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“People have to be free to investigate computer security. People have to be 

free to look for these vulnerabilities and create proof of concept code to show 

that they are true vulnerabilities in order for us to secure our systems.” 
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Abstract 

As the business needs of organizations evolve, software applications and data must 

be integrated to deliver higher value services. Service Oriented Architectures (SOAs) 

appeared as an approach for system integration, attracting the attention of 

researchers and developers. A SOA is essentially an architectural style that can be 

built using many different technologies and platforms, including messaging services, 

remote method invocation middleware, and web services. Due to its characteristics, 

web services technology has become, by far, the most popular option for 

implementing a SOA and is of crucial importance in business-critical environments. 

SOAP Web Services (WS) are a platform-independent technology consisting of self-

describing software components, which enables business processes to be accessible 

worldwide. Once coded and deployed, services are accessible to consumers that can 

send requests and receive the respective responses. A web service is usually 

deployed on top of a web server and additional middleware, including a web service 

framework. This framework, besides supporting the deployment, performs crucial 

functions at runtime, namely handling client requests, parsing messages, performing 

error checking (e.g., compliance with the SOAP protocol), and building object 

representations of the requests that are then passed to the service code.   

Web service frameworks are mature software components, benefiting from years of 

research, development, and deployment in production systems. Thus, developers 

tend to focus on the quality of their code and assume that the middleware 

supporting their applications is secure, which is not always the case. In fact, industry 

reports have shown that frameworks are not more secure than other network-related 

systems. Due to their on-line exposure and presence in business-critical scenarios, 

web services are frequently the target of attacks that try to take advantage of the WS 

specifications to exploit vulnerabilities potentially present in the deployment 

platforms. A successful attack on a production system may result in infrastructure 

damage, financial losses, or irrecoverable reputation losses. 

To have secure service deployments, it is essential to provide developers and 

researchers with tools and techniques for assessing the security of their platforms, 
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which are currently scarce and insufficient. These evaluation tools should also allow 

comparing frameworks in terms of their security, so that service providers can select 

the framework that best fits their security needs. Benchmarks have emerged as a 

standardized tool for assessing and comparing systems according to particular 

characteristics, such as performance or dependability. The problem is that 

benchmarking security is a complex problem and is usually much more dependent 

on aspects that are unknown about the system (e.g., unknown vulnerabilities) and 

about the potential attackers, than on what is known about them.  

This thesis first presents a tool that allows testing the security of web service 

frameworks. WSFAggressor is a security testing tool, built on top of an existing tool 

named WS-Attacker, and integrates two distinctive features. In practice, we 

specialized the original tool by adding support for the implementation of a wide 

range of Denial of Service (DoS) attacks. In addition to a few other changes, we also 

added support for integration with the different stages of a security assessment 

approach, which in general includes at least a part involving the execution of regular 

requests and another involving malicious interactions. 

The thesis proposes an approach for evaluating the security of web service 

frameworks based on exposing the frameworks under testing to malicious requests 

that target the exhaustion of the resources to deny service to legitimate clients. The 

approach includes observing typical system parameters, including memory 

allocation or CPU usage, and the services response to detect failures and anomalous 

behaviors. The proposal is demonstrated against a set of widely used frameworks, 

disclosing severe failures and a few dubious behaviors. 

The thesis continues with an approach to assess the performance of web service 

frameworks when handling both security attacks and regular requests. This allows 

characterizing, from the perspective of legitimate clients that try to use the services 

supported by the frameworks, how the performance is affected by attacks. A set of 

experiments is carried out using several popular frameworks. Results show clear 

discrepancies in the performance of the frameworks under attack. 

Finally, the thesis proposes a benchmark that allows assessing and comparing the 

security of web service frameworks. The benchmark includes two main phases: 

security qualification and trustworthiness evaluation. In the security qualification, 

the goal is to identify frameworks that have unacceptable vulnerabilities and that 

should thus be disqualified from the evaluation. The remaining frameworks qualify 

to the trustworthiness evaluation phase where we apply multi-criteria decision 

making techniques to compute a trustworthiness score that can be used to rank the 

frameworks. We demonstrate the benchmark by assessing and comparing seven 

frameworks, which are ranked according to the behavior observed during the tests. 
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Resumo 

À medida que as necessidades empresariais evoluem, aplicações e dados devem ser 

integrados para que seja possível oferecer serviços de valor superior. As 

Arquiteturas Orientadas a Serviços (SOAs) são uma abordagem apelativa para a 

integração de sistemas, e atraem a atenção de investigadores e programadores. Uma 

SOA é um estilo arquitetural baseado em muitas tecnologias e plataformas 

diferentes, incluindo serviços de mensagens, middleware de invocação de métodos 

remotos e serviços web. A tecnologia de serviços web tornou-se a implementação 

mais popular de uma SOA e é crucial em ambientes críticos de negócio. 

Os serviços web (WS) são uma tecnologia multi-plataforma que permite que 

processos de negócios obtenham exposição mundial. Uma vez codificados e 

instalados, os serviços ficam acessíveis a clientes que podem então enviar pedidos e 

receber respostas. Um serviço web é geralmente instalado num servidor web, que 

inclui uma framework. Esta framework, além de suportar a instalação de serviços, 

desempenha funções cruciais em tempo de execução, em particular a receção de 

pedidos, o processamento de mensagens, a verificação de erros e a criação de 

representações dos pedidos, que são entregues ao código do serviço. 

As frameworks de serviços Web são componentes de software maduros, resultantes 

de anos de desenvolvimento e instalação em sistemas de produção. Como 

consequência, os programadores de serviços tendem a concentram-se na qualidade 

de seu código e assumem que o middleware que o suporta é seguro. Contudo, estudos 

anteriores mostram que as frameworks não são mais seguras do que outros sistemas 

distribuídos. Devido à sua exposição, os serviços web são alvo frequente de ataques 

resultando em graves danos financeiros, reputacionais e ao nível da infraestrutura. 

De modo a ter instalações seguras de serviços, é essencial disponibilizar aos 

programadores e investigadores ferramentas e técnicas para avaliar a segurança das 

suas plataformas, que são atualmente escassas e insuficientes. Estes meios de 

avaliação devem também permitir comparar as frameworks em termos de 

segurança, para que os fornecedores de serviços possam selecionar a que melhor se 

ajusta às suas necessidades. As benchmarks surgiram como uma ferramenta 
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padronizada para avaliar e comparar sistemas de acordo com características 

específicas, como desempenho ou confiabilidade. A questão é que avaliação de 

segurança é um problema bastante complexo e é geralmente muito mais dependente 

de aspetos que são desconhecidos do sistema (e.g., vulnerabilidades desconhecidas) e 

sobre os potenciais atacantes, do que sobre o que é conhecido.  

Esta tese começa por apresentar  uma ferramenta que permite testar a segurança 

das frameworks de serviços web. WSFAggressor é uma ferramenta de testes de 

segurança, construída com base na ferramenta WS-Attacker, e inclui duas 

funcionalidades distintivas. Na prática, especializámos a ferramenta original, 

adicionando suporte para a implementação de uma ampla gama de ataques de 

negação de serviço (DoS). Além de outras mudanças, também adicionámos suporte 

para a integração com as diferentes etapas de uma abordagem de avaliação de 

segurança, que em geral inclui pelo menos uma fase de execução de pedidos 

legítimos e outra que envolve interações maliciosas. 

A tese propõe uma abordagem para avaliação de segurança de frameworks para 

serviços web, que se baseia em expor as frameworks sob teste a pedidos maliciosos 

que visam consumir os recursos de sistema de modo a negar o serviço a clientes 

legítimos. A abordagem inclui a observação de parâmetros de sistema, incluindo 

alocação de memória ou utilização de CPU, e das respostas dos serviços para detetar 

falhas e comportamentos dúbios. A abordagem é demonstrada sobre um conjunto de 

frameworks, revelando falhas graves e alguns comportamentos duvidosos. 

A tese prossegue com uma abordagem para avaliar o desempenho de frameworks 

de serviços web, na presença simultânea de ataques e pedidos legítimos. Esta 

abordagem caracteriza como o desempenho é afetado por ataques, na perspetiva dos 

clientes legítimos que tentam usar os serviços suportados pelas frameworks. Foram 

executados um conjunto de experiências usando várias frameworks de serviços web. 

Os resultados mostram discrepâncias no desempenho das frameworks sob ataque. 

Por fim, a tese propõe uma benchmark que permite avaliar e comparar a segurança 

de frameworks para serviços web. A benchmark inclui duas fases principais: 

qualificação de segurança e avaliação de confiança. Na qualificação de segurança, o 

objetivo é identificar claramente as frameworks que possuem vulnerabilidades 

evidentes e que, portanto, devem ser desqualificadas da avaliação. As restantes 

frameworks qualificam para a fase de avaliação de confiança onde aplicamos técnicas 

de tomada de decisão multicritério, para calcular uma pontuação de confiança que 

pode ser usada para ordenar as frameworks. Demonstramos a benchmark de segurança 

avaliando e comparando sete frameworks para serviços web, que são ordenados de 

acordo com o comportamento observado durante os testes. 

 

Palavras-Chave 

Serviços web, frameworks, segurança, vulnerabilidades, testes de segurança, 

benchmarking. 
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Chapter 1 
Introduction 

Web Services are a platform-independent technology consisting of self-describing 

software components, which is being frequently used by enterprises to expose their 

business operations to clients worldwide. Web services are supported by open XML-

based protocols and specifications, such as SOAP and WSDL, which allow providers 

to offer a well-defined and platform-independent interface to consumers. Due to its 

interoperability capabilities and architectural specificities, this technology is a 

popular option for implementing Service Oriented Architectures (Curbera et al. 

2002) and to integrate heterogeneous systems, being frequently used to support 

business to business interactions. Nowadays, we can find services deployed in many 

different contexts, including business-, mission- and safety-critical systems, such as 

online retailers, air traffic control systems and railway operation management, just to 

name a few. 

Once a service application is coded, it is deployed in the context of an application 

server (e.g., Apache Tomcat, JBoss AS), which is essentially an HTTP server packed 

with additional middleware for providing enterprise features (e.g., supporting web 

services, transactions, message queues). This middleware includes a web service 

framework that, together with the application server, acts as a container for the web 

service and plays a crucial part in the communication with clients. The application 

server delivers SOAP messages arriving from clients (typically, via HTTP) to the 

web services framework, which then processes (parses messages, checks for errors, 

and builds programming language-level objects) and delivers the messages to the 

web service application  (U and Rao 2005).  

As a central piece of software in a web services stack, frameworks are highly-

exposed software layers. Besides handling a large part of the processing work 

necessary for communication to take place, they must also support advanced 

features, such as integration with different XML parsers, encryption mechanisms, 

reliable communication, and advanced addressing schemes. Thus, they have become 
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relatively complex software components that are prone to hold residual software 

faults (i.e., bugs). Some of these internal faults represent security vulnerabilities, as 

they enable external faults (e.g., a malicious request sent to the service) to harm the 

system (Avizienis et al. 2004). Thus, a vulnerability in such a central component 

might compromise the security of the whole system. 

Several reports have shown the presence of vulnerabilities in web services 

middleware, including critical vulnerabilities in popular XML libraries from Sun 

Microsystems, Apache Software Foundation, and Python (Neves 2009). These 

vulnerabilities enable Denial of Service (DoS) attacks or potential execution of 

malicious code on the affected systems and are severe enough to attract the attention 

of large corporations. Recently, researchers found vulnerabilities in services run by 

Google, Facebook and Runkeeper (Sadeghipour 2015), which can be exploited by the 

XML External Entities attack, a well-known DoS attack. Google alone has paid 

researchers a minimum of $10,000 for each vulnerability found in their production 

servers that would allow the successful execution of XML External Entities attacks. 

Security is a key issue in web services, especially considering their use in critical 

scenarios. The concept of security is quite broad, many times referring to aspects 

such as availability, integrity, and confidentiality (Avizienis et al. 2004). In the case 

of web services, availability (i.e., readiness for correct service (Avizienis et al. 2004)) 

is an essential attribute as a non-available service potentially translates to direct 

losses (e.g., lost business transactions) or indirect losses (e.g., reputation or customer 

dissatisfaction). Performance is related to this context, as a slow service handles less 

transactions and might even be unable to conclude some operations in a timely 

manner, again bringing losses for the service provider. Thus, it is not surprising that 

most of the DoS attacks known in the literature target the XML handling capabilities 

of web service frameworks, which are by themselves time-consuming and 

processing-intensive operations. 

Despite the importance of having secure deployments, the complexity of web service 

frameworks, the general difficulty in detecting unknown vulnerabilities, the lack of 

specialized security assessment tools for developers and providers, allied with the 

fast-changing dynamics and high exposure of the web environment, make this kind 

of environment very susceptible to security attacks. Thus, there are key issues that 

need to be addressed, which map to the goals of this thesis, namely: 

1. Tools able to emulate a wide range of attacks and that can be used for 

security assessment of web service frameworks. 

2. Approaches for assessing the security of web service frameworks in the 

presence of attacks, including evaluating the impact in the performance as 

perceived by regular clients.  

3. Security benchmarks for assessing and comparing the security of different 

frameworks in a standardized and sound manner. 
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1.1 Assessing and Comparing the Security of Web Service 
Frameworks 

Software vendors are becoming increasingly aware of security issues in web 

services, as shown by the large number of vulnerability detection tools available 

nowadays (Nuno Antunes and Vieira 2015). Some of these tools are based on the 

analysis of the code to identify patterns that suggest the presence of vulnerable code, 

while others use the execution of the code and rely on the observation of the system 

(e.g., analyze responses). The problem is that most tools focus on the detection of 

vulnerabilities at the application level (e.g., SQL Injection, XSS (Nuno Antunes et al. 

2009; Bau et al. 2010)) and disregard the underlying framework, which is many times 

(wrongly) assumed to be secure. Also, existing tools are known to be poor 

performers (Nuno Antunes and Vieira 2009) and they eventually need the presence 

of an expert to, at least, analyze the results. The few tools that allow testing WS 

frameworks are very limited (Oliveira, Laranjeiro, and Vieira 2012b), as they 

implement only a small set of attacks, allow little (or no) configuration and tuning, 

and lack flexibility and documentation to be easily extended. 

The lack of adequate tools to perform security evaluation is indeed a problem. In 

practice, what we observe is that security researchers tend to focus on the security of 

applications (Oliveira, Laranjeiro, and Vieira 2015d), probably due to the maturity of 

the underlying middleware and its use in many production environments around 

the world. Thus, research on the detection of vulnerabilities at the application level, 

in particular in the web services domain, is a quite popular topic (Nuno Antunes et 

al. 2009; Duchi et al. 2014; Vieira, Antunes, and Madeira 2009). However, if we move 

to the middleware level, the studies that focus on assessing the behavior of 

frameworks in the presence of attacks are actually exploratory and isolated examples 

(Jensen, Gruschka, and Herkenhöner 2009), (Suriadi, Clark, and Schmidt 2010), 

leaving open space for research.  

A successful DoS attack on a system supported by web services may leave legitimate 

clients with no means to carry out their business transactions. At best, the effect of a 

successful attack is just instantaneous degraded performance, which occurs while 

the attack is happening, but in more severe cases this impact can extend to periods 

long after the attack has concluded. Even if the system experiences only performance 

degradation, clients will still want to see their business transactions concluded in 

due time. From the provider perspective, the expectation is that it is possible to 

equip systems with the middleware that best masks the impact of DoS attacks, 

maintaining acceptable performance for legitimate clients. The problem is that 

current tools and assessment methodologies lack this perspective, focusing on either 

evaluating the performance using non-malicious requests (Wickramage and 

Weerawarana 2005; Govindaraju et al. 2004), or simply on understanding the 

potential presence of vulnerabilities in frameworks by performing security attacks 

(Suriadi, Clark, and Schmidt 2010; Oliveira, Laranjeiro, and Vieira 2012b; Oliveira, 
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Rui André, Laranjeiro, and Vieira 2012). To the best of our knowledge, no work 

characterizes the impact that DoS attacks have in the frameworks from the point-of-

view of the performance perceived by legitimate clients.  

The impact of attacks on a web service framework essentially depends on the 

framework design (e.g., technology, architecture, API, optimizations) and 

implementation (e.g., the presence of vulnerabilities). This essentially means that 

different frameworks may achieve different levels of security (Oliveira, Laranjeiro, 

and Vieira 2015d). As the number of web service frameworks available nowadays is 

quite large, service providers face the challenge of selecting the one that best fits 

their security needs. In practice, they need to assess alternative solutions to select the 

one that handles the potential security attacks and stressful conditions in a more 

effective way. Obviously, security is not the only factor involved in the selection, but 

a practical way to compare security is needed to support the process, together with 

other existing techniques and tools that focus on additional quality attributes (e.g., 

performance, dependability) (Dujmović and Nagashima 2006; Martinez, de Andres, 

and Ruiz 2014).  

A benchmark is a standardized procedure that allows assessing and comparing 

systems and/or components in a domain according to a given aspect (e.g., 

performance, availability, scalability) (Gray 1993). Performance benchmarks have 

achieved a considerable reputation in the computer industry (TPC 2012), (SPEC 

2012) and, in recent years, benchmarks raised a considerable interest in the field of 

dependability. Dependability benchmarks have been applied in a number of 

different domains, including operating systems, databases and Web Servers   

(Karama Kanoun and Spainhower 2008). However, benchmarking security is still an 

emerging area of research, with a few initial efforts found in OLTP systems and Web 

applications (Vieira and Madeira 2005; Neto and Vieira 2011b, 2009). 

In theory, a security benchmark should provide a metric (or a small set of metrics) 

able to characterize the degree to which security goals are met (Mendes, Madeira, 

and Duraes 2014) by the system under testing, allowing comparing alternatives and 

making informed decisions. The problem is that security is, usually, much more 

dependent on aspects that are unknown about the system (e.g., unknown 

vulnerabilities) and about the potential attackers, than on what is known about them. 

Neto and Vieira (Neto and Vieira 2011b) proposed that a security benchmark should 

include two phases (qualification for disqualifying systems with known 

vulnerabilities and trustworthiness assessment for distinguishing systems without 

known vulnerabilities based on evidences related to specific characteristics or 

behaviors), considering a reference domain and representative threat vectors for that 

domain.  

The design and implementation of a security benchmark is, as mentioned, a non-

trivial task due to the uncertainty involved, but also due to the high number of 

complex aspects that need to be addressed. These aspects begin with simply 
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emulating the behavior of legitimate clients and extend to the emulation of the 

behavior of an attacker, which may use a large number of diverse attacks and many 

more attack configurations. Other difficult aspects are also involved, including the 

repeatability of the assessment procedure and the definition of the metrics to be 

used, just to name a few. Up until now, research on security benchmarking was not 

able to come up with an implementation of a security benchmark that can be 

effectively used by service providers for selecting the framework that best fits their 

needs. 

1.2 Contributions of the Thesis 

The key contribution of this thesis are tools and techniques for assessing and comparing 

the security of web service frameworks. The tools and the techniques discussed 

throughout the thesis represent elements that allow building a security benchmark 

for web service frameworks, which is the core of this work, and is discussed by the 

end of the document. In detail, the main contributions are as follows: 

- The design and implementation of a tool for testing the security of web 

service frameworks (named WSFAggressor). The tool supports the execution 

of a broad range of DoS attacks (currently 9, but easily extendable) identified 

in the state of art. Besides supporting the execution of more types of security 

attacks than similar security testing tools, it adds special support for 

integration with assessment approaches, including the possibility of being 

remotely controlled (e.g., starting, pausing, or stopping a test) and the export 

of test run data (e.g., request identification, response content, response time). 

- The definition of an experimental approach to assess how well a given web 

service framework is prepared to handle DoS attacks. The approach is 

based on a set of distinct stages that include the execution of legitimate 

requests, the execution of malicious requests of different types, observation 

periods, and the classification of the behavior observed during the tests.  

- The proposal of an experimental approach for assessing the performance of 

web service frameworks when handling both security attacks and regular 

requests. The characterization of the performance is done from the 

perspective of the legitimate clients which interact with the system and try to 

execute service operations. The behavior observed during several stages is 

used to identify failures and dubious behaviors. 

- The proposal of a security benchmark for assessing and comparing the 

security of web service frameworks. This benchmark is based on the 

concepts introduced in (Neto and Vieira 2011b) and is composed of a security 

qualification phase and a trustworthiness evaluation phase. Conceptually, in 

the first phase, the frameworks under benchmarking should be analyzed 
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and/or tested using state-of-the-art techniques and tools to detect 

vulnerabilities, and the ones with vulnerabilities should be disqualified from 

the evaluation. In the second phase, Multi Criteria Decision Making (MCDM) 

techniques are used to compute a trustworthiness score that allows ranking 

the frameworks in terms of security.  

- The instantiation of the security benchmark to the concrete case of Denial 

of Service attacks. The first phase is based on the execution of 9 

representative security attacks against services deployed on the web service 

frameworks being benchmarked, using the WSFAggressor tool; and the 

second phase uses measurable run-time behavior in an instantiation of the 

Logic Score of Preferences (LSP) technique (Dujmović and Nagashima 2006), 

where data are arithmetically processed in a series of steps to calculate a final 

trustworthiness score that represents an estimated quality (in terms of 

security) of the frameworks being tested. 

- The experimental security assessment of current web service frameworks, 

according to the different abovementioned facets and including very popular 

and widely used frameworks, such as Apache Axis 1, Apache Axis 2, Apache 

CXF, Oracle Metro, Spring JAX-WS, Spring-WS, and XINS . In addition to the 

application of the different techniques, we disclose severe failures in most of 

the frameworks and several dubious behaviors that show the incapacity of 

the middleware being tested of handling malicious requests and suggest 

space for improvements in the implementation of these crucial web service 

components. Also, using the proposed benchmark, we rank the different 

frameworks from a security perspective. 

1.3 Thesis Structure 

This first chapter introduced the problem addressed and the main contributions of 

the thesis. 

Chapter 2 provides an overview of important concepts and the state of the art 

relevant for this work. More specifically, it presents background on web services and 

service based infrastructures, discusses the state of the art on software security and 

testing (with a focus on web services), and discusses related work on computer 

benchmarks, introducing their three main applications in software (i.e. performance 

dependability, and security). 

The next chapters go through each of the contributions mentioned before, and are 

essentially the elements used to build the security benchmark for web service 

frameworks proposed in Chapter 6, as illustrated in Figure 1.1. 
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Figure 1.1 – Organization of the thesis main contributions. 

As we can see, each proposal builds on top of the previous ones. The exception is the 

proposal in Chapter 3, which presents WSFAggressor, a security testing tool, 

specially developed for assessing the security of web service frameworks. First, the 

architecture is explained, including the main modules and the way they interact with 

each other. Then, the chapter discusses the list of supported attacks and how the tool 

compares with other competing security testing tools.   

Chapter 4 presents a multi-stage approach for assessing the security of frameworks 

in the presence of security attacks. The different stages of the approach are discussed 

in terms of their usefulness and contribution to the effectiveness of the proposed 

approach. This approach uses the WSFAggressor tool and is applied to study the 

behavior of well-known web service frameworks in the presence of security attacks 

targeting the core web services specifications, i.e., those enabling basic message 

exchange functionalities. 

Our approach for characterizing the performance of frameworks in the presence of 

security attacks, from the perspective of legitimate clients, is discussed in Chapter 5. 

The proposal, built on the experience of Chapter 4 (and, in part, using the tool 

proposed in Chapter 3), is based on a client that exchanges non-malicious messages 

with an infrastructure that includes the frameworks being assessed and several web 

service applications. It is applied to characterize the performance of leading web 

service frameworks, from the perspective of the clients. 

Chapter 6 discusses our proposal for benchmarking the security of web service 

frameworks. This chapter is of central importance in the context of this thesis and 

builds on the elements provided by the previous chapters. The chapter describes in 

detail the benchmark components and the procedures adopted by each phase of the 

benchmark. It also discusses the implementation of the benchmark for a concrete 

case of assessing and comparing several of the most well-known framework 

implementations. The chapter finalizes with a detailed discussion of the results.  

Chapter 7 concludes the thesis and proposes topics for future research directions. 
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Chapter 2 
Background and Related Work 

Research on security evaluation for web services gained ground in recent years. 

However, most of the work in the area is related with the evaluation of particular 

dependability or security properties (e.g., availability), with few works focusing on 

benchmarking. This chapter starts by introducing basic concepts on web services 

and frameworks and key notions regarding software security, with emphasis on web 

services security. It then describes several assessment and benchmarking techniques, 

namely for performance, dependability and security. The limitations of current 

security evaluation approaches for web services are highlighted and the gaps 

between the state of the art and the definition of a security benchmarking technique 

for this domain are discussed. 

The chapter is organized as follows. Section 2.1 introduces basic concepts on web 

services and frameworks and Section 2.2 overviews security concepts with emphasis 

on the web services domain. Section 2.3 overviews security testing techniques and 

tools. Section 2.4 presents the related work on evaluation and benchmarking, with 

emphasis on three key perspectives: performance, dependability, and security. 

Finally, Section 2.5 concludes the chapter. 

2.1 Background on Web Services and Frameworks 

Web services are self-describing components that can be used by other software 

across the web, in a platform-independent manner (Curbera et al. 2002). The 

technology was designed to allow heterogeneous systems to communicate easily, 

and, mostly due to this, they are a strategic vehicle for data exchange, being widely 

used by multiple businesses. Ranging from local retail stores to large media 

corporations, and encompassing different domains, such as automotive 
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manufacturing, air traffic control, or healthcare, web services are nowadays 

fundamental parts of modern organizations (Gustavo Alonso et al. 2004).   

In a web services environment, a provider supplies one or more services to 

consumers (Curbera et al. 2002) and the discovery of services is optionally mediated 

by a service broker. This scenario is depicted in Figure 2.1. Each service is composed 

of a set of operations, and each operation accepts from none to several inputs and 

returns an output. Each input and output parameter involved in the interaction also 

has a data type, described in the XML Schema Datatypes specification. All the 

information regarding the service interface is described in an interface description 

document, namely a WSDL (Web services Description Language) file. This file may 

be used by service consumers to understand basic aspects regarding the service, 

including the available operations and their parameters, or where the service is 

actually deployed. This information allows the consumer to write correct requests 

for invoking a particular service operation. 

 

Figure 2.1 – A typical Web Service environment 

In a typical interaction, the consumer (i.e., the client) sends a request to the provider 

(i.e., the server). After processing the request, the server sends back a response with 

the results. These requests and responses are XML messages that comply with the 

Simple Object Access Protocol (SOAP), and are typically exchanged using HTTP, 

although another type of transport mechanism may be used (e.g., SMTP, JMS) 

(Perera et al. 2006, 2). 

To facilitate the discovery of a web service, it is possible to have a broker providing 

the WSDL file to clients, which will then be able to use it to extract all necessary 

information to consume the service (e.g., service address, transport bindings). It is 

also visible in Figure 2.1 that, many times, services can make use of external systems 

(sometimes they are part of a larger service composition), but this does not have any 

impact on the client, who just needs the service interface to consume the service. 
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At the service provider, we find a relatively complex infrastructure, which is 

depicted in Figure 2.2. In addition to the typical mandatory parts (e.g., operating 

system, a Java or Python virtual machine), the main parts involved are an 

application server and a Web Service Framework (WSF). The application server is 

essentially a server that is prepared to handle HTTP requests (i.e., it is a web server) 

and that is generally equipped with different types of middleware to allow 

deployment of different types of services (e.g., JMS services, Enterprise JavaBeans, 

RESTful services, SOAP web services). Examples of this type of servers are Apache 

Tomcat, Oracle WebLogic, and WildFly (“Apache Tomcat” 2012; “Application Server 

- Oracle WebLogic Server” 2017; “WildFly Homepage” 2017).  

A particular type of middleware that can be used within an application server is a 

web service framework (e.g., Apache Axis, Metro, Apache CXF, Spring WS) 

(“Apache Axis” 2006; “Metro” 2012; “Apache CXF” 2012; “Spring Web Services - 

Home” 2013). Its role is to act as a container for the services, by being an 

intermediate layer that, at runtime, is responsible for message processing. Most of 

the times, a framework is a library that is already distributed with the application 

server (for instance, an application server can only be marked as compliant with the 

Java Enterprise Edition specification if, among other requirements, it contains this 

type of library, thus supporting the deployment of SOAP web services). However, it 

is also true that this component can typically be changed, even when already part of 

the server. The decision to change it or not, depends on the criteria of the provider 

(e.g., performance, security). 

 
 

Figure 2.2 - Web services interactions and supportive infrastructure 

At runtime, a client sends a SOAP message via HTTP to the server. The HTTP 

connector handles and processes the incoming HTTP request, retrieves the SOAP 

message and delivers it to the web service framework. The framework then 

processes and delivers the SOAP message to the actual service implementation (i.e., 

the web service application). In short, the framework validates each message and 

transforms it into an object that can be handled by the application. After this object is 

processed by the application, the reverse path is taken, with the return object being 

serialized into a SOAP response that is sent back via HTTP to the client (U and Rao 

2005). 
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In general, and following the well-known Apache Axis 2 model (Perera et al. 2006, 2) 

, we can say that a framework is composed of the following conceptual parts: a XML 

processing part, a SOAP processing part, and an information part (Perera et al. 2006, 

2). The XML processing part aims to manage the XML documents, and convert them 

from the source form (i.e., as received by the consumer) to a specific format that can 

be handled by the SOAP processing part. In turn, the SOAP processing part uses the 

output of the previous one to extract the message headers that provide information 

about the service behavior and the message body that includes the payload. Finally, 

the information model supports additional capabilities, being responsible for 

managing the services deployed, the modules used to extend the functionality of the 

framework, and the global configuration used to adjust specific attributes of that 

same framework. Overall, frameworks can be quite complex and, above all, they 

have the role of performing critical communication functions that allow exposing the 

service application to the outside world, making security a critical quality attribute. 

