious request (the focus is on the framework and

not on the combination of a framework with specific code), so we assume that there

is at least one operation accepting the necessary input. Thus, to provide entry points

for the attacks, we propose the deployment of the web service described in Chapter 4

(please refer to Table 4.IV), which is composed by the getInt, getString, getArray,

and getFile operations. The overall idea is to be able to use different types of DoS

attacks to increase the likelihood of exploiting different vulnerabilities. Again, any

service will serve this purpose, as long as it has the adequate interface and does not

hold business logic, so that all (or at least most of the) processing effort is placed on

the framework instead of being placed on custom business logic.

The Malicious Client (MC) emulates an attacker by executing a set of malicious

requests (i.e., an attackload), which, in the case of DoS attacks, includes large XML

requests and XML malformations. To implement this node, we use the

WSFAggressor tool, configured to execute nine different attacks, as discussed in

Chapter 3.

Characterizing the Performance of Web Service Frameworks under Attacks

 107

The regular and the malicious clients exercise the services deployed on top of the

framework. The three nodes should be (preferably) distributed over three different

physical machines in a networked environment. It is important to note that more

elaborate or simply different configurations (e.g., using only one or a subset of the

types of security attacks, using attacks with different configurations) can be defined

by the tester, as these depend on his/her goals. Other scenarios can also be designed,

for instance, by using a greater number of malicious clients (i.e., to emulate a

Distributed Denial of Service situation), or a higher number of regular clients (i.e., to

emulate more realistic server loads).

5.1.2 Procedure

The procedure consists of three stages that correspond to different tasks executed by

one or more nodes. Figure 5.2 presents the three stages (Pre-Attack, Attack, Post-

Attack), which are executed in sequence. Each stage, in turn, includes the execution

of one or more tasks (Idle, Warmup, Regular, Attack), of which some are run in

sequence and others in parallel, as explained in the next paragraphs. Figure 5.2 also

identifies the nodes in charge of executing each particular task (AS, RC, or MC).

Figure 5.2 – The three stages of the Approach.

The Pre-Attack stage begins as soon as the application server is started. During a

specific timeframe, which can be defined, for instance, based on experience, the

Application Server node is kept Idle (i.e., it does not receive/process any client

requests). This allows its internal components (e.g., libraries providing functionality

such as XML parsing and SOAP message processing) to be loaded into memory and

initialized. Next, the Regular Client node initiates the Warm-up task, which consists

of executing a set of regular requests (i.e., non-malicious) against the target

framework during a given period of time. The warm-up task aims at reducing later

variations in the observed performance, mostly by exercising any internal caches in

use (Boyer 2008). Finally, the Regular task is executed with the objective of collecting

baseline performance information regarding the normal operation of the services

(i.e., while handling non-malicious requests).

Regular
(RC)

Warmup
(RC)

Attack 1 Attack 2 Attack N(…)

Idle

(AS)
Regular

(RC)Attack
(MC)

Regular
(RC)

Time

Pre-attack Attack Post-Attack

Chapter 5

 108

During the Attack stage, two tasks are executed in parallel (each one is executed by a

different node). The Attack task is performed by the Malicious Client and consists of

executing a set of malicious requests against the service framework. At the same

time, a Regular task similar to the one carried out in the Pre-Attack stage is executed

by the Regular Client. The goal is to evaluate if the framework being attacked can

still provide service to legitimate clients or not, thus assessing the impact of the

attacks on legitimate operations. Obviously, as we are executing security attacks, it is

possible that a particular attack makes the system unavailable (i.e., unable to provide

correct service (Avizienis et al. 2004)). For instance, if a client submits a web service

call and receives no answer after waiting for a predefined period of time, or gets an

unexpected error message (e.g., an OutOfMemory exception), then the system is not

available (due to an attack that was performed).

Finally, during the Post-Attack stage, the Regular Client node carries out a single

Regular task. The goal is to study if the attacks conducted in the previous phase are

still affecting new legitimate operations (executed during the Regular task) or if, on

the other hand, the framework can continue operating normally. As mentioned, in

some cases the attacks might be sufficient to cause a catastrophic failure of the

Application Server node and thus prevent the web service infrastructure from

responding. In such cases, the Post-Attack stage starts and ends immediately (as no

response will be obtained from the server).

5.1.3 Metrics

In addition to the nodes and procedure it is necessary to understand which metrics

can better portray the performance of the frameworks during the execution of the

tests. We decided to adopt the metrics included in the WSTest Benchmark (Sun

Microsystems 2004), as these have the advantage of being calculated directly from

the experimentation, accurately represent the performance of the frameworks in the

different phases, are easily understandable, and are focused on a client perspective

(the end-user) (Sun Microsystems 2004). We note that the measures adopted for the

approach must be understood as results that can be useful to characterize systems in

a relative fashion and cannot be used to predict the performance of a system in

production.

We adopted the following metrics (Sun Microsystems 2004; Microsoft 2008):

 Throughput (T): average number of web service operations executed per

second.

 Response time (RT): average response time in seconds.

Security attacks can affect key system properties, such as availability, and can result

in decreased throughput or response time. We consider the system to be available

when it is ready to provide a correct service (Avizienis et al. 2004). Otherwise, if a

Characterizing the Performance of Web Service Frameworks under Attacks

 109

client submits a web service call and gets no answer (determined after waiting for a

predefined period of time) or returns an error message that indicates an absence of

service due to the presence of a security vulnerability (e.g. OutOfMemory

exception), then the system is not available. In this case, we are unable to compute

the performance measurements (the system is unavailable), which will not be

available in the experimental results.

As we refer in section 5.1.2, for each framework, it is also important to execute a

Golden Run. The difference between the Golden Run and the performance measured

when under attack might not be always noticeable even if these measurements are

graphically examined. In order for this comparison to be meaningful it should be

performed in quantitative terms. This is also useful for comparing the performance

measurements that are computed from each phase of our approach. For this

comparison, and similarly to the previous chapter, we use the relative change (RCh)

concept (O. Bennett and L. Briggs 2010):

The relative change is suitable for understanding the performance impact of the

attacks, in this case, in terms of the differences in the framework performance

between a Golden Run and when under attack. Thus, we use it here to quantify

performance degradation.

5.2 Experimental Setup

In this section, we present an instantiation of the approach described previously,

including all the configurations regarding the experiments performed. The setup for

the experiments consisted of selecting and deploying the three test nodes and

configuring the different stages, as follows.

5.2.1 Nodes Configuration

Regarding the Server Node, we selected popular frameworks to test, namely Metro

2.1.1, Apache CXF 2.5.1, Apache Axis 2 version 1.6.1, Apache Axis 1 version 1.4.1,

and Spring WS 1.9 (“Metro” 2012; “Apache CXF” 2012; “Apache Axis2/Java” 2012;

“Apache Axis” 2006; “Spring Web Services - Home” 2013). As for the server, we

selected the also popular Apache Tomcat 7.0.23 (“Apache Tomcat” 2012). We opted

to use only one application server to provide the same conditions to all the

frameworks.

As proposed, we deployed two services: one used to process the non-malicious

workload and to collect the performance metrics; the other to serve as entry point for

the attacks. Thus, the services to be tested are the ones already presented, namely: i)

RCh{PM1, PM2} = (
PM2 – PM1

PM1
) * 100 (3)

Chapter 5

 110

the WSTest benchmark set of services presented in Table 5.I (Sun Microsystems

2004); and ii) the web service with the necessary entry points for the attacks, as

presented in Chapter 4 (Table 4.IV).

The Regular Client node includes the WSTest client (Sun Microsystems 2004), which

is used to execute the regular workload. The values used in these invocations are

exactly the ones defined in the client implementation and conform to the WSTest

benchmark specification (Sun Microsystems 2004). In the case of these experiments,

we configured the WSTest implementation to generate workloads of different sizes

in order to create a more realistic scenario (see Table 5.I, under the ‘size’ column).

Finally, we are using the WSFAggressor application at the Malicious Client node,

with the configuration described in Chapter 3. This node will target the service that

is merely the entry point to the system. All test nodes were deployed in an isolated

Local Area Network, in an attempt to eliminate outside traffic and possible

interference with the experiments.

5.2.2 Phases Configuration

Each stage and task of the approach were configured as follows:

 Pre-Attack – Idle task (5 minutes); Warmup task (5 minutes); Regular Task (5

minutes) ;

 Attack – Attack task (15 minutes); Regular Task (15 minutes);

 Post-Attack – Regular Task (5 minutes).

As before, these durations were configured to be kept practical, since using higher

time durations would not be appropriate for testers with limited time constraints for

performing such phases. In some use scenarios, these durations might not be

sufficient to understand the impact on the tested software. However, we have

adopted these values based on empirical experience and supported by the

experiments in the previous chapter.

As in the previous chapter, the experiments were executed 3 times, to understand if

significant deviations existed in the final results. In practice, we have always used

the third execution to study the performance, but we could have also used the first

or second execution, as we did not find visible differences among runs.

Based on the proposed approach, we defined two sets of experiments. The first

consists of executing the Golden Run to assess the baseline performance of each

framework. The second intends to assess the performance of each framework in the

presence of attacks.

Characterizing the Performance of Web Service Frameworks under Attacks

 111

5.3 Results and Discussion

In this section, we discuss the main results obtained during the experimental

evaluation. In general, we discuss numbers rounded to the units, when applicable, to

simplify presentation. Nevertheless, we provide the complete set of results at

(Oliveira, Laranjeiro, and Vieira 2015a). Section 5.3.1 presents the results for the

baseline performance of the frameworks and Section 5.3.2 discusses the performance

of the frameworks in presence of security attacks (from a legitimate client point-of-

view).

5.3.1 Baseline Performance of Frameworks

The figures presented in this section are the practical result of a workload execution

of 15 minutes (Attack stage without the attackload) using the web service operation

invocations with the parameters defined in Table 5.I. The experimental results for

Pre-Attack and Post-Attack are part of the full set of results available at (Oliveira,

Laranjeiro, and Vieira 2015a). Figure 5.3 illustrates the 15 web service invocations of

the WSTest web service deployed on top of Apache Axis 1, Apache Axis 2, Apache

CXF, Oracle Metro, and Spring. The bars in each chart correspond to the average

response time for each operation (in microseconds). The lines describe the average

throughput in web service operations per second, for each operation call.

Chapter 5

 112

Figure 5.3 - Baseline performance of the frameworks

As we can see, even without any attack, the three client calls of the echoArray

operation (i10, i11 and i12) are particularly expensive in terms of response time and

throughput for all frameworks. Nevertheless, as shown in Figure 5.3a), Axis 1 is the

framework that shows the smallest response time for all operations. For example, i12

was Axis 1 longest operation, taking an average of 27504 microseconds (considering

the total number of invocations carried out during the 15 minutes). One interesting

fact is that Axis 1 responds faster to client calls than its successor. The slowest

operation by Apache CXF was also echoArray (i12 client call), with 30005

Characterizing the Performance of Web Service Frameworks under Attacks

 113

microseconds. It is also worth mentioning that, Axis 2, CXF, Metro and Spring have

quite similar response times for each type of operation.

Concerning throughput, Figure 5.3d) and Figure 5.3e) reveal that Metro and Spring

are the frameworks that can handle more requests per second. This is quite

noticeable in operations that use basic data types for their parameters (e.g., echoInt,

echoFloat). Metro and Spring were able to achieve an average throughput of about

936 and 867 web service operations per second respectively, when processing client

calls to the i1 operation. On the other hand, Axis 1 is, in general, the framework with

the lowest number of requests per second. It never exceeded the 600 web service

operations per second in all operations. In a similar way to the remaining

frameworks, Axis 1 struggles when handling client requests with arrays (i10, i11,

i12); as an example, Axis 1 throughput drops significantly to about 469 web service

operations per second when handling the i12 calls. Finally, the baseline results also

show that calls to the echoSynthetic operation (operations i7, i8, and i9, which

include a composition of different objects) are the second worst group of operations,

in terms of performance. This behavior is consistent among all frameworks and can

be due to the combination of size and object complexity that has to be manipulated

at the server-side.

5.3.2 Performance of Frameworks under Attacks

In this section, we discuss the results of the frameworks when the workload and

attackload are being executed simultaneously (Phase 2 of the approach). We did not

find visible differences in performance between the regular tasks of Phase 1 and

Phase 3. This means that, in general, frameworks were able to recover from the

attackload execution. As such, we do not to include the results of these phases in this

section (complete results are available online at (Oliveira, Laranjeiro, and Vieira

2015a)

We present a subset of all tested operations taking into consideration two requisites:

1) we discarded the operations where we observed similar baseline performance

results; 2) we tried to use results from operations with different data types.

Therefore, we chose to present the results for echoFloat, echoString, echoSynthetic (with

12000 elements client calls), echoArray (with 120 elements calls), and echoOrder with

500 elements (calls i3, i4, i9, i12 and i15). For each framework, we selected the three

attacks that caused the highest impact on each framework (by comparison with the

Golden Run).

Response Time under Attacks

Figure 5.4 shows the average response times for the frameworks obtained in

presence of security attacks, collected for the 5 calls to the WSTest services (full

details are available at (Oliveira, Laranjeiro, and Vieira 2015a)).

Chapter 5

 114

Figure 5.4 - Response time of the frameworks under attack

0

5000

10000

15000

20000

25000

30000

i3 i4 i9 i12 i15

a) Axis - Response Time

Coercive Parsing Oversized XML

Malicious Attach. Golden Run

i3 i4 i9 i12 i15

b) Axis2 - Response Time

Malformed XML Malicious Attach.

SOAP Array Attack Golden Run

0

5000

10000

15000

20000

25000

30000

i3 i4 i9 i12 i15

c) CXF - Response Time

Malformed XML SOAP Array Attack

XML Doc. Size Golden Run

0

5000

10000

15000

20000

25000

30000

i3 i4 i9 i12 i15

d) Metro - Response Time

Malformed XML Malicious Attach.

SOAP Array Attack Golden Run

i3 i4 i9 i12 i15

e) Spring - Response Time

Malformed XML Malicious Attach.

SOAP Array Attack Golden Run

Characterizing the Performance of Web Service Frameworks under Attacks

 115

In general, the impact on the frameworks response time is not as obvious in the

graphical view, as the impact observed for the throughput. Nevertheless, we found

significant performance degradation values in the frameworks that are worth

mentioning. In Axis 1, i3 (echoFloat) and i4 (echoString) WSTest calls reported a

response time of 2283 and 2271 microseconds, when the Coercive Parsing attack was

being executed. Considering that the baseline performance for these client calls was

of 1675 and 1656 microseconds, Axis 1 experienced a performance penalty of

approximately 36% and 37%, respectively. The performance penalty reported by the

remaining web service calls is not as severe (e.g., i15 had a 16% performance

degradation).