2.2 Software Security Concepts 

The definition of security holds a few similarities with the definition of dependability. 

The term dependability is an integrative concept based on the following five 

attributes (extracted from (Avizienis et al. 2004)):  

 Availability: readiness for correct service; 

 Confidentiality: absence of unauthorized disclosure of information; 

 Integrity: absence of improper system alterations; 

 Reliability: continuity of correct service; 

 Safety: absence of catastrophic consequences on the user(s) and the 

environment; 

 Maintainability: ability to undergo modifications and repairs. 

 

Security, like dependability, is also an integrative concept, but it refers to the 

composition of availability, confidentiality, and integrity (Avizienis et al. 2004). Before 

detailing these three attributes, it is important to clarify the concept of fault, which is 

the cause of an error (a deviation of the system state) prone to cause a failure (the 

transition from correct service to incorrect service). A vulnerability is a special kind of 

fault, as it is an internal fault (e.g., a software bug) that enables an external fault (e.g., 

a malicious request sent to a service) to harm the system (Avizienis et al. 2004). We 

now go through the three attributes that compose security. 

Confidentiality – refers to the absence of unauthorized disclosure of information 

(Avizienis et al. 2004). Information is highly valuable in today’s world and it is quite 
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important to protect it, particularly when personal and sensitive data are at stake. A 

system that assures confidentiality must provide mechanisms that assure that 

throughout the system’s life span, any critical information, such as provider data 

(e.g., administration credentials) or client data (e.g., credit card numbers), are not 

disclosed to unauthorized sources. These mechanisms might include, for instance, 

encryption of the communication channel (use of HTTPS for communication), and 

message encryption (for messages that are bounced off to external systems). The 

disclosure of sensitive information may have catastrophic consequences on the 

provider reputation and on the consumer privacy. 

Integrity – refers to the absence of improper system alterations (Avizienis et al. 

2004). In our context, the information being exchanged between a client and a web 

service must be correct and unchanged at all times. A system that assures integrity in 

this context must be able to detect changes in requests and take adequate measures. 

An attacker can alter requests travelling from a legitimate client to the service and 

those alterations will pass unnoticed, if the proper mechanisms are not in place (e.g., 

digital signatures). A successful attack may have very different consequences: it may 

simply damage the system (for instance, by making the system process invalid data), 

or it may allow privileges escalation (if, for instance a user’s role is changed), among 

others.  

Availability – refers to readiness for correct service (Avizienis et al. 2004). Systems 

must assure that the deployed services can be accessed at any time by legitimate 

clients. However, systems must also deal with malicious users, that may craft special 

requests (e.g., very large requests) with the intention of exploiting potential 

vulnerabilities in the system. When successful, these requests may lead to, for 

instance, wasted CPU cycles and/or high allocated memory that can ultimately result 

in a Denial of Service (DoS). DoS attacks take advantage of the limited hardware 

resources, inefficient implementations, and/or presence of vulnerabilities in the 

system under attack. Such attacks can be greatly amplified when performed by 

many malicious clients, which will then be actually performing a Distributed Denial 

of Service (DDoS) attack (Ranjan et al. 2009). Successful DoS-based attacks can cause 

service unavailability to legitimate users. The service downtime may represent 

significant costs to the provider, ranging from direct financial losses to customer 

dissatisfaction. 

Other secondary attributes, such as authenticity (integrity of message  content  and 

origin, and possibly of other data, such as the time of emission), accountability or  

non-repudiation (availability and integrity of the identity of the person who performs 

an operation), and reliability (consistency of the intended behavior and result), also 

extended the definition of security (ISO/IEC 2009; Avizienis et al. 2004).  

Considering the number and complexity of the attributes that can characterize 

security, it is difficult to devise an approach for evaluating security as a whole. For 

this reason and due to the typically high importance of being ready to provide correct 
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service in web services environments, in this thesis we focus on availability. The 

reason is that, nowadays, DoS attacks are a major concern for service providers, not 

only due to their direct impact in the services, but also due to their potential to cause 

huge financial and reputation losses to vulnerable companies (Ashford 2016; Ragan 

2016; Hulme 2016; Neves 2009). 

A recent study from Imperva, a data security company, observed that DoS attacks 

continue to move up the OSI Stack (Imperva 2012). According to this study, hackers 

are moving DoS attacks up the stack and into the web application layer in order to 

decrease the attack costs and access more critical resources. Furthermore, it claims 

that DoS attacks are more efficient on web based applications (and their underlying 

middleware) and often avoid detection, as most anti-DoS solutions are traditionally 

focused on the lower layers. Besides the increasing number of DoS attacks, Arbor 

Networks also reports that the size, speed, and complexity of such attacks are also 

increasing (Ashford 2016). 

In 2009, Bitbucket, a code hosting provider, remained 24 hours unavailable due to a 

DDos attack aimed at Amazon Web Services (AWS) (Hulme 2016). Basically, a 

massive flood of UDP packets was directed towards the IP addresses used by the 

company’s site, consuming all the available bandwidth. Amazon was only able to 

deal with the problem 17 hours after it was first reported. In 2014, a more severe case 

happened to Code Spaces, another code hosting provider for software projects 

hosted on an AWS infrastructure. The company suffered a massive a DDoS attack 

(Ragan 2016), which turned out to be the first wave of other attacks that enabled 

gaining access to the company’s infrastructure including the EC2 panel that 

controlled all the cloud instances. This led most of Code Spaces data, backups, 

machine configurations, and offsite backups to be either partially or completely 

deleted. This ended up by terminating the company’s business.  

In recent years, security organizations and the research community have 

increasingly been interested in the security of Web Services infrastructures. 

Sccording to OWASP’s latest vulnerability survey (OWASP 2013a), “Components with 

Known Vulnerabilities”, such as libraries, frameworks (e.g., web service frameworks) 

and other software modules, are among the 10 most critical source of security 

vulnerabilities. Supporting this observation, in 2009, Codenomicon (a leading 

vendor of software security testing solutions) announced that it found and helped 

fixing multiple critical flaws in popular XML libraries (Neves 2009). Affected 

libraries included implementations from Sun Microsystems, Apache Software 

Foundation, and Python. In particular, multiple vulnerabilities were quickly 

identified in libraries that support parsing XML data. The discovered vulnerabilities 

would enable Denial of Service attacks or execution of code on the affected systems. 

In the specific case of WS frameworks, malicious users frequently try to explore the 

overhead that results from processing XML and SOAP messages (Gang Wang et al. 

2006) by building large SOAP requests or SOAP requests holding special 
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characteristics (Jensen, Gruschka, and Herkenhöner 2009). Among others, two 

important XML based attacks are frequently mentioned in the literature: Coercive 

Parsing and Oversized Payload. The work in (Intel 2006) presents an extensive threat 

model for XML content, detailing attacks that extend the former two and including 

other types of attacks (e.g., based in large arrays). One key aspect is that, most of the 

known XML-based DoS attacks require minimum knowledge from the attacker 

(Jensen, Gruschka, and Herkenhöner 2009).  

In summary, although there are several studies that focus on the definition and 

classification of attacks for the web services context (Jensen, Gruschka, and 

Herkenhöner 2009; Suriadi, Clark, and Schmidt 2010; Intel 2006), few target the 

evaluation of the behavior of the systems in presence of those attacks. Moreover, 

research indicates that frameworks are not less vulnerable to attacks than other 

network-related systems. Actually, they bring their own concerns related with their 

specificities (e.g., XML processing) and understanding how well a given framework 

is prepared to handle attacks raises challenges that current research has not yet 

tackled. 

2.3 Software Security Testing 

Testing can be defined as the process of executing a program with the intent of 

finding faults (Myers, Sandler, and Badgett 2011). In general, testing can be carried 

out at different levels, targeting just one part of the application (e.g., a module), a set 

of parts (e.g., a group of modules), or the complete system (Myers, Sandler, and 

Badgett 2011). 

The finest testing level is named unit testing and it has the purpose of verifying the 

execution of small and isolated software pieces. The size of the pieces may vary, 

depending on the context, but the idea is that they are parts that can be tested 

separately. Also, this kind of testing is usually performed with access to the code 

being tested (Myers, Sandler, and Badgett 2011) and nowadays there are numerous 

testing platforms that allow developers to perform unit tests (e.g., Junit, CPPUnit, 

NUnit, JUnitEE). 

In integration testing, the goal is to verify the way interaction occurs between 

software components. Components can be set up incrementally bottom-up or top-

down, but it is also frequent that they are integrated by function, which then allows 

to test a particular function. This kind of testing is many times scattered throughout 

the software development process and performed continuously, thus also being 

known as continuous integration (Myers, Sandler, and Badgett 2011). 

System testing is the largest granularity level and aims to test the behavior of the 

complete system. This level of testing is quite adequate to understand how well a 

given system complies with non-functional requirements (e.g., performance, 



Chapter 2  

 36 

security). They are also many times executed to support acceptance tests, which 

intend to confirm if a given system complies with the needs of the users (Myers, 

Sandler, and Badgett 2011). 

Software testing can also be classified depending on the visibility that the tester has 

on the code of the program being tested. When there is no knowledge or access to 

the internal details of a program, the testing activity is named black-box testing; 

when there is knowledge or access to the program details (e.g., source code) it is 

named white-box testing. Obviously, these concepts also apply to the case of security 

testing, as a vulnerability is a software fault. The difference is that this software fault 

allows an external fault to harm the system (Avizienis et al. 2004). 

The purpose of security testing is to determine whether a system meets its specified 

security requirements (ETSI 2015).  One popular way to devise security test cases is 

to study known security vulnerabilities in security reports, research papers, books, 

or other sources, and generate test cases that may show the presence of a particular 

vulnerability. As in traditional testing, we find two categories regarding the 

knowledge or access to the program being tested, namely (ETSI 2015): 

i) White box security testing: when there is access to the internal details of 

the program. This is often referred to as Static Application Security 

Testing (SAST), as many of these techniques do not require executing the 

code; 

ii) Black box security testing: when there is no access to the internals of the 

program being tested. This kind of techniques is often referred to as 

Dynamic Application Security Testing (DAST), as they involve executing 

the code.  

2.3.1 White Box Testing 

White box approaches can be performed manually (e.g., with security experts 

examining the source code of an application), or by using code analysis tools, which 

analyze the code and require minimal human intervention. Manual code analysis 

(e.g., code review) is a time-consuming activity that requires the presence of experts 

(in our context, security experts). It is complex, as many times it is very difficult to 

understand if there is a vulnerability in the code without executing it, and thus it is 

error-prone. Due to this, automatic, or semi-automatic tools have received interest 

from the industry and from the research community. 

Some of the current static analysis tools require access to the source-code, while for 

others, bytecode is sufficient. In practice, the tools analyze the code and try to match 

parts of it against predefined patterns that represent bad practices, known to be the 

origin of security problems (e.g., a concatenated string being used in an SQL 

statement is usually flagged as an SQL Injection vulnerability). Obviously, this kind 
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of issues depends on expert knowledge that is used precisely to define the bad 

practice patterns. The consequence is that tools might miss particular types of 

vulnerabilities, if the knowledge is incomplete (Bessey et al. 2010). 

The patterns used by static code analyzers can be loose or tight. A tight pattern is 

very precise, as it allows to accurately match a certain type of bug, but it may not be 

able to detect the cases where the bug is not a perfect match, due to small variations. 

On the other hand, a loose pattern allows finding more unknown issues; the 

downside is that it tends to report false vulnerabilities where there are no real 

problems (i.e., false positives). This kind of tools are actually known for producing a 

high number of false-positives, which results in further work for the security expert, 

as each detected problem will then have to be manually analyzed (Nuno Antunes 

and Vieira 2015). The following paragraphs describe several static analysis tools that 

provide some support for identifying security problems. 

Findbugs  (Findbugs 2012) is a static analyzer that tries to find bugs in Java 

programs, operating on their bytecode. Potential vulnerabilities are ranked and 

grouped in categories that represent different degrees of severity. The tool is based 

on the use of code pattern detectors, which can be extended by using plugins. One of 

the plugins available is intends to “Find Security Bugs” and includes a set of rules 

that focus on security aspects. FindBugs allows the use of filters, which are used to 

include or exclude bug reports for certain types of vulnerabilities, classes or 

methods.  

Fortify is a commercial static code analyzer from HP (“HP Fortify Static Code 

Analyzer” 2013), that scans source code, identifies causes for software security 

vulnerabilities and correlates and prioritizes the ones found according to the user 

preferences. It supports analyzing programs written in a large variety of 

programming languages, including Java, .NET Framework (ASP.NET, VB.NET, C#), 

and JavaScript. 

Jlint, is a java source code analyzer with the particularity of, according to the 

authors, being extremely fast, even on large projects. It scans Java source code and 

finds “bugs, inconsistencies and synchronization problems by doing data flow 

analysis and building the lock graph”. Jlint is considered to be easy to use and 

requires no changes to be applied to the class files being scanned (Knizhnik 2016). 

PMD is a source code analyzer that aims at finding common programming bad 

practices, such as unused variables, empty catch blocks, unnecessary objects being 

created, among other types of problems (“PMD” 2013). PMD is an open source tool 

that also includes a copy-paste detector that finds duplicated code in Java, C, C++, 

C#, PHP, Ruby, Fortran and JavaScript. 

Pixy is an open source implementation of source code analysis,  and is targeted at 

detecting cross-site scripting vulnerabilities in PHP scripts (Jovanovic, Kruegel, and 
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Kirda 2006). Pixy employs a static analysis technique able to detect taint-style 

vulnerabilities automatically.  

Rough Auditing Tool for Security (RATS) is a source code scanning tool developed 

by Secure Software Inc., that flags common security-related programming errors, 

such as buffer overflows and TOCTOU (Time Of Check, Time Of Use) race 

conditions (Dunham 2013). RATS also supports security checks for risky built-

in/library function calls. According to the authors, this tool is not meant to be a 

replacement of manual code reviews, but instead to serve as an auxiliary tool. The 

supported programming languages for source scanning are C, C++, Perl, PHP, 

Python and Ruby. 

Yasca is a source code analysis tool that, instead of using its own static code analysis 

algorithm, aggregates several other static analysis tools (Scovetta 2009). Supported 

tools include the already mentioned FindBugs, J-Lint,  Pixy, PMD and RATS. Yasca 

supports integration with virtually any static analysis tool, as long as the tool is 

developed in the following languages: Java, C/C++, HTML, JavaScript, ASP, 

ColdFusion, PHP, COBOL and .NET (and there is the appropriate plugin to connect 

the tool to Yasca). 

The use of automated code analysis tools is often seen as an easy and fast way to 

find bugs and vulnerabilities in web applications. However, the high number of false 

positives reported by this type of tools, allied to the impossibility of identifying 

certain kinds of problems that are only detectable at runtime (e.g., low performance 

in presence of a DoS attack), lead them to be less useful in security testing contexts 

(Nuno Antunes and Vieira 2009; ETSI 2015). 

2.3.2 Black Box Testing 

Black box approaches do not require source code access or knowledge of the 

internals of the system being tested. This kind of tests can be performed manually or 

using automated tools. When performed manually, the tester must manually create 

and execute requests against the system being tested, which is quite costly, as many 

times the tester needs to create a large variety of inputs (so that it gets enough code 

coverage) and input conditions (e.g., parallel requests, specific order in requests), 

and must analyze the behavior of the system, which is a non-trivial task. Fortunately, 

in the case of black-box testing, there are numerous automated, or semi-automated, 

tools for carrying creating and running testing campaigns. In the literature, we can 

mainly find two black-box techniques for unveiling security problems: robustness 

testing and penetration testing. The next paragraphs go through the two techniques, 

discussing research and tools implementing each technique. 

The goal of robustness testing is to characterize the behavior of a system in the 

presence of erroneous input conditions (Vieira, Laranjeiro, and Madeira 2007a; 

Koopman and DeVale 1999; Micskei et al. 2012). Robustness testing techniques 
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usually use a combination of different valid and invalid inputs to trigger internal 

errors, with the goal of exposing programming or design errors. Systems can be 

distinguished according to the number and type of uncovered errors. Although 

robustness testing techniques and tools were not originally created to be used for 

assessing the security of software, previous studies have shown that these tools can 

be helpful in finding security problems or used to assess availability (Laranjeiro, 

Oliveira, and Vieira 2010; Laranjeiro, Canelas, and Vieira 2008; Zhu, Mauro, and 

Pramanick 2003).  

Robustness testing tools became popular due to prominent research that resulted in 

the creation of Ballista and MAFALDA (Koopman and DeVale 1999; Rodríguez et al. 

1999). Ballista is a robustness testing tool that combines software testing and fault 

injection techniques. It was designed to test the robustness of software components, 

having a particular focus on operating systems (Koopman and DeVale 1999). Tests 

are automatically generated and include exceptional and valid parameter values, 

which are used on calls to kernel system functions. This tool was later extended to 

allow testing the robustness of CORBA ORB implementations (Pan et al. 2001).  

MAFALDA (Microkernel Assessment by Fault injection AnaLysis and Design Aid) is 

a tool that allows assessing the behavior of microkernels in the presence of faults 

(Rodríguez et al. 1999). MAFALDA supports fault injection both into the parameters 

of system calls and into the microkernel address space in memory. Similarly to 

Ballista, MAFALDA was later adapted to support robustness testing of CORBA-

based middleware (Marsden and Fabre 2001) . 

Considering web services, WebSob and wsrbench (Martin, Basu, and Xie 2007; 

Laranjeiro, Canelas, and Vieira 2008) are two relevant cases of robustness testing 

approaches implemented by concrete tools. WebSob is a robustness testing tool for 

web services that takes as input a WSDL file, and uses a unit-test generation tool to 

generate code to facilitate test generation and test execution (Martin, Basu, and Xie 

2007). Once tests are executed, the results (i.e., the web service responses) are 

manually analyzed. The authors used WebSob to test the robustness of 35 freely 

available web services and were able to execute thousands of tests. The results 

revealed robustness problems in 15 web services.  

wsrbench (Laranjeiro, Canelas, and Vieira 2008) is an on-line tool for robustness 

testing of web services. The input necessary for executing robustness tests is a WSDL 

file and, optionally, information regarding the valid domains for the input 

parameters of the operations to be tested. The tool was used to test the robustness of 

100 public domain web services and the results revealed numerous problems, 

showing that several web services had been deployed without being properly tested. 

Most of all, some of the detected problems referred to vulnerabilities (e.g., SQL 

Injection), which highlights the potential of the technique to disclose security issues. 

Penetration testing is a particular case of robustness testing, in the sense that it is 

based on sending exceptional input conditions to an application (Micskei et al. 2012). 
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The main difference is that the inputs are malicious and try to exploit vulnerabilities 

present in the code. The penetration tester only has access to the system through 

some interface for communication, which is used as entry point for the malicious 

requests.  Despite the apparent simplicity, research has shown that, in general, the 

effectiveness of this type of tools is quite low (Nuno Antunes and Vieira 2015) and 

that many classes of vulnerabilities are not detected (Doupé, Cova, and Vigna 2010). 

An obvious difficulty is that the tester (or the tool) has to analyze the responses and 

this is the only mean to understand if a vulnerability exists. The following 

paragraphs describe some tools that allow executing penetration tests against 

software systems. 

WSFuzzer is a Python program that currently targets web services (WSFuzzer 2012) 

and aims to automate penetration testing for SOAP web services. It is based on the 

generation of unexpected inputs and tries to uncover some types of application-level 

vulnerabilities, such as SQL and XPath injection. It also supports the execution of 

attacks that target vulnerabilities at the middleware level, i.e., in web service 

frameworks. The list of supported attacks includes: Coercive Parsing, Oversized XML, 

XML Document Size and XML External Entities. WSFuzzer stores the requests sent 

and responses received from the web service in a log file, which then holds the 

execution history. Still, the log file must be manually analyzed by a security expert. 

WSFuzzer is a command line tool that also requires some expertise about the 

environment and necessary configuration before it can be effectively used. 

SoapUI is a free open source tool that allows performing different types of tests over 

different target systems (Smartbear 2012). The interfaces supported include SOAP, 

REST, JMS, JDBC, HTTP, among others; the types of tests implemented target 

functional, regression, compliance, load, and security aspects. The security support 

is relatively recent, and currently SoapUI allows testing for vulnerabilities at the 

application-level (i.e., by executing tests that try to exploit vulnerabilities present in 

the application code) and at the framework level (i.e., by executing tests that target 

the framework implementation, in particular the processing of SOAP messages). The 

list of supported attacks against web services at the framework level  is limited to 

Malformed XML, Malicious Attachment, and XML Bomb (“SoapUI, Security Scans 

Overview” 2011). The result of the tests requires the presence of a security expert to 

interpret the outputs. However, to aid the tests analysis, SoapUI allows to define 

“assertions”, which is a mechanism that can reduce this manual task by helping to 

understand if the attack was successful or not (e.g., by defining expected responses, 

or maximum response time). SoapUI is a Java-based tool that has an advantage over 

WSFuzzer: it features a point and click graphical user interface. Despite this, the list 

of supported attacks is more limited than the ones implemented by WSFuzzer. 

WS-Attacker is a security testing application (Mainka, Somorovsky, and Schwenk 

2012; “WS-Attacker” 2012) for web services. The concepts behind the tool and its 

architecture are introduced in (Mainka, Somorovsky, and Schwenk 2012), including 

details about the technologies used and how to develop new plugins. Its extensibility 
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is a strong point when the goal is to develop more complex security testing 

applications. During our research, WS-Attacker was further developed by including 

additional plugins, featuring DoS attacks that specifically target web service 

frameworks (see Chapter 3). 

Most of the existing security testing tools for web services focus in finding 

application-level vulnerabilities, such as SQL Injection and Cross-Site Scripting 

(XSS), rather than vulnerabilities at the service framework level. Thus, these tools 

are, in general, of little use for evaluating service frameworks: we discuss them in 

the following paragraphs due to their relevance in the context of security testing. The 

most well-known security testing solutions include Acunetix Web vulnerability 

Scanner (Acunetix 2014), HP WebInspect (“HP WebInspect” 2013), and IBM Security 

AppScan(“IBM Security AppScan Family” 2013). HP WebInspect is another web 

application testing tool that is able to execute penetration tests in an automated way 

(“HP WebInspect” 2013). The tool emulates real attacks and hacking techniques and 

integrates dynamic and real-time analysis to be able to detect more vulnerabilities. 

HP WebInspect features advanced web services security testing and is able to 

process complex data types present in WSDL files and generate testing data 

accordingly. It includes support for fuzzing and for web service attacks, including 

Cross Site Scripting and SQL Injection. 

IBM Security AppScan is an application for performing automated security testing 

(“IBM Security AppScan Family” 2013). The tool is able to scan for several well-

known types of vulnerabilities, such as XSS, Document Object Module (DOM)-based 

XSS, client-side open redirects, and SQL injection. It also combines the execution of 

black box techniques with an internal agent that monitors application behavior 

during the attacks, resulting in more accurate test results. IBM Security AppScan 

applies security testing to web service-based technologies and supports advanced 

standards, such as WS-Security v1.1, WS-Addressing, encrypted keys, and SOAP 

messages with MIME and DIME attachments. 

Acunetix Web Vulnerability Scanner (WVS) is a testing tool for web applications and 

web services that tries to check for the presence of vulnerabilities by running tests in 

an automated manner (Acunetix 2014). This penetration testing tool supports the 

execution of different types of attacks, including Cross Site Scripting, SQL Injection, 

DOM XSS, Blind Cross Site Scripting, among others. Responses are analyzed and the 

tool signals the potential presence of a vulnerability and its severity, being able to 

produce reports holding the details of the results of the tests. Recently, it added 

support for the execution and detection of XML External Entities based-attacks, 

which target vulnerabilities present at the web service framework level (Acunetix 

2013). The inclusion of support for this attack in a major commercial security tool, 

emphasizes how important it is to assess the security of web service frameworks and 

further confirms that the trend towards attacking middleware software layers (e.g. 

service frameworks) is increasingly important (Imperva 2012; OWASP 2013a).  
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The abovementioned techniques and tools allow assessing the security of web 

services, but, as we can see, when the focus is set on the frameworks, the support 

from tools is very scarce. In fact, only two tools allowed testing service frameworks 

at the beginning or our research: WSFuzzer and SoapUI. Later, WS-Attacker, and 

more recently (although with strong limitations), the Acunetix vulnerability scanner, 

included features to evaluate the security of web service frameworks. 

2.4 Assessment and Benchmarking 

Several works focusing on the assessment of performance and security of 

middleware can be found in the web services domain. The next paragraphs describe 

relevant efforts in this area. Afterwards, we introduce the main concepts regarding 

benchmarking (assessment with the goal of comparison), which are later detailed in 

terms of research and tools on performance benchmarking (Section 2.4.1), 

dependability benchmarking (Section 2.4.2), and security benchmarking (Section 

2.4.3). 

Regarding performance assessment, it is worth mentioning the work in 

(Govindaraju et al. 2004), which has the goal of characterizing the performance of 

SOAP frameworks. The work uses distinct arrays (including different sizes) to study 

the cost of the serialization and deserialization processes of XML parsers. The 

different parser implementation strategies are analyzed and the authors indicate that 

naïve implementations can lead to considerable processing time (which can be 

critical in DoS attack scenarios). 

In (Gang Wang et al. 2006) the authors analyze and discuss the causes for low 

performance observed in many XML-based applications (e.g., XML parsers and web 

services). The conclusions include the fact that parsing XML documents frequently 

generate intensive memory allocation operations and that the allocated objects are 

typically long-lived. Arrays use large portions of memory space during regular XML 

processing, thus being a problem when, for instance, facing security attacks that 

target memory depletion. 

In (Xie et al. 2008), a web service performance testing framework is proposed, 

consisting  of a client module and an application module. The client module scales 

up to a large number of concurrent requests so that it is possible to test the 

performance of the web service under high client loads. The application server 

module contains a set of Web Services derived from the TPC-App benchmark (TPC 

2008). The data model used includes a main table and attributes that can be 

customized to better fit different commercial application characteristics. The 

proposed framework supports measuring the number of Web Service Interactions 

per Second (SIPS), as in the original TCP-App specification, and adds support for 

measuring the response time.  
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An extensive performance comparison of web service frameworks is presented in 

(Suzumura et al. 2008). The study compares the C and Java versions of Axis 2 with 

the PHP SOAP engine. The goal is to understand the impact that different 

technologies have on the framework performance, by measuring the throughput, 

memory footprint and CPU usage. The work measures performance under valid 

conditions, and does not account for invalid or malicious requests. An study on the 

characterization of the performance of a set of framework implementations 

(including gSoap, Axis C++, Axis Java, .Net and XSOAP) is presented in 

(Govindaraju et al. 2004). The goal is to understand how processing SOAP arrays 

with different sizes impacts the response time of web service frameworks. Results 

showed clear differences among the frameworks, with some frameworks performing 

typical functions considerably fast (e.g., gSOAP handling arrays of integers), and 

with some frameworks clearly behind (e.g., Axis Java).  

In what concerns security evaluation, it is worth discussing the work presented in 

(Suriadi, Clark, and Schmidt 2010), that studies the impact of Denial of Service 

attacks on web service frameworks. The experiments conducted include tests with 

Metro, Axis, .NET WCF, and Ruby, and are based on flooding attacks (requests sent 

in sequence and in parallel). Results indicate that attacks tend to impact CPU 

resources rather than memory. A key issue is that there is no reference in the work to 

the specific versions of the platforms tested and containers used, which is a huge 

limitation on the reproducibility of the experiments, preventing comparing their 

results with future work. 

An approach for automatic evaluation of the impact of Denial of Service attacks on 

web service frameworks is presented in (Falkenberg et al. 2013).  The authors assume 

that there is no physical access to the machine being tested and, as such, the attack 

executor is limited to sending payloads and measuring response times. The 

approach is implemented as a plugin for the WS-Attacker tool (“WS-Attacker” 2012) 

and consists of two phases. In the first phase the tool sends regular (i.e., non-

malicious) requests to the server and in the second phase the tool submits malicious 

requests. In parallel, the tool simulates the presence of an additional client that sends 

regular requests to the server and collects the response time. The work is very much 

focused on identifying problems, and not so much on providing assessment data 

that can be used for comparison (i.e., as in a benchmark). The data collected could 

also be more diverse (it considers response time as the only metric), and the 

approach also disregards the impact of the attacks after the second phase. 

Trust is a concept closely related to security, as clearly perceptible in the works 

discussed in the following paragraphs. The authors in (Omar Abdel Wahab et al. 

2015) analyze and compare the main approaches that aim to build trust and 

reputation models for web services. The different approaches discussed fit in three 

main groups: single web services, compositions, and communities. Main challenges 

in the case of single services (which is the case more closely related to this thesis) is 

the quality and credibility of the approach that is used to build trust score. There are 
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key criteria that a trust or reputation model for web services should cover, and these 

include involving different Quality of Service metrics (e.g., response time, 

throughput, availability) in the model and also including the users preferences. The 

authors also present a set of web service attacks and discuss the problem of having a 

malicious service, acting as a client to other services, within a web service 

composition. Coercive Parsing and Oversized XML are mentioned as examples of 

attacks that have the potential to influence trust in web services environments. 

In (H. Wang et al. 2015) it is proposed an approach to rank cloud-based big data 

services that considers the user preferences regarding non-functional properties of 

the services (e.g., Quality of Service) and also trust (e.g., the authenticity of Quality 

of Service reported by the service provider). To deal with the multiple criteria being 

considered in this context (e.g., price, response time), which are sometimes 

conflicting and end up on a decision involving some trade-off, the problem is 

modeled as a multi-objective optimization problem. At the core of the approach 

there is a linear weighting function that calculates how well each service matches the 

consumer’s preferences (in order to rank the service) and the variables of this 

function are estimated through a Multi-objective Constrained Model. Experimental 

results show that this trust-based approach is more effective than other related 

approaches when taking into account user-defined non-functional properties. 