Considering the worst-case scenario in Axis 2 (i.e., the largest performance

degradation observed during the attacks – when handling malicious attachments),

Axis 2 was able to reply in 1651 and 1643 microseconds to i3 (echoFloat) and i4

(echoString) client calls, which corresponds to a penalty of about 25% and 24% (1319

and 1318 microseconds observed during the Golden Run). Its predecessor, Axis 1,

suffered only 12% of performance degradation in the same scenario, but it also

provided lower throughput.

CXF experienced significant performance degradation in the presence of the security

attacks in some operations. This is quite visible in the i4 and i3 calls (echoString and

echoFloat), which when in presence of the Malformed XML attack shows a

performance degradation of 32% and 31%, respectively. It is also worth noting that

CXF only experienced a performance penalty of 2,5% in echoArray (i12) calls in

presence of the same Malformed XML attack.

As mentioned, Metro was the framework that suffered the most severe performance

degradation in the experiments. Table 5.II shows the differences between the

response times collected by the WSTest client during the Golden Run and under the

SOAP Array attack. As we can see, Metro was severely impacted by the SOAP Array

attack, suffering performance degradations of over 80% and 76%. It is worth noting

that the values of the standard deviation are considerably high and we observed a

similar scenario when the Malformed XML attack was being executed. However,

these abnormal variations in the standard deviation were not detected in the Golden

Run, and in other attacks. This indicates that, when Metro was under attack, it did

not always deliver the response to the client in a consistent manner.

Finally, we found significant performance degradations in Spring WS. For instance,

the average response time of the i4 calls (echoString) during the Golden Run was of

1083,04 microseconds. However, when Spring WS was attacked with Malformed

XML, the response time for the same i4 calls was of about 1729 microseconds. This is

nearly 60% of performance degradation. Furthermore, the degradation for the i3 call

was of 55%, a quite high value.

Chapter 5

 116

Throughput under Attacks

Figure 5.5 shows the throughput for each framework in the presence of attacks and

collected for the 5 web service client calls to the WSTest benchmark.

Table 5.II - Metro baseline and under attack response times

Call
Golden Run SOAP Array attack Performance

Penalty R.T. Stdev R.T. Stdev

i3 963,70 241,43 1703,63 1796,65 76,78%

i4 931,39 227,396 1685,16 1860,34 80,93%

i9 4860,02 302,082 5759,43 1760,66 18,51%

i12 29741,95 2109,104 30830,34 2667,85 3,66%

i15 1112,86 225,381 1720,56 1646,55 54,61%

Characterizing the Performance of Web Service Frameworks under Attacks

 117

Figure 5.5 - Throughput of the frameworks under attack

0

200

400

600

800

1000

i3 i4 i9 i12 i15

a) Axis - Throughput

Coercive Parsing Oversized XML

Malicious Attach. Golden Run

i3 i4 i9 i12 i15

b) Axis2 - Throughput

Malformed XML Malicious Attach.

SOAP Array Attack Golden Run

0

200

400

600

800

1000

i3 i4 i9 i12 i15

c) CXF - Throughput

Malformed XML SOAP Array Attack

XML Doc. Size Golden Run

0

200

400

600

800

1000

i3 i4 i9 i12 i15

d) Metro - Throughput

Malformed XML Malicious Attach.

SOAP Array Attack Golden Run

i3 i4 i9 i12 i15

e) Spring - Throughput

Malformed XML Malicious Attach.

SOAP Array Attack Golden Run

Chapter 5

 118

As shown, all frameworks experienced noticeable throughput degradation. In

particular, the throughput of Axis 1 was greatly affected by the Oversized XML

attack. The calls to the i3 operation executed in parallel with the Oversized XML

attack resulted in 353 operations concluded per second, much lower than the 528

service operations per second observed during the golden run (i.e., a ~33%

performance penalty). We note that during our experiments, Axis 1 was unable to

respond after the first SOAP Array attack was sent. Therefore, we were unable to

obtain the performance results of this attack for the remaining operations of WSTest,

and excluded the partial results.

Considering the throughput in presence of attacks, Axis 2 clearly experienced

performance degradation when processing i3 (echoFloat) and i4 (echoString) client

calls (i.e., during the SOAP Array attack). During the Golden Run performance tests,

Axis 2 was able to process about 667 and 646 TPS for these calls respectively. When

the attackload was executed in parallel with the workload, it could only process 376

and 403 TPS. This represents a performance penalty of approximately 43% and 39%,

respectively.

The results obtained for CXF show that it is the framework where the attacks had the

lowest impact. As we can observe in Figure 5.5.c), in general, the throughput values

for each attack overlap. This means that the three attacks cause nearly the same

performance degradation, although Malformed XML causes a slightly higher

performance degradation. One aspect that it is worth emphasizing is that SOAP

Array and XML Document Size are mostly brute force attacks that consist on large

payloads that the server must handle. On the other hand, the Malformed XML attack

is based on invalid variations in the XML structure and typically consists in small

payloads to process. Despite this, CXF was able to perform better against the two

brute force attacks. For example, during the i3 client call, CXF was able to process

513 web service operations per second when the Malformed XML attack was

performed. In contrast, for the same client call, when SOAP Array attack and XML

Document Size were executed, CXF was able to process 534 and 533 TPS, respectively.

This means that, in the worst-case scenario (Malformed XML), CXF suffered a

performance penalty of approximately 18% when compared with the throughput

obtained during the Golden Run (652 web service operations per second).

As we saw earlier in Figure 5.3.d) (baseline performance), considering throughput,

Metro had the best results. However, when the attacks were executed, it was one of

the frameworks that experienced the most severe performance degradations. As

Figure 5.5.d) shows, the performance of this framework was affected particularly by

the SOAP Array attack and Malformed XML attack. Taking the i4 (echoString) client

call as an example, Metro was able to process 895 operations per second in the

baseline performance experiments. However, when the attackload (with the SOAP

Array attack) was executed, the throughput dropped to 542 web service operations

per second. This accounts for approximately 39% less requests processed by Metro.

Characterizing the Performance of Web Service Frameworks under Attacks

 119

Finally, the results for Spring WS share some similarity with the ones for Metro. The

three attacks that caused the most performance overhead to Metro are the same. The

SOAP Array attack resulted in the lowest throughputs, although marginally when

compared with Malformed XML. The main difference is that, although Spring WS

showed a lower performance (comparing to Metro) during the Golden Run, it

experienced a performance degradation similar to Metro when in presence of the

SOAP Array attack (about 35%).

5.4 Lessons Learned

The results discussed in the previous section suggest that improvements to the

current generation of web service frameworks are urgently needed. The results from

the baseline experiments show that frameworks need to improve the handling of

SOAP Array based requests. In fact, once the client calls with arrays started to be

executed, the response times of the frameworks greatly increased.

In general, the performance of 4 out of 5 frameworks was affected by the SOAP

Array, the Malicious Attachment, and Malformed XML attacks. Although this was not

surprising for the former two, we were not expecting the impact of the Malformed

XML attack, as the experiments in Chapter 4 that used this attack did not reveal any

abnormal CPU or memory usage. The Malformed XML attack uses a set of

malformations applied to the SOAP payload and targets the framework’s XML

Parser. Despite this, results are in line with other studies that emphasize the

importance of XML parsers in the overall performance of the framework (G. Wang et

al. 2006). Of the four frameworks affected by Malformed XML, CXF, Metro, and

Spring use the Woodstox XML parser. Axis 2 uses its own XML parser

implementation (Axiom). There is certainly room for improvement in the design and

implementation of these components. These results motivate further studies on the

processing performance of XML parsers using different XML payloads.

CXF was the framework that, in general, was able to process more requests per

second, and the one that handled SOAP Array requests faster. Spring WS, Axis 1, and

Axis 2 were the middle cases, displaying average performance. Finally, Metro was

the framework that showed to be able to process more requests per second in the

absence of attacks, but it rapidly became unstable once the attacks were being

executed.

Due to the different characteristics shown by the frameworks in our experiments, it

can be difficult to choose a framework that is the best for all the different scenarios.

However, and considering these experimental conditions, CXF appears to be a quite

good choice. Axis 1, Axis 2, Metro and Spring WS somehow compromise in some

scenarios. These latter ones might be acceptable choices in specific scenarios (e.g., in

closed environments, where there are some guarantees on the type of requests and

presence or absence of some attacks). Obviously, any comparison made here takes

Chapter 5

 120

into account our experimental conditions, from which we emphasize the execution

of non-malicious non-parallel requests. Still, by observing the results, the difficulties

in comparing different frameworks are very clear, emphasizing the need for

alternative methods that do not only assess, but also serve for comparing

frameworks from a security perspective.

5.5 Conclusion

This chapter studied the problem of characterizing performance of web service

frameworks in the presence of DoS attacks from the perspective of regular clients. In

short, the approach proposed consists of a set of security attacks and legitimate

requests that are executed simultaneously against the frameworks under study.

Client-side metrics are collected to characterize the performance of frameworks

(from a legitimate client point-of-view) in the presence of those attacks.

The proposal builds first on WSFAggressor, which provides the basic means for

carrying out the tests, and then on the evaluation approach discussed in Chapter 4,

which provides the basic building blocks for assessment (e.g., defines a set of distinct

phases). The main idea is that we are now able to add a new facet to our overall

security evaluation, that represents the perspective of legitimate clients.

The approach was applied to five well-known web service frameworks and was able

to reveal and distinguish among different cases of performance degradation. Given

the important role that frameworks play in business-critical environments,

understanding which framework best maintains performance for legitimate clients,

when (or after) being attacked, can be very valuable information. Such information

can be used by providers when deciding about the infrastructure that will support

their services. However, comparing results that refer to different systems is not an

easy task, especially if there are multiple criteria, sometimes conflicting, involved in

the decision-making process. The next chapter handles this concern and discusses a

security benchmark for web service frameworks that can be used not only to assess

but also to compare different systems, regarding security aspects.

 121

Chapter 6
Benchmarking the Security of

Web Service Frameworks

This chapter addresses the problem of evaluating and comparing alternative

frameworks in terms of security. As the impact of a security attack depends on

aspects such as the framework design (technology, architecture, API, optimizations,

etc.) and implementation (e.g., the presence of vulnerabilities), different frameworks

may obviously achieve different levels of security (Suriadi, Clark, and Schmidt 2010).

Thus, service providers face the difficulty of selecting the one that best fits their

security needs.

Measuring the level of security of a framework in a comparable fashion brings in

several hard challenges. These are associated not only with the multiple non-trivial

perspectives that the evaluation approach should consider (e.g., how to evaluate

performance, how to assess dependability), but also with the fact that security is a

complex concept that is much dependent on information that is unknown (e.g.,

unknown vulnerabilities present in the code, profile of attackers) than on the known

information. As suggested by previous research (Neto and Vieira 2011b), these two

aspects should be considered by any fair security benchmark.

The approach discussed in this chapter is composed of two distinct phases (Neto and

Vieira 2011b). In the first phase of the process, the WSFs under benchmarking are

analyzed and/or tested using state-of-the-art techniques and tools to detect

vulnerabilities. The ones with vulnerabilities are disqualified from the evaluation

(they are known to be unsecure, thus not acceptable for use in the field). In the second

phase, the qualified frameworks are analyzed and/or tested in order to gather

evidences of potentially unsecure behavior and/or of their ability to prevent the

manifestation of the undesirable effects of the considered threat vectors. As multiple

criteria are involved here, a Multi-Criteria Decision Making (MCDM) evaluation

Chapter 6

 122

technique is used to compute a trustworthiness score that allows ranking the

frameworks.

We instantiate the proposed approach for the concrete case of Denial of Service

attacks, which are representative threats in service-based systems and applications.

Thus, the first phase is based on the run-time execution of the set of security attacks

implemented by WSFAggressor against services deployed on top of the web service

frameworks, and that are being used by legitimate clients at the same time. This

allows retrieving data about the behavior of the services (e.g., if they crash or

unexpectedly abort the execution of an operation). The second phase is based on the

observation of measurable run-time behavior (e.g., throughput, CPU use, memory

allocation) of the frameworks in regular conditions (i.e., execution in the absence of

attacks), but also during and after being attacked (considering the same attacks of

the first phase). These data are then used in an instantiation of an MCDM technique,

the Logic Score of Preferences (LSP) (Dujmović and Nagashima 2006), where data

are arithmetically processed in a series of steps and a final trustworthiness score is

calculated. This quantitative score is a value that represents an estimated quality (in

terms of security) of the frameworks being tested.

We illustrate the application of our approach to benchmark the security of a set of 10

well-known web service frameworks (Apache Axis 1 1.4.1, Apache Axis 2 1.6.1,

Apache Axis 2 1.6.2, Apache CXF 2.5.1, Apache CXF 3.0.3, Oracle Metro 2.1.1, Oracle

Metro 2.3.1, XINS 3.1, Spring JAX-WS 1.9, and Spring WS 2.2.0), six of which we

disqualify in the first phase of the process. In the second phase, we rank the four

qualified frameworks (Apache Axis 2 1.6.1, Apache CXF 2.5.1, Apache CXF 3.0.3,

Oracle Metro 2.3.1) considering the trustworthiness score calculated from the

behavior observed during the tests.

The results show that a security benchmark can be indeed a powerful tool to select

frameworks and to help providers making informed decisions about their

deployments. As an example, we discuss the case of a security-critical web service,

where resisting DoS is much more important than performance in the absence of

attacks. We show that, considering these constraints, Apache CXF v2 is a top

performer, where Apache Axis2 is the worst one. This information would be

extremely helpful for a service provider that should select the middleware that best

fits the existing requirements.

The chapter is organized as follows. Section 6.1 overviews the two phases of the

proposed approach: security qualification and trustworthiness assessment. A

concrete instantiation of each phase is then described in sections 6.2 and 6.3,

respectively. Section 6.4 presents the experimental evaluation conducted using the

benchmark and discusses the results. Section 6.5 discusses the quality properties of

the proposed benchmark. Finally, Section 6.6 concludes the chapter.

Benchmarking the Security of Web Service Frameworks

 123

6.1 Benchmark Overview

Our benchmarking approach for evaluating and comparing the security of web

service frameworks is composed of two phases. The first is named Security

Qualification and is used to disqualify frameworks with detectable vulnerabilities. If

one or more vulnerabilities are found in this phase, then the framework under

benchmarking is excluded from the process. The rationale is that, if a framework is

known to have a vulnerability, then it offers no security and should not be an option

for providers. The second phase is named Trustworthiness Assessment and is used

to gather evidences of unsecure (or secure) behavior and aims at producing a

trustworthiness score for the frameworks for which no vulnerabilities where

detected (i.e., for the frameworks that were not discarded during the security

qualification phase). The final trustworthiness score describes the System Under Test

(SUT) in terms of security, but especially allows comparison among alternative

SUTs. Figure 6.1 illustrates the overall approach where a given SUT, i.e., a system

supported by a web service framework, is being benchmarked. The following

sections discuss the two phases of the approach.

6.1.1 Security Qualification

In the security qualification phase the goal is to find vulnerabilities in the

frameworks being tested. The detection of a vulnerability leads to the

disqualification of the framework from the benchmarking process, which means that

it will not continue to the trustworthiness assessment phase, where only frameworks

without known (or with not relevant) issues are evaluated. Note that, this does not

mean that qualified frameworks do not have vulnerabilities: it just means that no

vulnerabilities could be found during the first phase of the benchmarking process,

and therefore a trustworthiness assessment phase is required.

In this phase any vulnerability detection technique, or any combination of

techniques, can be used. In general, the applicable techniques fall into black box or

Figure 6.1– Overview of the proposed WS Framework Benchmark

Chapter 6

 124

white box (Nuno Antunes and Vieira 2012). The former consists of testing the system

from an external perspective, where there is no access to the code of the target

system. The later requires access to the internals of the system being tested.

Both black box and white box techniques can be applied manually or automatically.

Certainly, performing manual testing or carrying out manual code inspections

requires one or more security experts and is time consuming (Nuno Antunes and

Vieira 2012). The use of security testing tools able to perform tests automatically is a

good option, but in many cases the tools are known to perform poorly (Nuno

Antunes and Vieira 2009) and eventually need the presence of an expert to, at least,

analyze results. Despite this, using a tool in general reduces the effort needed to test.

As ultimately there is no need to locate the vulnerabilities (just to understand if they

are present) and since we will instantiate the approach in the context of Denial of

Service attacks (which are easily automatable by tools), we selected a black-box

automated approach to perform this phase, as discussed in detail in Section 6.2.

6.1.2 Trustworthiness Evaluation

The goal of this phase is to provide the support to compare alternative frameworks

according to multiple system attributes, which are measured in a security attack

context. For example, attributes such as throughput or memory usage are known to

be affected by many security attacks in the web services context, especially if the

attacks target Denial of Service, as we have seen in chapters 4 and 5. This way,

gathering information regarding specific attributes of the system may provide an

overall indication of the quality (and therefore trust) of the framework being tested.

In the context of web service frameworks, the concept of trust can be defined as the

belief of a stakeholder that a particular framework exhibit an expected behavior

(Medeiros et al. 2017). Thus, certain evidences associated with the software allow

increasing or decreasing trust. As an example, if a particular framework experiences

performance issues while handling several different types security attacks, it is

reasonable for a stakeholder to set a lower level of trust on that framework. On the

other hand, if no behavior change is observed, the level of trust would be higher (as

the expectation is that the framework can probably handle a new security attack

without major issues). A difficult problem is that, in order to define a level of trust

for a particular framework, it is necessary to consider many different criteria (which

may be conflicting).

Multi-Criteria Decision Making (MCDM) techniques (also known as Multiple-

criteria Decision Analysis) have been increasingly becoming popular in recent years.

MCDM explicitly considers multiple criteria in decision-making contexts with the

goal of comparing, selecting, or ranking multiple alternatives (Friginal et al. 2011;

Martinez, de Andres, and Ruiz 2014; Martinez et al. 2013).

Benchmarking the Security of Web Service Frameworks

 125

Depending on the problem being solved, different MCDM techniques may apply. In

general, the techniques fall into one of two categories: non-compensatory and

compensatory. Opposite to the former one, compensatory techniques allow tradeoffs

between attributes (a low value in one attribute might be compensated by a high

value in another one or by the high value on a set of attributes) (Xu and Yang 2001),

which fits our problem. For example, from a security perspective it might be

acceptable to have high memory usage (a common symptom of attacks) at a server, if

low latency is still observed. There are several types of compensatory techniques,

including scoring, compromising, and concordance, just to name a few.

In order to apply an MCDM technique there are three requirements that need to be

fulfilled. First, a set of metrics that quantify the properties of the SUT must be

acquired through experimental evaluation. Next, an MCDM technique must be

selected and afterwards a Quality Model must be defined. These two last

requirements are closely coupled (i.e. the quality model is defined according to the

selected MCDM technique).

In the field of dependability benchmarking, the following two scoring techniques

have been successfully used: Analytic Hierarchy Process (AHP) and Logic Score of

Preferences (LSP) (Martinez, de Andres, and Ruiz 2014). From these, we opted for

using the LSP in our approach, due to its capability to assess and compare complex

hardware and software systems (Dujmović and Nagashima 2006; Dujmovi’c 1996)

and also due to its simplicity when compared with AHP.

To use the LSP technique, it is necessary to first define a Quality Model, which is

essentially a conceptual representation of Attributes, Weights, Thresholds and

Operators (Martinez, de Andres, and Ruiz 2014) that should express the (security)

requirements that the system being tested should meet. Figure 6.2 presents a generic

Quality Model, including its typical elements, as explained in the next paragraphs.

Figure 6.2 – A Generic LSP Quality Model

Chapter 6

 126

Attributes (e.g., A1, A2 and A11–A22 in Figure 6.2) are selected by the user based on

what s/he knows are important attributes of the system (e.g., memory usage,

throughput) that can be quantified. The input values A11–A22 must be normalized,

so adequate normalization functions must be configured and applied and this

includes the definition of thresholds. These thresholds specify the maximum and

minimum values for the inputs of the leaf-level components of the quality model

(the remaining inputs are produced according to the defined thresholds).

The values for each component are influenced by an adjustable weight (e.g., W1–W6

in Figure 6.2), which specifies a preference over one or more characteristics of the

system, according to predefined requirements (e.g., in certain contexts resource

usage might be more important than throughput). The final score is computed using

the aggregation of the values of the attributes, starting from the leaf-level attributes

to the root, using operators that describe the relation between them. In the case of

our approach, and as described later, experimentation provides the values (e.g.,

throughput, memory usage) to feed the model.

Certainly, there are a few difficulties involved in this kind of methodology, which

are very much related with the definition of the three adjustable elements of the

quality model (thresholds, weights and operators) and with the overall tree design,

including the presence of possible multiple aggregation levels. An important aspect

is that the quality model should represent as much as possible the real requirements

of the SUT. Section 6.3 further discusses these issues and shows how to use the LSP

technique to rank frameworks, according to their trustworthiness based on the

behavior in terms of security.

6.2 Security Qualification Phase

Several options can be used for the security qualification phase (e.g., code

inspections, static code analysis), as the goal is to identify security problems in the

frameworks in order to exclude them from the assessment process. In our case, we

selected the run time testing approach discussed in Chapter 5. Although the

objective here is merely detecting vulnerabilities (i.e., the technique presented in

Chapter 4 would be sufficient), the technique presented in Chapter 5 also allows us

to gather data that can be used in the trusworthiness assessment phase. As

discussed, the approach is based on the execution of attacks against services

deployed on specific web service frameworks and includes i) a set of active nodes

that interact (i.e., the Application Server, the Regular Client, and the Malicious

Client), and ii) three different execution stages (pre-attack, attack, and post-attack).

The procedure is essentially the same, and we propose using the same configuration

previously described. By observing the system behavior, we can identify failures,

which indicate the presence of vulnerabilities (a non-responsive service after

Benchmarking the Security of Web Service Frameworks

 127

receiving an attack). In such cases the framework should be disqualified, not passing

to the trustworthiness assessment phase of the process.

6.3 Trustworthiness Assessment Procedure

The second phase of the benchmark consists of applying the Logic Score of

Preferences (LSP) technique considering all frameworks that were not excluded

during the first phase. In our concrete case, the data obtained from the previous

phase are used to calculate a trustworthiness score to rank the frameworks.

However, if the two phases of the benchmark consider different types of attacks, or

involve the application of different techniques, a different set of experiments may be

needed to gather the necessary data. In the following sections, we discuss:

 The selection of the attributes of the system to be considered (e.g.,

performance, availability), and their decomposition in (sub)attributes that are

quantifiable and that are part of the quality model (e.g., performance can be

quantified in terms of service throughput and/or response time).

 How to configure the thresholds, weights and operators of the quality model.

 How to apply the LSP approach, which in our case comprises multiple

aggregation blocks, including defining how the different elements should be

used to produce a final score.

6.3.1 Defining the Attributes

We selected two attributes that are typically affected by security attacks in the web

services domain: performance and resource consumption. The reason to select these

attributes is that, we target DoS (Denial of Service) attacks, which have the goal of

making a service unavailable to legitimate users (McDowell 2009). Such service

disruption often results from a successful attempt to exhaust resources. For example,

an attacker may try to monopolize the server’s CPU usage, slowing access to

essential system tasks or inhibiting service delivery to legitimate clients. In the same

way, DoS attacks can result in the allocation of large quantities of memory, reducing

the ability of the service to respond in due time. Even when no obvious

vulnerabilities are present, security attacks can impair the capability of a framework

to handle requests and deliver a response in a timely manner (Oliveira, Laranjeiro,

and Vieira 2015c).

Performance and resource consumption are further decomposed in attributes that

can be measured (in our case, through experimentation) so that we can reach a final

quantitative score. Thus, we decompose performance in throughput (number of

web service operations executed per time unit) and response time (time taken for a

service operation call to conclude). These attributes were already successfully used

Chapter 6

 128

in the security assessment approaches in Chapter 4 and Chapter 5 and their

aggregation can also be found in previous research (Dujmović and Nagashima 2006),

where the LSP technique is applied to quantify systems performance. Moreover,

these attributes are commonly used in performance-oriented research and industry

work, such as the WSTest Benchmark (Sun Microsystems 2004; Microsoft 2008).

Following the same rationale, resource consumption is decomposed into CPU usage

and memory allocation (Dujmović and Nagashima 2006). The results obtained for

these leaf-level attributes are collected and supplied as inputs to the LSP technique,

as described in Section 6.3.3.

6.3.2 Configuring Thresholds, Weights and Operators

As previously discussed, a quality model must be defined in order to apply an LSP

technique. The quality model requires thresholds, weights and operators to be

configured so that it is possible to aggregate the attribute values. Also, values at the

bottom level are aggregated to calculate upper level values, thus they need to be

normalized into the same scale. However, when normalizing an attribute, we must

consider whether it is a benefit attribute (the higher the value, the better) like

throughput, or a cost attribute (the lower, the better) as memory usage.

The thresholds represent the range of acceptable input values (from to) of

any given leaf-level attribute of the quality model. In benefit attributes, the lower

threshold indicates the worst value (i.e., values that are lower than the threshold will

be considered equally bad for the overall quality of the system). The maximum

threshold, on the other hand, represents the best value for a particular attribute.

Again, although higher values are possible, they will not make any difference in the

overall quality of the system. In cost attributes, these notions of maximum and

minimum thresholds are interpreted in the reverse way.

Once defined, the thresholds are used in normalization functions. Equations (4) and

(5) represent the normalization functions used to normalize benefit and cost

attributes, respectively. These normalization functions (adopted from (Friginal et al.

2011)) were successfully used in previous works (Friginal et al. 2011; Dujmović and

Nagashima 2006).

minx maxx

(4)

Benchmarking the Security of Web Service Frameworks

 129

In Equations (4) and (5), 𝑎𝑖 represents the value obtained for a given attribute and

that needs to be normalized, and and are the threshold values (i.e., cutoff

values). As explained, all values below and above (considering equation 4)

will always be equal to 0 or 100 respectively. The LSP technique does not state how

the lower and higher end values of the interval should be specified. Thus, it is up to

the benchmark user to specify the thresholds, define the lower value that satisfies the

user requirements (e.g., a minimum throughput for a server) and also a higher value,

for which better values do not benefit the user requirements (as they are already

fully satisfied). Obviously, there is certainly some difficulty in defining the threshold

values, especially when there is no quantitative information regarding the

requirements of the system being tested. Thus, thresholds should be defined based

on empirical experience or any other kind of useful expertise.

The definition of the weights should also be performed by the user, based on the

importance that each attribute has in his/her specific scenario. Depending on the

context of application, the relative importance of the attributes may vary. For

example, in a given scenario having good response time may be more important than

having good throughput, but in another scenario, it may be the opposite. Thus,

depending on the scenario, an inappropriate selection of weights might introduce an

artificial bias that can impact the final score of a system. If no scenario is specified, or

if there is no information regarding the security requirements, all attributes may be

considered equally important. We illustrate the application of our approach

considering this latter neutral case, where all attributes have the same importance,

but we also show the benchmark outcomes when some attributes have a stronger

weight (for more details on this later case, please refer to Section 6.5).

The final step involves selecting the operators to aggregate the weighted attribute

values. According to the work in (Dujmović and Nagashima 2006; Friginal et al.

2011) there are three main properties of the system under benchmarking that must

be considered when selecting the operator for aggregating the components:

 Simultaneity – all requirements must be satisfied. This property refers to a

conjunction (i.e., the logical operator and).

 Replaceability – is used when one of the requirements of the system has a

higher priority replacing the remaining requirements. This property refers to

a disjunction (i.e., logical operator or).

maxx minx

minx maxx

(5)

Chapter 6

 130

 Neutrality – it refers to the arithmetic mean and represents the combination of

simultaneous satisfaction of requirements with replaceability capability.

Once all 3 elements are defined (thresholds, weights and operators), we can

aggregate the attribute values. Thus, the leaf values are normalized, then weighted

and processed according to the defined operators. The scores that result from

aggregating a group of attribute values are aggregated until one reaches the root

attributes and a final score is produced (please refer to Figure 6.2). The formula

needed for each aggregation operator to compute the scores for the level above is

presented in Equation 6, which has been extracted from the work in (Dujmović and

Nagashima 2006), but follows the notation used in (Friginal et al. 2011).

As discussed in (Dujmović and Nagashima 2006), in Equation 6, represents the

computed score for a particular aggregation and k represents the set of attributes

considered for the aggregation. represents the weight associated to a particular

attribute “i”, and represents each attribute value that will be aggregated. Finally, r

is a variable whose value represents the aggregation function used (e.g., r = 1

represents the arithmetic mean function).

6.3.3 Applying the LSP Technique

This section describes the application of the LSP technique in the context of our

benchmark. We propose the execution of a compound LSP, which we overview in

Figure 6.3. As we can see, the procedure is based on the aggregation of three parts,

which we name as blocks: Entry Block, Stage Block, and Framework Block. Each block

holds a quality model, and the output of each block serves as input for the next one.

We describe each of these three blocks in the following paragraphs.

ks

iw

is

(6)

Benchmarking the Security of Web Service Frameworks

 131

Figure 6.3 - Overall view of the approach.

The entry block performs the first level of aggregation and uses input data that is

directly gathered from experimentation. In our case, these data (i.e., data regarding

CPU usage, allocated memory, throughput, and response time) are gathered during

the several experiments of the qualification phase, being each experiment the

evaluation of a framework in presence of a single type of attack.