A trust-based approach for performing decisions regarding the definition of service 

compositions and service binding is proposed in (Y. Wang et al. 2017). The approach 

is designed to tackle the challenges of service-oriented mobile ad-hoc networks 

(MANETs), which are essentially very dynamic and do not have a pre-defined 

network structure (i.e., nodes typically join and leave the network at unknown 

instants). This kind of dynamism shows clear similarities with typical web services 

scenarios, which are frequently the technological choice to support service-oriented 

architectures. In these scenarios, the presence of malicious nodes that provide 

erroneous information is of great concern (i.e., a malicious node can impair the 

whole composition). Thus, the evaluation of trust plays an important role here and 

the authors emphasize that a trust score may derive from multiple metrics (e.g., 

response time, throughput), which is often disregarded in the literature. Thus, 

understanding trust as a multidimensional concept and being able to identify the 

components that should form this concept is a crucial aspect in any trust-based 

approach.  

The work in (O. Abdul Wahab et al. 2017) focuses on the problem of service 

community formation in multi-cloud environments. A typical problem in this 

context is the presence of malicious services that misbehave so that their benefits are 

maximized (which is something quite hard to control, when services come from 

different providers). The work is based on the following three main parts: i) it 

defines a framework for establishing trust that is resistant to collusion attacks (where 

malicious services, part of a community, try to produce misleading trust results); ii) 

It proposes a bootstrapping mechanism that uses feedback from social networks to 
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compute initial trust values for the services, and iii) it proposes a “trust-based 

hedonic coalitional game” that aims to find the optimal alliance partition that 

minimizes the number of malicious members that will be part of the community. 

Experiments on a real cloud dataset revealed that this trust-based approach reduces 

the number of malicious services to up to 30% compared to the state of the art 

models, such as the ones based on availability and QoS. The authors also observed 

improvements in terms of availability and performance (i.e., response time and 

throughput). Overall, the work simply emphasizes the importance of considering 

trust in computing (especially in cloud computing) and showcases the successful 

application of trust in a security context.  

The concept of trust has been used in (O. Abdel Wahab et al. 2017) to allow cloud 

systems to deflect DDoS Attacks. The approach first defines a chain of trust between 

guest Virtual Machines and their underlying hypervisor. This is performed by 

considering two groups of trust sources – objective and subjective, which are 

aggregated using Bayesian inference. For the objective sources, the hypervisor uses 

monitored CPU usage, memory allocation, and network  bandwidth  consumption  

of  each  virtual machine,  to  detect  anomalous behaviors. For the subjective 

sources, the hypervisor collects recommendations from other hypervisors and 

virtual machines that had some past interaction with the virtual machine under 

analysis. The second part of the approach is based on the application of a maximin 

(Binmore 2007) trust-based game between the DDoS attackers which intend to 

minimize the detection probability and the Hypervisor that tries to maximize the 

minimization. The authors show the effectiveness of the approach in improving the 

detection of attacks, successfully use trust as a multidimensional concept (for which 

the component values are aggregated in higher level scores), and especially show the 

link between trust and security, which is evermore a topic being studied by 

researchers, with direct application in services environments.  

Benchmarks are de-facto standards that allow assessing and comparing systems or 

components according to specific characteristics (e.g., performance, dependability, 

security) (Gray 1993). They became rather popular mostly due to the increasing need 

for comparing the performance of different systems. However, the definition of a 

benchmark is a non-trivial task, and to be useful and accepted by the community a 

benchmark must respect an important set of criteria. According to (Gray 1993) a 

benchmark must respect four criteria: 

 Relevance – it must be able to measure the intended characteristic of the target 

system, when performing typical operations within the problem domain. 

 Portability – it must be easy to implement independently of the different 

systems and architectures under benchmarking (in the benchmark domain). 

 Scalability – it should be applicable in any computing system in the 

benchmark domain, independently of the size (or at least, the scale limits 

should be defined). The benchmark must scale up to benchmark larger 



Chapter 2  

 46 

systems, and accommodate the advances in computer systems (e.g., in 

performance and architecture). 

 Simplicity – it must be easy to understand and implement, to foster credibility 

and adoption. A complex benchmark, or one that outputs complex metrics, 

might not appeal to the users and industry, impacting its usefulness. 

 

These criteria were further developed within other research initiatives. One of such  

efforts was the DBench European project (DBench 2004), that has laid the ground for 

further benchmarking initiatives. According to the dependability benchmarking 

concepts depicted in the final  report of the DBench project  (DBench 2004), in order 

to be useful and accepted by the computer industry and user community, a 

dependability benchmark should satisfy the following criteria: representativeness, 

repeatability and reproducibility, portability, non-intrusiveness, scalability and 

benchmarking time and cost.  Portability and scalability retain the same definition as 

introduced in (Gray 1993). Representativeness is essentially a more detailed 

definition of relevance and, in particular, it adds that the measures, workload and 

faultload of a benchmark should represent a typical and realistic set of activities 

found in real systems, as much as possible.   

Repeatability is related with the guarantee that the results of the benchmark will be 

statistically similar, independently of how many times it is executed. Reproducibility 

complements repeatability, assuring that the same results will be achieved if another 

entity (e.g., a researcher, an industry specialist) decides to execute the benchmark.  

Non-intrusiveness refers to the changes that the benchmark requires on the system 

under benchmarking. These changes should be as little as possible in order to avoid 

adding an artificial bias that can impact the results obtained. This is particularly 

relevant when applying fault injection techniques (Hsueh, Tsai, and Iyer 1997). 

Finally, benchmarking time and cost refer particularly to the time needed to execute 

the benchmark and the time needed for analyzing the results. Obviously, this time 

(or cost) should be the minimum possible, ideally a few hours per system. However, 

it is acceptable that larger systems take more time to be benchmarked, e.g., a few 

days. 

In general, and despite a few differences in the relative importance of each of the 

above criteria (e.g., simplicity is relatively better accepted than time and cost), most 

of them are nowadays generally accepted, and need to be considered when defining 

any benchmark (e.g., performance, dependability). Such properties should be 

validated after the benchmark definition. 

Benchmarking initiatives stem from the need for comparing performance (Gray 

1993), but quickly extended to other characteristics, namely dependability (DBench 

2004). Benchmarking security is a very recent research area (Neto and Vieira 2011a), 

in which there is a lot of open space for research. The following sections detail 
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relevant contributions in the field of benchmarking, under these three areas: 

performance, dependability, and security. 

2.4.1 Performance Benchmarking 

Performance benchmarks established a great reputation in the industry. In 

particular, performance benchmarks managed by the Transaction Processing 

Performance Council (TPC) (TPC 2013b) and by the Standard Performance 

Evaluation Corporation (SPEC) (SPEC 2013) had a critical role in the evaluation and 

evolution of different systems in diverse domains. TPC currently specifies 

performance benchmarks for several domains, including transaction processing, 

decision support, virtualization, and big data. Of these domains, transaction 

processing is the one closer to the domain of this thesis. SPEC develops performance 

benchmarks for applications in several different domains, ranging from hardware 

performance (e.g., CPU and graphics) to software performance measurement (e.g., 

Web servers and distributed Java applications). SPEC provides benchmarks in the 

form of applications that are ready to execute, while TPC only provides benchmark 

specifications in the form of documents. In this latter case, it is up to the benchmark 

user to develop the necessary applications, which must follow the benchmark 

specification rules. 

TPC-C is a well-established and well-known Online Transaction Processing (OLTP) 

performance benchmark that simulates a complete computing environment where a 

set of users executes transactions against a database (TPC 2015a). Some of the 

operations of the benchmark include entering and delivering orders, recording 

payments, checking the status of orders, and monitoring the level of stock. tpm-C is 

the performance metric reported by this benchmark, which refers to the number of 

New-Order transactions per minute generated by the system, while it is executing 

other types of transactions (payment, order status checking, delivery, and stock 

level). 

TPC-App (TPC 2008) is a performance benchmark for application servers and web 

services that emulates an Internet retail distributor including ordering and product 

browsing functionalities (i.e., a typical B2B scenario). Some of the characteristics of 

the emulated environment include the use of SOAP/XML for exchanging data, 

generation of web services responses dynamically based on database access, and 

simultaneous execution of different types of transactions that encompass several 

business functions. The metric reported by this benchmark is the number of Service 

Interactions Per Second (SIPS) completed by the system under testing during a given 

measurement interval.  

SPECweb2009 (SPEC 2009) is a benchmark designed to evaluate the performance of 

web servers. It features workloads for banking, e-commerce, support, and power. 

This benchmark measures peak performance as the maximum number of 
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simultaneous user sessions that a web server is able to support while meeting 

specific throughput and error-rate requirements. 

The SPEC jAppServer2004 benchmark (“SPECjAppServer2004” 2004) was created to 

measure the performance of Java 2 Enterprise Edition (J2EE) technology-based 

application servers. The workload emulates an automobile manufacturing company 

and its associated dealerships. Dealers interact with the system using web browsers 

(these are emulated by a driver), while the actual manufacturing process is 

accomplished via RMI (also emulated by a driver). This benchmark uses jAppServer 

Operations Per Second (JOPS) as performance metric, which corresponds to the 

number of operations successfully concluded per second during the measurement 

interval. SPECjAppServer2004 also heavily exercises other parts of the software 

infrastructure, including hardware, Java Virtual Machine, databases, JDBC drivers, 

and the system network. SPEC retired JappServer2004 in favor of 

SPECjEnterprise2010 (“SPECjEnterprise2010” 2010), which allows performance 

measurement and characterization of Java EE 5 servers. This benchmark uses 

Enterprise jAppServer Operations Per Second (EjOPS), which is a metric that 

considers both Dealer Transactions per second and Work Orders per second. 

WSTest (Sun Microsystems 2004) is a synthetic performance benchmark initially 

developed by Sun Microsystems and later extended by Microsoft. WSTest includes a 

sample web service with  operations  that,  together  with  a  client emulation  tool,  

emulate  a distributed application, with the server-side processing a set of different  

client  requests. WSTest reports the number of transactions per second achieved and 

the average latency. A few years ago, there was a dispute between Sun Microsystems 

and Microsoft, involving the performance of web service technologies in J2EE and 

.NET. Sun Microsystems argued in a technical report (Sun Microsystems 2004) that 

the J2EE platform allowed to achieve better performance than the .NET framework 

(WSTest was the benchmark used). Microsoft disputed this claim in a later work 

(Microsoft 2004) using a modified version of WSTest with more operations, arguing 

that the .NET framework was able to achieve better performance. 

In (Daniel F. García et al. 2006), researchers implement the TPC-App benchmark and 

use it to evaluate two web services platforms, namely J2EE and .NET. The 

benchmarks were developed following the typical programming practices for each 

platform. The results show a very clear advantage of the .NET implementation 

against J2EE.  

A performance benchmark for web service frameworks is presented in (Wickramage 

and Weerawarana 2005). The main goal was to define a benchmark that would 

closely represent real world business services. The benchmark focuses on the Round 

Trip Time as the key metric to characterize performance, disregarding more common 

metrics like throughput and latency. The approach excludes the XML parser 

operation (among a few other time consuming factors) in the performance 

assessment (the claim is that any parser can be used and the focus is placed on other 
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parts of the software), thus eliminating a frequent source of performance problems 

(G. Wang et al. 2006). 

In (Head et al. 2005), the authors proposed a fairly complete benchmarking suite for 

testing the performance and scalability of web service frameworks with a focus on 

data structures used in grid services. This suite includes a set of individual 

benchmarks to test specific configurations of frameworks. A serialization benchmark 

measures the serialization performance of various frameworks for arrays and 

different data types and sizes. The deserialization benchmark measures the 

deserialization time of messages of different sizes and holding frequently used data 

types (strings, integers and doubles). The end-to-end benchmark combines the two 

in order to test the performance of the full communication between the client and 

services endpoint. The streaming benchmark quantifies the performance of the 

framework when using streaming communication, helping to understand potential 

benefits comparing to non-streaming communication. It is also relevant to mention 

the namespace benchmark that consists of various SOAP payloads with variable 

levels of nested data structures, and allows understanding if frameworks are able to 

correctly resolve them according to the namespace definitions. A latency benchmark 

defines echoVoid() operations to assess the latency imposed by the framework. 

There are a few other benchmarks included in the suite, but the ones mentioned 

above are the most relevant in the context of web services performance. 

2.4.2 Dependability Benchmarking 

Building on the success of performance benchmarking, dependability benchmarks 

appeared as an appealing option to assess and compare systems dependability. The 

concept of dependability can generically be defined as “the ability to deliver a 

service that can justifiably be trusted” (Avizienis et al. 2004). As mentioned before, it 

includes a set of attributes: availability (readiness for correct service); confidentiality 

(non-occurrence of unauthorized disclosure of information); integrity (absence of 

improper system alterations); maintainability (ability to undergo modifications and 

repairs); reliability (regarding the continuity of correct service); and safety (absence of 

catastrophic consequences on the user(s) and the environment).  

Dependability benchmarks (DBench 2004) have proven to be useful in a number of 

different fields ranging from web servers (Durães, Vieira, and Madeira 2004) to 

automotive embedded systems (Ruiz et al. 2004). Nevertheless, dependability 

benchmarks (as their predecessors) initially started to become popular in the field of 

transactional systems. In (Vieira and Madeira 2003) it is proposed a dependability  

benchmark for OLTP (On-Line Transaction Processing) systems. This proposal 

defines components for a dependability benchmark, which were also considered ater 

in other dependability benchmarks. The components are as follows (extracted from 

(Vieira and Madeira 2003)): 
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 Workload: represents the work that the system must perform during the 

benchmark execution.  

 Faultload: represents a set of faults and stressful conditions that emulate real 

faults experienced by systems in the field.  

 Measures/Metrics: characterize the dependability of the system being 

benchmarked, in the presence of the faultload and when executing the 

workload. The measures must be easy to understand and allow the 

comparison between different systems. 

 Benchmark procedure and rules: describes the procedure and rules that 

must be followed to execute the benchmark.  

 Experimental setup: describes the setup required to run the benchmark. 

Two different versions of database management systems (DBMS) were benchmarked 

in three different operating systems in (Vieira and Madeira 2003). Performance was 

measured in terms of transactions per minute, price per transaction (both in terms of 

baseline performance and performance in the presence of faults) and availability. 

Results showed that the availability of the tested systems depends mostly on their 

configuration, and the availability from the clients point-of-view is typically much 

lower than the availability from the server point-of-view.  

Dependability benchmarks also became very popular in the operating systems 

domain. In (Kalakech, Jarboui, et al. 2004) it is proposed a dependability benchmark 

suitable for a general purpose operating system. The work proposes a prototype 

dedicated to benchmark Windows 2000. The authors opted to use the TPC-C client 

to emulate a realistic workload and the work is based on two types of measures: 

robustness measures and temporal measures in the presence of faults. Robustness 

measures refer to several outcomes, such as: error codes, exceptions, erroneous 

completion of the workload, OS and application hangs. Temporal Measures refer to 

system call and workload execution times, as well as OS restart time. Later, the 

authors expanded their benchmark to be able to assess and compare Windows NT4, 

Windows XP, and Windows 2000 (Kalakech, Kanoun, et al. 2004). The comparison of 

the three OSs showed that, although they are equivalent from a robustness point of 

view, Windows XP had the shortest reaction and restart times. 

In (K. Kanoun et al. 2005) it is proposed a dependability benchmark and a set of 

operating systems is assessed to show the usefulness of the benchmark. The authors 

opted to use PostMark (a tool for file system performance testing) as workload.  The 

benchmark measures include a robustness measure (POS) and two temporal 

measures (Texec and Tres). POS is defined as the percentage of experiments leading 

to a set of predefined outcomes (i.e., an error code is returned, an exception is raised, 

Panic state, hang state, and no-signaling state). Texec corresponds to the average 

time necessary for the OS to respond to a system call in presence of faults. Finally, 
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Tres corresponds to the average time necessary for the OS to restart after the 

execution of the workload in the presence of faults.  

The abovementioned benchmark uses a faultload that includes corrupted parameters 

on system calls. A total of six versions of the Windows operating system and four 

versions of Linux were benchmarked. Results showed that none of the catastrophic 

states of the OS (panic or hang) occurred for any of the Windows and Linux based 

OSs considered. Linux OSs reported more error codes (59-67%) than Windows (23-

27%), while more exceptions were raised with Windows (17-22%) than with Linux 

(8-10%). There were more non-signaling cases observed in Windows (55-56%) than 

in Linux (25-32%). Concerning the OS reaction time, Windows outperformed Linux.  

A dependability benchmark for engine control applications in automotive embedded 

systems is presented in (Ruiz et al. 2004). The benchmark allows the characterization 

of the impact of faults on the control software embedded in Electronic Control Units 

(ECUs). The faultload adopted by this benchmark is based on the injection of 

transient hardware faults, which ECU memory can experience during its normal 

operation. This benchmark also provides a set of measures that estimate the impact 

of the ECU control loop failures on the engine. The workload used to stimulate the 

ECU is based on the speed reference the driver imposes to the engine through the 

throttle, and is also based on the set of engine internal variables, monitored by the 

ECU to obtain feedback for control computation. 

The DS-Bench toolset allows assessing and comparing the dependability of both 

physical and virtual machines (e.g., in a cloud computing environment) (Fujita et al. 

2012). The toolset is composed of three elements: D-Case Editor, DS-Bench, and D-

Cloud. DS-Bench allows extracting dependability measurements in scenarios 

composed of programs for benchmarking and for generating anomalies. D-Case 

Editor exploits the results of executing the benchmarks, extracting information 

regarding the dependability of the target system. D-Cloud is essentially the test 

environment, providing support for physical and virtual machines that will be used 

in the benchmarking scenario.  

DS-Bench is responsible for emulating erroneous states with the use of anomalies 

produced by anomaly generators. These anomaly generators refer to: i) programs 

that run on the target machines and that consume computing resources, such as CPU 

or memory; and ii) the injection of external faults (e.g., network disconnection). The 

toolset also provides support for several other types of faults (e.g., bit flips, network 

packet drops). The work represents a very interesting environment for dependability 

benchmarking, although it is not a benchmark on its own. The extension for security 

is not obvious, but the some of the concepts may be useful (e.g., the separation 

between the workload generation and the injection of faults). 

In (Sangroya, Serrano, and Bouchenak 2012) it is presented a comprehensive 

benchmarking suite (MRBS) for evaluating the dependability of MapReduce 

systems. MRBS is a configurable benchmark based on the injection of software and 
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hardware faults of several types in map-reduce systems. The idea is that it should be 

possible to emulate common failures that the Hadoop MapReduce platform should 

tolerate, including node crashes, process crashes, and hanging tasks. MBRS also 

supports a Faultload Builder that provides testers with a useful tool that allows 

building synthetic faultloads to fit specific scenarios and allows randomly 

generating a faultload. 

The MBRS suite allows measuring the availability, performance and reliability of 

MapReduce systems and was used to evaluate a cluster running on six Amazon EC2 

instances, and four Grid’5000 instances. This ten-node cluster was tested in the 

presence of 20 concurrent clients running in four external Grid’5000 instances. The 

results showed that the Hadoop cluster remained available 96% of the time and was 

able to successfully handle 94% of client requests. One of the experimental cases 

analyzed showed the Hadoop cluster loosing 3 nodes and performing fail-over, but 

at the expense of higher response time and a lower throughput. 

A benchmark is proposed in (Durães, Vieira, and Madeira 2004) to assess and 

compare the dependability of Web Servers. The authors derived the proposed 

benchmark from the SPECWeb99, adopting the workload and performance 

measures from this benchmark, and added a faultload and new metrics related to 

dependability. The dependability metrics include: autonomy (quantifies the need for 

external administrative intervention to repair the web server); accuracy (quantifies 

the error rate in presence of faults); and availability (represents the time the system 

is available to execute the workload). The faultload includes software faults, 

hardware faults and network faults. The proposed benchmark was used to 

benchmark two prominent web servers at the time of the study, Apache and Abyss, 

running on top of four different versions of the Microsoft Windows operating 

system. Results showed a clear advantage of Apache and demonstrated the 

usefulness of dependability benchmarks for assessing and comparing web servers. 

In (Marsden et al. 2002) it is proposed a benchmark for characterizing the 

dependability of service middleware implementations. The work is based on the use 

of corrupt method invocations over the network to assess middleware in terms of 

dependability. The authors mention the key components to be used in a fault 

injection campaign: a fault model (which defines the faults and conditions to apply 

them); the workload (that reflects the operating profile of the system being assessed); 

the oracle (for understanding the behavior); and the observations (which refer to 

how to observe and classify failures). This kind of observation may apply to security 

evaluation, with some adjustments, as discussed in the next section. 

In the case of the work in (Marsden et al. 2002), a key component is the Injector, 

which sends corrupted requests to the target once the workload has been running 

for a certain time frame. The fault injector mutates the requests using a bit-flip fault 

model or a double-zero fault model. Monitors observe the behavior of the CORBA 

infrastructure, and offline data analyzers identify the various failure modes by 
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examining the data collected by the monitoring components. The experiments 

evaluated 5 different implementations of CORBA middleware. Results showed a 

predominance of exceptions returned to the client; in particular, a wide range of 

exceptions in the experiments targeting the CORBA Name Service in the various 

implementations was detected. 

A dependability benchmark for evaluating the robustness of popular SOAP-RPC 

middleware is proposed in (Silva, Madeira, and Silva 2006). The work first tries to 

understand if SOAP-based servers are prone to experience software aging. Then it 

proposes a software rejuvenation technique based on service level agreements (one 

simple SLA contract is used during the experiments). The main components of the 

proposal are the Benchmark Management System and the System Under Test. The 

former includes a module for the definition of the benchmark, procedures and rules, 

a definition of the workload, and a module for collecting metrics that describe the 

behavior of the system. The system under test includes an application server, the 

middleware (e.g., SOAP-RPC middleware) and a web service. The work 

benchmarked four different Java middleware implementations: raw TCP-IP sockets, 

Java RMI, Java Servlets and XML, and SOAP-RPC (Tomcat and Apache Axis v1.3). 

In addition to showing some performance overhead regarding the SOAP-RPC 

middleware, in what concerns dependability, the version of Apache Axis tested 

showed to be very susceptible to memory leaks, which is not desirable when the goal 

is to deploy a highly available system. 

2.4.3 Security Benchmarking 

The first attempt at security benchmarking is more than a decade old (Vieira and 

Madeira 2005). However, in this case, there is still open space for research mostly 

due to the inherent difficulties of evaluating security. On one hand, there are 

numerous techniques for detecting vulnerabilities (e.g., static analysis, penetration 

testing), or for analyzing threats to the security of a system (e.g., STRIDE (J.D. Meier 

et al. 2003, 3)), but on the other hand security is dependent not only on what we 

know about a system and environment (e.g., presence of known vulnerabilities, 

likelihood of attack), but also on what is unknown (unknown vulnerabilities, profile 

of attackers, real effectiveness of protection mechanisms). The next paragraphs 

discuss the few research efforts carried out in this domain. 

One of the first contributions in this domain, was in the field of transactional systems 

(Vieira and Madeira 2005). The work proposes an approach for characterizing 

security mechanisms of database systems and database applications, which is 

achieved by using set of security classes. The benchmark defines a set of tests that 

are used to characterize the mechanisms, and from the results of these tests a class is 

assigned to the system under test. An additional metric, that represents how well the 
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system complies with security requirements, is also part of the proposal, as a means 

to distinguish systems that are classified as belonging to the same class. 

In (Vieira and Madeira 2005) the authors mention their previous work in 

dependability (Vieira and Madeira 2003), highlighting the fact that there are five key 

components to define, when creating a security benchmark: a workload, an attackload, 

a set of measures, procedures and rules and an experimental setup. The attackload is 

derived from the definition of faultload (Vieira and Madeira 2003), and refers to a set 

of attacks that should emulate real and representative security attacks that could be 

carried out against the tested system. The measures should now meaningfully 

describe the security of the system.  

Security benchmarks have also been used to assess and compare different computer 

architectures. In (Poe and Li 2006) the authors propose BASS, an open source 

benchmark suite to evaluate the security of architectural security mechanisms, when 

exposed to a set of malicious attack scenarios. The authors developed a set of 

programs containing vulnerabilities and scripts for generating exploits against those 

programs. The idea is to cover a wide range of different architectural attack 

characteristics and provide a way for evaluating systems. 

An approach for benchmarking availability is proposed in (Zhu, Mauro, and 

Pramanick 2003). The authors propose a general “framework” for implementing 

availability benchmarks applicable to a wide range of systems. Three attributes are 

identified has having a significant impact on system availability: fault and 

maintenance rate, robustness, and recovery. The approach allows quantifying the 

previous attributes by defining the following metrics for each one, respectively: 

outage resilience index, outage source index, and outage duration index. These 

indexes are further decomposed in sub-level metrics. A relevant aspect of the work is 

its link to security, as it allows creating benchmarks that are dedicated to measure 

one of the three security attributes (availability). Although the framework does not 

bring in a practical implementation, it is still is an interesting contribution and some 

concepts may be reused in the definition of a security benchmark (e.g., the idea of 

using composed metrics in the evaluation). 

The field of security benchmarking also raises some controversy. In (Neto and Vieira 

2011a) it is presented a study with a strong argumentation against applying 

dependability benchmarking approaches in security. The authors argue that some of 

the main challenges of dependability benchmarks include the difficulty of defining 

quantifiable metrics to estimate the degree of security, and how to create a 

representative attackload/faultload. Based on this argument, the authors actually 

propose a new type of benchmark, named a trustworthiness benchmark. This 

departs from the traditional model of dependability benchmarking, and estimates 

the security of a system based on the amount of evidence available that the system is 

secure. 
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In (Neto and Vieira 2011b), and based on the work in (Neto and Vieira 2011a),  a 

two-step process is proposed to address the problem about how to benchmark 

security in web applications. In the first step, named security qualification, the goal 

is to eliminate competing web applications with security vulnerabilities. To find 

these vulnerabilities the authors propose to use penetration testing and/or static code 

analysis tools. In the second step, named trustworthiness benchmarking, a metric to 

estimate the existence of hidden or hard to detect bugs is proposed, based on 

evidences collected from the competing web applications under benchmarking. In 

the case of the work in (Neto and Vieira 2011b), the approach is illustrated in a case 

study, where the authors apply three static analyzers over a set of applications and 

then make use of the output of the analyzers (i.e., vulnerability warnings) to 

compute the trustworthiness metric for each application. The formula used is the 

following:  

Trustworthiness = (# Lines of Code / 100) / (F *0.93+Y *0.64+I *0.33) 

In the above formula, the factors F, Y, and I are calibration factors (for three different 

static analyzers), which have been proposed in previous work (N. Antunes and 

Vieira 2010). F is the number of security warning reported by the Findbugs 

(Findbugs 2012), Y is the number of warnings reported by the Yasca (Scovetta 2009)   

and I is the number of warnings reported by Intellij Idea (JetBrains 2012). 

In (Mendes, Duraes, and Madeira 2011) it is proposed a benchmark for assessing the 

security of web serving systems. The proposed methodology allows evaluating the 

security risk of software components and systems based on exploitability and impact 

of known vulnerabilities. According to the authors, the security risk evaluation is 

based on the knowledge of known vulnerabilities. Information about these 

vulnerabilities is extracted from the Common Vulnerability Scoring System (CVSS) 

(“Common Vulnerability Scoring System (CVSS-SIG)” 2013) – a public database with 

information about known vulnerabilities. This methodology, however, is not capable 

of dealing with estimating hidden or hard to detect bugs that belong to an unknown 

vulnerability type.  

A security benchmark for web servers is proposed in (Mendes, Madeira, and Duraes 

2014) with the goal of covering two cases of vulnerabilities: known and unknown. 

The approach is based on two parts: a static part, based on risk-assessment; and a 

dynamic part, based on penetration testing. The static part is aimed at measuring 

security risk posed by known vulnerabilities. The dynamic part is based on the 

principles of dependability benchmarking (e.g., it includes the definition of a 

workload, faultload/attackload, and metrics), and uses penetration testing for 

analyzing the behavior of the system in the presence of security attacks. In a sense, 

this approach is similar to trustworthiness benchmarking, as it estimates the security 

of a system based on evidences. 

In (Nuno Antunes and Vieira 2015) it is proposed a benchmark whose focus is not 

directly on the security of systems, but is instead on the evaluation of tools for 
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detecting vulnerabilities in systems, e.g., penetration testers, static code analyzers, 

and anomaly detectors. The approach assumes a clear definition of the 

benchmarking domain and defines the elements needed to define specific 

benchmarks. Three typical elements of a dependability benchmark are present: a 

workload, a procedure, and a set of metrics to characterize the effectiveness of the 

tools (F-Measure, Precision, Recall). Results indicate that the benchmarks accurately 

portray the effectiveness of vulnerability detection tools. Moreover, the successful 

application of this benchmark in a domain relatively close to the one in this thesis, 

suggests that at least part of the concepts may find application in security 

benchmarking of web service frameworks. 

2.5 Conclusion 

This chapter discussed the state of the art on web services and frameworks security, 

with particular emphasis on security testing tools and techniques, and security 

evaluation and benchmarking. The analysis in this chapter made the limitations of 

the current state of the art very clear at several different levels, which we now 

highlight. 

The limitations regarding security testing tools for web service frameworks are very 

obvious. Only a few tools allow testing frameworks using Denial of Service attacks, 

but even so the limitations are quite strong. The few tools that support this kind of 

tests allow executing just a few types of attacks and do not offer much configuration 

possibilities (e.g., executing attacks for predefined periods of time, or easily 

alternating between periods of attack and periods of regular requests). Most of the 

tools also lack support for typical needs of assessment approaches, such as logging 

test data in and format that is easy to process, deployment of test tools in machines 

and allowing remote control (e.g., for initiating tests at particular moments, or 

stopping them). 

Many security assessment approaches follow the same trend and focus on detecting 

application-level vulnerabilities, disregarding the importance of the security of the 

underlying platforms. This leads to a relatively small set of research carried out 

specifically on web service frameworks. Thus, we found in many cases reduced or 

exploratory work using either a particular type of attack or a relatively small set of 

attacks and targeting specific aspects of frameworks. There is a need, not only 

understanding the capacity of current web service frameworks to resist DoS attacks, 

but also for broader approaches that analyze more than the usual response time and 

throughput metrics. Also, security assessment approaches in the literature rarely 

open the ground for enabling quantitative comparison between different systems, 

which makes the process of understanding the assessment results more complex. 

In what concerns performance assessment, there is a large amount of research or 

initiatives that either assess systems in terms of performance, or specify benchmarks 
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for assessing systems in terms of performance. However, combining this 

performance assessment with security attacks is something quite rare in the 

literature. The point is that systems deploying web services serve multiple clients, 

some of those clients are legitimate and expect a given quality of service, while 

others are malicious. Understanding performance from the point of view of the 

legitimate clients, while the system is being attacked, is generally disregarded in the 

literature (although it represents an important quality property of a framework). 

In what concerns benchmarking security, the scenario is even worse. Although 

benchmarking is a very well-known concept, applications are found essentially in 

the performance and dependability domains. Security is a much more complex 

concept that involves greater challenges. The problem that the literature frequently 

mentions is the security of a given system is much dependent on unknown aspects 

regarding the system (e.g., unknown vulnerabilities). In this context, we can find a 

few initial efforts in the literature, but, to the best of our knowledge, none that is 

specific of frameworks or allows not only assessing but also comparing the security 

of web service frameworks. 

This thesis focuses on the abovementioned issues and brings in contributions in each 

of these key topics. 
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Chapter 3 
Security Testing Tool for 

Web Service Frameworks  

In this chapter, we present WSFAggressor, a security testing tool for Web service 

frameworks. The tool was built based on WS-Attacker (“WS-Attacker” 2012),  with 

the main purpose of overcoming the main limitations found in similar tools (e.g., 

small number of implemented attacks or little configuration possibilities) and of 

adding special support for security assessment, such as allowing remote control of 

tests, logging relevant test data (e.g., the identification of requests, response content, 

or  response time), and allowing writing testing campaign results in an format 

adequate for later analysis). 

Despite the evident need for security in the platforms that support web services, 

existing security testing tools hold, as discussed in Chapter 2, many limitations. 

Static code analysis tools typically show high false positive rates and are inadequate 

to assess if a web service framework can efficiently process a given SOAP payload, 

as this is something that can only be fully understood at runtime (Curbera et al. 

2002). On the other hand, the security testing tools that execute tests at run time 

mostly focus on application level vulnerabilities. The few that allow testing the 

middleware, at the time of writing, implement a very limited set of attack types.  If 

we restrict the tools to those that focus on Denial of Service, which is extremely 

important in business-critical environments based on web services, then the options 

are even scarcer. WSFAggressor supports a wide range of attacks, which have been 

collected from the literature and similar tools (Jensen, Gruschka, and Herkenhöner 

2009; Intel 2006; Orrin 2007; Smartbear 2012), with the ultimate goal of having a tool 

that can support various security assessment approaches (e.g., the ones discussed in 

this thesis) that require the execution of security tests at runtime. 

This chapter is organized as follows. Section 3.1 introduces the WSFAggressor 

application. Section 3.2 details the architecture of the tool, with emphasis on the 
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facets that are different from WS-Attacker. Section 3.3 describes the security attacks 

supported, including implementation details, and Section 3.4 positions 

WSFAggressor against other existing security testing tools. Finally, Section 3.5 

concludes the chapter. 

3.1 The WSFAggressor Tool 

WSFAggressor, available at (Oliveira, Laranjeiro, and Vieira 2012a), was built based 

on WS-Attacker (“WS-Attacker” 2012), as this tool already provides an interface for 

security testing of WS frameworks (thus, the user interface is the same as the one 

found in WS-Attacker). Although the features of WSFAggressor do not focus on the 

user interface, we present two screenshots to provide an easier-to-follow explanation 

of its capabilities (Figure 3.1 and Figure 3.2).  

As shown in Figure 3.1, the user interface is organized in a set of tabs that group and 

separate the main operations. After the application is launched, the ‘WSDL Loader’ 

tab is selected by default, providing options for retrieving information regarding the 

target web service (i.e., its WSDL). The user needs to enter the URL location of the 

WSDL file and the application retrieves the interfaces and operations available from 

the web service. The user can then select the operation that will be used as entry 

point for the security test and visualize the required operation input parameters. It is 

important to mention that, in the case of WSFAggressor, and although the entry 

point is always an application-level operation, the tests will focus on the processing 

carried out by the supporting web service framework (e.g., deserializing an array 

from SOAP to an object), and not by any particular operation logic at the 

application-level. 

Figure 3.1 presents the main test configuration screen, the ‘Plugin Config tab’. The 

application is built on top of a plugin system, where each plugin (visible in Figure 

3.1) represents one type of attack. An attack can include one or more malicious 

requests that are sequentially executed at runtime. The exception to this is the 

’Automated Request’ plugin, which allows sending regular (i.e., non-malicious) 

SOAP messages to a given service. We built all the attack plugins shown due to the 

fact that WS-Attacker (“WS-Attacker” 2012), at the time of analysis, did not 

implement any DoS attack. Also, the ‘Automated Request’ plugin was added to 

allow understanding the service behavior in presence of regular requests (which can 

later be used as baseline information).  
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Figure 3.1. Plugin selection and configuration 

WSFAggressor allows individual or batch selection of plugins, exactly in the same 

manner as WS-Attacker. Each selected plugin presents information regarding the 

author, version, and specific attack implemented. One of the new features of 

WSFAggressor, that fits our assessment approaches discussed later in this thesis, is 

the presence of test control options that allow fine-tuning the security tests to better 

fit the needs of the user. These configurable options include the time interval 

between requests, the number of requests to be sent during the execution of a test, 

and the maximum duration of each executed attack. These options are transversal to 

all plugins, although some of plugins of WSFAggressor also allow the configuration 

of options that are specific to a given attack.  

After selecting the attacks that the tool will perform during the execution of a 

security test, the user can select the ‘Attack Overview’ tab, as shown in Figure 3.2, to 

review their execution order before starting the test. The user can start a security test 

in this tab. The test ends when all plugins complete their execution, when the test 

exceeds the maximum time or maximum request count specified by the user in the 

test configuration options, or when the user explicitly aborts it.  
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Figure 3.2 - Attack overview and execution. 

3.2 WSFAggressor Architecture 

From a conceptual point-of-view, the WSFAggressor architecture is composed of 

three layers, which we have named Core Layer, Plugins Layer, and SOAP Engine Layer. 

Each layer consists of a set of components with well-defined functions (described in 

the following paragraphs). Figure 3.3 represents a view of this layered organization. 

The Core Layer represents the core functionality that WSFAggressor inherits from 

WS-Attacker and is based on a Model-View-Controller (MVC) software architectural 

pattern (Gamma et al. 1994). The Controller (represented by the GUIController 

component in Figure 3.3) interacts with two components on behalf of the client: a 

Model (TestSuite in Figure 3.3), which is the component responsible for storing and 

separating relevant application data; and a View (GUIView), which renders the 

model in the graphical interface. The Model (TestSuite) stores web service 

information from the WSDL file (operation, request and interface). The 

GUIController also calls an additional module responsible for managing and loading 

the default plugin structure, referred to as PluginManager, which invokes all plugins 

that implement the AbstractPlugin component. The GUIController invokes the 

TestSuite, retrieves the web service stored data, and delivers it to the implemented 

plugins. 

The Plugins Layer extends WS-Attacker with a set of plugins that represent the core 

functionality of WSFAggressor. These plugins are represented by the AttackPlugins 

module in Figure 3.3, and correspond to the implementation of the attacks 

supported by WSFAggressor. In short, two mechanisms are used. WSFAggressor 

can use automatic generation of attack signatures (configured by the user) or explicit 

load of external signatures at runtime. The attacks that have low computation 

requirements use dynamic generation of attack signatures based on the user 

configuration (specified in the graphical interface). There are, however, attacks that 

are static, as their generation on demand would require a large amount of 

computation and memory. These attacks are stored externally in signature files 

(represented as WSFAggressor signatures in Figure 3.3) and loaded at runtime. In 
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practice, all signatures supplied with the application are stored in text files and can 

be reused or extended to create other plugins. 

The PluginWrapper is the other component included in the Plugins Layer. Its goal is 

to enable the execution of frontend plugins – components with minimal internal 

logic that can be used to execute attacks already developed by third party 

developers. For instance, the XMLBomb attack is a frontend plugin to the attack with 

the same name already implemented by the SOAP Engine Layer. 

 

Figure 3.3 - Internal architecture of WSFAggressor 

Tthe SOAP Engine Layer uses the soapUI application engine via its API. The SoapUI 

libraries are invoked on behalf of WSFAggressor to send and receive SOAP 

messages to a web service provider. In short, TestSuite invokes soapUI to retrieve 

and store the web service interface, AttackPlugins invoke soapUI to send the 

malicious requests (and to receive the responses) to the web service provider, and 

the PluginWrapper interacts with SoapUI to enable the execution of soapUI’s 
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internal security attacks. Since SoapUI only supports security attacks since version 

4.0, we updated the soapUI engine (version 4.0.1) in WSFAggressor, which required 

a few code adaptations to the WS-Attacker tool that originally used SoapUI 2.5. 

The SOAP Engine Layer includes (in addition to internal soapUI components) the 

RequestListener component (built specifically for WSFAggressor). This module 

implements the RequestFilter interface from the soapUI API and acts as a listener to 

all outgoing SOAP requests. When WSFAggressor executes an attack, the request 

containing the malicious content is passed to the lower layers until it reaches the 

soapUI libraries. However, the structure of some attacks is not as expected by 

soapUI, which generates internal errors (aborting the dispatch of the request). For 

these cases, the application includes a unique token in the request (corresponding to 

the attack). RequestListener is called immediately before the request is sent to the 

service provider (at the HTTP transport layer), which places the corresponding 

WSFAggressor attack signatures (replacing the token) in the HTTP SOAP payload. 

To create a new attack, a developer simply needs to create a class that extends the 

AbstractPlugin and place it in the wsfagressor.plugin package. The methods to 

implement are straightforward and code examples can be found in the 

implementation of the attacks available in  (Oliveira, Laranjeiro, and Vieira 2012a) . 

The main task to perform is to implement the 

attackImplementationHook(RequestResponsePair) method, which allows the developer 

to extract a regular (non-malicious) request object from the method argument and 

manipulate it as desired, with the help of other easy-to-use methods. 

3.3 Attacks Implemented by WSFAggressor 

WSFAggressor implements a set of 9 attacks with multiple configuration 

possibilities. To identify and select the attacks to test the WS frameworks, we carried 

out a study focusing not only on the research performed in the web services security 

area (Intel 2006; Jensen, Gruschka, and Herkenhöner 2009; Suriadi, Clark, and 

Schmidt 2010), but also on software applications that can be used for testing and 

attacking web services (Falkenberg et al. 2013; Smartbear 2012; WSFuzzer 2012). The 

selected attacks are summarized in Table 3.I and detailed in the following 

paragraphs. 
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Table 3.I – Attacks implemented by WSFAggressor. 

Attack Description Example 

Coercive 

Parsing 

SOAP body is set with a large 

quantity of nested open XML tags 

named after the operation arguments 

names 

100000 nested open XML tags 

named with the target operation 

argument name 

Malformed 

XML 

A combination of XML malformations 

in each malicious request (e.g., tags 

not closed, invalid characters) 

Two interlaced tags; one tag open 

but not closed; one attribute open 

but not closed; invalid characters 

Malicious 

Attachment 

A large quantity of binary data is sent 

with the request  

A 100MB gziped binary file 

(randomly generated)  

Oversized 

XML 

The malicious request includes 3 types 

of oversized XML components: i) 

large XML tag names; ii) large values 

enclosed in regular tags; and iii) large 

attribute names 

Alternate invocations of the 

following request configurations: i) 

XML tag oversized until a total size 

of 1.9Mb is reached; ii) XML tag 

filled with one regular attribute 

repeated until a total size of 1.9Mb is 

reached; and iii) XML tag with a 

large attribute name (until 1.9Mb) 

Soap Array  
A large number of regular XML 

elements (e.g., a million elements) 

1000000 regular XML elements with 

a 6-byte String as value 

Repetitive 

Entity 

Expansion 

Compact recursive definition of DTD 

entities, which the XML parser 

expands into a set of large entities 

The expansion of 100 references to a 

3-byte entity, with each reference 

defined in terms of the previous one, 

expanding to (2101-1) * 3 bytes, i.e., 

requiring 7e+21 Gb in memory 

XML Bomb 

Combination of 3 types of requests 

that include: i) definition of a large 

external DTD entity (e.g., 100Mb) that 

is loaded by the framework; ii) a large 

entity (hundreds of Kb) is defined and 

referenced thousands of times in 

sequence in the request; and iii) a 

compact recursive definition of DTD 

entities, which the XML parser 

expands into a large set of entities 

A combination of malicious requests 

sent alternately that include: i) a 92.2 

Mb external entity; ii) 30000 

references to a 100Kb entity; and iii) 

a billion references to 3-byte entities 

defined recursively in less than 1Kb 

but expanding to nearly 3Gb in 

memory 

XML 

Document 

Size 

A valid large SOAP header or body 

(Mb size) 

 

Requests including (sent alternately 

to the server): i) a valid 1.9 Mb 

SOAP header; and ii) a valid 1.9Mb 

SOAP body 

XML 

External 

Entities 

Requests that reference well-known 

system files 

A request referencing: 

/etc/password; /etc/shadow; 

C:\boot.ini; 

C:\windows\System32\MRT.exe; 

and /dev/random 
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The Coercive Parsing attack targets a specific component of the web service 

frameworks, the XML parser. For this attack to be performed successfully, a 

malicious user creates a SOAP message with a significant number of elements 

opened in the SOAP Body (although it might be performed in other areas of the 

SOAP request). The main goal is to trigger a recursive parsing of the request 

message when being processed by the web service framework, potentially leading to 

high consumption of system resources and possibly resulting in service 

unavailability (Jensen, Gruschka, and Herkenhöner 2009). In our implementation of 

the Coercive Parsing attack, the SOAP body of each request includes a large quantity 

of deeply nested XML tags named after the operation arguments names. The default 

nesting depth is 100.000 levels, but the user can set this value according to its 

preferences.  

The Malformed XML attack consists of a set of XML malformations that are 

included in each malicious request (e.g., tags open but not closed, invalid 

characters). In the case of service frameworks, the XML parser has the responsibility 

to reject syntactically invalid documents (e.g., when a request does not comply with 

the XML format rules). For this, a parser needs to go through the entire XML 

document to understand if the XML is well-formed. A malicious attacker can explore 

the XML nature of SOAP messages and create a malformed SOAP request that is 

then CPU and memory intensive to process (OWASP 2013b). A repetitive execution 

of this attack can, when vulnerabilities are present, lead to a DoS. This attack, which 

is implemented by SoapUI, offers no specific configuration to the user.  

The Malicious Attachment attack targets the ability of the frameworks to process 

attachments in SOAP messages. There are two options to attach a file to a web 

service request: embed it in the SOAP request message or package it separately 

using MIME. Conventional XML parsers cannot parse efficiently documents that 

have a deep or complex structure, or those that are simply huge in size (Oracle 2005). 

If the web service framework allows a binary file to be embedded in the SOAP 

request and is not able to handle it efficiently (e.g., the technique used to process the 

MIME message stores the full content of the file in memory for manipulation), then it 

is possible to exhaust the memory resources of the server quite easily. A malicious 

user can then create an attack by repeatedly sending requests holding a large 

embedded file. The implementation of the Malicious Attachment attack in our tool is 

thus based on sending a large quantity of binary data within a SOAP request. By 

default, WSFAggressor includes a binary zipped file attachment (a total of 100MB), 

but the user can specify other files with dimensions that are more adequate to his 

testing goals. 

The Oversized XML attack is based on exploiting the length of XML tags, targeting 

again potential vulnerabilities in the XML Parser used by the framework. This attack 

is allowed because the XML Standard does not limit the size of the names of 

elements, attributes and namespaces. Therefore, a malicious user can explore the 

length of these items (Intel 2006) and send a request involving any combination of 



Security Testing Tool for Web Service Frameworks 

 67 

oversized items. The implementation of the Oversized XML attack in our tool is based 

on the inclusion of very large XML elements that are sent in a malicious SOAP 

request. This malicious request can include 3 types of oversized XML elements: i) 

large XML tag names; ii) large values enclosed in regular tags; and iii) large attribute 

names. The implementation of this attack is currently based on three signature files 

that store each of the three variants, occupying approximately 1.9MB each. The 

malicious content can be configured by simply changing these attack signature files.  

The XML Document Size attack, also known as Oversize Payload, is very similar to 

the Oversized XML. Both attacks try to target the XML Parser of the web service 

framework, using brute force techniques. However, while in Oversized XML the 

attacker uses very large names, in the XML Document Size attack a very large SOAP 

message is sent to the attacked web service (Orrin 2007; Jensen, Gruschka, and 

Herkenhöner 2009). This request is normally composed of a large number of XML 

tags with the goal of exhausting the memory resources of a vulnerable XML parser, 

while trying to parse these malicious requests. One interesting aspect is that such 

message is still a valid one, as the SOAP specification does not limit the request size. 

In the case of our tool, the implementation of the XML Document Size attack is based 

on a large content that is sent in the SOAP message header or body. The signature of 

this attack is stored in a local file with an approximate size of 1.9 MB. The user can 

easily change this size with a simple text-editing tool.  

The SOAP Array attack tries to take advantage of the fact that the SOAP 

specification does not impose limits on the number of elements in SOAP arrays. This 

scenario enables a malicious user to define an array with a huge amount of elements 

and use it in a SOAP request (Jensen, Gruschka, and Herkenhöner 2009)(Orrin 2007). 

Once the malicious request is received at the server side, the XML parser starts 

parsing the elements that are inside the array. If the web service framework tries to 

reserve memory space for the complete set of elements present in the array, it may 

be left without further resources for regular operation (Jensen, Gruschka, and 

Herkenhöner 2009). The following example, in Figure 3.4, illustrates a typical request 

that explores the abovementioned XML Parser weaknesses. In our implementation 

of the Soap Array attack, we initialize an array with 1.000.000 string elements and 

place it in a SOAP message. Again, the user can define the size of the array. 
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<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 

xmlns:myw="http://MyWebService.dei.uc.pt"> 

   <soapenv:Header/> 

   <soapenv:Body> 

      <myw:getArray> 

         <myw:param>attack</myw:param> 

         <myw:param>attack</myw:param> 

         <myw:param>attack</myw:param> 

         <myw:param>attack</myw:param> 

 

         <!-- repeat the previous line N times --> 

 

      </myw:getArray> 

   </soapenv:Body> 

</soapenv:Envelope> 

Figure 3.4 – SOAP Array attack example. 

The Repetitive Entity Expansion attack can be found in several variants in the 

literature (e.g., XML Entity Expansion attack) (Sullivan 2009; Orrin 2007). This attack 

is based on the definition of entities, which are variables that represent constant 

strings or special characters (and can be declared internally or externally to the XML 

document). When a parser finds an entity in an XML document, it replaces the 

reference to the entity with the respective value. This attack recursively defines 

internal Document Type Definition (DTD) entities (which are essentially text 

shorthands), which the XML parser will expand into a set of large entities at runtime. 

For instance, the expansion of 100 references to a 3-byte entity, with each reference 

defined in terms of the previous one, can result in a total of (2101-1) * 3 bytes, i.e., 

occupying 7e+21 GB in memory. In our implementation, the attack is stored in a 

signature file and the user can change the amount of references (or size of the 

defined entity).  

In the case of the XML External Entities attack, the entity is defined in an external 

document and a reference to the external document is given (Sullivan 2009; Orrin 

2007). The goal is to cause a DoS by making the XML parser to retrieve a very large 

amount of external data during the parsing process. The example in Figure 3.5, 

shows a malicious request that targets a Linux based system, where the /dev/random 

file is referenced. If the attack is successful, then the XML parser of the framework 

will try to process the huge amount of random data produced by this special file, 

which can lead to an excessive consumption of system resources. The 

implementation of the XML External Entities attack in WSFAggressor consists of a set 

of requests that reference well-known system files and, in our case, targets the 

allocation of server resources. The user can add more files to this attack by changing 

the respective attack signature file in the customSecurityScans/attacks folder of the 

application. 
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<?xml version="1.0"?> 

<!DOCTYPE order [ 

<!ELEMENT foo ANY > 

<!ENTITY xxe SYSTEM "file:///dev/random" > 

]> 

<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-envelope" 

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding"> 

  <soap:Body xmlns:m="http://www.example.org/order"> 

     <foo>&xxe;</foo> 

  </soap:Body> 

</soap:Envelope> 

Figure 3.5 – XML External Entities attack example. 

The XML Bomb attack is currently non-configurable (it was extracted from SoapUI 

(Smartbear 2012)) and is based on a combination of 3 types of requests that include: 

i) the definition of a large external DTD entity (e.g., 100MB) that is loaded by the 

framework; ii) the definition of a large entity (hundreds of KB) that is referenced 

thousands of times in sequence in the request; and iii) a compact recursive definition 

of DTD entities, which the XML parser expands to a large set of entities. 

3.4 Comparing WSFAggressor with other Tools 

To better understand the relevance of WSFAggressor, it is important to compare it 

against other free tools that also allow executing DoS attacks against web service 

frameworks. These tools are SoapUI (Smartbear 2012), WSFuzzer (WSFuzzer 2012), 

and WS-Attacker (“WS-Attacker” 2012). The Acunetix vulnerability scanner 

(Acunetix 2014), discussed in Chapter 2, currently supports a single type of DoS 

attack, but is excluded from the analysis for being a commercial tool, which would 

limit the analysis (as we do not have free unlimited access to its features). Also, 

supporting just one type of attack makes it relatively irrelevant in our context. 

Security tools focusing on application-level vulnerabilities (e.g., SQL Injection, XSS) 

are also out of the scope of this comparison, as they target a different objective. 

We use two main criteria with the goal of positioning WSFAggressor with regard to 

the other tools. The first criterion directly refers to the main functionality of the tool, 

i.e., the types of attacks that are supported; the second refers to relevant properties 

that should be considered when selecting a black-box security testing tool (Michael 

and Radosevich 2012). These properties are: i) customization - characterizes a tool in 

terms of its configuration possibilities, in particular: how the tool handles the 

selection of the available attacks, how they can be combined, and how they can be 

configured (e.g., to execute for a given amount of time, until a certain amount of 

invocations, etc.); ii) ease of use - the tool should be intuitive and easy to use, even 

for users with scarce experience in security testing (tasks should be accomplished 

quickly, assuming basic user competences); iii) extensibility - the tool should allow 

native add-ins or extensions that connect to third party applications, and such 
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extensions must be easy to maintain even when the application is updated; and iv) 

vendor support - the tool provider releases upgrades on a regular basis, providing 

software patches for bug correction or frequent updates for feature extension. 

We defined a numeric scale to describe how well the tools fulfill the above 

properties, based on a ranking system from 1 to 3 (a higher value is better). We chose 

this scale granularity as it is large (and therefore easy to apply) but still good enough 

to distinguish the tools. Table 3.I summarizes the comparative analysis targeting 

soapUI, WSFAggressor, and WSFuzzer. As we can see, WSFAggressor supports 

more attacks than the union of the remaining tools and generally scores higher in the 

tool selection properties. Note that, we opted not to rank the Vendor Support 

property for WSFAggressor since this is the first release, although we plan to 

continue actively developing it (Oliveira, Laranjeiro, and Vieira 2016). 

 

It is worth emphasizing that, at the time of implementation of WSFAggressor, WS-

Attacker did not implement any of our DoS attacks, and it was more recently that a 

few XML-based DoS attacks were added to WS-Attacker (Falkenberg et al. 2013). 

Also, there are a few additional features implemented in WSFAggressor (i.e., not 

present in WS-Attacker), which are quite useful for large experiments. These include: 

i) the storage of test data (e.g., request identification, response content, response 

time) in CSV files; ii) the support for external control, so that it is possible to 

automate experiments allowing WSFAggressor to be invoked using a console 

command with configuration options that specify which plugins (i.e.,  attacks) 

should be executed (i.e., skipping the need to interact with the GUI); and iii) the 

possibility to remotely control the operation of WSFAggressor by allowing the 

reception of messages sent to a specific port (these messages support starting, 

pausing and stopping the execution of a particular plugin).  

Table 3.II – Comparison of security testing tools for web service frameworks. 

Criteria 
Tools 

soapUI WSFuzzer WS-Attacker WSFAggressor 

S
u

p
p

o
rt

ed
 A

tt
ac

k
s 

Coercive Parsing  X X X 

Malformed XML X   X 

Malicious Attachment X   X 

Oversized XML  X X X 

Soap Array   X X 

XML Bomb X   X 

XML Document Size  X  X 

Repet. Ent. Expansion    X 

Xml External Entities  X X X 

P
ro

p
er

ti
es

 

Customization 3 1 2 3 

Ease of Use 2 1 3 3 

Extensibility 2 2 3 3 

Vendor Support 3 1 - - 
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Due to the abovementioned reasons, WSFAggressor receives the highest score for 

the customization property, only matched by SoapUI, which also provides developers 

with much flexibility (e.g., by allowing the easy integration of Groovy scripts for 

automating or customizing tests). WSFuzzer does not allow basic customization 

options (e.g., configuring the duration of attacks), and therefore is set on the 

opposite end. Regarding the ease of use, we mark both WSFAggressor and WS-

Attacker with the highest scores, as it is possible to use both tools in a security 

assessment context just by performing a few clicks on the user interface. Doing the 

same operations in SoapUI, may involve writing scripts and this is aggravated in 

WSFuzzer, which is a command-line tool. The extensibility property is a perfect fit for 

the possibility of extending the tool by using plugins. These, at the time of writing, 

are not available in WSFuzzer and SoapUI. Finally, there is the vendor support, in 

which SoapUI is best positioned, mostly due to the support available online and 

active development, which is not the case for WSFuzzer. 

With exception of vendor support, WSFAggressor is highly ranked in all attributes. 

This happens, mostly due to the specificity of the context being used for comparison. 

Obviously, a tool like SoapUI will rank better if we consider other types of tests or 

properties (e.g., load tests, ability to test different interfaces). 

3.5 Conclusion 

This chapter presented a tool for web service frameworks security testing, which is 

freely available at (Oliveira, Laranjeiro, and Vieira 2016) and requires little 

configuration effort and expertise knowledge to be used. We started with a general 

description of the features of WSFAggressor, including the necessary steps to 

execute it, and of its architecture. Afterwards, we presented the list of attacks 

supported by WSFAggressor and their implementation details. The chapter 

concluded by positioning WSFAggressor among its main competitors, emphasizing 

the main differences.  

The tool presented in this chapter fills a very visible gap found in current security 

tools, in particular the limited support for testing with DoS attacks. To the best of 

our knowledge, the set of DoS attacks implemented by WSFAggressor is the largest 

found in security testing tools for web services. This is something vital when the goal 

is to detect the presence of vulnerabilities in systems, as the diversity of the attacks 

potentially exercise different parts of the code, increasing the likelihood of finding 

vulnerabilities. Another relevant aspect is that the features added to WSFAggressor, 

discussed in the previous section (e.g., remote control, external script support), are 

especially adequate for experimental security assessment, and provide great support 

for the assessment approaches presented in the following chapters.  

As a summary, the tool can be quite useful for providers to assess the security of 

their service platforms, but also for developers to disclose potentially severe issues 



Chapter 3 

 72 

before deployment. But most of all, WSFAggressor is one of the main technical 

means that support the approaches described in the rest of this thesis, which further 

emphasizes its usefulness in research contexts. 
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Chapter 4 
Assessing the Security of Web 

Service Frameworks 

In this chapter, we propose an experimental approach that allows studying how well 

a given web service framework is prepared to handle DoS attacks. The approach 

builds on top of the tool presented in the previous chapter, especially on the variety 

of implemented attacks and customization options. 

The problem addressed in this chapter essentially refers to the limitations found in 

the literature regarding assessing the capabilities of web service frameworks in 

presence of DoS attacks. Most of the research in this context is merely exploratory or 

focused on either a particular type of attack or on a small set of attacks (Jensen, 

Gruschka, and Herkenhöner 2009), (Suriadi, Clark, and Schmidt 2010). To the best of 

our knowledge, none actually tries to understand how frameworks deal with a large 

number of different of attacks. Associated with this, the definition of metrics that can 

be used to describe the behavior of a framework when handling DoS attacks are 

generally overlooked and reduced to generic parameters, such as throughput or 

response time. Thus, the few existing tools for security testing of web service 

frameworks become rather useless for both practitioners (e.g., to assess the security 

of their platforms) and researchers (e.g., to study frameworks in terms of different 

security properties). 