As an experiment includes going through the three stages (pre-attack, attack, and

post-attack), and as each stage provides us with data regarding the four leaf-level

attributes, each experiment provides us a total of 12 (3 phases x 4 leaf-level

attributes) inputs that will be handled by 3 different entry blocks (each entry block

processes 4 inputs that correspond to a particular stage of one experiment, as visible

Chapter 6

 132

at the bottom of Figure 6.3). If we have N types of attacks (i.e., N experiments), then

we have 12 x N inputs for 3 X N entry blocks.

Each of the 12 values referred is actually an average of the readings obtained at each

stage of each experiment, for a particular leaf-level attribute. Since we are interested

in capturing the normal behavior and possible deviations from this normal behavior,

the arithmetic mean is a helpful way of achieving the goal and the resulting values

are still understandable by human users.

The aggregation process of the input values, which we detail in the next paragraphs,

results in an output of three scores per experiment (one per stage). This means that if

we are using N types of attacks, this block will produce 3*N scores (i.e., each

experiment has 3 stages that result in one score each, and we have N experiments).

These scores are named Entry Scores in Figure 6.3.

This aggregation process involves, as previously discussed, the definition of the

thresholds, aggregation operators, and weights. Our proposal for the definition of

thresholds is to use the data collected during the first phase of the benchmark to set

the thresholds and for CPU Usage, Memory Allocation, Response Time,

and Throughput. This consists of applying a method for removing outliers and then

select the best and worst values present in the data set as thresholds. One method

that can be applied to detect and remove outliers requires plotting all the values

using a Box-and-Whisker graphic. The values below the minimum value and above

the maximum value specified for the plot are outliers and they can be ignored. In the

field of statistics there are also several techniques to detect outliers (Chandola,

Banerjee, and Kumar 2007) such as Cook’s Distance or Grubbs' test.

Regarding the aggregation operator, we opted for the arithmetic mean for all the

aggregation blocks mainly due to three reasons. First, there is no strong need of high

simultaneity of the system attributes (i.e., using a conjunction based operation) as

there is no strong dependency between them (i.e., an attack can have a negative

impact the CPU usage but not necessarily allocate more memory). On the other

hand, there is no strong requirement of disjunction/replaceability (i.e., favor a system

property over another) that cannot already be expressed by the weights. Finally, this

operator has also been previously applied with success in a similar context

(Martinez, de Andres, and Ruiz 2014).

As for the weight associated to each attribute, which is used to adjust the aggregation

process, we opt to not favor any attribute against any other. Despite this neutral

scenario, we also show later (see Section 6.4.3) how different weights can impact the

overall results.

The Stage Block performs the second level of aggregation. The inputs for this stage

are the Entry Scores produced by the previous block, which are processed in 3

groups. Each of these groups includes N scores (remember that N is the number of

experiments and each experiment corresponds to one type of attack) that belong to

maxx minx

Benchmarking the Security of Web Service Frameworks

 133

the same stage of different experiments. Thus, we form a group that includes all pre-

attack scores, another one with all attack scores, and another with all post-attack

scores. The scores of each group are then aggregated to calculate a single score per

stage, producing three scores, as visible in Figure 6.3 (pre-attack stage score, attack

stage score, and post-attack stage score). Regarding the configuration of the

aggregation process, we again consider all DoS attacks to be as equally important

and therefore each attack stage score has exactly the same weight (100/N). The

reasoning regarding operators and thresholds applies as discussed for the previous

block.

The abovementioned three stage scores for pre-attack, attack and post-attack serve as

input for the Framework Block, which is responsible for performing the final

aggregation. The output is a single score (named Framework Trustworthiness Score in

Figure 6.3) that can then be used for comparing alternative frameworks. By default,

we again set the same weight (1/3 for each input score), assuming that there is no

user preference favoring one particular stage against the remaining. This means that

the pure performance of the framework (i.e., before being attacked) is equally

important as its performance during attacks or after attacks (as mentioned before,

these weights can be easily adapted to different contexts).

The whole process is repeated for all the frameworks that complete the

trustworthiness assessment phase (which includes defining the proper thresholds as

discussed before). As a final note, we would like to emphasize that the proposed

procedure and above reasoning (for all the blocks of the aggregation) are not limited

to the choices made for the aggregation operators, components and weights, which

are essentially neutral (as mentioned, mostly with the goal of presenting the

approach). It is recommended that all configurable elements are set according to any

existing requirements. In Section 6.4.3 we discuss how specific configurations can be

set at each block to map different requirements.

6.4 Experimental Evaluation

In this section, we start by overviewing the setup and configuration used in the

experiments. In Section 6.4.1 we present the results from the Security Qualification

phase, discussing the frameworks that were rejected for having vulnerabilities and

marking which frameworks were accepted for the Trustworthiness Assessment phase.

In Section 6.4.2 we discuss the results obtained during the trustworthiness

assessment using LSP. Section 6.4.3 presents a hypothetical scenario that shows how

the weights of the LSP evaluation can be adjusted to consider different business or

user requirements.

The setup consists of the test nodes presented Chapter 5: a Regular Client, a

Malicious Client, and the Application Server. The latter includes an application

server that is responsible for acting as the container for the tested frameworks.

Chapter 6

 134

Apache Tomcat 7.0.23 was again used due to its wide adoption in the industry and

to its extensive support for many current web service frameworks.

The frameworks benchmarked are: Apache Axis 1 1.4.1, Apache Axis 2 1.6.1,

Apache Axis 2 1.6.2, Apache CXF 2.5.1, Apache CXF 3.0.3, Oracle Metro 2.1.1, Oracle

Metro 2.3.1, XINS 3.1, Spring JAX-WS 1.9, and Spring WS 2.2.0. As in Chapter 4, in

some cases, we opted for testing more than one version of the same framework, to

understand if they have different behaviors in terms of security. We deployed on the

Application Server node the WSTest services (Sun Microsystems 2004) and our own

set of services that will attacked (described in Chapter 5).

The Regular Client runs the WSTest workload emulation tool, responsible for sending

non-malicious requests and was configured to use the default values, as described in

Chapter 5. The Malicious Client runs WSFAggressor, with the configuration

suggested in Chapter 3. All nodes used in the tests were deployed in an isolated

Local Area Network, in an attempt to eliminate outside traffic and any possible

interference with the experiments.

Each stage and task of the Security Qualification phase was configured as in Chapter

5. Regarding the trustworthiness phase, we followed the configuration discussed in

Section 6.3.2, which is mostly neutral. We do however discuss alternative

configurations and their outcome in Section 6.4.3. The main point requiring attention

in the trustworthiness assessment phase is the definition of the thresholds for

response time, throughput, memory allocation, and CPU usage, as detailed in the

next paragraph.

During the security qualification phase, we observed that the response time was

around 5500–6000 micro seconds, so the lower threshold is defined based on the fact

that the fastest response time measured was about 3000. The upper threshold was set

according to those same reasoning, where very rarely we observed a response time

higher than 12000. In the case of throughput, most of the values were between 400-

500 operations per second, leaving few observations outside these intervals.

Regarding CPU usage, most of the values for the min varied between 0.4 and 1.5.

Since a CPU usage below 1 is considered negligible, we opted for a minimum of 1%.

Regarding the maximum value, we occasionally observed values between 10% and

23%, rarely going above 30%. Finally, we observed that the allocated memory mostly

varied around 70-80 MB, with very sporadic values going around 60MB or 90MB. It

is important to emphasize that the definition of these values is based on empirical

observation of the systems under regular operation. Based on previous experience,

we believe that this a good enough way for setting the thresholds. Nevertheless,

other users of the benchmark may apply a different approach for selecting the

thresholds, considering for instance the statistical distribution of the observed vales.

Benchmarking the Security of Web Service Frameworks

 135

6.4.1 Security Qualification Results

Table 6.I presents the frameworks that qualified to the second phase and those that

failed to pass the first phase. Note that the following paragraphs overview the

results already discussed in Chapter 4, but we present a short summary for the sake

of readability.

Table 6.I - Security Qualification Results

Framework Version Security Qualification

Apache Axis 1 1.4.1

Apache Axis 2
1.6.1
1.6.2

Apache CXF
2.5.1

3.0.3

Oracle Metro
2.1.1

2.3.1

XINS 3.1

Spring JAX-WS 1.9

Spring WS 2.2.0

Six out of the ten versions tested had some type of vulnerability which resulted in

not being qualified for the next phase of the benchmark. One interesting aspect is

that Apache CXF was the only framework for which we did not find any security

vulnerability in both the versions tested.

Axis 1 presented two failures during the tests. The first case was detected during the

Coercive Parsing Attack, with the CPU reaching 100% usage and a continuous output

of java StackOverFlowException exceptions being registered in the server logs

(revealing an internal error). We observed the second issue when the SOAP Array

attack was executed. A single request with this attack was sufficient to force the CPU

usage to increase an average of 50% (sporadically reaching 100%). Eight minutes

after the request was sent, the malicious client received an OutOfMemoryException

revealing an exhaustion of memory resources.

Axis 2 version 1.6.2 failed during the execution of the Coercive Parsing Attack. During

this attack the CPU usage reached nearly 50% and the framework logged a message

indicating an error occurred in the

org.apache.axiom.om.impl.llom.OMElementImpl.findNamespaceURL operation. At the

same time, the client received consecutive responses with a

javal.lang.StackOverflowError, a similar error to the one observed in Axis 1.

Chapter 6

 136

In Metro version 2.1.1 we observed a failure during the execution of the Oversized

XML attack. After the first execution of the attack, the client did not receive any

response from the framework during the time of the experiments. Despite this,

Metro could respond to requests sent using a different web service client. Although

it might be acceptable that a framework ignores an attack, the absence of a response

to the client (even if it is malicious) seems to indicate the presence of an internal

error.

XINS was vulnerable to two security attacks. When processing the Malicious

Attachment attack (it consists of sending a 100MB file), the CPU usage reached about

50% and the allocated memory reached the 800MB mark, resulting in an

OutOfMemory exception for each request received. The second failure occurred when

a single request containing the XML Bomb attack was sent, leading the used memory

to go over the 800 MB mark, and the same OutOfMemory exception being raised by

the server.

Two failures were detected in Spring JAX-WS. The first was observed when

executing the Malformed XML attack. In particular, a

javax.xml.bind.UnmarshalException was thrown and delivered to the client. This

exception includes a reference to a WstxParsingException, raised by the XML parser

used by Spring-WS (Woodstox), which is related to an unexpected closure of an

XML tag. We investigated this behavior in the server logs and discovered that a

NullPointerException was also raised during the attacks (and wrapped in the

UnmarshalException), indicating the incapability of the framework to handle an

unexpected case. The second failure observed occurred after launching the first

request of the Oversized XML Attack. In this case, and similarly to Metro 2.1.1, the

client did not receive any response from the framework after receiving the first

attack attempt.

Finally, Spring-WS revealed one failure. Once the first request containing the

Malicious Attachment attack was sent, the framework allocated more than 50% of

CPU Usage and reached 900 MB allocated memory within one minute. Afterwards,

each time this attack was sent, a java.lang.OutOfMemoryError was returned to the

client.

6.4.2 Trustworthiness Assessment Results

Table 6.II presents the results for the entry block for all frameworks that qualified to

this phase. The first column in the table represents the attacks carried against the

frameworks. As all leaf-level attributes are normalized into a 0 to 100 scale, the

aggregated scores at the upper levels also range from 0 to 100.

For clarity, and to guide this intermediate analysis, we marked in light blue the best

9 pre-attack scores found considering all results obtained during that stage and in

dark blue the worst scores found in the pre-attack stage, considering again all

Benchmarking the Security of Web Service Frameworks

 137

results obtained during that stage. For each type of attack, we show in orange the

best score registered during the attack stage and in dark red the worst score

obtained during that stage. Finally, and again for each type of attack, we show in

light green the best score found during the post-attack stage, and in dark green the

worst one found during the post-attack stage. In gray, we highlight the highest score

degradation values observed during the tests, i.e., scores that diverge more than 25%

from the base scores observed in the pre-attack stage. We use this 25% value merely

as a visual aid, to signal cases that could require further analysis or any kind of

special attention.

Table 6.II - Entry Block Scores

 Axis2 Metro CXF v2 CXF v3

Pre Attack Post Pre Attack Post Pre Attack Post Pre Attack Post

CP 84.69 40.82 71.91 60.67 56.25 60.97 75.79 71.79 71.25 62.83 37.24 38.25

MX 84.28 74.44 68.65 61.70 49.85 54.51 76.38 64.63 70.21 67.39 49.73 61.67

MA 84.27 51.71 57.49 62.38 47.70 62.00 74.27 61.26 71.49 64.12 63.99 64.50

OX 84.82 73.71 83.96 62.61 60.21 62.65 76.66 72.16 76.97 66.74 52.32 57.89

REE 83.48 77.03 71.67 61.53 55.17 62.31 77.41 76.03 77.13 66.46 61.92 65.98

SA 84.75 31.65 55.82 61.90 52.08 42.42 76.40 40.81 51.49 65.97 38.07 45.76

XB 82.94 75.76 82.26 61.12 55.63 50.99 77.19 73.55 64.27 64.17 56.94 66.00

XDS 83.38 56.61 75.27 62.23 48.72 62.20 78.03 60.21 72.51 66.18 59.24 63.41

XEE 83.22 79.11 68.81 61.38 56.74 69.84 78.02 74.14 69.58 66.74 55.60 41.15

A close look at Table 6.II reveals several important details. First, in some cases the

attack did not have any perceptible impact in the framework, and the score of the

attack stage is actually better than the post attack stage. This can potentially be

explained by the way the Garbage Collector (GC) was called by the JVM during the

experiments and is related with the internal architecture and implementation of the

frameworks. In some cases, the GC was immediately called after the attack,

dramatically decreasing the allocated memory. In other cases, the first call to the GC

took several minutes, and the memory stayed allocated, which reflects in a higher

score in the post-attack stage. This also explains the scenario where a post-attack

score is higher than a pre-attack score. Calls to the GC are out of our control, as they

are the result of the decisions of the developers when creating a framework.

Concerning the scores obtained in the pre-attack stage, it is interesting to see that

Axis2 concentrates all top 9 results. On the other hand, the worst scores are

registered by Metro, although CXF V3 scores are not considerably better. This does

not apply to the attack stage where the best results when handling most of the

attacks, are mostly divided between Axis2 and CXF V2. Metro and CXF V3 score

better in two of the attacks.

It is interesting to observe how a framework, depending on the type of attack being

handled, can simultaneously be the worst and the best. This actually happens for

two different frameworks. CXF v3 scores the best against the Malicious Attachment

Chapter 6

 138

attack and shows the worst score in four other types of attacks. Metro shows the

worst score against four attacks, but is the best handling the Soap Array attack. This

observation suggests that it is possible to build a better framework, combining

different characteristics of the existing ones.

Regarding the post-attack stage, Metro and CXF v3 concentrate most of the worst

scores apart from the score for the post-attack of the Malicious Attachment attack on

Axis2. On the other hand, we find that Axis2 and CXF v2 concentrate the best scores

for 8 out of 9 attacks. Here, the exception is with the XML External entities attack,

where Metro scored higher. Also, those two frameworks accumulate best and worst

scores. Axis2 struggles to handle the Soap Array attack, but also scores the highest

during the corresponding post-attack stage. On the other hand, although Metro is

the best handling the Soap Array attack during the attack stage, it is also the worst

handling its impact in the corresponding post-attack stage. Finally, we observe 11

cases where the score degradation is over 25% (marked in gray). Five of these 11

gray cases are already caught in the worst performers set, as visible in Table 6.II. The

next paragraphs go through these cases per framework.

Axis2 scores drop significantly when four attacks are executed: Coercive parsing,

Malicious attachment, Soap Array, and XML Document Size. The framework also shows

> 25% degradation during the post-attack stage of the Soap Array and Malicious

Attachment attacks. In the presence of the Coercive Parsing attack, Axis2 scored only

48% of the value calculated before the attack (84.69). After the attack, the score

increased to 71.91 indicating that Axis2 could recover from this attack, although not

performing as well as in the pre-attack stage. Regarding the Malicious Attachment

attack the score dropped to 61% (51.71) of the 84.27 observed before the attack and

was kept at similar levels in the post-attack stage. During the Soap Array attack the

score decreased to 37% of the pre-attack stage (a drop from 84.74 to 31.65). Although

the framework recovered to 55.82 in the post-attack stage, this value is still only 66%

of the one obtained during the pre-attack stage. Finally, Axis2 score during the XML

Document Size attack dropped to 68% of the value observed during the pre-attack

stage.

Metro was generally not affected by the attacks considering the 25% degradation

interval. However, Metro is in fact the worst performer in the pre-attack stage.

Regarding Apache CXF v2 and v3, there is one common signaled degradation case

with the Soap Array attack. With CXF v2, the attack score is 53% of the one observed

during the pre-attack stage, and the post-attack score is 67% of the value observed

during the pre-attack stage. Regarding CXF v3, an obvious degradation case is

detected only during the attack stage, suggesting some differences in the

implementation of the two versions. During the Coercive Parsing attack, we also

observe significant degradations (about 60% and 69% in attack and post-attack).

Finally, for the XML External Entities attack, the degradation is nearly 69% in the

post-attack phase.

Benchmarking the Security of Web Service Frameworks

 139

Table 6.III presents the aggregation produced by the stage block and the resulting

final trustworthiness score of each framework (the last column of the table)

calculated by the framework block. Following the same rationale found in the

performance benchmarking domain (Kaeli 2009), in this analysis we postulate that a

difference lower than 2 points represents a tie between the benchmarked

frameworks. With this we are avoiding taking conclusions from very similar values

that may be due to the non-deterministic characterizes of the systems (other values

may be used in different contexts).

As we can see, Axis2 scored noticeably better than the remaining frameworks in the

pre-attack stage and in the post-attack stage. CXF v2 was however the best

performer in the attack stage (although not by a great margin). We also observe that,

as expected, the scores generally drop from the pre-attack stage to the attack stage.

Another relevant aspect is that the trend continues with the remaining frameworks,

in general, showing lower scores in the post-attack stage, when compared to the pre-

attack stage.

Looking at the final scores, we find Axis2 and CXF v2 in the top position, with an

overall score difference lower than two points (thus considered equal in terms of

trustworthiness, in general). Depending on the stakeholders’ requirements, the

selection could point to Axis 2 if attacks are rare events, or somehow are less

important than performance without attacks. If it is the reverse (performance under

attack is more important) the benchmark user could select CXF v3. Metro and CXF

v3 occupy the last position, also ex-aequo. The main difference here is that Metro

outperforms CXF v3 in the pre-attack stage, and is slightly worse during the attack

and post-attack stage.

Table 6.III - Stage and Final Framework block Scores.

Framework Pre-Attack Attack Post-Attack Final

Axis2 83.98 62.32 70.65 72.3

CXF v2 76.68 66.07 69.43 70.7

Metro 65.62 52.78 56.07 58.1

CXF v3 61.73 53.59 58.65 57.9

6.4.3 Adjusting Weights to Satisfy Requirements

In this section, we use an example to explain how the weights can be set to satisfy

the requirements of the stakeholders and discuss their impact in the output. We use

the general scenario described in Section 6.3 as basis and perform modifications at

each block (resulting in 3 additional scenarios). In practice, the weights at each block

are modified to map with different requirements. For each modification, the analysis

is performed to show the impact that the variations in the configurable elements of

the models have on the final results. Table 6.IV presents the results obtained with

each scenario variation, and those from the Neutral scenario for comparison.

Chapter 6

 140

Table 6.IV - Final results per scenario

Scenario Axis 2 CXF v2 Metro CXF v3

Neutral 72.3 (1) 70.7 (2) 58.1 (3) 57.9 (4)

Scenario1 73.4 (2) 77.1 (1) 66.5 (4) 70.0 (3)

Scenario2 67.4 (3) 73.1 (1) 66.6 (4) 68.7 (2)

Scenario3 61.8 (4) 70.3 (1) 63.6 (3) 67.0 (2)

At the Entry Block the weights are linked to the requirements related to the features

of the machine where the frameworks are being deployed. For instance, it is

expectable that a high-performance computer with plenty of resources available for

running the web services is able to deal with the overloads in memory and CPU

introduced by an attack. In this case, the weights can remain equal for the

aggregated attributes. However, let us consider a machine with strong RAM

constraints. The configuration of the model would require that memory allocation

had more importance than CPU consumption, and the same would stand for the

resources consumption attribute over the performance one. Then, in this case, the

weights for CPU Usage, Memory allocation, Performance, and Resources consumption

could hypothetically be 40%, 60%, 30% and 70%, respectively. Response Time and

Throughput can remain at 50% (see Section 6.3.3). The results obtained with these

values are shown in Table 6.IV in Scenario1.

The Stage Block calculates three stage scores for the assessed framework, one for the

pre-attack, one for the attack and one for the post-attack. These scores are the result of

the aggregation of the scores calculated for the same stage in all the attacks

performed (please refer to Section 6.3.3). Modifying the weights at this level requires

some knowledge regarding the web services that are running on top of the

framework. For example, let us assume that the web service running on top of the

framework being tested is based on a supply chain involved in moving lists of

products from a supplier to a costumer. This supply chain has several processes,

which includes storing reports about internal operations like inventory, or

accounting (e.g., PDFs or Doc files). Due to their structure, they might be more

susceptible to DoS attacks that exploit large lists and large binary files than the rest.

This means that this web service might be more susceptible to Soap Array and

Malicious Attachment attacks. To represent this situation, where being able to deal

with these types of attacks is quite important, it would be necessary to set a higher

weight for the scores obtained with these types of attacks than with other types. Bad

results in these attacks would then affect the global stage score obtained for the

framework. To illustrate this case, we set the scores for these two attacks with 25%

each, and the remaining 50% is equally distributed among the rest of attacks. The

results are presented in Table 6.IV under the name of Scenario2.

Benchmarking the Security of Web Service Frameworks

 141

At the Framework Block every framework has a stage score, which is aggregated to

calculate a final score that can be used to compare different frameworks. Up to this

point, all three scores have been weighted equally (33.3% each). Let us assume that

the aim of our experiments is to select a framework for a security-critical service,

where resisting DoS is much more important than performance in the absence of

attacks. Our quality model must reflect this by defining a higher weight for the

stages where performance is affected by the attacks (attack and post-attack stages). We

illustrate this case by setting the attack stage with 50% and the post-attack stage with a

30%. The pre-attack stage is set with the remaining 20%. The results are presented in

Table 6.IV in the Scenario3 row.

The results shown in Table 6.IV reflect the final score obtained by each framework in

every analysis and its ranking (between parentheses). We can see how the variations

applied on the weights at the Entry block (Scenario1) have made the frameworks

swap positions. The score for CXF v3 has incremented drastically (when compared

to the neutral scenario), which means that it obtained good scores in the attributes

related to Resources Consumption.

When the weights at the Stage block are modified (Scenario2), CXF v3 improves with

respect to Axis 2 and becomes second. CXF v3 is actually the only framework that

improved its score, which means that the other three frameworks obtained low

scores in the entry block for the evaluation in presence of the Soap array and

Malicious Attachment attacks. Finally, the results for Scenario3 (Framework Block)

show that the two versions of CXF have a better performance in presence of attacks

than the remaining ones, being Axis 2 relegated to the last position, while Metro

becomes third.

The different cases shown serve very distinct purposes. In the end, is it up to the

benchmark user to use any available knowledge to properly configure the

benchmark so that requirements are respected. Depending on the frameworks and

use cases being analyzed, variations in the final scores are expected, which simply

reflects the experimental conditions set by the benchmark user.

6.5 Fulfilling Benchmarking Properties

Several benchmarking properties should be verified when designing and

implementing a benchmark. The most relevant ones are: repeatability, portability,

non-intrusiveness, scalability, and representativeness (Karama Kanoun and

Spainhower 2008).

Regarding repeatability, we executed the benchmark three times and did not observe

noticeable differences in the results. Portability was also shown since the benchmark

was used to assess and compare 7 frameworks from different vendors/developers

while using the same procedure. The proposed benchmark is also non-intrusive since

Chapter 6

 142

its execution does not require any changes to the frameworks under benchmarking.

The monitoring tool used may add some overhead to the system, but any existing

overhead is the same for all frameworks tested and is, overall, negligible (making the

comparison fair).

Our benchmark is scalable as it can be applied to frameworks of different dimensions.

In our experiments, we tested frameworks that are very diverse, in terms of size and

complexity. Some are known to be quite simple and hold a small number of library

dependencies (e.g., XINS), while others are large and more complex, holding many

library dependencies (e.g., Axis 2).

Representativeness refers to the workload, the attackload, and the metrics used

(represented by the attributes in our approach), and the overall definition of the

quality models. The former three components must represent as much as possible

real system conditions. In our benchmark, we use the workload from WSTest (Sun

Microsystems 2004), a well-known performance benchmark, which defines different

types of operations with different data types as parameters and allows configuring

workloads of different sizes. Nevertheless, the proposed benchmark permits any

other type of workload to be used, allowing to further resemble the frameworks

deployment environment.

The representativeness of the attackload is one obvious challenge since it is difficult

to emulate an attack scenario and the behavior of an attacker, mainly due to the

diversity of possible attacks (e.g., number of clients used for the attack, the size or

content of the malicious payload). We opted for an attackload defined based on

security research studies, existing testing tools, and field experience, and that was

also used with success in chapters 4 and 5.

The metrics used are quite typical. The two performance metrics (throughput and

response time) are widely used for measuring performance in different systems and

remain a standard in the industry (Sun Microsystems 2004). The two resource

consumption metrics (CPU usage and memory allocation) are also relevant as most

of the currently known attacks try to exploit the use of system resources to deny

service to legitimate clients (Jensen, Gruschka, and Herkenhöner 2009), and also

because they have been extensively used before in similar research contexts.

Regarding the definition of the quality models, we followed the same rationale as in

related work (Dujmović and Nagashima 2006; Martinez, de Andres, and Ruiz 2014;

Friginal et al. 2011), where similar definitions were made with related concerns and

successfully applied in similar and realistic contexts.

The complexity of the benchmark, and despite its simple utilization, might lead to

some difficulty in mapping the observed behavior with the results. The main

problem is that a single number is produced to describe the observed behavior. This

number is computed over a set of different and variable (over time) attribute values

and is meant to describe the quite complex behavior of the frameworks. However, in

Benchmarking the Security of Web Service Frameworks

 143

what concerns the goals of the benchmark, this is of course a virtue. For comparison

purposes, we ideally need a single score (or at least a low number of scores, that

allow easy ranking). This kind of issue might raise a question of validity of the

benchmark results, for which there are no good solutions, as frameworks are full of

unknown bugs and if they were known there would be not much need for a

benchmark (as the option would be to immediately correct them and produce a

perfect framework).

We might make a small exercise using, for the neutral scenario, the best and the

worst framework, respectively Apache Axis2 1.6.1 and Apache CXF 3.0.3. Looking at

these frameworks issue tracking systems at (Apache Software Foundation 2017a)

and (Apache Software Foundation 2017b), we find that during 2017 (until the end of

June), the whole Axis2 project had gathered 28 issues (14 resolved, 14 unresolved),

whereas the whole CXF project registered 218 issues (166 resolved, 52). If we drill

down to the specific versions being tested we notice that release 1.6.1 of Axis2 fixes

24 issues, with its follow up version (1.6.2) fixing 52 (leaving 4 open issues). The bug

tracking system being used also reports warnings (1 per each version), which are

issues that have been set as complete but the respective commits are not part of a

pull request or review. The release of CXF 3.0.3 fixes 58 issues and its follow up

version (3.0.4) fixes 77. The number of reported warnings are 55 and 67, respectively.

The numbers mentioned in the previous paragraph do not represent the overall

quality of each framework but might suggest a certain amount of (unknown) issues

present in the framework. Some of these issues affect, for instance, performance, or

performance under particular conditions (e.g., the processing of large incoming

SOAP messages), which might influence the final trustworthiness score. From an

external point of view, what is visible is a clearly higher number of issues being

handled during the development of CXF. From a user’s perspective, this kind of

information may decrease the belief in the security of the framework.

Several techniques can be applied to validate the benchmark results. A possibility

would be to obtain expert scores for each framework (e.g, based on trust evidences,

such as the ones presented in the previous paragraphs), filter out inconsistent

answers, and aggregate the expert scores using, for instance, a multi criteria decision

making technique. This is just an example which has the goal of illustrating a

possible approach for achieving this kind of objective. Due to its complexity it is out

of the scope of this thesis.

6.6 Conclusion

This chapter discussed the problem of assessing and comparing the security of web

service frameworks and proposed a security benchmark for these systems.

Considering the central role that frameworks play nowadays supporting mission-

Chapter 6

 144

and business-critical services, a benchmark is a valuable tool for providers, helping

them in selecting the framework that best suits their requirements.

The benchmark is divided in two phases: i) a security qualification phase where

frameworks are analyzed using state of the art techniques and tools to detect

vulnerabilities; and ii) a trustworthiness assessment phase where frameworks are

analyzed to gather evidences of potentially unsecure behavior. The results are then

explicitly analyzed by a Multi-Criteria Decision Making evaluation technique that

computes a trustworthiness score, allowing comparing different frameworks.