Our proposal is based on the execution of DoS attacks in combination with regular 

requests in a set of runtime tests. This is carried out during three distinct phases, in 

which we collect metrics about the service behavior before attacks, during attacks, 

and after attacks. The failures observed are classified using an adaptation of the 

CRASH scale (Koopman et al. 1997) and dubious behaviors (that indicate abnormal 

allocation of system resources) are also analyzed, as they may provide rich 

information for developers to correct or optimize their framework code. 

We illustrate the application of the approach proposed in this chapter to well-known 

and widely used frameworks, namely: Apache Axis 1, Apache Axis 2, Apache CXF, 

Oracle Metro, Spring JAX-WS, Spring-WS and XINS. The results show that most of 

the frameworks are quite resistant to the large set of security attacks executed by our 

tool, but the problems detected (e.g., high CPU/memory usage and unexpected 
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exceptions) also indicate the potential presence of security vulnerabilities in the 

frameworks, requiring attention from developers. 

The chapter is organized as follows. Section 4.1 describes the approach used to test 

the security of web service frameworks. Section 4.2 presents the experimental 

scenarios designed to demonstrate the proposed approach and Section 4.3 presents 

the results obtained for each of the tested frameworks. Section 4.4 discusses the 

quantitative impact of the attacks and compares the behavior of different versions of 

the same framework. Finally, Section 4.5 concludes the chapter. 

4.1 A Multi-Stage Security Testing Approach 

Our approach to evaluate the behavior of web service frameworks when facing DoS 

attacks is based on multiple stages. In practice, as an approach based only on 

attacking a web service with malicious requests does not provide a view of the 

service behavior that is accurate enough (with exception of very clear cases, where 

for instance the service platform crashes), we created a compound procedure that 

includes a set of distinct stages that allow understanding the regular behavior of the 

service (i.e., in presence of normal requests), the behavior of the service in the 

presence of attacks, and the effects of an attack on the regular service behavior (by 

comparing the behavior observed after the attack with the observations before the 

attack). In the next subsections, we explain the different stages of the approach 

(Section 4.1.1) and the behavior analysis procedure (Section 4.1.2). 

4.1.1 Approach Stages 

Figure 4.1 presents an overview of the approach, showing the sequence of stages 

(which we designate as Pre-attack, Attack, and Post-attack) and the periods (Warm-

up, Normal, Attack, Regular, and Keep) within each stage. Figure 4.1 also shows 

important relations between pairs of periods (for instance, {N,A} to represent the 

relation between the Normal and Attack periods). 
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Figure 4.1 – Approach overview. 

The stages are defined as follows: 

1) Pre-attack stage: includes two periods, a Warm-up period, where no requests 

are sent to the service, and a Normal invocation period, where valid requests 

(non-malicious) are sent to the web service. The goal of this stage is to 

understand the behavior of the service framework when idle and when 

handling normal requests. 

2) Attack stage: is composed of a single period (Attack), where malicious 

requests (of a given attack type) are submitted. This stage is carried out with 

the purpose of understanding how the service framework behaves when 

facing security attacks. 

3) Post-attack stage: includes two periods, a Regular invocation period, where 

non-malicious valid requests are sent to the server, and a Keep period, in 

which no requests are sent to the provider. The goal is to study if the attack 

stage has any effect on the regular service framework operation. 

The execution of these three stages is configurable, namely regarding the number of 

requests sent (regular or malicious requests), the time interval used between 

requests, and the duration of each stage. During the execution of each stage, several 

parameters representing the state of operation of the server are monitored, such as 

used memory, CPU usage, and number of allocated threads, among others (Gang 

Wang et al. 2006; Suriadi, Clark, and Schmidt 2010). Thus, for each period, we collect 

data to analyze later the framework behavior, either targeting each period 

individually or a combination of periods. The goal is to identify failures and dubious 

behaviors (e.g., high memory usage). This procedure is overviewed in Section 4.1.2. 

The pre-attack stage includes two distinct periods: warm-up and normal. The warm-

up period leads the service platform (i.e., the application server) to start up and 

allows collecting data regarding the idle behavior of the server (e.g., amount of used 

memory, number of allocated threads, CPU usage). Comparing this information 

with the Keep period of the Post-attack stage (relation {W, K}), helps understanding if 

a particular attack type affects the server behavior, even when there are no requests 

to handle. The normal invocation period serves the purpose of providing data 
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regarding the simple operation of the service platform (i.e., when handling non-

parallel requests). During this stage, valid requests are sent to the server and runtime 

data are collected. These data allow later checking if a given attack impacts the 

service or not (relation {N, A}), or if its effects are visible even after the server has 

handled the attack (relation {N, R}). 

During the attack stage, a set of malicious requests implementing a given attack type 

is delivered to the service framework. The goal is to understand, not only what is the 

direct impact of attacks on a framework, but also the behavior of the framework in 

the presence of attacks and then compare that behavior with the one previously 

observed when handling normal requests (i.e., non-malicious). This is represented in 

Figure 4.1 by the relation {N, A} that links the Normal and the Attack periods.  The 

attacks used in this stage are the ones implemented by WSFAggressor, as described 

in Chapter 3. 

During the post-attack stage, we observe the behavior of the service framework after 

being attacked. In some cases, the previous Attack stage is enough to cause a clear 

failure of the server; for instance, turning it unresponsive. This means that the Post-

Attack stage cannot be performed, since the server is unavailable to process requests. 

However, in other cases it is possible that an attack stage affects the server in a 

different way by, for instance, decreasing the amount of available memory. In these 

situations, the Post-Attack stage becomes crucial.  

The Post-attack stage consists of a Regular invocation period and a Keep period. The 

former is useful to observe if the attack stage indeed had any effects on the service 

platform, namely if it is still capable of handling valid requests in a normal way (this 

is represented by the relation {N,R} in Figure 4.1). To verify this, we analyze the data 

collected during the Regular period and compare them with the data collected 

previously in the Normal period of the Pre-Attack stage, as discussed in the next 

Section. Ideally, there should be no observable difference between these periods. The 

Keep period is used to detect if the service platform shows any dubious behavior 

when not handling requests anymore. It is also useful to compare the behavior of 

this period with the one observed for the Warm-up period (this is represented by the 

relation {W,K} in Figure 4.1), which allows understanding if, even after the attack 

stage finished and the execution of normal requests stopped, the framework shows 

signs of being affected by the attacks (e.g., by not being able to release previously 

allocated memory). 

4.1.2 Analyzing Framework Behavior 

As mentioned before, the goal is to identify (and classify) failures or dubious 

behaviors (deviations from expected behaviors). As software systems may fail in 

distinct ways, it is useful to identify and classify failures, as a first step towards 

enabling the comparison of distinct systems (Koopman et al. 1997). In this chapter 
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we adopt the CRASH severity scale, which has been originally applied with success 

in the operating systems domain (Koopman et al. 1997), and more recently in the 

web services domain (Vieira, Laranjeiro, and Madeira 2007b). The scale is 

summarized in the following points: 

 Catastrophic: the service is not available to provide correct service and it 

becomes corrupted, or the server or operating system crashes or reboots.  

 Restart: the service becomes unresponsive (i.e., it does not respond to 

requests) and must be terminated by force. 

 Abort: an abnormal termination is detected when executing a service 

operation. This refers to the cases where the service shows an unexpected 

exceptional behavior (e.g., an out of memory exception or message is 

triggered by the framework). 

 Silent: no error is indicated by the service framework on an operation that 

cannot be concluded or is concluded in an abnormal way. For example, this 

corresponds to a web service client not receiving a response. 

 Hindering: the returned error code is incorrect. In this last case, a given 

service framework would reply with an error message that does not 

correspond to the expected error condition. 

 

In some cases, we may not be able to clearly identify failures. For example, when 

testing a framework, we may observe some fluctuation of the system parameters 

(high memory or CPU usage), yet the service provider continues to operate (i.e., it 

does not fail). In our approach, such dubious behaviors are the subject of further 

analysis, where the goal is to understand, in a quantitative manner, how different is 

the observed behavior from the normal one (e.g., the memory usage might duplicate 

while processing regular requests as a consequence of a previous attack, but still the 

service provider continues to operate). 

To analyze dubious behaviors, we profile the use of a particular system resource 

(e.g., memory allocated, or CPU used) during an experiment run (which goes 

through the 3 stages) and register the data. These data might then be plotted, to 

facilitate any visual analysis. Figure 4.2 is an example plot of a test run that shows 

the variation of allocated memory during a test run and also highlights the different 

periods that take place during the run. The figure uses the following references for 

the different periods: W=Warmup, N=Normal; A=Attack; R=Regular; and K=Keep. 
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Figure 4.2 – Allocated memory during a test run. 

 

We measure what visually corresponds to the area of the different periods in the 

graph, which provides numbers that can be used for comparison. The area for a 

given period P can be determined using the following formula: 

 
 

 

In formula (1) a and b correspond to the start time and finish time of a given period 

P. For instance, for the warm-up period in our experiments, these two values will be 

0 and 5, respectively. 

After calculating the areas of all periods in a particular experiment run, we then 

determine the relative change (RC) (O. Bennett and L. Briggs 2010) between the three 

key pairs of periods: Normal and Attack {N,A}; Normal and Regular {N,R}, and Warm-up 

and Keep {W,K}. In practice, this relative change describes the difference between a 

reference value and a new one, thus being suitable for understanding the impact of 

the attacks, in this case, in terms of changes in the system parameters (O. Bennett 

and L. Briggs 2010). For a given pair of periods {P1, P2}, the relative change (RC) is 

calculated using: 
  

 

 

A RC value of 0 indicates that there is no difference between the two cases, whereas 

large differences indicate that there is a behavior difference, that might then be 

analyzed or used as reference for comparison with other frameworks (refer to 

Section 4.4.1 for the application of this technique to real cases). It is up to the tester to 

empirically define thresholds so that any large differences observed are highlighted -

(small variations are expectable due to the general non-deterministic nature of the 

software). Note that, the Relative Change and special cases of it, like the Relative 

Error, which quantifies an error ratio between a true and a measured value using the 
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same formula as RC (Abramowitz and Stegun 1965), are widely accepted in the 

research community and are applied in different areas like Signal and Image 

Processing (Zhang and Yang 2012). 

4.2 Experimental Setup and Configuration 

The experimental setup consisted in deploying a client running WSFAggressor to 

attack a server configured with a set of service frameworks. The two test nodes 

(client and server) were setup into separate machines connected using an isolated 

Fast Ethernet network. Table 4.I describes the nodes in terms of hardware and 

supporting software infrastructure. 

Table 4.I – Infrastructure supporting the experiments. 

Node Software Hardware 

Client Ubuntu 12.04 (32-bit) 

OpenJDK 1.6.0_20 

Intel core 2 duo T6500 (2.1GHz) 

3Gb RAM 

Server Windows XP (64-bit) 

Oracle Java 1.6.0_30-b12 

AMD Athlon X2 Dual Core 4200 

(2.21GHz). 4 Gb RAM 

 

As we can see, we did not assess the frameworks in combination with different 

operating systems. Although such setup might help providing a broader view of the 

behavior of the frameworks (including its combination with different operating 

systems), the focus here is on the design of the proposed approach and on showing 

its usefulness. Providing more results is simply a matter of extending the 

experiments (which does not change the overall approach). We also do not consider 

a different network topology (i.e., more machines), as the focus is on the basic 

behavior, using direct, isolated interactions with services. The frameworks and 

remaining configurations are discussed in the following sections. 

4.2.1 Web Service Frameworks Selected 

To demonstrate the proposed approach, we selected seven well-known web service 

frameworks. As container (i.e., application server) we selected Tomcat 7.0.23 

(“Apache Tomcat” 2012) due to its large use and popularity among developers and 

providers (Zeichick 2008). The frameworks considered are Metro, Apache CXF, 

Apache Axis 2, Apache Axis 1, Spring JAX-WS, Spring-WS, and XINS . In addition 

to the latest stable versions we also tested a previous version of three of the 

frameworks, to study whether issues found in older versions are fixed in the newest 

ones. Table 4.II summarizes the selected frameworks, including the XML Parsers 

they use by default, as these play the key role of processing the messages passing 

between the container and the application. 
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Table 4.II – Frameworks and XML Parsers tested. 

Framework Name  XML Parser Latest Version tested Older Version tested 

Apache Axis 1 Xerces 1.4.1 - 

Apache Axis 2 AXIOM 1.6.2 1.6.1 

Apache CXF Woodstox 3.0.3 2.5.1 

Oracle Metro Woodstox 2.3.1 2.1.1 

Spring JAX-WS Woodstox 1.9 - 

Spring WS Xerces  2.2.0 - 

XINS Xerces 3.1 - 

 

Apache Axis 1 (“Apache Axis” 2006) is a quite old and highly matured web service 

framework still used in many production systems. It is distributed with its own 

standalone server, although it can be deployed in other containers. Currently, there 

are no plans to introduce additional features to the latest version.  

Apache Axis 2 was designed with the goal of creating a more XML-oriented and 

modular platform that easily supports the addition of plugins to extend its 

functionality (“Apache Axis2/Java” 2012, 2). Axis 2 can be used with most popular 

servers or with its own standalone server.  

Apache CXF is an open-source services framework that can be used to create SOAP 

web services, but can also use other protocols such as CORBA or RESTful HTTP 

(“Apache CXF” 2012). It can be deployed in a large variety of containers such as 

Tomcat, Jetty, JBoss AS, among others. CXF supports all of the latest usual web 

service standards, most notably the JAX-WS API (Sun Microsystems Inc. 2010).   

Metro is an open-source web services stack whose development is managed by the 

Glassfish community, which is under supervision of Oracle Corporation (“Metro” 

2012). Metro is currently being bundled with the Glassfish server but, like most 

frameworks, can be used in other containers. The server choice depends on the 

specific requirements of each service and, as mentioned before, Tomcat is frequently 

the option due to the presence of core web application features and absence of 

enterprise features that are only used in very specific cases.  

Spring JAX-WS is a sub-project of the Glassfish project aiming at facilitating the 

deployment of web services using the Spring Framework (Metro 2015). The main 

feature is that it supports the deployment of the service application on top of the 

Spring framework and thus allows the application to benefit from the advanced 

features of that framework (e.g., injection of Spring beans, using handlers, custom 

transports). 

Spring-WS is the official project of the Spring community focused on creating 

“contract-first SOAP service development” (“Spring Web Services - Home” 2013). This 

framework supports an easy integration with the highly popular Spring Framework 
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and the focus is on allowing developers to focus on the service contract, by easily 

providing the means for creating services starting from their description (i.e., the 

WSDL document). Spring WS provides easy support for using different XML parsers 

(Xerces, Axiom, JDom, Woodstox, etc.) and, if not explicitly configured, by default it 

uses the XML parser included in the Java Virtual Machine (Xerces). 

XINS is an open source Java-based WS framework that provides support for 

multiple protocols, including REST, XML-RPC, JSON, JSON-RPC and SOAP (XINS 

2013). XINS allows the users to specify a schema configuration that describes the 

service, but it also supports the automatic generation of the WSDL file. 

It is worth noting that, despite we are testing two Spring based implementations, for 

the context of our study they present substantially different characteristics. Spring 

JAX-WS is implemented based on the JAX-WS Reference Implementation allowing 

the automatic generation of the WSDL file that describes the service. This approach 

to web service development/deployment is commonly referred as “Contract-last 

development”. On the other hand, Spring-WS requires the web service developer to 

design the XML schemas and the WSDL file that describes the service (besides the 

code implementation). This approach to web service development is commonly 

referred as “Contract-first development”.  

4.2.2 Service Design and Configuration 

To use and attack a WS framework we need to deploy a service application that 

allows exercising the system. Several choices must be made when designing this 

service, including the interface that each operation provides (type and number of 

input parameters and type of output parameter), and the work that should be 

performed by each operation (i.e., what should be the code executed in each 

invocation). For the current experimental evaluation, we designed a test service that 

includes four operations with distinct input types, as summarized in Table 4.III and 

discussed in the following paragraphs. 

Table 4.III - Test Service Design. 

Operation name Input Operation Behavior Output 

getInt Integer Assigns the value of the input 

parameter to the output parameter, 

without further transformations 

Integer 

getString String Calculates a hashcode over the input 

(using Java’s hashcode() method) and 

sets the output parameter with the 

resulting value 

Integer 

getArray String Array Sets the output parameter with the 

length of the incoming array 

Integer 
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getFile Data 

Handler 

Calculates a MD5 hash over the 

incoming data 

String 

 

The design of this service was inspired by performance benchmarks for web 

services, namely Sun Microsystems WSTest 1.0 (Sun Microsystems Inc. 2004) 

Microsoft’s WSTest 1.5 (Microsoft 2008), and The Transaction Processing Council 

TPC-App (TPC 2008). Most WSTest operations use Integers, Strings, and Arrays as 

parameters. The names of the operations were defined based on the concatenation of 

the word “get” with the datatype supplied as parameter. The interfaces in TPC-App 

are also mostly based in these data types. Thus, we defined three service operations 

that use these common data types and added an operation that can receive a 

message attachment. This represents the cases where, for instance, a client sends a 

file to a server (e.g., an image or video). 

As our target is not to test the web service application, there are no 

representativeness requirements regarding the actual code for the services described 

above (we simply need an entry point to the framework, and this is provided by the 

web service interface). In fact, any specific function added to the service code would 

cause overhead (both in terms of CPU and memory usage), and we are interested in 

reducing such overhead so that the observed behavior is related, as much as 

possible, with the supporting platform, rather than with the service implementation. 

Note also that the decisions taken for designing the operations (described in Table 

4.III) represent one possible setup and many other options are possible (this is why 

the service design is part of the experimental setup and not of the overall approach), 

such as distinct implementations of the operations, the use of extra data types, 

among others. Our goal was primarily to define a basic service entry point and then 

to implement useful operations (from the tests point-of-view) with minimal 

overhead. 

4.2.3 Client Configuration 

In addition to the service, the experiment requires a client that is embedded in the 

WSFAggressor tool and is responsible for invoking and attacking each service 

operation. The choices associated with the client configuration can hence be divided 

in the options regarding the valid invocations and the ones related with malicious 

invocations (i.e., the attack configuration). These configuration aspects are discussed 

next. 

Before running the client, we need to select the values used in each regular service 

call (i.e., calls that do not try to attack the framework). In general, we selected the 

maximum values found in all operations defined by the WSTest and TPC-App 

benchmarks, so that the stack (i.e. framework) is exercised as much as possible, even 

with a regular request. Although of little relevance when considering, for instance, 
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numbers (due to the small number of bytes required to represent them), this can 

have particular relevance when a stack needs to deserialize an array, which essentially 

multiplies a given number of bytes (that represents an element type) by the number 

of array elements. Anyway, the values used are kept under acceptable limits, 

according to what is defined by the benchmarks. All values used are summarized in 

Table 4.IV. 
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Table 4.IV - Client Configuration. 

Operation name Input value 

getInt 10 

getString 6-byte string with random content 

getArray Two-hundred 6-byte strings with random 

content 

getFile A 700Kb JPEG image file 

 

All the attacks considered were applied during the invocation of the getInt and 

getString operations, except for the SOAP Array and Malicious Attachment attacks that 

make sense only for the getArray and getFile operations, respectively. In the case of 

these experiments, we used the attack configuration values presented in Chapter 3, 

which were based on existing studies and security tools (Intel 2006; Jensen, 

Gruschka, and Herkenhöner 2009; Smartbear 2012; “WS-Attacker” 2012; WSFuzzer 

2012; Suriadi, Clark, and Schmidt 2010). Full details regarding the attacks and overall 

configuration can be found in (Oliveira, Laranjeiro, and Vieira 2015b). 

Note that the goal here is not to study the best attack configurations or to fine-tune 

the associated parameters. In fact, other values or combination of values are possible 

for configuring the attacks, but these common configurations serve our experimental 

goals, although giving a potentially optimistic view of the behavior of frameworks 

when facing attacks. From the perspective of the approach, it is important that its 

basic building blocks support this kind of variations, and it is easy to observe that 

the tool used and experimental setup easily fit such scenarios. 

4.2.4 Executing and Monitoring the Tests 

We applied our testing approach to test the seven service frameworks mentioned 

earlier, all deployed on top of Apache Tomcat. We used the following durations for 

each test run: 

 Pre-attack stage: warm-up period (5 minutes); normal period (5 minutes); 

 Attack stage: 15 minutes; 

 Post-attack stage: normal period (5 minutes); rest period (5 minutes). 

 

The above can be configured to different values, depending on the specificities of the 

platforms being tested, testing environment, or experimental goals. However, these 

values, empirically defined, are sufficient to disclose security issues, and should be 

kept practical, since using high durations is usually not an option for developers that 

frequently have time limits for testing tasks. In some cases, these durations are not 

enough to fully understand the behavior of the service platform that, being affected 
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by an attack (displaying a dubious behavior, such as high memory use), presents no 

clear indication of a failure. Therefore, in such cases, we extended the duration of the 

rest period to one hour. The goal is to detect if the dubious behavior (e.g., high 

memory use) remains or if the platform returns to normal patterns with, for instance, 

garbage collector calls decreasing high values of allocated memory to regular levels. 

Client requests were generated and sent in a synchronous non-parallel fashion every 

7 seconds after receiving each response, following the approach from (Ranjan et al. 

2009). The timeout value of each request was set to 1 hour to detect the cases where 

the web service does not provide a timely response. This high value gives us more 

confidence that a response will in fact not be received. All experiments were 

repeated 3 times, with the goal of verifying possible deviations, but no significant 

deviations to the behavior observed during the first run were found (detailed 

information regarding all tests is available at (Oliveira, Laranjeiro, and Vieira 

2015b)). 

During the tests, the server platform was continuously monitored using JConsole 

1.6.0_30-b12. Based on previous studies (Gang Wang et al. 2006; Suriadi, Clark, and 

Schmidt 2010), we opted to observe the following parameters: Java virtual machine 

memory heap size, number of allocated threads, and CPU usage. These can provide 

important information regarding the behavior of a given system in this kind of 

environments (Gang Wang et al. 2006; Suriadi, Clark, and Schmidt 2010) and it is 

likely that there is an observable variation of these parameters when an insecure 

system is processing malicious requests. 

Note that the decisions presented above respect to the experimental setup and are an 

instantiation of the approach to a specific Java-based environment. Due to the 

generality of our approach, web service providers or developers can instantiate it to 

suit the needs of other specific environments (e.g., .NET based systems, Python web 

services). 

4.3 Results and Discussion 

Table 4.V presents the classification of the failures observed using the CRASH scale 

(see Section 4.1.2), and includes a count of dubious behaviors (behaviors that do not 

represent clear failures) observed for the latest versions of the frameworks tested. 
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Table 4.V - Summary of the Problems Detected. 

Framework 
Failures Dubious  

behavior C R A S H 

Apache CXF       

Metro      1 

Axis 2   1   1 

Axis 1   2   2 

Spring JAX-WS   1 1   

Spring-WS   1   2 

XINS   2   1 

As we can see, 5 out of the 7 frameworks presented at least one type of failure, which 

in practice means that services deployed using these frameworks may be vulnerable 

to security attacks. We also observed dubious behaviors in 5 of the 7 frameworks. 

Although the tests only unveiled Abort and Silent failures, we believe that other 

kinds of failures may occur, if other frameworks are tested or other types of attacks 

are used during the tests. The high number of Abort failures found is in agreement 

with previous research on robustness testing (Koopman et al. 1997; Laranjeiro, 

Vieira, and Madeira 2012) and it is expectable that more severe failures, such as the 

corruption of a framework, are rare events, especially in mature middleware, such as 

web service frameworks. 

Table 4.VI presents an overview of the results from the attack perspective, showing 

the total number of failures and dubious behaviors detected for each different type 

of attack. Coercive Parsing and Malicious Attachment attacks are the ones that lead to 

more failures in the frameworks under test. The Soap Array attack type was the one 

that allowed uncovering more dubious behaviors. In total, six out of nine types of 

attacks caused some kind of failure in the frameworks tested. Notice that these 

attacks have been known for several years now and, as such, existing frameworks 

should provide some form of protection against them.  

Table 4.VI - Detected problems grouped by 

attack. 

Attack 
Occurrence 

Failures Dubious 

Coercive Parsing 2 1 

Malformed XML 1 - 

Malicious Attachment 2 1 

Oversized XML 1 1 

Repetitive Entity Expansion - - 

Soap Array  1 3 

XML Bomb 1 - 

XML Document size - 1 

XML External Entities - - 
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Although we detected variations in CPU usage and memory allocation during the 

experiments, we never observed any relevant issues regarding the number of live 

threads. Due to this, the following discussion focuses on the former parameters 

(CPU usage and memory allocation). Also, the behaviors observed were consistent 

in all the repetitions executed. The next sections present an overview of the behavior 

of each framework, by picking up examples of experimental runs and explaining the 

observed failures and dubious behaviors in detail.  

4.3.1 Apache CXF 

No failures or dubious behaviors were observed in Apache CXF. As an example, 

Figure 4.3 presents a test run using the Oversized XML attack against the getString 

operation. As we can see, although the overall behavior changes when the attack is 

started, with variations in CPU use (Figure 4.3.a) and memory allocation (Figure 

4.3.b), there is no perceptible increase in these parameters during the execution of 

the attacks.  

 
 

Figure 4.3 – CXF - Oversized XML Attack. 

4.3.2 Oracle Metro 

We did not observe any failure in the latest version of Metro (see Figure 4.4, for an 

example of the observation during a test run), however a potentially critical dubious 

behavior was identified. When a malicious attachment is sent to the service, such as 

the 100MB file in the Malicious Attachment Attack, the framework creates a replica of 

the file in a server directory and it repeats the procedure if another identical file is 

sent (which does not occur with a regular sized attachment). Although this is not a 

failure on its own, it is easy to notice that, unless there is a mechanism that 

automatically deletes those files (and that mechanism has to be certain that the files 

are not needed), this can eventually fill up the storage space, potentially damaging 

the regular service operation (which typically uses disk based-services, such as a 

database), or other disk-dependent applications executing in the same machine, 

ultimately affecting the regular behavior of the operating system. 
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Figure 4.4 – Metro: Oversized XML attack. 

4.3.3 Apache Axis 2 

One failure was observed in Axis2. During the execution of the Coercive Parsing 

attack, the CPU usage reached nearly 50% (which occurs for both the getInt and 

getString operations) and the server continuously logged a message that indicated 

that an error occurred in org.apache.axiom.om.impl.llom.OMElementImpl. 

findNamespaceURI(OMElementImpl.java:497). Moreover, the client received 

consecutive responses with a java.lang.StackOverflowError error, confirming that there 

was an internal failure while handling the request. We classified this behavior as an 

Abort failure. 

A dubious behavior was detected when executing the tests on the Axis 2 

framework. The Soap Array attack led this framework to consume in average 400MB 

of memory during the attack period (see Figure 4.5), which is twice the amount 

observed during the same attack in Metro and CXF (not visible in Figure 4.3 or 

Figure 4.4, which present runs using another attack, but available at (Oliveira, 

Laranjeiro, and Vieira 2015b)). Also, Axis 2 raised the CPU usage frequently up to 

80% during the attack, approximately five times more than the peak values that were 

observed in Metro and CXF, which consumed about 15% of CPU in the same period. 

Despite the observed behavior for Axis 2, the framework was able to recover to 

normal values around 1 hour after starting the rest period. As we will see in the 

following section, the previous version of Axis, shows even greater difficulties when 

handling this attack, essentially doubling the amount of memory required, using 

more time to reply to the client, and becoming unresponsive during the attack 

period. 
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Figure 4.5 – Axis 2: Soap Array attack. 

4.3.4 Apache Axis 1 

Axis 1 presented two failures and one dubious behavior. Figure 4.6 represents the 

behavior of Axis 1 when facing the Coercive Parsing attack targeting the getInt 

operation. As we can see, the CPU usage reaches high values, touching around 50% 

during the attacks and 100% in the 10 minutes that immediately follow the attack 

stage (this also occurs with the getString operation). During these 10 minutes, there is 

a continuous output of a StackOverflowException to the server logs, which is an 

indication of the occurrence of an internal error, and was classified as an Abort 

failure. 

We observed another Abort failure in Axis 1 when executing the Soap Array attack 

(see Figure 4.7). Shortly after sending the first attack, the allocated memory rises and 

maintains itself close to 750MB, with the CPU achieving an approximate average 

usage of 50%, with sporadic peaks reaching 100%. In the meantime, the 

WSFAggressor client remains idle, waiting for a response and the Tomcat logs report 

the occurrence of OutOfMemory exceptions, with an indication of the failure of 

internal Tomcat components. After about 8 minutes an OutOfMemory exception is 

finally delivered to the client that then issues another attack. The same behavior is 

observed and is followed by a steep decrease of both CPU and memory usage (short 

after the start of the Post-Attack stage). 

During the abovementioned anomalous periods, we tried to check if the server was 

still responsive and thus issued regular requests to the Axis service with an external 

tool (SoapUI 4.0.1 (Smartbear 2012)), with no response being obtained. Furthermore, 

we tried to confirm if the failure affected other services in Tomcat. For this we issued 

a new request to another framework (simultaneously deployed in Tomcat), with no 

response being obtained (although the container should provide isolation among 

applications, that is not the case). We finally performed an extra verification to check 

if Tomcat’s web page service engine could still serve HTTP requests (we issued a 

request to the Tomcat’s default webpage), which was also not the case. However, 

despite these unresponsiveness periods and failures, we observed that the whole 

system was able to recover after dealing with each attack during 8 minutes. 
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Figure 4.6 – Axis1: Coercive Parsing attack. 

  

Figure 4.7 – Axis 1: Soap Array attack. 