We instantiated the benchmark for the case of Denial of Service attacks. In practice,

the qualification phase is based on the execution of DoS attacks against services

(deployed on top of the frameworks being tested) that are being used at the same

time by legitimate clients. Thus, this first phase is based on the security evaluation

techniques proposed in Chapter 5. In the second phase, we used the Logic Scoring of

Preferences (LSP) technique, where data regarding the run-time behavior of the

frameworks are used to compute a trustworthiness score.

We illustrated the application of our approach to benchmark a set of 10 well-known

web service frameworks, which resulted in the disqualification of 6 in the first phase.

We were able to rank the 4 that passed to the second phase. We also illustrated the

flexibility of the approach by defining three additional scenario variations and re-

applying the approach. The results show that a security benchmark can be indeed a

powerful tool to select frameworks and help providers, in specific scenarios, to make

informed decisions about their deployments.

 145

Chapter 7
Conclusion and Future Work

This thesis proposed a tool and a set of techniques for evaluating and comparing the

security of web service frameworks. We introduced a security testing tool, named

WSFAggressor, an approach that uses the tool to evaluate security, an approach to

evaluate security from the point of view of legitimate clients (in terms of impact in

the performance), and a benchmark for the comparison of alternative frameworks, in

terms of security. The presentation of the contributions is incremental, in the sense

that each part of a proposal reuses the concepts provided by the previous ones.

Comparing to previous work, the proposals presented in this thesis innovate in

several aspects. WSFAggressor, presented in Chapter 3, supports more DoS attacks

than competing solutions and has special support for security evaluation. The

security evaluation approach discussed in Chapter 4 is composed of several periods

and we identified key pairs of periods, from which we show that it is possible to

extract meaningful data about the behavior of the frameworks being tested. The

legitimate client view provided by the evaluation approach in Chapter 5 brings in

the important perspective of clients issuing parallel requests to frameworks, and we

show how to perform security evaluation in these conditions, which are very

relevant in services environments. Chapter 6 introduces, to the best of our

knowledge, the very first security benchmark for web service frameworks. We have

instantiated it to the case of DoS attacks and demonstrated its usefulness when the

goal is to compare different alternative frameworks. We now go through each of

these key contributions and provide their main highlights.

Chapter 7

 146

In order to accomplish our objectives, we started by researching the state of the art in

what concerns security evaluation for web services. We placed special focus on DoS

attacks that target the core functionality of web service frameworks. This effort

involved studying security research, vulnerability databases, on-line information,

and existing security testing tools. The outcome was used as basis to create

WSFAggressor, the security testing tool for Web Service Frameworks presented in

Chapter 3. At the time of writing, the tool implements a number of DoS attacks that

cannot be found in alternative security testing tools. Its integration facilities with

security evaluation approaches are also a feature that distinguishes it from the

competition.

Having a tool to perform security tests is insufficient when the goal goes beyond

detecting simple problems and aims at characterizing the behavior of frameworks in

presence of attacks. Thus, in Chapter 4 we advanced the proposal and presented an

approach that allows performing such characterization. It is based on the execution

of regular requests (pre-attack stage), malicious requests (attack stage), and again

regular requests (post-attack stage). These stages begin and end with observation

periods, where no requests are sent to the server. In all of these periods several

parameters that represent the state of operation of the server are monitored, such as

allocated memory, CPU usage, and number of allocated threads. Besides observing

failures, we analyze and quantify the changes in the system parameters, particularly

by comparing different key pairs of periods (e.g., the period of regular requests

before attack, with the same one after attack). The approach was able to disclose not

only failures in well-known web services middleware, but also showed clear

differences in the external behavior of the frameworks in presence of security

attacks.

In a services environment, where systems are handling a high number of operations

per unit of time, the perspective of the legitimate clients is of utmost importance. If

DoS attacks are being carried out against a particular system, legitimate clients

should experience the lowest performance degradation possible. Thus, in Chapter 5,

we proposed an approach for evaluating performance of web service frameworks in

presence of both attacks and legitimate requests. Again, the approach builds on the

one previously presented, namely the execution of different stages that involve

regular and malicious requests, but adds a set of new features (e.g., a legitimate

client and the legitimate client perspective expressed on a set of metrics). The results,

obtained during the tests using popular frameworks, show obvious differences in

their behavior, which can be used by providers for framework selection, or by

developers to improve their implementations.

Chapter 6 discussed the problem of evaluating the security of frameworks in a

comparable way, and proposed a security benchmark. The problem here is two-fold.

On one hand security is a complex concept, involving multiple perspectives and also

Conclusion and Future Work

 147

very much dependent on information that is unknown (e.g., undisclosed

vulnerabilities in the code, profile of attackers). On the other hand, the evaluation of

security involves the analysis of multiple criteria, which are many times conflicting.

To tackle this problem, we propose a security benchmark that is composed of two

phases. The first serves to eliminate frameworks with known vulnerabilities and the

second intends to gather evidences of potentially unsecure behavior or evidences of

the frameworks ability to prevent the manifestation of the undesirable effects of the

considered threat vectors. To take into account the multiple criteria involved in the

assessment of each framework, we proposed the use of a Multi-Criteria Decision

Making (MCDM) evaluation technique, as a means to compute a trustworthiness

score that allows ranking the frameworks.

We instantiated the benchmark to the concrete case of DoS attacks and applied the

approach to popular web service frameworks. The results clearly show the

usefulness of the tool for providers, allowing them to decide about the best

framework to support their particular services (built according to specific

requirements). We showed how the benchmark can be tuned for particular

scenarios, where for instance memory allocation is critical, or where being able to

handle particular types of attacks is important. Again, this flexibility is extremely

important for the benchmark users that want to assess frameworks in very specific

conditions. The benchmark allows users to specify those conditions and reflect them

in the evaluation.

Future Work

The work presented in this thesis contributed to gain a large experience in security

evaluation of web service frameworks and, at the same time, to identify several

points that can be explored in future research. This way, the following research

topics can be foreseen as a continuation of the present work:

 Extending the evaluation techniques to further distributed environments is

an obvious extension to the work discussed in this thesis and would still

involve significant challenges. Clients would be distributed on multiple

nodes and against a clustered, or otherwise distributed, infrastructure;

attackers could also be distributed; and, of course, the attacks could also be

changed to take advantage of this different configuration. The behavior of

frameworks deployed in a distributed environment (e.g., in a cloud

environment) results in different ways in which the overall system fails (e.g.,

lost messages, crashed nodes) and, overall, this opens new challenges that a

security evaluation approach must consider (e.g., elasticity, the overall vision

of the system, the definition of meaningful metrics).

 Adapting the benchmark to evaluate the security of other types of

middleware (e.g., RESTFul services middleware) also brings a number of

Chapter 7

 148

opportunities for research. Adaptations and extensions to the benchmark,

that derive from the particular context being targeted, will certainly be

required. We believe that it is possible to use the general concepts discussed

in this thesis as basis (but potentially requiring strong adaptations) to

benchmark currently popular types of middleware within the services

context. We envision that it is possible to adapt the approach to middleware

for RESTful services; and with stronger adaptations to cloud middleware and

containers (e.g., the Docker platform).

 The security benchmark proposed can be adapted to other security

attributes, such as confidentiality or integrity. Although the approach is

relatively generic, there will be certainly adaptations required and there is

much work involved, regarding the specificities of the different attributes

considered (e.g., evaluation of confidentiality). By being able to apply the

approach to a large set of security facets, it will be possible to refine the initial

proposal, for which we will then have strong evidences of being generic.

Furthermore, it would be possible to define a broader security benchmarking

approach, that would take in consideration the multiple security attributes.

 Benchmarking security of middleware for dynamic environments is also a

case where there is space for research. In the case of dynamic environments,

where the conditions and requirements change and there are services being

continuously reconfigured, there is obviously the need for updating

benchmarking results. A framework benchmarked at a given point and

selected as being the best under particular conditions, might become a bad

choice, just because of the presence of changes. Having a way to benchmark a

given piece of middleware (e.g., a web service framework) and accounting

for future changes is a difficult problem that poses several interesting

challenges.

 Devising techniques for pinpointing the causes of anomalous behaviors in

services middleware. For instance, in the case of service frameworks, which

are known to use several components (e.g., an XML Parser), it would be

interesting if a given security evaluation technique could automatically

pinpoint the origin of the problem. For instance, when in presence of a

performance degradation problem, code instrumentation techniques could be

applied to the entry and exit points (or other crucial points) of each

component, which would then be used to collect performance-related metrics

allowing the tester to identify (and possibly replace or even correct) the

problematic component. Other types of techniques could apply to different

types of problems. For instance, if the problem is related with high memory

allocation, it could be possible to monitor the execution of the code, or

inspect particular data structures or middleware components, and correlate

them with the periods of high memory usage.

Conclusion and Future Work

 149

 Improving the security of web services middleware. After evaluation and

problem source identification, it should be possible to suggest, or even

execute, different techniques to improve the security of a particular

middleware. Instrumentation or wrapping techniques could apply, to

automatically or at least semi-automatically fix known types of bugs

(identified during the evaluation). In the case of deployed systems, if a

particular component of the middleware is known to be problematic, then

the option to perform hot-swaps or micro-reboots of components at runtime

could apply. The impact on legitimate operations being executed at the

service would have to be minimal, which opens further space for research.

 150

 151

References

Abramowitz, Milton, and Irene A. Stegun, eds. 1965. Handbook of Mathematical

Functions: With Formulas, Graphs, and Mathematical Tables. 0009–Revised

edition ed. New York: Dover Publications.

Acunetix. 2013. “Acunetix Web Vulnerability Scanner Announces Full HTML5

Support.” Acunetix. August 15.

http://www.acunetix.com/blog/news/acunetix-announces-full-html5-

support/.

———. 2014. “Web Application Security with Acunetix Web Vulnerability Scanner.”

Acunetix. Accessed August 19. http://www.acunetix.com/vulnerability-

scanner/.

Antunes, N., and M. Vieira. 2010. “Benchmarking Vulnerability Detection Tools for

Web Services.” In 2010 IEEE International Conference on Web Services, 203–10.

doi:10.1109/ICWS.2010.76.

Antunes, Nuno, Nuno Laranjeiro, Marco Vieira, and Henrique Madeira. 2009.

“Effective Detection of SQL/XPath Injection Vulnerabilities in Web Services.”

In IEEE International Conference on Services Computing, 2009. SCC ’09, 260–67.

IEEE. doi:10.1109/SCC.2009.23.

Antunes, Nuno, and Marco Vieira. 2009. “Comparing the Effectiveness of

Penetration Testing and Static Code Analysis on the Detection of SQL

Injection Vulnerabilities in Web Services.” In 15th IEEE Pacific Rim

International Symposium on Dependable Computing, 2009. PRDC ’09, 301–6.

doi:10.1109/PRDC.2009.54.

———. 2012. “Defending against Web Application Vulnerabilities.” Computer 45 (2).

doi:10.1109/MC.2011.259.

———. 2015. “Assessing and Comparing Vulnerability Detection Tools for Web

Services: Benchmarking Approach and Examples.” IEEE Transactions on

Services Computing 8 (2): 269–83. doi:10.1109/TSC.2014.2310221.

“Apache Axis.” 2006. https://axis.apache.org/axis/.

“Apache Axis2/Java.” 2012. https://axis.apache.org/axis2/java/core/.

“Apache CXF.” 2012. https://cxf.apache.org/.

 152

Apache Software Foundation. 2017a. “Axis2 - JIRA Issue Tracking System.”

Accessed June 21. https://issues.apache.org/jira/projects/AXIS2.

———. 2017b. “CXF - JIRA Issue Tracking System.” Accessed June 21.

https://issues.apache.org/jira/projects/CXF.

“Apache Tomcat.” 2012. https://tomcat.apache.org/.

“Application Server - Oracle WebLogic Server.” 2017. Accessed May 15.

https://www.oracle.com/middleware/weblogic/index.html.

Ashford, Warwick. 2016. “DDoS Attacks up in Size, Speed and Complexity, Study

Finds.” ComputerWeekly. Accessed May 6.

http://www.computerweekly.com/news/2240202762/DDoS-attacks-up-in-

size-speed-and-complexity-study-finds.

Avizienis, A., J. -C Laprie, B. Randell, and C. Landwehr. 2004. “Basic Concepts and

Taxonomy of Dependable and Secure Computing.” IEEE Transactions on

Dependable and Secure Computing. doi:10.1109/TDSC.2004.2.

Bau, Jason, Elie Bursztein, Divij Gupta, and John Mitchell. 2010. “State of the Art:

Automated Black-Box Web Application Vulnerability Testing.” In Security

and Privacy (SP), 2010 IEEE Symposium On, 332–45. doi:10.1109/SP.2010.27.

Bessey, Al, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles

Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. 2010. “A Few

Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real

World.” Commun. ACM 53 (2): 66–75. doi:10.1145/1646353.1646374.

Binmore, Ken. 2007. Game Theory: A Very Short Introduction. Vol. 173. Oxford

University Press.

Boyer, Brent. 2008. “Robust Java Benchmarking, Part 1: Issues.” CT316. June 24.

http://www.ibm.com/developerworks/library/j-benchmark1/.

Chandola, Varun, Arindam Banerjee, and Vipin Kumar. 2007. “Outlier Detection: A

Survey.” In ACM Computing Surveys.

https://pdfs.semanticscholar.org/912b/0b7879ca99bf654a26bbb0d50d4b8e0ed6

c0.pdf.

“Common Vulnerability Scoring System (CVSS-SIG).” 2013. Accessed August 23.

http://www.first.org/cvss.

Curbera, F., M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana. 2002.

“Unraveling the Web Services Web: An Introduction to SOAP, WSDL, and

UDDI.” IEEE Internet Computing 6 (2): 86–93. doi:10.1109/4236.991449.

Daniel F. García, Javier García, Manuel García, and Ivan Peteira. 2006.

“Benchmarking of Web Services Platforms. An Evaluation with the TPC-App

Benchmark.” In , 6. http://www.tpc.org/tpc_app/articulo.pdf.

References

 153

DBench. 2004. “DBench Dependability Benchmarks.” IST-2000-25425.

http://webhost.laas.fr/TSF/DBench/Final/DBench-complete-report.pdf.

Doupé, Adam, Marco Cova, and Giovanni Vigna. 2010. “Why Johnny Can’T Pentest:

An Analysis of Black-Box Web Vulnerability Scanners.” In Proceedings of the

7th International Conference on Detection of Intrusions and Malware, and

Vulnerability Assessment, 111–131. DIMVA’10. Berlin, Heidelberg: Springer-

Verlag. http://dl.acm.org/citation.cfm?id=1884848.1884858.