Finally, when executing the tests with the Oversized XML and XML Document Size 

attacks we detected a dubious behavior reflected by high CPU usage and memory 

allocation. As we can see in Figure 4.8, the CPU usage increases during the attack 

period to about 40% and there is also an increase of the allocated memory in this 

period to nearly 500MB. The allocated memory remains close to this level during the 

Post-Attack stage. To better understand the problem, we extended the Keep period 

with an observation period of one hour. During this time (i.e., the post-attack stage) 

the CPU usage remained close to zero with small sporadic usage peaks. However, 

we verified that the memory continues allocated, being released only at the end of 

the observation period (i.e., after almost one hour). This is far from being an ideal 

behavior since it diminishes the resources available for the framework and other 

applications deployed in the server. 

  

Figure 4.8 – Axis 1: Oversized XML Attack. 

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

a) Axis 1 - CPU Usage (getInt)
(%)

(minutes)

0
100
200
300
400
500
600
700
800
900

0 10 20 30 40 50 60 70 80 90

b) Axis 1 - Used MB (getInt)

(minutes)

(MB)

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

Axis1 - CPU Usage (getArray)(%)

(minutes)

0
100
200
300
400
500
600
700
800
900

0 10 20 30 40 50 60 70 80 90

Axis1 - Used MB (getArray)

(minutes)

(MB)

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

a) Axis 1 - CPU Usage (getString)(%)

(minutes)

0
100
200
300
400
500
600
700
800
900

0 10 20 30 40 50 60 70 80 90

b) Axis 1 - Used MB (getString)(MB)

(minutes)



Assessing the Security of Web Service Frameworks 

 91 

4.3.5 Spring WS 

We encountered one failure and two dubious behaviors in Spring-WS. Figure 4.9 

presents the behavior of Spring-WS in the presence of the Malicious Attachment 

attack, which is executed against the getFile Operation. In particular, Figure 4.9 b) 

shows that, within one minute after the first request with a SOAP attachment is 

received, the framework reaches 900 MB of allocated memory, and CPU usage 

increases up to approximately 55%. Consequently, a java.lang.OutOfMemoryError: 

Java heap space error message is returned to the client and for each malicious request 

sent afterwards, the framework returns the same exception as a response.  

During the execution of the attack, we tried to confirm if the server was still 

responsive and thus issued regular requests to the Spring-WS service with an 

external tool  (SoapUI 4.0.1 (Smartbear 2012)). This confirmed that the service was 

able to respond accordingly (contrarily to the failure observed in Axis 1 during the 

Soap Array attack with the same error message). We also observed that the services 

that were available on other frameworks installed in the same server were also able 

to respond, and the application server (Tomcat) administration web page was 

available. The framework was able to recover to normal memory values 

approximately 1 hour after starting the rest period. The unexpected exception that 

resulted from consuming most of the memory allocated for the framework was 

classified as an Abort failure. 

The first of the two dubious behaviors detected occurred when the Soap Array attack 

was executed. As we can see in Figure 4.10.a), this attack led the framework to use 

between 80% and 90% of CPU. In terms of memory, the attack caused the framework 

to consume consistently 600MB of memory during the attack period (see Figure 

4.10.b), with sporadic 700 MB peaks. Despite this behavior, the framework was able 

to recover to normal values about 1 hour after the beginning of the rest period. 

 

  

Figure 4.9 – Spring-WS: Malicious Attachment Attack. 
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Figure 4.10 – Spring-WS: SOAP Array Attack. 

The second dubious behavior was found during the attack stage, when the Coercive 

Parsing attack was being executed. Spring-WS was only able to process three 

requests from the attackload, taking approximately 7 minutes to handle each one 

(the attack stage was extended from 15 to approximately 21 minutes). We conducted 

some tests to check if the framework was able to respond to concurrent requests 

while the attack was being processed and found out that this behavior did not have 

any impact on other clients (i.e., the service was not affected). Despite we did not 

observe any abnormal memory usage while the framework was processing the 

attacks, it used frequently up to 50% of the CPU (see Figure 4.11.a).  

A close inspection of the Tomcat logs revealed that, after processing each request, 

Spring-WS logged the following error message SAAJ0511: Unable to create envelope 

from given source, and that WSFAggressor received the following response: The 

request sent by the client was syntactically incorrect. Although the framework response 

is acceptable and we did not found a real indication of an internal error (e.g., an 

unexpected exception) we consider that the amount of CPU used by the framework 

in these circumstances and its inability to process more than three sequential 

malicious requests during 21 minutes, are not acceptable behaviors.  

 

  

Figure 4.11 – Spring-WS: Coercive Parsing Attack. 
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4.3.6 Spring JAX-WS 

The typical behavior of Spring JAX-WS when handling the Malformed XML attack is 

show in Figure 4.12. Although no perceptible deviations can be seen (the same 

happens for the other types of attacks), two failures were observed. The first was an 

Abort failure when executing the Malformed XML attack. In this case, a 

javax.xml.bind.UnmarshalException was thrown and delivered to the client. This 

exception includes a reference to a WstxParsingException, raised by the XML parser 

used by Spring-WS (Woodstox), which is related to an unexpected closure of an 

XML tag. We investigated this behavior in the server logs and discovered that a 

NullPointerException was also raised during the attacks (and wrapped in the 

UnmarshalException), indicating the incapability of the framework to handle an 

unexpected case.  

 

  

Figure 4.12 – Spring JAX-WS: Malformed XML Attack. 
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Window packets, which essentially indicates a resource issue in the receiver, as the 

application is not retrieving data from the TCP buffer in a timely manner (Wireshark 

2011). This behavior was observed until the end of the experiment and confirms the 

inability of the framework to handle this attack. 

4.3.7 XINS 

Two failures and a dubious behavior were observed in XINS. Figure 4.13 presents 

the CPU and memory used by XINS when processing the Malicious Attachment 

attack. As we can see, XINS is not particularly optimized to handle SOAP 

attachments as it allocates nearly 300 MB to handle a normal 700KB file (twice as 

much as Apache CXF). When a 100MB file is sent in the attack stage, the CPU 

increases to nearly 50% and the allocated memory reaches almost 800MB. XINS logs 

an OutOfMemoryError for each request received (the client receives an InternalError 

message) and becomes unable to process parallel requests (the Tomcat 

administration console also becomes unavailable after the occurrence of that 

exception). This was classified as an Abort failure.  

 

  

Figure 4.13 – XINS: Malicious Attachment. 
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Figure 4.14 – XINS: XML Bomb Attack. 

Finally, we observed a dubious behavior while executing the Soap Array attack. As 

we can see in Figure 4.15.a), during the attack stage, the CPU usage increased up to 

80%, which is a large increase when considering, for example, the behavior of 

Apache CXF in the same situation. During this period, the allocated memory reached 

approximately 650MB and it took more than 1 hour for the framework to release the 

memory, as shown in Figure 4.15.b). 

 

  

Figure 4.15 – XINS: Soap Array Attack. 
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4.4.1 Analyzing the Impact of the Attacks 

For better understanding the impact of DoS attacks on the tested frameworks, and 

since in some cases it can be quite difficult to assess whether an attack actually 

impacts the system under testing (e.g., due to small or non-perceptible variations of 

the parameters being observed), we studied the total CPU usage and allocated 

memory for each period of the tests (i.e., Warm-up, Normal, Attack, and Rest). To do 

so, we measured the areas of the graphs, as explained earlier in Section 4.1.2.  

After calculating the 8 areas for each framework tested (4 periods per each of the two 

2 system parameters, CPU and memory), we determined the relative change (RC) 

(O. Bennett and L. Briggs 2010) between the three key pairs of periods: Normal and 

Attack {N,A}; Normal and Regular {N,R}, and Warm-up and Keep {W,K}. 

Table 4.VII presents the relative change values (rounded to the units), grouped by 

framework. For each framework we show the results for the three pairs of periods 

({N,A}, {N,R}, and {W,K}) and then by CPU and memory. For presentation clarity, 

we do not show any relative change values inferior to 1. In addition, we highlight in 

color the top 7 values found for all frameworks, in each of the six different cases: 1) 

{N,A} for CPU; 2) {N,A} for memory; 3) {N,R} for CPU; 4) {N,R} for Memory; 5) 

{W,K} for CPU; and 6) {W,K} for Memory. 
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Table 4.VII - Relative Change values. 

Attack 

Axis 1 Spring JAX-WS Spring WS XINS 
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Coercive Parsing 1749 5 - - 35 3 - 10 - 4 2 6 711 3 - 1 - 1 16 2 - - - 1 

Malformed XML 31 6 - - - - 9 3 - - - 2 3 3 - - - - 2 3 - 1 - 1 

Malicious Attachment 7 4 16 1 - - 34 3 - - - - 17 21 - 4 1 8 18 9 - 2 - 11 

Oversized XML 163 14 1 - - 10 - 3 - - - 1 17 5 - 1 - 1 8 1 - - - - 

Repetitive Entity Expansion 1 4 5 - - 1 2 2 - - - 2 1 2 - - - - 2 2 - - - 1 

Soap Array  551 38 1 1 - 1 133 7 - 1 - 2 415 12 - 4 - 4 273 16 - 4 - 7 

XML Bomb 3 3 1 - - 3 8 3 - - - - 5 2 - 1 - -- - - - - - - 

XML Document Size 278 21 1 - - 9 3 3 - - - 1 48 4 - 1 - 1 25 4 - - - - 

XML External Entities 19 4 - - - 1 3 3 - - - 2 3 3 - - - - 5 3 - - - 1 
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Coercive Parsing 748 - - - - - 1 - - - - - 37 - - 2 - 2 

Malformed XML 8 5 -- - - - 9 3 - - - - 16 5 2 - 1 - 

Malicious Attachment 33 7 - 1 - - 32 3 - - - - 43 2 - - - - 

Oversized XML 12 3 - - - - 6 2 - - - - 2 6 - 1 1 - 

Repetitive Entity Expansion 8 4 - 1 - - 3 4 - - - - 2 4 - - - - 

Soap Array  495 20 - 4 - 9 6 4 - 1 1 1 49 9 - 1 - 1 

XML Bomb 5 5 - 1 - - 6 4 - 1  - 2 4 - - 1 - 

XML Document Size 32 6 - 1 - 1 6 4 - - - - 20 4 - - - - 

XML External Entities 18 5 - 2 - 1 14 3 - - - - 7 5 -- 2 - - 
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In general, we can see that the Soap Array attack has some impact on 4 out of the 7 

frameworks (the exceptions are CXF, Metro and Spring JAX-WS, which are not 

present at the top values). The attack results in particularly high RC values for CPU 

and memory usage in Axis1, Axis2, Spring-WS and XINS, especially for {N,A}. 

Concerning the impact of this attack in {N,R} we did not detect any visible changes 

in the memory usage. Clearly, the handling and processing of SOAP arrays is an 

aspect that the developers of these frameworks must improve. 

The Coercive Parsing attack also impacts three frameworks: Axis 1, Axis 2, and 

Spring-WS. Axis 1 presented the highest value observed during the experiments (an 

RC value of 1749), while Axis2 and Spring-WS showed lower, but still considerably 

high, RC Values (748 and 711, respectively). Developers and service providers need 

to understand the impact of these two attacks and additional protection measures 

should be put in place when using these frameworks. 

Overall, we can also see that the XML External Entities and Repetitive Entity Expansion 

attacks are the ones that cause fewer problems to the frameworks, which, in general, 

appear to have the mechanisms needed to adequately handle this kind of requests. 

Concerning the results of the frameworks individually, Axis 1 shows the greatest 

number of top issues, including potentially severe behaviors that manifest even after 

the regular period has finished (i.e., relative to the RC{W,K} values). This is the case 

of the results obtained for the Coercive Parsing, Oversized XML, and Document Size 

attacks. In addition to the impact of the Soap Array attack mentioned before, the 

RC{N,A} for CPU usage in Axis 2 is also quite high for the Coercive Parsing attack, an 

aspect that should be handled properly by such a popular framework.  

Spring-WS also presents very high values in terms of RC{N,A}, namely in what 

regards: i) CPU values when executing the Coercive Parsing Attack, ii) the memory 

values during Malicious Attachment attacks, and iii) the CPU and memory values 

during the SOAP Array attack. The RC{W,K} value for memory consumption after 

executing Malicious Attachment attacks is also significant and shows the difficulty of 

the framework in releasing the allocated memory. These values emphasize the 

observations presented in Section 4.3.5 and are a topic of particular concern as 

Spring-WS is actively maintained (which is not the case of Axis1, for example). 

As mentioned before, the XINS framework has difficulties in handling the Malicious 

Attachment attack. Such difficulties were observed for more than one hour after the 

end of the attack stage, which translates into one of the top detected memory issues 

for RC{W,R} (holding a final value of 11). The remaining values, in particular the 

CPU usage RC values, are not in the top issues, but that is simply because the 

framework also has difficulties handling the regular size attachments (as mentioned 

in the previous section). This decreases the overall RC value, but does not remove 

the problem detected before. 
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An interesting aspect that it is worth mentioning is that there seems to be some 

relation between the XML Parser used by the frameworks and the existence of 

failures and dubious behaviors. Axis 1, Spring-WS and XINS used the XML parser 

Xerces and were the frameworks more prone to allocate significant system resources. 

In fact, the tests performed uncovered an OutOfMemoryException in these three 

frameworks (although with different attacks), which suggests that Xerces might be 

more vulnerable to brute force attacks. On the other hand, CXF, Metro and Spring 

JAX-WS were the most resource efficient frameworks, and the three used the 

Woodstox XML Parser. The difference in terms of the XML Parsers might also be the 

reason why Spring-WS and Spring JAX-WS presented so different behaviors during 

our security tests.  

Note that in this work, we consider the framework as a whole (e.g., as a black box) 

and tracing the cause of the failures to particular components inside a framework is 

out of scope. Anyway, the impact that the XML parser and other internal 

components of the frameworks have in the security is a topic that may be further 

explored in future studies.  

4.4.2 Analyzing the Evolution across Versions 

To study the evolution of the frameworks over time we tested a previous version of 

three of the frameworks: Axis 2, CXF and Metro (see Table 4.II). In practice, the goal 

is to compare the failure modes and dubious behaviors observed in the two different 

versions of each of the three frameworks in the presence of DoS attacks. These 

frameworks were selected due to their prevalence in real installations.  

In general, we did not found considerable improvements when comparing the latest 

versions with the older ones. In fact, regarding Axis 2 it was quite the opposite: for 

example, we observed a clear increase in the CPU usage (from 60% in version 1.6.1 to 

80% in version 1.6.2) in the presence of the SOAP Array attack. Also, the Abort 

failure observed in the latest version of Axis 2 during the execution of the Coercive 

Parsing attack (in the form of a java.lang.StackOverflow exception) was not observed in 

the older version. As between versions, the internals of the frameworks are changed, 

differences in performance or overall behavior are expectable. Also, we again 

emphasize that all tests were repeated, and the behaviors observed were always 

consistent. 

When comparing versions 2.6.1 and 3.0.3 of Apache CXF we observed a behavior 

that we consider as an improvement in the way SOAP Array attacks are handled. 

While the latest version logs the error message Unmarshalling Error: Maximum 

Number of Child Elements limit (50000) Exceeded when this attack is performed, in the 

older version the expected result is returned (i.e. the size of the array) after a few 

seconds with a minimal impact on the server resources (i.e. the CPU usage remained 

consistently below 10% while the memory allocation never exceeded 250MB). From a 
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security perspective, we consider that the validation/limitation of the size of the 

array in version 3.0.3 is an important security improvement as it becomes more 

difficult for the malicious users to take advantage of extremely large arrays to cause 

a DoS. This may obviously limit the usefulness of the framework in certain (very 

specific) scenarios but, in what concerns security, it is quite important and shows the 

concerns of the developers regarding this matter. 

A clear improvement was observed when comparing versions 2.1.1 and 2.3.1 of 

Metro. A Silent failure was observed in the older version after an Oversized XML 

attack was issued. In practice, although the framework was able to process requests 

from concurrent clients, it became unable to respond to the client that issued the 

attack and remained in that state until the end of the rest period. In the latest 

version, the framework aborts the execution of the malicious request about 3 

minutes after the attack and issues a ClientAbortException that is recorded in the 

Tomcat logs. The client receives a java.net.SocketException: Connection reset error and 

the framework returns to a state in which it is again able to accept requests from the 

same client. This indicates that Metro 2.3.1 tries to process the received requests 

during a given period of time and aborts the execution after a timeout. Although 

three minutes may not be an adequate value for all cases, one can consider that this 

corresponds to a more adequate behavior. 

There is still one problem that needs to be addressed urgently in Metro. After the 

experiments were concluded, we noticed that Metro 2.3.1 created a temporary file on 

the remote machine for each Malicious Attachment attack that was sent (i.e. a request 

with a 100 MB file as attachment). Although Metro 2.3.1 was able to handle a 

combined payload of 300MB per minute (i.e. three files were stored in the server disk 

per minute), the temporary files remained at the server and were not deleted after 

the attack. Malicious users can exploit this issue and send a very large number of 

requests with hundreds of megabytes in attachments and force the operating system 

to slow down or even crash (due to a full disk). Version 2.1.1 had the exact same 

problem as version 2.3.1, which means that this problem is not new and has 

persisted during different versions of Metro. If not addressed it may bring 

catastrophic consequences to service providers. 

4.5 Conclusion 

In this chapter, we presented a multi-stage testing approach for understanding the 

behavior of service platforms during DoS attacks and understanding later attack 

effects, during normal service or idle operation of the system. The approach builds 

on the capabilities of the WSFAggressor tool (described in Chapter 3), in particular 

on its implementation of DoS attacks, and is a step towards a standardized 

procedure for assessing the behavior of frameworks from a security perspective, 

namely in what concerns service availability. 
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Results show that web service frameworks are in general resistant to attacks, with 

Apache CXF and Oracle Metro displaying no failures at all. However, they also 

pointed out severe failures and dubious behaviors in the remaining frameworks, 

suggesting the presence of security vulnerabilities, that require urgent attention and 

corrective measures from developers. Moreover, we presented a quantitative 

analysis of the behavior of the frameworks, providing a more objective and easy way 

for understanding how well they handle attacks. During our tests, we only observed 

abort and silent failure modes, but we believe that all failure modes defined by the 

CRASH scale are useful and might be observable when testing other frameworks, or 

using other types of attacks. 

Our approach analyzes frameworks from a particular facet, which directly considers 

the observable service behavior (e.g., service responses) and takes into account the 

overall system behavior (e.g., resource usage at the server). These are crucial aspects 

that should be considered when the goal is to provide a meaningful description of 

the framework being tested. However, we did not yet consider the presence of 

legitimate clients and their perception regarding the behavior of the system when it 

is being attacked. This perspective is discussed in the next chapter.  
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Chapter 5 
Characterizing the Performance 

of Web Service Frameworks 
under Attacks 

This chapter discusses the problem of evaluating the performance of a web service 

framework in the presence of attacks, while executing legitimate requests. The main 

problem to be dealt with here is that attacks may lead to inconsistent states, with 

some clients perceiving a failure and others possibly experiencing only degraded 

performance. Some other clients may not even notice a change in the service 

behavior. In the case of DoS, and considering the typical business-critical 

environments where frameworks are nowadays used, the perspective of clients that 

are executing legitimate business transactions is of utmost importance. Thus, it is 

essential to be able to distinguish a framework that can sustain a given level of 

performance to legitimate clients, from another that is unable to do so, because it is 

severely affected when attacked. 

In practice, we propose an experimental approach for characterizing the 

performance of web service frameworks when handling both security attacks and 

regular requests. This performance characterization is done from the perspective of 

the legitimate clients and includes three stages. In the first stage, a legitimate client 

executes a set of valid (i.e., non-malicious) requests to assess the baseline 

performance of the framework under testing (i.e., the performance in the absence of 

attacks). In the second stage, a malicious client executes malicious requests in parallel 

with the valid requests issued by a legitimate client. Finally, in the third stage, a 

legitimate client again executes a set of valid requests to assess whether the baseline 

performance is affected by the attacks issued in the previous stage. The WS 

applications running on top of the framework under test are based on WSTest (Sun 

Microsystems 2004), a benchmark for evaluating the performance of web service 

with varying SOAP object sizes. 

We illustrate the application of the approach by testing five well-known WS 

frameworks: Apache Axis1 v1.41, Apache Axis 2 v1.6.1, Apache CXF 2.51, Oracle 

Metro 2.1, and Spring WS 1.5.9. During the evaluation, it becomes clear that some of 



Chapter 5 

 104 

the attack scenarios created pose performance problems that have impact on 

legitimate operations. However, at the same time, all frameworks tested also show 

the ability to recover after being attacked. Still, results suggest that improvements 

are needed, in particular, in the way frameworks process complex data types and 

malformed requests could be greatly improved. 

The chapter is organized as follows. Section 5.1 describes the approached used to 

characterize the performance of web service frameworks in the presence of attacks. 

Section 5.2 presents the experimental scenarios designed to demonstrate the 

proposed approach, and Section 5.3 presents and discusses the results obtained for 

each framework tested. Section 5.4 discusses the lessons learned from this study and 

pinpoints possible explanations for the results obtained. Finally, Section 5.5 

concludes the chapter. 

5.1 Approach for Characterizing Performance under 
Attacks 

This section presents our approach for assessing the performance of web service 

frameworks in the presence of attacks, including: a) the different elements that 

interact during the execution of the approach (named nodes); b) the three different 

execution stages of the procedure; and c) the metrics used to characterize the 

behavior of the frameworks. 

5.1.1 Nodes 

Three different nodes interact at runtime, according to a specific procedure (see 

Section 5.1.2). Figure 5.1 presents the three nodes (we refer to a node as an active 

entity, with a set of associated resources, that plays a given role in the context of the 

experiments (Silberschatz and Gagne 2009)) and their relations, which are explained 

in the next paragraphs. 
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Figure 5.1 – Nodes used during the qualification phase of the 

benchmark 

The Application Server (AS) node includes the web service framework to be 

benchmarked and the infrastructure needed to deploy the WS applications. At least 

one web service application needs to be deployed on top of the framework. In this 

work, we propose the use of a well-known set of services, the industry WSTest 

benchmark specification (Sun Microsystems 2004), which we successfully adapted in 

Chapter 4, but other services can be used. The selection of the WSTest services is 

related with their simplicity of use and easy extraction of data. Table 10 presents the 

WSTest Service design (for non-malicious use), including operation names, a short 

description of its internal logic, parameter configuration, and identification (this 

identification is shown to facilitate the explanation of the results in Section 5.3). 

The Regular Client (RC) node represents a legitimate client that executes a set of 

regular non-malicious requests (i.e., a workload), which are sent to the WSTest 

services (or any other services the user wishes to deploy). Obviously, a primary 

concern is the use of a representative workload (i.e., one that realistically represents 

the calls made by real clients to the service). The values used for the Regular Client 

Node invocations are defined in the WSTest benchmark specification (Sun 

Microsystems 2004) and are set in the client implementation. However, as some 

service invocation parameters can still be configured, we propose the WSTest 

implementation to be further configured to generate workloads of different sizes in 

order to emulate a more realistic scenario (refer to Table 5.I, under the size column, 

for the default values proposed). 
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Table 5.I - WSTest service design & invocation configuration 

Operation  Description Size Id 

echoVoid Sends and receives an empty 

message 

 - 
i1 

echoInteger Sends and receives a integer  - i2 

echoFloat Sends and receives a Float  - i3 

echoString Sends and receives a String  - i4 

echoDate Sends and receives a Date  - i5 

echoStruct Sends and Receives a Struct  - i6 

echoSynthetic Sends and receives a Synthetic 

object with multiple parameters  

of different types 

4000 i7 

8000 i8 

12000 i9 

echoArray Sends and receives an array 40 i10 

80 i11 

120 i12 

getOrder Receives an Order object with 

multiple parameters and types 

 - 
i13 

echoOrder Sends and Receives an Order 

object with multiple parameters 

and different types 

200 i14 

500 i15 

 

We also propose the use of an additional web service to provide an entry point for 

the malicious requests, as the interface of the WSTest set of services may not 

sufficient (e.g., a malicious request based on a large array should be sent to an 

operation accepting an array as input, which does not exist in the WSTest services). 

In general, even low quality frameworks reject requests for operations that, in 

practice, do not exist. Our goal is to observe the effect of the attacks in the 

framework while processing a malicious request (the focus is on the framework and 

not on the combination of a framework with specific code), so we assume that there 

is at least one operation accepting the necessary input. Thus, to provide entry points 

for the attacks, we propose the deployment of the web service described in Chapter 4 

(please refer to Table 4.IV), which is composed by the getInt, getString, getArray, 

and getFile operations. The overall idea is to be able to use different types of DoS 

attacks to increase the likelihood of exploiting different vulnerabilities. Again, any 

service will serve this purpose, as long as it has the adequate interface and does not 

hold business logic, so that all (or at least most of the) processing effort is placed on 

the framework instead of being placed on custom business logic.  

The Malicious Client (MC) emulates an attacker by executing a set of malicious 

requests (i.e., an attackload), which, in the case of DoS attacks, includes large XML 

requests and XML malformations. To implement this node, we use the 

WSFAggressor tool, configured to execute nine different attacks, as discussed in 

Chapter 3.  
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The regular and the malicious clients exercise the services deployed on top of the 

framework. The three nodes should be (preferably) distributed over three different 

physical machines in a networked environment. It is important to note that more 

elaborate or simply different configurations (e.g., using only one or a subset of the 

types of security attacks, using attacks with different configurations) can be defined 

by the tester, as these depend on his/her goals. Other scenarios can also be designed, 

for instance, by using a greater number of malicious clients (i.e., to emulate a 

Distributed Denial of Service situation), or a higher number of regular clients (i.e., to 

emulate more realistic server loads).  

5.1.2 Procedure 

The procedure consists of three stages that correspond to different tasks executed by 

one or more nodes. Figure 5.2 presents the three stages (Pre-Attack, Attack, Post-

Attack), which are executed in sequence. Each stage, in turn, includes the execution 

of one or more tasks (Idle, Warmup, Regular, Attack), of which some are run in 

sequence and others in parallel, as explained in the next paragraphs. Figure 5.2 also 

identifies the nodes in charge of executing each particular task (AS, RC, or MC). 

 

 

Figure 5.2 – The three stages of the Approach. 

The Pre-Attack stage begins as soon as the application server is started. During a 

specific timeframe, which can be defined, for instance, based on experience, the 

Application Server node is kept Idle (i.e., it does not receive/process any client 

requests). This allows its internal components (e.g., libraries providing functionality 

such as XML parsing and SOAP message processing) to be loaded into memory and 

initialized. Next, the Regular Client node initiates the Warm-up task, which consists 

of executing a set of regular requests (i.e., non-malicious) against the target 

framework during a given period of time. The warm-up task aims at reducing later 

variations in the observed performance, mostly by exercising any internal caches in 

use (Boyer 2008). Finally, the Regular task is executed with the objective of collecting 

baseline performance information regarding the normal operation of the services 

(i.e., while handling non-malicious requests).  
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During the Attack stage, two tasks are executed in parallel (each one is executed by a 

different node). The Attack task is performed by the Malicious Client and consists of 

executing a set of malicious requests against the service framework. At the same 

time, a Regular task similar to the one carried out in the Pre-Attack stage is executed 

by the Regular Client. The goal is to evaluate if the framework being attacked can 

still provide service to legitimate clients or not, thus assessing the impact of the 

attacks on legitimate operations. Obviously, as we are executing security attacks, it is 

possible that a particular attack makes the system unavailable (i.e., unable to provide 

correct service (Avizienis et al. 2004)). For instance, if a client submits a web service 

call and receives no answer after waiting for a predefined period of time, or gets an 

unexpected error message (e.g., an OutOfMemory exception), then the system is not 

available (due to an attack that was performed). 

Finally, during the Post-Attack stage, the Regular Client node carries out a single 

Regular task. The goal is to study if the attacks conducted in the previous phase are 

still affecting new legitimate operations (executed during the Regular task) or if, on 

the other hand, the framework can continue operating normally. As mentioned, in 

some cases the attacks might be sufficient to cause a catastrophic failure of the 

Application Server node and thus prevent the web service infrastructure from 

responding. In such cases, the Post-Attack stage starts and ends immediately (as no 

response will be obtained from the server). 

5.1.3 Metrics 

In addition to the nodes and procedure it is necessary to understand which metrics 

can better portray the performance of the frameworks during the execution of the 

tests. We decided to adopt the metrics included in the WSTest Benchmark (Sun 

Microsystems 2004), as these have the advantage of being calculated directly from 

the experimentation, accurately represent the performance of the frameworks in the 

different phases, are easily understandable, and are focused on a client perspective 

(the end-user) (Sun Microsystems 2004). We note that the measures adopted for the 

approach must be understood as results that can be useful to characterize systems in 

a relative fashion and cannot be used to predict the performance of a system in 

production.  

We adopted the following metrics (Sun Microsystems 2004; Microsoft 2008): 

 Throughput (T): average number of web service operations executed per 

second.  

 Response time (RT):  average response time in seconds.   

Security attacks can affect key system properties, such as availability, and can result 

in decreased throughput or response time. We consider the system to be available 

when it is ready to provide a correct service (Avizienis et al. 2004). Otherwise, if a 
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client submits a web service call and gets no answer (determined after waiting for a 

predefined period of time) or returns an error message that indicates an absence of 

service due to the presence of a security vulnerability (e.g. OutOfMemory 

exception), then the system is not available. In this case, we are unable to compute 

the performance measurements (the system is unavailable), which will not be 

available in the experimental results. 

As we refer in section 5.1.2, for each framework, it is also important to execute a 

Golden Run. The difference between the Golden Run and the performance measured 

when under attack might not be always noticeable even if these measurements are 

graphically examined. In order for this comparison to be meaningful it should be 

performed in quantitative terms. This is also useful for comparing the performance 

measurements that are computed from each phase of our approach. For this 

comparison, and similarly to the previous chapter, we use the relative change (RCh) 

concept (O. Bennett and L. Briggs 2010):  

 

 

The relative change is suitable for understanding the performance impact of the 

attacks, in this case, in terms of the differences in the framework performance 

between a Golden Run and when under attack.  Thus, we use it here to quantify 

performance degradation. 

5.2 Experimental Setup 

In this section, we present an instantiation of the approach described previously, 

including all the configurations regarding the experiments performed. The setup for 

the experiments consisted of selecting and deploying the three test nodes and 

configuring the different stages, as follows. 

5.2.1 Nodes Configuration 

Regarding the Server Node, we selected popular frameworks to test, namely Metro 

2.1.1, Apache CXF 2.5.1, Apache Axis 2 version 1.6.1, Apache Axis 1 version 1.4.1, 

and Spring WS 1.9 (“Metro” 2012; “Apache CXF” 2012; “Apache Axis2/Java” 2012; 

“Apache Axis” 2006; “Spring Web Services - Home” 2013). As for the server, we 

selected the also popular Apache Tomcat 7.0.23 (“Apache Tomcat” 2012). We opted 

to use only one application server to provide the same conditions to all the 

frameworks. 

As proposed, we deployed two services: one used to process the non-malicious 

workload and to collect the performance metrics; the other to serve as entry point for 

the attacks. Thus, the services to be tested are the ones already presented, namely: i) 

RCh{PM1, PM2} = (
PM2 – PM1 

PM1 
) * 100        (3) 
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the WSTest benchmark set of services presented in Table 5.I (Sun Microsystems 

2004); and ii) the web service with the necessary entry points for the attacks, as 

presented in Chapter 4 (Table 4.IV).  

The Regular Client node includes the WSTest client (Sun Microsystems 2004), which 

is used to execute the regular workload. The values used in these invocations are 

exactly the ones defined in the client implementation and conform to the WSTest 

benchmark specification (Sun Microsystems 2004). In the case of these experiments, 

we configured the WSTest implementation to generate workloads of different sizes 

in order to create a more realistic scenario (see Table 5.I, under the ‘size’ column). 

Finally, we are using the WSFAggressor application at the Malicious Client node, 

with the configuration described in Chapter 3. This node will target the service that 

is merely the entry point to the system. All test nodes were deployed in an isolated 

Local Area Network, in an attempt to eliminate outside traffic and possible 

interference with the experiments. 

5.2.2 Phases Configuration 

Each stage and task of the approach were configured as follows: 

 Pre-Attack – Idle task (5 minutes); Warmup task (5 minutes); Regular Task (5 

minutes) ; 

 Attack – Attack task (15 minutes); Regular Task (15 minutes); 

 Post-Attack – Regular Task (5 minutes). 

As before, these durations were configured to be kept practical, since using higher 

time durations would not be appropriate for testers with limited time constraints for 

performing such phases. In some use scenarios, these durations might not be 

sufficient to understand the impact on the tested software. However, we have 

adopted these values based on empirical experience and supported by the 

experiments in the previous chapter. 

As in the previous chapter, the experiments were executed 3 times, to understand if 

significant deviations existed in the final results. In practice, we have always used 

the third execution to study the performance, but we could have also used the first 

or second execution, as we did not find visible differences among runs. 

Based on the proposed approach, we defined two sets of experiments. The first 

consists of executing the Golden Run to assess the baseline performance of each 

framework. The second intends to assess the performance of each framework in the 

presence of attacks.  
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5.3 Results and Discussion 

In this section, we discuss the main results obtained during the experimental 

evaluation. In general, we discuss numbers rounded to the units, when applicable, to 

simplify presentation. Nevertheless, we provide the complete set of results at 

(Oliveira, Laranjeiro, and Vieira 2015a). Section 5.3.1 presents the results for the 

baseline performance of the frameworks and Section 5.3.2 discusses the performance 

of the frameworks in presence of security attacks (from a legitimate client point-of-

view). 

5.3.1 Baseline Performance of Frameworks 

The figures presented in this section are the practical result of a workload execution 

of 15 minutes (Attack stage without the attackload) using the web service operation 

invocations with the parameters defined in Table 5.I. The experimental results for 

Pre-Attack and Post-Attack are part of the full set of results available at (Oliveira, 

Laranjeiro, and Vieira 2015a). Figure 5.3 illustrates the 15 web service invocations of 

the WSTest web service deployed on top of Apache Axis 1, Apache Axis 2, Apache 

CXF, Oracle Metro, and Spring. The bars in each chart correspond to the average 

response time for each operation (in microseconds). The lines describe the average 

throughput in web service operations per second, for each operation call. 
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Figure 5.3 -  Baseline performance of the frameworks 

As we can see, even without any attack, the three client calls of the echoArray 

operation (i10, i11 and i12) are particularly expensive in terms of response time and 

throughput for all frameworks. Nevertheless, as shown in Figure 5.3a), Axis 1 is the 

framework that shows the smallest response time for all operations. For example, i12 

was Axis 1 longest operation, taking an average of 27504 microseconds (considering 

the total number of invocations carried out during the 15 minutes). One interesting 

fact is that Axis 1 responds faster to client calls than its successor. The slowest 

operation by Apache CXF was also echoArray (i12 client call), with 30005 
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microseconds.  It is also worth mentioning that, Axis 2, CXF, Metro and Spring have 

quite similar response times for each type of operation. 

Concerning throughput, Figure 5.3d) and Figure 5.3e) reveal that Metro and Spring 

are the frameworks that can handle more requests per second. This is quite 

noticeable in operations that use basic data types for their parameters (e.g., echoInt, 

echoFloat). Metro and Spring were able to achieve an average throughput of about 

936 and 867 web service operations per second respectively, when processing client 

calls to the i1 operation. On the other hand, Axis 1 is, in general, the framework with 

the lowest number of requests per second. It never exceeded the 600 web service 

operations per second in all operations. In a similar way to the remaining 

frameworks, Axis 1 struggles when handling client requests with arrays (i10, i11, 

i12); as an example, Axis 1 throughput drops significantly to about 469 web service 

operations per second when handling the i12 calls.  Finally, the baseline results also 

show that calls to the echoSynthetic operation (operations i7, i8, and i9, which 

include a composition of different objects) are the second worst group of operations, 

in terms of performance. This behavior is consistent among all frameworks and can 

be due to the combination of size and object complexity that has to be manipulated 

at the server-side. 

5.3.2 Performance of Frameworks under Attacks 

In this section, we discuss the results of the frameworks when the workload and 

attackload are being executed simultaneously (Phase 2 of the approach). We did not 

find visible differences in performance between the regular tasks of Phase 1 and 

Phase 3. This means that, in general, frameworks were able to recover from the 

attackload execution. As such, we do not to include the results of these phases in this 

section (complete results are available online at (Oliveira, Laranjeiro, and Vieira 

2015a) 

We present a subset of all tested operations taking into consideration two requisites: 

1) we discarded the operations where we observed similar baseline performance 

results; 2) we tried to use results from operations with different data types. 

Therefore, we chose to present the results for echoFloat, echoString, echoSynthetic (with 

12000 elements client calls), echoArray (with 120 elements calls), and echoOrder with 

500 elements (calls i3, i4, i9, i12 and i15). For each framework, we selected the three 

attacks that caused the highest impact on each framework (by comparison with the 

Golden Run). 

Response Time under Attacks 

Figure 5.4 shows the average response times for the frameworks obtained in 

presence of security attacks, collected for the 5 calls to the WSTest services (full 

details are available at (Oliveira, Laranjeiro, and Vieira 2015a)). 
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Figure 5.4 - Response time of the frameworks under attack 
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In general, the impact on the frameworks response time is not as obvious in the 

graphical view, as the impact observed for the throughput. Nevertheless, we found 

significant performance degradation values in the frameworks that are worth 

mentioning. In Axis 1, i3 (echoFloat) and i4 (echoString) WSTest calls reported a 

response time of 2283 and 2271 microseconds, when the Coercive Parsing attack was 

being executed. Considering that the baseline performance for these client calls was 

of 1675 and 1656 microseconds, Axis 1 experienced a performance penalty of 

approximately 36% and 37%, respectively. The performance penalty reported by the 

remaining web service calls is not as severe (e.g., i15 had a 16% performance 

degradation). 

Considering the worst-case scenario in Axis 2 (i.e., the largest performance 

degradation observed during the attacks – when handling malicious attachments), 

Axis 2 was able to reply in 1651 and 1643 microseconds to i3 (echoFloat) and i4 

(echoString) client calls, which corresponds to a penalty of about 25% and 24% (1319 

and 1318 microseconds observed during the Golden Run). Its predecessor, Axis 1, 

suffered only 12% of performance degradation in the same scenario, but it also 

provided lower throughput. 

CXF experienced significant performance degradation in the presence of the security 

attacks in some operations. This is quite visible in the i4 and i3 calls (echoString and 

echoFloat), which when in presence of the Malformed XML attack shows a 

performance degradation of 32% and 31%, respectively. It is also worth noting that 

CXF only experienced a performance penalty of 2,5% in echoArray (i12) calls in 

presence of the same Malformed XML attack. 

As mentioned, Metro was the framework that suffered the most severe performance 

degradation in the experiments. Table 5.II shows the differences between the 

response times collected by the WSTest client during the Golden Run and under the 

SOAP Array attack. As we can see, Metro was severely impacted by the SOAP Array 

attack, suffering performance degradations of over 80% and 76%. It is worth noting 

that the values of the standard deviation are considerably high and we observed a 

similar scenario when the Malformed XML attack was being executed. However, 

these abnormal variations in the standard deviation were not detected in the Golden 

Run, and in other attacks. This indicates that, when Metro was under attack, it did 

not always deliver the response to the client in a consistent manner.  

Finally, we found significant performance degradations in Spring WS. For instance, 

the average response time of the i4 calls (echoString) during the Golden Run was of 

1083,04 microseconds. However, when Spring WS was attacked with Malformed 

XML, the response time for the same i4 calls was of about 1729 microseconds. This is 

nearly 60% of performance degradation. Furthermore, the degradation for the i3 call 

was of 55%, a quite high value. 
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Throughput under Attacks 

Figure 5.5 shows the throughput for each framework in the presence of attacks and 

collected for the 5 web service client calls to the WSTest benchmark.  

Table 5.II - Metro baseline and under attack response times 

Call 
Golden Run SOAP Array attack Performance 

Penalty R.T. Stdev R.T. Stdev 

i3 963,70 241,43 1703,63 1796,65 76,78% 

i4 931,39 227,396 1685,16 1860,34 80,93% 

i9 4860,02 302,082 5759,43 1760,66 18,51% 

i12 29741,95 2109,104 30830,34 2667,85 3,66% 

i15 1112,86 225,381 1720,56 1646,55 54,61% 
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Figure 5.5 - Throughput of the frameworks under attack 
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As shown, all frameworks experienced noticeable throughput degradation. In 

particular, the throughput of Axis 1 was greatly affected by the Oversized XML 

attack. The calls to the i3 operation executed in parallel with the Oversized XML 

attack resulted in 353 operations concluded per second, much lower than the 528 

service operations per second observed during the golden run (i.e., a ~33% 

performance penalty). We note that during our experiments, Axis 1 was unable to 

respond after the first SOAP Array attack was sent. Therefore, we were unable to 

obtain the performance results of this attack for the remaining operations of WSTest, 

and excluded the partial results. 

Considering the throughput in presence of attacks, Axis 2 clearly experienced 

performance degradation when processing i3 (echoFloat) and i4 (echoString) client 

calls (i.e., during the SOAP Array attack). During the Golden Run performance tests, 

Axis 2 was able to process about 667 and 646 TPS for these calls respectively. When 

the attackload was executed in parallel with the workload, it could only process 376 

and 403 TPS. This represents a performance penalty of approximately 43% and 39%, 

respectively. 

The results obtained for CXF show that it is the framework where the attacks had the 

lowest impact. As we can observe in Figure 5.5.c), in general, the throughput values 

for each attack overlap. This means that the three attacks cause nearly the same 

performance degradation, although Malformed XML causes a slightly higher 

performance degradation. One aspect that it is worth emphasizing is that SOAP 

Array and XML Document Size are mostly brute force attacks that consist on large 

payloads that the server must handle. On the other hand, the Malformed XML attack 

is based on invalid variations in the XML structure and typically consists in small 

payloads to process. Despite this, CXF was able to perform better against the two 

brute force attacks. For example, during the i3 client call, CXF was able to process 

513 web service operations per second when the Malformed XML attack was 

performed. In contrast, for the same client call, when SOAP Array attack and XML 

Document Size were executed, CXF was able to process 534 and 533 TPS, respectively. 

This means that, in the worst-case scenario (Malformed XML), CXF suffered a 

performance penalty of approximately 18% when compared with the throughput 

obtained during the Golden Run (652 web service operations per second). 

As we saw earlier in Figure 5.3.d) (baseline performance), considering throughput, 

Metro had the best results. However, when the attacks were executed, it was one of 

the frameworks that experienced the most severe performance degradations. As 

Figure 5.5.d) shows, the performance of this framework was affected particularly by 

the SOAP Array attack and Malformed XML attack. Taking the i4 (echoString) client 

call as an example, Metro was able to process 895 operations per second in the 

baseline performance experiments. However, when the attackload (with the SOAP 

Array attack) was executed, the throughput dropped to 542 web service operations 

per second. This accounts for approximately 39% less requests processed by Metro. 
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Finally, the results for Spring WS share some similarity with the ones for Metro. The 

three attacks that caused the most performance overhead to Metro are the same. The 

SOAP Array attack resulted in the lowest throughputs, although marginally when 

compared with Malformed XML. The main difference is that, although Spring WS 

showed a lower performance (comparing to Metro) during the Golden Run, it 

experienced a performance degradation similar to Metro when in presence of the 

SOAP Array attack (about 35%).  

5.4 Lessons Learned 

The results discussed in the previous section suggest that improvements to the 

current generation of web service frameworks are urgently needed. The results from 

the baseline experiments show that frameworks need to improve the handling of 

SOAP Array based requests. In fact, once the client calls with arrays started to be 

executed, the response times of the frameworks greatly increased. 

In general, the performance of 4 out of 5 frameworks was affected by the SOAP 

Array, the Malicious Attachment, and Malformed XML attacks. Although this was not 

surprising for the former two, we were not expecting the impact of the Malformed 

XML attack, as the experiments in Chapter 4 that used this attack did not reveal any 

abnormal CPU or memory usage. The Malformed XML attack uses a set of 

malformations applied to the SOAP payload and targets the framework’s XML 

Parser. Despite this, results are in line with other studies that emphasize the 

importance of XML parsers in the overall performance of the framework (G. Wang et 

al. 2006). Of the four frameworks affected by Malformed XML, CXF, Metro, and 

Spring use the Woodstox XML parser. Axis 2 uses its own XML parser 

implementation (Axiom). There is certainly room for improvement in the design and 

implementation of these components. These results motivate further studies on the 

processing performance of XML parsers using different XML payloads. 

CXF was the framework that, in general, was able to process more requests per 

second, and the one that handled SOAP Array requests faster. Spring WS, Axis 1, and 

Axis 2 were the middle cases, displaying average performance. Finally, Metro was 

the framework that showed to be able to process more requests per second in the 

absence of attacks, but it rapidly became unstable once the attacks were being 

executed. 

Due to the different characteristics shown by the frameworks in our experiments, it 

can be difficult to choose a framework that is the best for all the different scenarios. 

However, and considering these experimental conditions, CXF appears to be a quite 

good choice. Axis 1, Axis 2, Metro and Spring WS somehow compromise in some 

scenarios. These latter ones might be acceptable choices in specific scenarios (e.g., in 

closed environments, where there are some guarantees on the type of requests and 

presence or absence of some attacks). Obviously, any comparison made here takes 
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into account our experimental conditions, from which we emphasize the execution 

of non-malicious non-parallel requests. Still, by observing the results, the difficulties 

in comparing different frameworks are very clear, emphasizing the need for 

alternative methods that do not only assess, but also serve for comparing 

frameworks from a security perspective. 

5.5 Conclusion 

This chapter studied the problem of characterizing performance of web service 

frameworks in the presence of DoS attacks from the perspective of regular clients. In 

short, the approach proposed consists of a set of security attacks and legitimate 

requests that are executed simultaneously against the frameworks under study. 

Client-side metrics are collected to characterize the performance of frameworks 

(from a legitimate client point-of-view) in the presence of those attacks. 

The proposal builds first on WSFAggressor, which provides the basic means for 

carrying out the tests, and then on the evaluation approach discussed in Chapter 4, 

which provides the basic building blocks for assessment (e.g., defines a set of distinct 

phases). The main idea is that we are now able to add a new facet to our overall 

security evaluation, that represents the perspective of legitimate clients.  

The approach was applied to five well-known web service frameworks and was able 

to reveal and distinguish among different cases of performance degradation. Given 

the important role that frameworks play in business-critical environments, 

understanding which framework best maintains performance for legitimate clients, 

when (or after) being attacked, can be very valuable information. Such information 

can be used by providers when deciding about the infrastructure that will support 

their services. However, comparing results that refer to different systems is not an 

easy task, especially if there are multiple criteria, sometimes conflicting, involved in 

the decision-making process. The next chapter handles this concern and discusses a 

security benchmark for web service frameworks that can be used not only to assess 

but also to compare different systems, regarding security aspects. 
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Chapter 6 
Benchmarking the Security of 

Web Service Frameworks 

This chapter addresses the problem of evaluating and comparing alternative 

frameworks in terms of security. As the impact of a security attack depends on 

aspects such as the framework design (technology, architecture, API, optimizations, 

etc.) and implementation (e.g., the presence of vulnerabilities), different frameworks 

may obviously achieve different levels of security (Suriadi, Clark, and Schmidt 2010). 

Thus, service providers face the difficulty of selecting the one that best fits their 

security needs. 

Measuring the level of security of a framework in a comparable fashion brings in 

several hard challenges. These are associated not only with the multiple non-trivial 

perspectives that the evaluation approach should consider (e.g., how to evaluate 

performance, how to assess dependability), but also with the fact that security is a 

complex concept that is much dependent on information that is unknown (e.g., 

unknown vulnerabilities present in the code, profile of attackers) than on the known 

information. As suggested by previous research (Neto and Vieira 2011b), these two 

aspects should be considered by any fair security benchmark. 

The approach discussed in this chapter is composed of two distinct phases (Neto and 

Vieira 2011b). In the first phase of the process, the WSFs under benchmarking are 

analyzed and/or tested using state-of-the-art techniques and tools to detect 

vulnerabilities. The ones with vulnerabilities are disqualified from the evaluation 

(they are known to be unsecure, thus not acceptable for use in the field). In the second 

phase, the qualified frameworks are analyzed and/or tested in order to gather 

evidences of potentially unsecure behavior and/or of their ability to prevent the 

manifestation of the undesirable effects of the considered threat vectors. As multiple 

criteria are involved here, a Multi-Criteria Decision Making (MCDM) evaluation 
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technique is used to compute a trustworthiness score that allows ranking the 

frameworks. 

We instantiate the proposed approach for the concrete case of Denial of Service 

attacks, which are representative threats in service-based systems and applications. 

Thus, the first phase is based on the run-time execution of the set of security attacks 

implemented by WSFAggressor against services deployed on top of the web service 

frameworks, and that are being used by legitimate clients at the same time. This 

allows retrieving data about the behavior of the services (e.g., if they crash or 

unexpectedly abort the execution of an operation). The second phase is based on the 

observation of measurable run-time behavior (e.g., throughput, CPU use, memory 

allocation) of the frameworks in regular conditions (i.e., execution in the absence of 

attacks), but also during and after being attacked (considering the same attacks of 

the first phase). These data are then used in an instantiation of an MCDM technique, 

the Logic Score of Preferences (LSP) (Dujmović and Nagashima 2006), where data 

are arithmetically processed in a series of steps and a final trustworthiness score is 

calculated. This quantitative score is a value that represents an estimated quality (in 

terms of security) of the frameworks being tested. 

We illustrate the application of our approach to benchmark the security of a set of 10 

well-known web service frameworks (Apache Axis 1 1.4.1, Apache Axis 2 1.6.1, 

Apache Axis 2 1.6.2, Apache CXF 2.5.1, Apache CXF 3.0.3, Oracle Metro 2.1.1, Oracle 

Metro 2.3.1, XINS 3.1, Spring JAX-WS 1.9, and Spring WS 2.2.0), six of which we 

disqualify in the first phase of the process. In the second phase, we rank the four 

qualified frameworks (Apache Axis 2 1.6.1, Apache CXF 2.5.1, Apache CXF 3.0.3, 

Oracle Metro 2.3.1) considering the trustworthiness score calculated from the 

behavior observed during the tests.  

The results show that a security benchmark can be indeed a powerful tool to select 

frameworks and to help providers making informed decisions about their 

deployments. As an example, we discuss the case of a security-critical web service, 

where resisting DoS is much more important than performance in the absence of 

attacks. We show that, considering these constraints, Apache CXF v2 is a top 

performer, where Apache Axis2 is the worst one. This information would be 

extremely helpful for a service provider that should select the middleware that best 

fits the existing requirements. 

The chapter is organized as follows. Section 6.1 overviews the two phases of the 

proposed approach: security qualification and trustworthiness assessment. A 

concrete instantiation of each phase is then described in sections 6.2 and 6.3, 

respectively. Section 6.4 presents the experimental evaluation conducted using the 

benchmark and discusses the results.  Section 6.5 discusses the quality properties of 

the proposed benchmark. Finally, Section 6.6 concludes the chapter. 
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6.1 Benchmark Overview 

Our benchmarking approach for evaluating and comparing the security of web 

service frameworks is composed of two phases. The first is named Security 

Qualification and is used to disqualify frameworks with detectable vulnerabilities. If 

one or more vulnerabilities are found in this phase, then the framework under 

benchmarking is excluded from the process. The rationale is that, if a framework is 

known to have a vulnerability, then it offers no security and should not be an option 

for providers. The second phase is named Trustworthiness Assessment and is used 

to gather evidences of unsecure (or secure) behavior and aims at producing a 

trustworthiness score for the frameworks for which no vulnerabilities where 

detected (i.e., for the frameworks that were not discarded during the security 

qualification phase). The final trustworthiness score describes the System Under Test 

(SUT) in terms of security, but especially allows comparison among alternative 

SUTs. Figure 6.1 illustrates the overall approach where a given SUT, i.e., a system 

supported by a web service framework, is being benchmarked. The following 

sections discuss the two phases of the approach. 

 

 

 

6.1.1 Security Qualification  

In the security qualification phase the goal is to find vulnerabilities in the 

frameworks being tested. The detection of a vulnerability leads to the 

disqualification of the framework from the benchmarking process, which means that 

it will not continue to the trustworthiness assessment phase, where only frameworks 

without known (or with not relevant) issues are evaluated. Note that, this does not 

mean that qualified frameworks do not have vulnerabilities: it just means that no 

vulnerabilities could be found during the first phase of the benchmarking process, 

and therefore a trustworthiness assessment phase is required. 

In this phase any vulnerability detection technique, or any combination of 

techniques, can be used. In general, the applicable techniques fall into black box or 

Figure 6.1– Overview of the proposed WS Framework Benchmark 
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white box (Nuno Antunes and Vieira 2012). The former consists of testing the system 

from an external perspective, where there is no access to the code of the target 

system. The later requires access to the internals of the system being tested.  

Both black box and white box techniques can be applied manually or automatically. 

Certainly, performing manual testing or carrying out manual code inspections 

requires one or more security experts and is time consuming (Nuno Antunes and 

Vieira 2012). The use of security testing tools able to perform tests automatically is a 

good option, but in many cases the tools are known to perform poorly (Nuno 

Antunes and Vieira 2009) and eventually need the presence of an expert to, at least, 

analyze results. Despite this, using a tool in general reduces the effort needed to test.  

As ultimately there is no need to locate the vulnerabilities (just to understand if they 

are present) and since we will instantiate the approach in the context of Denial of 

Service attacks (which are easily automatable by tools), we selected a black-box 

automated approach to perform this phase, as discussed in detail in Section 6.2.  

6.1.2 Trustworthiness Evaluation 

The goal of this phase is to provide the support to compare alternative frameworks 

according to multiple system attributes, which are measured in a security attack 

context. For example, attributes such as throughput or memory usage are known to 

be affected by many security attacks in the web services context, especially if the 

attacks target Denial of Service, as we have seen in chapters 4 and 5. This way, 

gathering information regarding specific attributes of the system may provide an 

overall indication of the quality (and therefore trust) of the framework being tested.  

In the context of web service frameworks, the concept of trust can be defined as the 

belief of a stakeholder that a particular framework exhibit an expected behavior 

(Medeiros et al. 2017). Thus, certain evidences associated with the software allow 

increasing or decreasing trust. As an example, if a particular framework experiences 

performance issues while handling several different types security attacks, it is 

reasonable for a stakeholder to set a lower level of trust on that framework. On the 

other hand, if no behavior change is observed, the level of trust would be higher (as 

the expectation is that the framework can probably handle a new security attack 

without major issues). A difficult problem is that, in order to define a level of trust 

for a particular framework, it is necessary to consider many different criteria (which 

may be conflicting). 

Multi-Criteria Decision Making (MCDM) techniques (also known as Multiple-

criteria Decision Analysis) have been increasingly becoming popular in recent years. 

MCDM explicitly considers multiple criteria in decision-making contexts with the 

goal of comparing, selecting, or ranking multiple alternatives (Friginal et al. 2011; 

Martinez, de Andres, and Ruiz 2014; Martinez et al. 2013). 
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Depending on the problem being solved, different MCDM techniques may apply. In 

general, the techniques fall into one of two categories: non-compensatory and 

compensatory. Opposite to the former one, compensatory techniques allow tradeoffs 

between attributes (a low value in one attribute might be compensated by a high 

value in another one or by the high value on a set of attributes) (Xu and Yang 2001), 

which fits our problem. For example, from a security perspective it might be 

acceptable to have high memory usage (a common symptom of attacks) at a server, if 

low latency is still observed. There are several types of compensatory techniques, 

including scoring, compromising, and concordance, just to name a few. 

In order to apply an MCDM technique there are three requirements that need to be 

fulfilled. First, a set of metrics that quantify the properties of the SUT must be 

acquired through experimental evaluation. Next, an MCDM technique must be 

selected and afterwards a Quality Model must be defined. These two last 

requirements are closely coupled (i.e. the quality model is defined according to the 

selected MCDM technique). 

In the field of dependability benchmarking, the following two scoring techniques 

have been successfully used: Analytic Hierarchy Process (AHP) and Logic Score of 

Preferences (LSP) (Martinez, de Andres, and Ruiz 2014). From these, we opted for 

using the LSP in our approach, due to its capability to assess and compare complex 

hardware and software systems (Dujmović and Nagashima 2006; Dujmovi’c 1996) 

and also due to its simplicity when compared with AHP. 

To use the LSP technique, it is necessary to first define a Quality Model, which is 

essentially a conceptual representation of Attributes, Weights, Thresholds and 

Operators (Martinez, de Andres, and Ruiz 2014) that should express the (security) 

requirements that the system being tested should meet. Figure 6.2 presents a generic 

Quality Model, including its typical elements, as explained in the next paragraphs. 

 

 

Figure 6.2 – A Generic LSP Quality Model 
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Attributes (e.g., A1, A2 and A11–A22 in Figure 6.2) are selected by the user based on 

what s/he knows are important attributes of the system (e.g., memory usage, 

throughput) that can be quantified. The input values A11–A22 must be normalized, 

so adequate normalization functions must be configured and applied and this 

includes the definition of thresholds. These thresholds specify the maximum and 

minimum values for the inputs of the leaf-level components of the quality model 

(the remaining inputs are produced according to the defined thresholds). 

The values for each component are influenced by an adjustable weight (e.g., W1–W6 

in Figure 6.2), which specifies a preference over one or more characteristics of the 

system, according to predefined requirements (e.g., in certain contexts resource 

usage might be more important than throughput). The final score is computed using 

the aggregation of the values of the attributes, starting from the leaf-level attributes 

to the root, using operators that describe the relation between them. In the case of 

our approach, and as described later, experimentation provides the values (e.g., 

throughput, memory usage) to feed the model. 

Certainly, there are a few difficulties involved in this kind of methodology, which 

are very much related with the definition of the three adjustable elements of the 

quality model (thresholds, weights and operators) and with the overall tree design, 

including the presence of possible multiple aggregation levels. An important aspect 

is that the quality model should represent as much as possible the real requirements 

of the SUT. Section 6.3 further discusses these issues and shows how to use the LSP 

technique to rank frameworks, according to their trustworthiness based on the 

behavior in terms of security. 

6.2 Security Qualification Phase 

Several options can be used for the security qualification phase (e.g., code 

inspections, static code analysis), as the goal is to identify security problems in the 

frameworks in order to exclude them from the assessment process. In our case, we 

selected the run time testing approach discussed in Chapter 5. Although the 

objective here is merely detecting vulnerabilities (i.e., the technique presented in 

Chapter 4 would be sufficient), the technique presented in Chapter 5 also allows us 

to gather data that can be used in the trusworthiness assessment phase. As 

discussed, the approach is based on the execution of attacks against services 

deployed on specific web service frameworks and includes i) a set of active nodes 

that interact (i.e., the Application Server, the Regular Client, and the Malicious 

Client), and ii) three different execution stages (pre-attack, attack, and post-attack). 

The procedure is essentially the same, and we propose using the same configuration 

previously described. By observing the system behavior, we can identify failures, 

which indicate the presence of vulnerabilities (a non-responsive service after 
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receiving an attack). In such cases the framework should be disqualified, not passing 

to the trustworthiness assessment phase of the process. 