Duchi, Fabio, Nuno Antunes, Andrea Ceccarelli, Giuseppe Vella, Francesco Rossi,

and Andrea Bondavalli. 2014. “Cost-Effective Testing for Critical Off-the-

Shelf Services.” In Computer Safety, Reliability, and Security, edited by Andrea

Bondavalli, Andrea Ceccarelli, and Frank Ortmeier, 231–42. Lecture Notes in

Computer Science 8696. Springer International Publishing.

http://link.springer.com/chapter/10.1007/978-3-319-10557-4_26.

Dujmovi’c, Jozo. 1996. “A Method For Evaluation And Selection Of Complex

Hardware And Software Systems.” In CMG 96 Proceedings, 368–378.

Dujmović, Jozo J., and Hajime Nagashima. 2006. “LSP Method and Its Use for

Evaluation of Java IDEs.” International Journal of Approximate Reasoning,

Aggregation Operators and Decision Modeling, 41 (1): 3–22.

doi:10.1016/j.ijar.2005.06.006.

Dunham, Andrew. 2013. “RATS - Rough Auditing Tool for Security.” GitHub.

https://github.com/andrew-d/rough-auditing-tool-for-security.

Durães, João, Marco Vieira, and Henrique Madeira. 2004. “Dependability

Benchmarking of Web-Servers.” In Computer Safety, Reliability, and Security,

edited by Maritta Heisel, Peter Liggesmeyer, and Stefan Wittmann, 297–310.

Lecture Notes in Computer Science 3219. Springer Berlin Heidelberg.

http://link.springer.com/chapter/10.1007/978-3-540-30138-7_25.

ETSI. 2015. “ETSI TR 101 583 - V1.1.1 - Methods for Testing and Specification

(MTS).” ETSI.

http://www.etsi.org/deliver/etsi_tr/101500_101599/101583/01.01.01_60/tr_1015

83v010101p.pdf.

Falkenberg, A., C. Mainka, J. Somorovsky, and J. Schwenk. 2013. “A New Approach

towards DoS Penetration Testing on Web Services.” In 2013 IEEE 20th

International Conference on Web Services (ICWS), 491–98.

doi:10.1109/ICWS.2013.72.

Findbugs. 2012. “FindBugs.” Accessed April 17. http://findbugs.sourceforge.net/.

Friginal, Jesús, David de Andrés, Juan-Carlos Ruiz, and Pedro Gil. 2011. “Coarse-

Grained Resilience Benchmarking Using Logic Score of Preferences: Ad Hoc

Networks As a Case Study.” In 13th European Workshop on Dependable

Computing, 23–28. EWDC ’11. ACM. doi:10.1145/1978582.1978588.

 154

Fujita, H., Y. Matsuno, T. Hanawa, M. Sato, S. Kato, and Y. Ishikawa. 2012. “DS-

Bench Toolset: Tools for Dependability Benchmarking with Simulation and

Assurance.” In IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN 2012), 1–8. doi:10.1109/DSN.2012.6263915.

Gamma, E, R. Helm, R. Johnson, and J.M. Vlissides. 1994. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley Professional.

Gang Wang, Cheng Xu, Ying Li, and Ying Chen. 2006. “Analyzing XML Parser

Memory Characteristics: Experiments towards ImprovingWeb Services

Performance.” In International Conference on Web Services, 2006. ICWS ’06, 681–

88. IEEE. doi:10.1109/ICWS.2006.31.

Govindaraju, M., A. Slominski, K. Chiu, P. Liu, R. van Engelen, and M. J Lewis. 2004.

“Toward Characterizing the Performance of SOAP Toolkits.” In Fifth

IEEE/ACM International Workshop on Grid Computing, 2004. Proceedings, 365–

72. IEEE. doi:10.1109/GRID.2004.60.

Gray, Jim. 1993. The Benchmark Handbook for Database and Transaction Systems (2nd

Edition). Morgan Kaufmann. http://research.microsoft.com/en-

us/um/people/gray/BenchmarkHandbook/TOC.htm.

Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. 2004. Web

Services - Concepts, Architectures and Applications. 1st ed. Springer.

http://www.springer.com/us/book/9783540440086.

Head, M. R., M. Govindaraju, A. Slominski, Pu Liu, N. Abu-Ghazaleh, R. van

Engelen, K. Chiu, and M. J. Lewis. 2005. “A Benchmark Suite for SOAP-Based

Communication in Grid Web Services.” In Supercomputing, 2005. Proceedings

of the ACM/IEEE SC 2005 Conference, 19–19. doi:10.1109/SC.2005.2.

“HP Fortify Static Code Analyzer.” 2013. Accessed August 20.

http://www8.hp.com/us/en/software-

solutions/software.html?compURI=1338812#.UhLKs3-3seA.

“HP WebInspect.” 2013. Accessed August 19. http://www8.hp.com/pt/pt/software-

solutions/software.html?compURI=1341991#.UhIBx3-3seB.

Hsueh, Mei-Chen, T.K. Tsai, and R.K. Iyer. 1997. “Fault Injection Techniques and

Tools.” Computer 30 (4): 75–82. doi:10.1109/2.585157.

Hulme, George. 2016. “Amazon Web Services DDoS Attack And The Cloud.”

Accessed May 5. http://www.darkreading.com/risk-management/amazon-

web-services-ddos-attack-and-the-cloud/d/d-id/1083745.

“IBM Security AppScan Family.” 2013. Accessed August 19. http://www-

03.ibm.com/software/products/us/en/appscan/.

References

 155

Imperva. 2012. “Report #12 - Denial of Service Attacks: A Comprehensive Guide to

Trends, Techniques and Technologies.”

http://www.imperva.com/docs/HII_Denial_of_Service_Attacks-

Trends_Techniques_and_Technologies.pdf.

Intel. 2006. “Protecting Enterprise, SaaS & Cloud-Based Applications - A

Comprehensive Threat Model for REST, SOA and Web 2.0.”

http://info.intel.com/rs/intel/images/Intel_XMLThreat_WhitePaper.pdf.

ISO/IEC, ISO. 2009. “Information Technology — Security Techniques — Information

Security Management Systems — Overview and Vocabulary.” International

Standard ISO/IEC 27000:2009(E).

J.D. Meier, Alex Mackman, Michael Dunner, Srinath Vasireddy, Ray Escamilla, and

Anandha Murukan. 2003. “Chapter 3 - Threat Modeling.” In Improving Web

Application Security: Threats and Countermeasures.

https://msdn.microsoft.com/en-us/library/aa302419.aspx.

Jensen, Meiko, Nils Gruschka, and Ralph Herkenhöner. 2009. “A Survey of Attacks

on Web Services.” Computer Science - Research and Development, May.

doi:10.1007/s00450-009-0092-6.

JetBrains. 2012. “IntelliJ IDEA: The Java IDE for Professional Developers by

JetBrains.” JetBrains. https://www.jetbrains.com/idea/.

Jovanovic, N., C. Kruegel, and E. Kirda. 2006. “Pixy: A Static Analysis Tool for

Detecting Web Application Vulnerabilities.” In 2006 IEEE Symposium on

Security and Privacy (S P’06), 6 pp.-263. doi:10.1109/SP.2006.29.

Kaeli, David. 2009. Computer Performance Evaluation and Benchmarking. Vol. 5419.

Springer. http://www.springer.com/la/book/9783540937982.

Kalakech, A., T. Jarboui, J. Arlat, Y. Crouzet, and K. Kanoun. 2004. “Benchmarking

Operating System Dependability: Windows 2000 as a Case Study.” In 10th

IEEE Pacific Rim International Symposium on Dependable Computing, 2004.

Proceedings, 261–70. doi:10.1109/PRDC.2004.1276576.

Kalakech, A., K. Kanoun, Y. Crouzet, and J. Arlat. 2004. “Benchmarking the

Dependability of Windows NT4, 2000 and XP.” In 2004 International

Conference on Dependable Systems and Networks, 681–86.

doi:10.1109/DSN.2004.1311938.

Kanoun, K., Y. Crouzet, A. Kalakech, A. E. Rugina, and P. Rumeau. 2005.

“Benchmarking the Dependability of Windows and Linux Using

PostMark/Spl Trade/ Workloads.” In 16th IEEE International Symposium on

Software Reliability Engineering (ISSRE’05), 10 pp.-20.

doi:10.1109/ISSRE.2005.13.

 156

Kanoun, Karama, and Lisa Spainhower. 2008. Dependability Benchmarking for

Computer Systems. Wiley-IEEE Computer Society Press.

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-

047023055X,miniSiteCd-IEEE_CS2.html.

Knizhnik, Konstantin. 2016. “Jlint - Find Bugs in Java Programs.” Accessed May 23.

http://jlint.sourceforge.net/.

Koopman, P., and J. DeVale. 1999. “Comparing the Robustness of POSIX Operating

Systems.” In Twenty-Ninth Annual International Symposium on Fault-Tolerant

Computing, 1999. Digest of Papers, 30–37. doi:10.1109/FTCS.1999.781031.

Koopman, P., J. Sung, C. Dingman, D. Siewiorek, and T. Marz. 1997. “Comparing

Operating Systems Using Robustness Benchmarks.” In ,, The Sixteenth

Symposium on Reliable Distributed Systems, 1997. Proceedings, 72–79. IEEE.

doi:10.1109/RELDIS.1997.632800.

Laranjeiro, Nuno, Salvador Canelas, and Marco Vieira. 2008. “Wsrbench: An On-

Line Tool for Robustness Benchmarking.” In IEEE International Conference on

Services Computing, 2008. SCC ’08, 2:187–94. doi:10.1109/SCC.2008.123.

Laranjeiro, Nuno, Oliveira Oliveira Rui, and Marco Vieira. 2010. “Applying Text

Classification Algorithms in Web Services Robustness Testing.” In 2010 29th

IEEE Symposium on Reliable Distributed Systems, 255–64. IEEE.

doi:10.1109/SRDS.2010.36.

Laranjeiro, Nuno, Marco Vieira, and Henrique Madeira. 2012. “A Robustness Testing

Approach for SOAP Web Services.” Journal of Internet Services and Applications

3 (2): 215–32. doi:10.1007/s13174-012-0062-2.

Mainka, C., J. Somorovsky, and J. Schwenk. 2012. “Penetration Testing Tool for Web

Services Security.” In 2012 IEEE Eighth World Congress on Services

(SERVICES), 163–70. doi:10.1109/SERVICES.2012.7.

Marsden, Eric, and Jean-Charles Fabre. 2001. “Failure Mode Analysis of CORBA

Service Implementations.” In Middleware 2001, edited by Rachid Guerraoui,

216–31. Lecture Notes in Computer Science 2218. Springer Berlin Heidelberg.

doi:10.1007/3-540-45518-3_12.

Marsden, Eric, Nicolas Perrot, Jean-Charles Fabre, and Jean Arlat. 2002.

“Dependability Characterization of Middleware Services.” In Design and

Analysis of Distributed Embedded Systems, edited by Bernd Kleinjohann, K. H.

Kim, Lisa Kleinjohann, and Achim Rettberg, 121–30. IFIP — The International

Federation for Information Processing 91. Springer US. doi:10.1007/978-0-387-

35599-3_13.

Martin, E., S. Basu, and T. Xie. 2007. “Automated Testing and Response Analysis of

Web Services.” In IEEE International Conference on Web Services (ICWS 2007),

647–54. doi:10.1109/ICWS.2007.49.

References

 157

Martinez, M., D. de Andres, and J.-C. Ruiz. 2014. “Gaining Confidence on

Dependability Benchmarks - Conclusions through Back-to-Back Testing.” In

Dependable Computing Conference (EDCC), 2014 Tenth European, 130–37.

doi:10.1109/EDCC.2014.20.

Martinez, M., D. de Andres, J.-C. Ruiz, and J. Friginal. 2013. “Analysis of Results in

Dependability Benchmarking: Can We Do Better?” In 2013 IEEE International

Workshop on Measurements and Networking Proceedings (M N), 127–31.

doi:10.1109/IWMN.2013.6663790.

McDowell, Mindi. 2009. “Understanding Denial-of-Service Attacks | US-CERT.”

https://www.us-cert.gov/ncas/tips/ST04-015.

Medeiros, Nádia, Naghmeh Ivaki, Pedro Costa, and Marco Vieira. 2017. “Towards

an Approach for Trustworthiness Assessment of Software as a Service.” In

1st IEEE International Conference on Edge Computing (EDGE 2017). Honolulu,

Hawaii, USA.

Mendes, N., J. Duraes, and H. Madeira. 2011. “Benchmarking the Security of Web

Serving Systems Based on Known Vulnerabilities.” In 2011 5th Latin-American

Symposium on Dependable Computing (LADC), 55–64.

doi:10.1109/LADC.2011.14.

Mendes, N., H. Madeira, and J. Duraes. 2014. “Security Benchmarks for Web Serving

Systems.” In 2014 IEEE 25th International Symposium on Software Reliability

Engineering (ISSRE). doi:10.1109/ISSRE.2014.38.

“Metro.” 2012. http://metro.java.net/.

———. 2015. “Spring Support for JAX-WS RI — Project Kenai.” Accessed February

25. https://jax-ws-commons.java.net/spring/.

Michael, C. C., and Will Radosevich. 2012. “Black Box Security Testing Tools.”

Accessed April 17. https://buildsecurityin.us-cert.gov/bsi/articles/tools/black-

box/261-BSI.html.

Microsoft. 2004. “Web Services Performance: Comparing Java 2TM Enterprise

Edition (J2EETM Platformm) and the Microsoft® .NET Framework - A

Response to Sun Microsystem’s Benchmark”.”

———. 2008. “Comparing .NET 3.5/Windows Server 2008 to IBM WebSphere

6.1/Red Hat Linux Web Service Performance.”

Micskei, Zoltán, Henrique Madeira, Alberto Avritzer, István Majzik, Marco Vieira,

and Nuno Antunes. 2012. “Robustness Testing Techniques and Tools.” In

Resilience Assessment and Evaluation of Computing Systems, edited by Katinka

Wolter, Alberto Avritzer, Marco Vieira, and Aad van Moorsel, 323–39.

Springer Berlin Heidelberg. doi:10.1007/978-3-642-29032-9_16.

 158

Myers, Glenford J., Corey Sandler, and Tom Badgett. 2011. Wiley: The Art of Software

Testing, 3rd Edition - Glenford J. Myers, Corey Sandler, Tom Badgett. Wiley.

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118031962.html.

Neto, Afonso, and M. Vieira. 2011a. “TO BEnchmark or NOT TO BEnchmark

Security: That Is the Question.” In 2011 IEEE/IFIP 41st International Conference

on Dependable Systems and Networks Workshops (DSN-W), 182–87.

doi:10.1109/DSNW.2011.5958810.

Neto, Afonso, and Marco Vieira. 2009. “A Trust-Based Benchmark for DBMS

Configurations.” In 15th IEEE Pacific Rim International Symposium on

Dependable Computing, 2009. PRDC ’09, 143–50. doi:10.1109/PRDC.2009.31.

———. 2011b. “Selecting Secure Web Applications Using Trustworthiness

Benchmarking.” In International Journal of Dependable and Trustworthy

Information Systems (IJDTIS). Vol. 2. IGI Global. http://www.igi-

global.com/article/selecting-secure-web-applications-using/65519.

Neves, Mary. 2009. “Codenomicon DEFENSICS for XML Finds Multiple Critical

Security Issues in XML.” August 5.

http://www.businesswire.com/news/home/20090805006038/en/Codenomicon

-DEFENSICS-XML-Finds-Multiple-Critical-Security.

O. Bennett, Jeffrey, and William L. Briggs. 2010. Using and Understanding

Mathematics: A Quantitative Reasoning Approach. 5th ed. Addison-Wesley.

http://www.pearsonhighered.com/bookseller/product/Using-and-

Understanding-Mathematics-A-Quantitative-Reasoning-

Approach/9780321652799.page#dw_resources.

Oliveira, Rui André, Nuno Laranjeiro, and Marco Vieira. 2012. “Experimental

Evaluation of Web Service Frameworks in the Presence of Security Attacks.”

In IEEE International Conference on Services Computing (SCC), 633–640.

Honolulu, Hawaii, USA: IEEE.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6274200.

Oliveira, Rui André, Nuno Laranjeiro, and Marco Vieira. 2012a. “WSFAggressor and

Experimental Data.” http://student.dei.uc.pt/~racoliv/papers/2012-scc.zip.

———. 2012b. “WSFAggressor: An Extensible Web Service Framework Attacking

Tool.” In Proceedings of the Industrial Track of the 13th ACM/IFIP/USENIX

International Middleware Conference, 2:1–2:6. MIDDLEWARE ’12. Montreal.

Canada: ACM. doi:10.1145/2405146.2405148.

———. 2015a. “Frameworks Performance in the Presence of Security Attacks,

Experimental Data.” http://eden.dei.uc.pt/~racoliv/papers/2014/sac-data.zip.

———. 2015b. “JSS’15 WSFAggressor Tool and Experimental Data.” March.

http://eden.dei.uc.pt/~racoliv/papers/2015-jss-tool-exp-data.zip.

References

 159

———. 2015c. “Characterizing the Performance of Web Service Frameworks under

Security Attacks.” In 30th Symposium on Applied Computing (SAC), 1711–18.

Salamanca, Spain: ACM. doi:10.1145/2695664.2695927.

———. 2015d. “Assessing the Security of Web Service Frameworks against Denial of

Service Attacks.” Journal of Systems and Software 109 (November): 18–31.

doi:10.1016/j.jss.2015.07.006.

———. 2016. “WSFAggressor Official Repository.”

https://git.dei.uc.pt/racoliv/WSFAggressor.

Oracle. 2005. “Attachments in SOAP Messages.” Oracle.

www.oracle.com/technetwork/middleware/ias/ws-attachment-pcho-

130995.pdf.

Orrin, Steve. 2007. “Top SOA/XML/Web2.0 Attacks & Threats You Never Knew.”

intel. https://www.defcon.org/images/defcon-15/dc15-presentations/dc-15-

orrin.pdf.

OWASP. 2013a. “OWASP Top 10 Application Security Risks - 2013.” Accessed June

25. https://www.owasp.org/index.php/Top_10_2013-Top_10.

———. 2013b. “Testing for XML Structural (OWASP-WS-003) - OWASP.” Accessed

August 20.

https://www.owasp.org/index.php/Testing_for_XML_Structural_(OWASP-

WS-003).

Pan, Jiantao, Philip Koopman, Daniel P. Siewiorek, Yennun Huang, Robert Gruber,

and Mimi Ling Jiang. 2001. “Robustness Testing and Hardening of CORBA

ORB Implementations.” In Proceedings of the 2001 International Conference on

Dependable Systems and Networks (Formerly: FTCS), 141–150. DSN ’01.

Washington, DC, USA: IEEE Computer Society.

http://dl.acm.org/citation.cfm?id=647882.738227.

Perera, S., C. Herath, J. Ekanayake, E. Chinthaka, A. Ranabahu, D. Jayasinghe, S.

Weerawarana, and G. Daniels. 2006. “Axis2, Middleware for Next Generation

Web Services.” In International Conference on Web Services, 2006. ICWS ’06,

833–40. doi:10.1109/ICWS.2006.36.

“PMD.” 2013. Accessed August 20. http://pmd.sourceforge.net/.

Poe, James, and Tao Li. 2006. “BASS: A Benchmark Suite for Evaluating

Architectural Security Systems.” SIGARCH Comput. Archit. News 34 (4): 26–

33. doi:10.1145/1186736.1186739.

Ragan, Steven. 2016. “Code Spaces Forced to Close Its Doors after Security Incident |

CSO Online.” Accessed May 5.

http://www.csoonline.com/article/2365062/disaster-recovery/code-spaces-

forced-to-close-its-doors-after-security-incident.html.

 160

Ranjan, Supranamaya, Ram Swaminathan, Mustafa Uysal, Antonio Nucci, and

Edward Knightly. 2009. “DDoS-Shield: DDoS-Resilient Scheduling to

Counter Application Layer Attacks.” IEEE/ACM Trans. Netw. 17 (1): 26–39.

doi:10.1109/TNET.2008.926503.

Rodríguez, Manuel, Frédéric Salles, Jean-Charles Fabre, and Jean Arlat. 1999.

“MAFALDA: Microkernel Assessment by Fault Injection and Design Aid.” In

Dependable Computing — EDCC-3, edited by Jan Hlavička, Erik Maehle, and

András Pataricza, 143–60. Lecture Notes in Computer Science 1667. Springer

Berlin Heidelberg. doi:10.1007/3-540-48254-7_11.

Ruiz, J. C., P. Yuste, P. Gil, and L. Lemus. 2004. “On Benchmarking the

Dependability of Automotive Engine Control Applications.” In 2004

International Conference on Dependable Systems and Networks, 857–66.

doi:10.1109/DSN.2004.1311956.

Sadeghipour, Ben. 2015. “Advice From A Researcher: Hunting XXE For Fun and

Profit.” July 3. http://blog.bugcrowd.com/advice-from-a-researcher-xxe/.

Sangroya, A., D. Serrano, and S. Bouchenak. 2012. “Benchmarking Dependability of

MapReduce Systems.” In 2012 IEEE 31st Symposium on Reliable Distributed

Systems (SRDS), 21–30. doi:10.1109/SRDS.2012.12.

Scovetta, Michael. 2009. “Yasca.” February. http://www.scovetta.com/yasca.html.

Silberschatz, Abraham, and Greg Gagne. 2009. Operating System Concepts with Java. 8

edition. Hoboken, NJ: Wiley.

Silva, L., H. Madeira, and J. G. Silva. 2006. “Software Aging and Rejuvenation in a

SOAP-Based Server.” In Fifth IEEE International Symposium on Network

Computing and Applications (NCA’06), 56–65. doi:10.1109/NCA.2006.51.

Smartbear. 2012. “SoapUI.” http://www.soapui.org/.

“SoapUI, Security Scans Overview.” 2011. Accessed May 16.

https://www.soapui.org/security-testing/overview-of-security-scans.html.

SPEC. 2009. “SPECweb2009 Performance Benchmark.”

http://www.spec.org/web2009/.

———. 2013. “Standard Performance Evaluation Corporation (SPEC).”

http://www.spec.org/.

“SPECjAppServer2004.” 2004. https://www.spec.org/jAppServer2004/.

“SPECjEnterprise2010.” 2010. https://www.spec.org/jEnterprise2010/.

“Spring Web Services - Home.” 2013. http://docs.spring.io/.

Sullivan, Bryan. 2009. “XML Denial of Service Attacks and Defenses.”

http://msdn.microsoft.com/en-us/magazine/ee335713.aspx.

References

 161

Sun Microsystems. 2004. “Web Services Performance Comparing Java 2 TM

Enterprise Edition (J2ee TM) Platform) and .Net Framework. Technical

Report.”

Sun Microsystems Inc. 2004. “Comparing Java 2 EE and .NET Framework.”

http://java.sun.com/performance/reference/whitepapers/WS_Tes t-1_0.pdf.

———. 2010. “Jax-Ws: JAX-WS Reference Implementation.” https://jax-

ws.dev.java.net/.

Suriadi, S., A. Clark, and D. Schmidt. 2010. “Validating Denial of Service

Vulnerabilities in Web Services.” In Network and System Security (NSS), 2010

4th International Conference On, 175–82. doi:10.1109/NSS.2010.41.

Suzumura, T., S. Trent, M. Tatsubori, A. Tozawa, and T. Onodera. 2008.

“Performance Comparison of Web Service Engines in PHP, Java and C.” In

IEEE International Conference on Web Services, 2008. ICWS ’08, 385–92. IEEE.

doi:10.1109/ICWS.2008.71.

TPC. 2008. “TPC Benchmark App. (Application Server). V1.3.”

http://www.tpc.org/tpc_app/.

———. 2015a. “TPC-C - Homepage.” Accessed September 14.

http://www.tpc.org/tpcc/.

———. 2013b. “Transaction Processing Performance Council (TPC).” Accessed

August 23. http://www.tpc.org/.

U, Gopalakrishnan, and Shreevidya Rao. 2005. “Develop Web Services with Axis2,

Part 1:” November 4.

https://www.ibm.com/developerworks/opensource/library/ws-webaxis1/.

Vieira, Marco, Nuno Antunes, and Henrique Madeira. 2009. “Using Web Security

Scanners to Detect Vulnerabilities in Web Services.” In IEEE/IFIP International

Conference on Dependable Systems & Networks (DSN 2009), 566–71. IEEE

Computer Society. doi:10.1109/DSN.2009.5270294.

Vieira, Marco, Nuno Laranjeiro, and Henrique Madeira. 2007a. “Assessing

Robustness of Web-Services Infrastructures.” In 37th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks, 2007. DSN ’07,

131–36. IEEE. doi:10.1109/DSN.2007.16.

———. 2007b. “Assessing Robustness of Web-Services Infrastructures.” In 37th

Annual IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN 2007), 131–36. Edinburgh, United Kingdom: IEEE Computer Society.

doi:10.1109/DSN.2007.16.

 162

Vieira, Marco, and Henrique Madeira. 2003. “A Dependability Benchmark for OLTP

Application Environments.” In Proceedings of the 29th International Conference

on Very Large Data Bases - Volume 29, 742–753. VLDB ’03. Berlin, Germany:

VLDB Endowment. http://dl.acm.org/citation.cfm?id=1315451.1315515.

———. 2005. “Towards a Security Benchmark for Database Management Systems.”

In International Conference on Dependable Systems and Networks, 2005. DSN

2005. Proceedings, 592–601. doi:10.1109/DSN.2005.93.

Wahab, O. Abdel, J. Bentahar, H. Otrok, and A. Mourad. 2017. “Optimal Load

Distribution for the Detection of VM-Based DDoS Attacks in the Cloud.”

IEEE Transactions on Services Computing PP (99): 1–1.

doi:10.1109/TSC.2017.2694426.

Wahab, O. Abdul, J. Bentahar, H. Otrok, and A. Mourad. 2017. “Towards

Trustworthy Multi-Cloud Services Communities: A Trust-Based Hedonic

Coalitional Game.” IEEE Transactions on Services Computing PP (99): 1–1.

doi:10.1109/TSC.2016.2549019.

Wahab, Omar Abdel, Jamal Bentahar, Hadi Otrok, and Azzam Mourad. 2015. “A

Survey on Trust and Reputation Models for Web Services: Single, Composite,

and Communities.” Decision Support Systems 74 (June): 121–34.

doi:10.1016/j.dss.2015.04.009.

Wang, Gang, Cheng Xu, Ying Li, and Ying Chen. 2006. “Analyzing XML Parser

Memory Characteristics: Experiments towards Improving Web Services

Performance.” In International Conference on Web Services, 2006. ICWS ’06, 681–

88. IEEE. doi:10.1109/ICWS.2006.31.

Wang, H, C. Yu, L. Wang, and Q. Yu. 2015. “Effective BigData-Space Service

Selection over Trust and Heterogeneous QoS Preferences.” IEEE Transactions

on Services Computing PP (99): 1–1. doi:10.1109/TSC.2015.2480393.

Wang, Y., I. R. Chen, J. H. Cho, A. Swami, and K. Chan. 2017. “Trust-Based Service

Composition and Binding with Multiple Objective Optimization in Service-

Oriented Mobile Ad Hoc Networks.” IEEE Transactions on Services Computing

PP (99): 1–1. doi:10.1109/TSC.2015.2491285.

Wickramage, N., and S. Weerawarana. 2005. “A Benchmark for Web Service

Frameworks.” In 2005 IEEE International Conference on Services Computing,

1:233–40 vol.1. doi:10.1109/SCC.2005.9.

“WildFly Homepage.” 2017. Accessed May 15. http://wildfly.org/.

Wireshark. 2011. “TCP Analyze Sequence Numbers - The Wireshark Wiki.”

http://wiki.wireshark.org/TCP_Analyze_Sequence_Numbers.

———. “Wireshark.” 2012. https://www.wireshark.org/.

“WS-Attacker.” 2012. SourceForge. http://sourceforge.net/projects/ws-attacker/.

References

 163

WSFuzzer. 2012. “WSFuzzer Project.” https://sourceforge.net/projects/wsfuzzer/.

Xie, Jingmin, Xiaojun Ye, Bin Li, and Feng Xie. 2008. “A Configurable Web Service

Performance Testing Framework.” In 10th IEEE International Conference on

High Performance Computing and Communications, 2008. HPCC ’08, 312–19.

doi:10.1109/HPCC.2008.53.

XINS. 2013. “XINS - Open Source Web Services Framework.”

http://xins.sourceforge.net/.

Xu, Ling, and Jian-Bo Yang. 2001. Introduction to Multi-Criteria Decision Making and

the Evidential Reasoning Approach. Manchester School of Management.

Zeichick, Alan. 2008. “Tomcat, Eclipse Named the Most Popular in SDTimes Study.”

http://www.sdtimes.com/link/31882.

Zhang, Aihua, and Pei Yang. 2012. “An Improved Algorithm for Fractal Image

Encoding Based on Relative Error.” In 2012 5th International Congress on Image

and Signal Processing (CISP), 254–57. doi:10.1109/CISP.2012.6469909.

Zhu, Ji, James Mauro, and Ira Pramanick. 2003. “R-Cubed (R3) - A Framework for

Availability Benchmarking.” In . Sun Microsystems, Inc.