6.3 Trustworthiness Assessment Procedure 

The second phase of the benchmark consists of applying the Logic Score of 

Preferences (LSP) technique considering all frameworks that were not excluded 

during the first phase. In our concrete case, the data obtained from the previous 

phase are used to calculate a trustworthiness score to rank the frameworks.  

However, if the two phases of the benchmark consider different types of attacks, or 

involve the application of different techniques, a different set of experiments may be 

needed to gather the necessary data. In the following sections, we discuss: 

 The selection of the attributes of the system to be considered (e.g., 

performance, availability), and their decomposition in (sub)attributes that are 

quantifiable and that are part of the quality model (e.g., performance can be 

quantified in terms of service throughput and/or response time). 

 How to configure the thresholds, weights and operators of the quality model. 

 How to apply the LSP approach, which in our case comprises multiple 

aggregation blocks, including defining how the different elements should be 

used to produce a final score. 

6.3.1 Defining the Attributes 

We selected two attributes that are typically affected by security attacks in the web 

services domain: performance and resource consumption. The reason to select these 

attributes is that, we target DoS (Denial of Service) attacks, which have the goal of 

making a service unavailable to legitimate users (McDowell 2009). Such service 

disruption often results from a successful attempt to exhaust resources. For example, 

an attacker may try to monopolize the server’s CPU usage, slowing access to 

essential system tasks or inhibiting service delivery to legitimate clients. In the same 

way, DoS attacks can result in the allocation of large quantities of memory, reducing 

the ability of the service to respond in due time. Even when no obvious 

vulnerabilities are present, security attacks can impair the capability of a framework 

to handle requests and deliver a response in a timely manner (Oliveira, Laranjeiro, 

and Vieira 2015c). 

Performance and resource consumption are further decomposed in attributes that 

can be measured (in our case, through experimentation) so that we can reach a final 

quantitative score. Thus, we decompose performance in throughput (number of 

web service operations executed per time unit) and response time (time taken for a 

service operation call to conclude). These attributes were already successfully used 
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in the security assessment approaches in Chapter 4 and Chapter 5 and their 

aggregation can also be found in previous research (Dujmović and Nagashima 2006), 

where the LSP technique is applied to quantify systems performance. Moreover, 

these attributes are commonly used in performance-oriented research and industry 

work, such as the WSTest Benchmark (Sun Microsystems 2004; Microsoft 2008). 

Following the same rationale, resource consumption is decomposed into CPU usage 

and memory allocation (Dujmović and Nagashima 2006). The results obtained for 

these leaf-level attributes are collected and supplied as inputs to the LSP technique, 

as described in Section 6.3.3.  

6.3.2 Configuring Thresholds, Weights and Operators 

As previously discussed, a quality model must be defined in order to apply an LSP 

technique. The quality model requires thresholds, weights and operators to be 

configured so that it is possible to aggregate the attribute values. Also, values at the 

bottom level are aggregated to calculate upper level values, thus they need to be 

normalized into the same scale. However, when normalizing an attribute, we must 

consider whether it is a benefit attribute (the higher the value, the better) like 

throughput, or a cost attribute (the lower, the better) as memory usage.  

The thresholds represent the range of acceptable input values (from to ) of 

any given leaf-level attribute of the quality model. In benefit attributes, the lower 

threshold indicates the worst value (i.e., values that are lower than the threshold will 

be considered equally bad for the overall quality of the system). The maximum 

threshold, on the other hand, represents the best value for a particular attribute. 

Again, although higher values are possible, they will not make any difference in the 

overall quality of the system. In cost attributes, these notions of maximum and 

minimum thresholds are interpreted in the reverse way. 

Once defined, the thresholds are used in normalization functions. Equations (4) and 

(5) represent the normalization functions used to normalize benefit and cost 

attributes, respectively. These normalization functions (adopted from (Friginal et al. 

2011)) were successfully used in previous works (Friginal et al. 2011; Dujmović and 

Nagashima 2006). 

 

minx maxx

(4) 
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In Equations (4) and (5), 𝑎𝑖 represents the value obtained for a given attribute and 

that needs to be normalized, and and  are the threshold values (i.e., cutoff 

values). As explained, all values below and above (considering equation 4) 

will always be equal to 0 or 100 respectively. The LSP technique does not state how 

the lower and higher end values of the interval should be specified. Thus, it is up to 

the benchmark user to specify the thresholds, define the lower value that satisfies the 

user requirements (e.g., a minimum throughput for a server) and also a higher value, 

for which better values do not benefit the user requirements (as they are already 

fully satisfied). Obviously, there is certainly some difficulty in defining the threshold 

values, especially when there is no quantitative information regarding the 

requirements of the system being tested. Thus, thresholds should be defined based 

on empirical experience or any other kind of useful expertise. 

The definition of the weights should also be performed by the user, based on the 

importance that each attribute has in his/her specific scenario. Depending on the 

context of application, the relative importance of the attributes may vary. For 

example, in a given scenario having good response time may be more important than 

having good throughput, but in another scenario, it may be the opposite. Thus, 

depending on the scenario, an inappropriate selection of weights might introduce an 

artificial bias that can impact the final score of a system. If no scenario is specified, or 

if there is no information regarding the security requirements, all attributes may be 

considered equally important. We illustrate the application of our approach 

considering this latter neutral case, where all attributes have the same importance, 

but we also show the benchmark outcomes when some attributes have a stronger 

weight (for more details on this later case, please refer to Section 6.5). 

The final step involves selecting the operators to aggregate the weighted attribute 

values. According to the work in (Dujmović and Nagashima 2006; Friginal et al. 

2011) there are three main properties of the system under benchmarking that must 

be considered when selecting the operator for aggregating the components: 

 Simultaneity – all requirements must be satisfied. This property refers to a 

conjunction (i.e., the logical operator and). 

 Replaceability – is used when one of the requirements of the system has a 

higher priority replacing the remaining requirements. This property refers to 

a disjunction (i.e., logical operator or). 

maxx minx

minx maxx

(5) 
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 Neutrality – it refers to the arithmetic mean and represents the combination of 

simultaneous satisfaction of requirements with replaceability capability. 

Once all 3 elements are defined (thresholds, weights and operators), we can 

aggregate the attribute values. Thus, the leaf values are normalized, then weighted 

and processed according to the defined operators. The scores that result from 

aggregating a group of attribute values are aggregated until one reaches the root 

attributes and a final score is produced (please refer to Figure 6.2). The formula 

needed for each aggregation operator to compute the scores for the level above is 

presented in Equation 6, which has been extracted from the work in (Dujmović and 

Nagashima 2006), but follows the notation used in (Friginal et al. 2011). 

 

As discussed in (Dujmović and Nagashima 2006), in Equation 6, represents the 

computed score for a particular aggregation and k represents the set of attributes 

considered for the aggregation.  represents the weight associated to a particular 

attribute “i”, and represents each attribute value that will be aggregated. Finally, r 

is a variable whose value represents the aggregation function used (e.g., r = 1 

represents the arithmetic mean function). 

6.3.3 Applying the LSP Technique 

This section describes the application of the LSP technique in the context of our 

benchmark. We propose the execution of a compound LSP, which we overview in 

Figure 6.3. As we can see, the procedure is based on the aggregation of three parts, 

which we name as blocks: Entry Block, Stage Block, and Framework Block. Each block 

holds a quality model, and the output of each block serves as input for the next one. 

We describe each of these three blocks in the following paragraphs. 

ks

iw

is

(6) 
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Figure 6.3 - Overall view of the approach. 

The entry block performs the first level of aggregation and uses input data that is 

directly gathered from experimentation. In our case, these data (i.e., data regarding 

CPU usage, allocated memory, throughput, and response time) are gathered during 

the several experiments of the qualification phase, being each experiment the 

evaluation of a framework in presence of a single type of attack. 

As an experiment includes going through the three stages (pre-attack, attack, and 

post-attack), and as each stage provides us with data regarding the four leaf-level 

attributes, each experiment provides us a total of 12 (3 phases x 4 leaf-level 

attributes) inputs that will be handled by 3 different entry blocks (each entry block 

processes 4 inputs that correspond to a particular stage of one experiment, as visible 
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at the bottom of Figure 6.3). If we have N types of attacks (i.e., N experiments), then 

we have 12 x N inputs for 3 X N entry blocks. 

Each of the 12 values referred is actually an average of the readings obtained at each 

stage of each experiment, for a particular leaf-level attribute. Since we are interested 

in capturing the normal behavior and possible deviations from this normal behavior, 

the arithmetic mean is a helpful way of achieving the goal and the resulting values 

are still understandable by human users. 

The aggregation process of the input values, which we detail in the next paragraphs, 

results in an output of three scores per experiment (one per stage). This means that if 

we are using N types of attacks, this block will produce 3*N scores (i.e., each 

experiment has 3 stages that result in one score each, and we have N experiments). 

These scores are named Entry Scores in Figure 6.3.  

This aggregation process involves, as previously discussed, the definition of the 

thresholds, aggregation operators, and weights. Our proposal for the definition of 

thresholds is to use the data collected during the first phase of the benchmark to set 

the thresholds  and  for CPU Usage, Memory Allocation, Response Time, 

and Throughput. This consists of applying a method for removing outliers and then 

select the best and worst values present in the data set as thresholds. One method 

that can be applied to detect and remove outliers requires plotting all the values 

using a Box-and-Whisker graphic. The values below the minimum value and above 

the maximum value specified for the plot are outliers and they can be ignored. In the 

field of statistics there are also several techniques to detect outliers (Chandola, 

Banerjee, and Kumar 2007) such as Cook’s Distance  or Grubbs' test. 

Regarding the aggregation operator, we opted for the arithmetic mean for all the 

aggregation blocks mainly due to three reasons. First, there is no strong need of high 

simultaneity of the system attributes (i.e., using a conjunction based operation) as 

there is no strong dependency between them (i.e., an attack can have a negative 

impact the CPU usage but not necessarily allocate more memory). On the other 

hand, there is no strong requirement of disjunction/replaceability (i.e., favor a system 

property over another) that cannot already be expressed by the weights. Finally, this 

operator has also been previously applied with success in a similar context 

(Martinez, de Andres, and Ruiz 2014). 

As for the weight associated to each attribute, which is used to adjust the aggregation 

process, we opt to not favor any attribute against any other. Despite this neutral 

scenario, we also show later (see Section 6.4.3) how different weights can impact the 

overall results. 

The Stage Block performs the second level of aggregation. The inputs for this stage 

are the Entry Scores produced by the previous block, which are processed in 3 

groups. Each of these groups includes N scores (remember that N is the number of 

experiments and each experiment corresponds to one type of attack) that belong to 

maxx minx
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the same stage of different experiments. Thus, we form a group that includes all pre-

attack scores, another one with all attack scores, and another with all post-attack 

scores. The scores of each group are then aggregated to calculate a single score per 

stage, producing three scores, as visible in Figure 6.3 (pre-attack stage score, attack 

stage score, and post-attack stage score). Regarding the configuration of the 

aggregation process, we again consider all DoS attacks to be as equally important 

and therefore each attack stage score has exactly the same weight (100/N). The 

reasoning regarding operators and thresholds applies as discussed for the previous 

block. 

The abovementioned three stage scores for pre-attack, attack and post-attack serve as 

input for the Framework Block, which is responsible for performing the final 

aggregation. The output is a single score (named Framework Trustworthiness Score in 

Figure 6.3 ) that can then be used for comparing alternative frameworks. By default, 

we again set the same weight (1/3 for each input score), assuming that there is no 

user preference favoring one particular stage against the remaining. This means that 

the pure performance of the framework (i.e., before being attacked) is equally 

important as its performance during attacks or after attacks (as mentioned before, 

these weights can be easily adapted to different contexts). 

The whole process is repeated for all the frameworks that complete the 

trustworthiness assessment phase (which includes defining the proper thresholds as 

discussed before). As a final note, we would like to emphasize that the proposed 

procedure and above reasoning (for all the blocks of the aggregation) are not limited 

to the choices made for the aggregation operators, components and weights, which 

are essentially neutral (as mentioned, mostly with the goal of presenting the 

approach). It is recommended that all configurable elements are set according to any 

existing requirements. In Section 6.4.3 we discuss how specific configurations can be 

set at each block to map different requirements. 

6.4 Experimental Evaluation 

In this section, we start by overviewing the setup and configuration used in the 

experiments. In Section 6.4.1 we present the results from the Security Qualification 

phase, discussing the frameworks that were rejected for having vulnerabilities and 

marking which frameworks were accepted for the Trustworthiness Assessment phase. 

In Section 6.4.2 we discuss the results obtained during the trustworthiness 

assessment using LSP. Section 6.4.3 presents a hypothetical scenario that shows how 

the weights of the LSP evaluation can be adjusted to consider different business or 

user requirements. 

The setup consists of the test nodes presented Chapter 5: a Regular Client, a 

Malicious Client, and the Application Server. The latter includes an application 

server that is responsible for acting as the container for the tested frameworks. 



Chapter 6 

 134 

Apache Tomcat 7.0.23 was again used due to its wide adoption in the industry and 

to its extensive support for many current web service frameworks. 

The frameworks benchmarked are: Apache Axis 1 1.4.1, Apache Axis 2 1.6.1, 

Apache Axis 2 1.6.2, Apache CXF 2.5.1, Apache CXF 3.0.3, Oracle Metro 2.1.1, Oracle 

Metro 2.3.1, XINS 3.1, Spring JAX-WS 1.9, and Spring WS 2.2.0. As in Chapter 4, in 

some cases, we opted for testing more than one version of the same framework, to 

understand if they have different behaviors in terms of security. We deployed on the 

Application Server node the WSTest services (Sun Microsystems 2004) and our own 

set of services that will attacked (described in Chapter 5). 

The Regular Client runs the WSTest workload emulation tool, responsible for sending 

non-malicious requests and was configured to use the default values, as described in 

Chapter 5. The Malicious Client runs WSFAggressor, with the configuration 

suggested in Chapter 3. All nodes used in the tests were deployed in an isolated 

Local Area Network, in an attempt to eliminate outside traffic and any possible 

interference with the experiments.  

Each stage and task of the Security Qualification phase was configured as in Chapter 

5. Regarding the trustworthiness phase, we followed the configuration discussed in 

Section 6.3.2, which is mostly neutral. We do however discuss alternative 

configurations and their outcome in Section 6.4.3. The main point requiring attention 

in the trustworthiness assessment phase is the definition of the thresholds for 

response time, throughput, memory allocation, and CPU usage, as detailed in the 

next paragraph. 

During the security qualification phase, we observed that the response time was 

around 5500–6000 micro seconds, so the lower threshold is defined based on the fact 

that the fastest response time measured was about 3000. The upper threshold was set 

according to those same reasoning, where very rarely we observed a response time 

higher than 12000. In the case of throughput, most of the values were between 400-

500 operations per second, leaving few observations outside these intervals. 

Regarding CPU usage, most of the values for the min varied between 0.4 and 1.5. 

Since a CPU usage below 1 is considered negligible, we opted for a minimum of 1%. 

Regarding the maximum value, we occasionally observed values between 10% and 

23%, rarely going above 30%. Finally, we observed that the allocated memory mostly 

varied around 70-80 MB, with very sporadic values going around 60MB or 90MB. It 

is important to emphasize that the definition of these values is based on empirical 

observation of the systems under regular operation. Based on previous experience, 

we believe that this a good enough way for setting the thresholds. Nevertheless, 

other users of the benchmark may apply a different approach for selecting the 

thresholds, considering for instance the statistical distribution of the observed vales. 
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6.4.1 Security Qualification Results 

Table 6.I presents the frameworks that qualified to the second phase and those that 

failed to pass the first phase. Note that the following paragraphs overview the 

results already discussed in Chapter 4, but we present a short summary for the sake 

of readability.   

 

Table 6.I - Security Qualification Results 

Framework Version Security Qualification 

Apache Axis 1 1.4.1  

Apache Axis 2 
1.6.1  
1.6.2  

Apache CXF 
2.5.1  

3.0.3  

Oracle Metro 
2.1.1  

2.3.1  

XINS 3.1  

Spring JAX-WS 1.9  

Spring WS 2.2.0  

   

Six out of the ten versions tested had some type of vulnerability which resulted in 

not being qualified for the next phase of the benchmark. One interesting aspect is 

that Apache CXF was the only framework for which we did not find any security 

vulnerability in both the versions tested. 

Axis 1 presented two failures during the tests. The first case was detected during the 

Coercive Parsing Attack, with the CPU reaching 100% usage and a continuous output 

of java StackOverFlowException exceptions being registered in the server logs 

(revealing an internal error). We observed the second issue when the SOAP Array 

attack was executed. A single request with this attack was sufficient to force the CPU 

usage to increase an average of 50% (sporadically reaching 100%). Eight minutes 

after the request was sent, the malicious client received an OutOfMemoryException 

revealing an exhaustion of memory resources. 

Axis 2 version 1.6.2 failed during the execution of the Coercive Parsing Attack. During 

this attack the CPU usage reached nearly 50% and the framework logged a message 

indicating an error occurred in the 

org.apache.axiom.om.impl.llom.OMElementImpl.findNamespaceURL operation. At the 

same time, the client received consecutive responses with a 

javal.lang.StackOverflowError, a similar error to the one observed in Axis 1.  
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In Metro version 2.1.1 we observed a failure during the execution of the Oversized 

XML attack. After the first execution of the attack, the client did not receive any 

response from the framework during the time of the experiments. Despite this, 

Metro could respond to requests sent using a different web service client. Although 

it might be acceptable that a framework ignores an attack, the absence of a response 

to the client (even if it is malicious) seems to indicate the presence of an internal 

error.  

XINS was vulnerable to two security attacks. When processing the Malicious 

Attachment attack (it consists of sending a 100MB file), the CPU usage reached about 

50% and the allocated memory reached the 800MB mark, resulting in an 

OutOfMemory exception for each request received. The second failure occurred when 

a single request containing the XML Bomb attack was sent, leading the used memory 

to go over the 800 MB mark, and the same OutOfMemory exception being raised by 

the server. 

Two failures were detected in Spring JAX-WS. The first was observed when 

executing the Malformed XML attack. In particular, a 

javax.xml.bind.UnmarshalException was thrown and delivered to the client. This 

exception includes a reference to a WstxParsingException, raised by the XML parser 

used by Spring-WS (Woodstox), which is related to an unexpected closure of an 

XML tag. We investigated this behavior in the server logs and discovered that a 

NullPointerException was also raised during the attacks (and wrapped in the 

UnmarshalException), indicating the incapability of the framework to handle an 

unexpected case. The second failure observed occurred after launching the first 

request of the Oversized XML Attack. In this case, and similarly to Metro 2.1.1, the 

client did not receive any response from the framework after receiving the first 

attack attempt. 

Finally, Spring-WS revealed one failure. Once the first request containing the 

Malicious Attachment attack was sent, the framework allocated more than 50% of 

CPU Usage and reached 900 MB allocated memory within one minute. Afterwards, 

each time this attack was sent, a java.lang.OutOfMemoryError was returned to the 

client. 

6.4.2 Trustworthiness Assessment Results 

Table 6.II presents the results for the entry block for all frameworks that qualified to 

this phase. The first column in the table represents the attacks carried against the 

frameworks. As all leaf-level attributes are normalized into a 0 to 100 scale, the 

aggregated scores at the upper levels also range from 0 to 100.  

For clarity, and to guide this intermediate analysis, we marked in  light blue  the best 

9 pre-attack scores found considering all results obtained during that stage and in  

dark blue  the worst scores found in the pre-attack stage, considering again all 
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results obtained during that stage. For each type of attack, we show in  orange  the 

best score registered during the attack stage and in  dark red  the worst score 

obtained during that stage. Finally, and again for each type of attack, we show in  

light green  the best score found during the post-attack stage, and in  dark green  the 

worst one found during the post-attack stage. In gray, we highlight the highest score 

degradation values observed during the tests, i.e., scores that diverge more than 25% 

from the base scores observed in the pre-attack stage. We use this 25% value merely 

as a visual aid, to signal cases that could require further analysis or any kind of 

special attention.  

Table 6.II - Entry Block Scores 

 Axis2 Metro CXF v2 CXF v3 

Pre Attack Post Pre Attack Post Pre Attack Post Pre Attack Post 

CP 84.69 40.82 71.91 60.67 56.25 60.97 75.79 71.79 71.25 62.83 37.24 38.25 

MX 84.28 74.44 68.65 61.70 49.85 54.51 76.38 64.63 70.21 67.39 49.73 61.67 

MA 84.27 51.71 57.49 62.38 47.70 62.00 74.27 61.26 71.49 64.12 63.99 64.50 

OX 84.82 73.71 83.96 62.61 60.21 62.65 76.66 72.16 76.97 66.74 52.32 57.89 

REE 83.48 77.03 71.67 61.53 55.17 62.31 77.41 76.03 77.13 66.46 61.92 65.98 

SA 84.75 31.65 55.82 61.90 52.08 42.42 76.40 40.81 51.49 65.97 38.07 45.76 

XB 82.94 75.76 82.26 61.12 55.63 50.99 77.19 73.55 64.27 64.17 56.94 66.00 

XDS 83.38 56.61 75.27 62.23 48.72 62.20 78.03 60.21 72.51 66.18 59.24 63.41 

XEE 83.22 79.11 68.81 61.38 56.74 69.84 78.02 74.14 69.58 66.74 55.60 41.15 

A close look at Table 6.II reveals several important details. First, in some cases the 

attack did not have any perceptible impact in the framework, and the score of the 

attack stage is actually better than the post attack stage. This can potentially be 

explained by the way the Garbage Collector (GC) was called by the JVM during the 

experiments and is related with the internal architecture and implementation of the 

frameworks. In some cases, the GC was immediately called after the attack, 

dramatically decreasing the allocated memory. In other cases, the first call to the GC 

took several minutes, and the memory stayed allocated, which reflects in a higher 

score in the post-attack stage. This also explains the scenario where a post-attack 

score is higher than a pre-attack score. Calls to the GC are out of our control, as they 

are the result of the decisions of the developers when creating a framework. 

Concerning the scores obtained in the pre-attack stage, it is interesting to see that 

Axis2 concentrates all top 9 results. On the other hand, the worst scores are 

registered by Metro, although CXF V3 scores are not considerably better. This does 

not apply to the attack stage where the best results when handling most of the 

attacks, are mostly divided between Axis2 and CXF V2. Metro and CXF V3 score 

better in two of the attacks. 

It is interesting to observe how a framework, depending on the type of attack being 

handled, can simultaneously be the worst and the best. This actually happens for 

two different frameworks. CXF v3 scores the best against the Malicious Attachment 
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attack and shows the worst score in four other types of attacks. Metro shows the 

worst score against four attacks, but is the best handling the Soap Array attack. This 

observation suggests that it is possible to build a better framework, combining 

different characteristics of the existing ones. 

Regarding the post-attack stage, Metro and CXF v3 concentrate most of the worst 

scores apart from the score for the post-attack of the Malicious Attachment attack on 

Axis2. On the other hand, we find that Axis2 and CXF v2 concentrate the best scores 

for 8 out of 9 attacks. Here, the exception is with the XML External entities attack, 

where Metro scored higher. Also, those two frameworks accumulate best and worst 

scores. Axis2 struggles to handle the Soap Array attack, but also scores the highest 

during the corresponding post-attack stage. On the other hand, although Metro is 

the best handling the Soap Array attack during the attack stage, it is also the worst 

handling its impact in the corresponding post-attack stage. Finally, we observe 11 

cases where the score degradation is over 25% (marked in gray). Five of these 11 

gray cases are already caught in the worst performers set, as visible in Table 6.II. The 

next paragraphs go through these cases per framework.  

Axis2 scores drop significantly when four attacks are executed: Coercive parsing, 

Malicious attachment, Soap Array, and XML Document Size. The framework also shows 

> 25% degradation during the post-attack stage of the Soap Array and Malicious 

Attachment attacks. In the presence of the Coercive Parsing attack, Axis2 scored only 

48% of the value calculated before the attack (84.69). After the attack, the score 

increased to 71.91 indicating that Axis2 could recover from this attack, although not 

performing as well as in the pre-attack stage. Regarding the Malicious Attachment 

attack the score dropped to 61% (51.71) of the 84.27 observed before the attack and 

was kept at similar levels in the post-attack stage. During the Soap Array attack the 

score decreased to 37% of the pre-attack stage (a drop from 84.74 to 31.65). Although 

the framework recovered to 55.82 in the post-attack stage, this value is still only 66% 

of the one obtained during the pre-attack stage. Finally, Axis2 score during the XML 

Document Size attack dropped to 68% of the value observed during the pre-attack 

stage. 

Metro was generally not affected by the attacks considering the 25% degradation 

interval. However, Metro is in fact the worst performer in the pre-attack stage. 

Regarding Apache CXF v2 and v3, there is one common signaled degradation case 

with the Soap Array attack. With CXF v2, the attack score is 53% of the one observed 

during the pre-attack stage, and the post-attack score is 67% of the value observed 

during the pre-attack stage. Regarding CXF v3, an obvious degradation case is 

detected only during the attack stage, suggesting some differences in the 

implementation of the two versions. During the Coercive Parsing attack, we also 

observe significant degradations (about 60% and 69% in attack and post-attack). 

Finally, for the XML External Entities attack, the degradation is nearly 69% in the 

post-attack phase.  
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Table 6.III presents the aggregation produced by the stage block and the resulting 

final trustworthiness score of each framework (the last column of the table) 

calculated by the framework block. Following the same rationale found in the 

performance benchmarking domain (Kaeli 2009), in this analysis we postulate that a 

difference lower than 2 points represents a tie between the benchmarked 

frameworks. With this we are avoiding taking conclusions from very similar values 

that may be due to the non-deterministic characterizes of the systems (other values 

may be used in different contexts). 

As we can see, Axis2 scored noticeably better than the remaining frameworks in the 

pre-attack stage and in the post-attack stage. CXF v2 was however the best 

performer in the attack stage (although not by a great margin). We also observe that, 

as expected, the scores generally drop from the pre-attack stage to the attack stage. 

Another relevant aspect is that the trend continues with the remaining frameworks, 

in general, showing lower scores in the post-attack stage, when compared to the pre-

attack stage. 

Looking at the final scores, we find Axis2 and CXF v2 in the top position, with an 

overall score difference lower than two points (thus considered equal in terms of 

trustworthiness, in general). Depending on the stakeholders’ requirements, the 

selection could point to Axis 2 if attacks are rare events, or somehow are less 

important than performance without attacks. If it is the reverse (performance under 

attack is more important) the benchmark user could select CXF v3. Metro and CXF 

v3 occupy the last position, also ex-aequo. The main difference here is that Metro 

outperforms CXF v3 in the pre-attack stage, and is slightly worse during the attack 

and post-attack stage. 

Table 6.III - Stage and Final Framework block Scores. 

Framework Pre-Attack Attack Post-Attack Final 

Axis2 83.98 62.32 70.65 72.3 

CXF v2 76.68 66.07 69.43 70.7 

Metro 65.62 52.78 56.07 58.1 

CXF v3 61.73 53.59 58.65 57.9 

6.4.3 Adjusting Weights to Satisfy Requirements 

In this section, we use an example to explain how the weights can be set to satisfy 

the requirements of the stakeholders and discuss their impact in the output. We use 

the general scenario described in Section 6.3 as basis and perform modifications at 

each block (resulting in 3 additional scenarios). In practice, the weights at each block 

are modified to map with different requirements. For each modification, the analysis 

is performed to show the impact that the variations in the configurable elements of 

the models have on the final results. Table 6.IV presents the results obtained with 

each scenario variation, and those from the Neutral scenario for comparison. 
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Table 6.IV - Final results per scenario 

Scenario Axis 2 CXF v2 Metro CXF v3 

Neutral 72.3 (1) 70.7 (2) 58.1 (3) 57.9 (4) 

Scenario1 73.4 (2) 77.1 (1) 66.5 (4) 70.0 (3) 

Scenario2 67.4 (3) 73.1 (1) 66.6 (4) 68.7 (2) 

Scenario3 61.8 (4) 70.3 (1) 63.6 (3) 67.0 (2) 

 

At the Entry Block the weights are linked to the requirements related to the features 

of the machine where the frameworks are being deployed. For instance, it is 

expectable that a high-performance computer with plenty of resources available for 

running the web services is able to deal with the overloads in memory and CPU 

introduced by an attack. In this case, the weights can remain equal for the 

aggregated attributes. However, let us consider a machine with strong RAM 

constraints. The configuration of the model would require that memory allocation 

had more importance than CPU consumption, and the same would stand for the 

resources consumption attribute over the performance one. Then, in this case, the 

weights for CPU Usage, Memory allocation, Performance, and Resources consumption 

could hypothetically be 40%, 60%, 30% and 70%, respectively. Response Time and 

Throughput can remain at 50% (see Section 6.3.3). The results obtained with these 

values are shown in Table 6.IV in Scenario1. 

The Stage Block calculates three stage scores for the assessed framework, one for the 

pre-attack, one for the attack and one for the post-attack. These scores are the result of 

the aggregation of the scores calculated for the same stage in all the attacks 

performed (please refer to Section 6.3.3). Modifying the weights at this level requires 

some knowledge regarding the web services that are running on top of the 

framework. For example, let us assume that the web service running on top of the 

framework being tested is based on a supply chain involved in moving lists of 

products from a supplier to a costumer. This supply chain has several processes, 

which includes storing reports about internal operations like inventory, or 

accounting (e.g., PDFs or Doc files). Due to their structure, they might be more 

susceptible to DoS attacks that exploit large lists and large binary files than the rest. 

This means that this web service might be more susceptible to Soap Array and 

Malicious Attachment attacks. To represent this situation, where being able to deal 

with these types of attacks is quite important, it would be necessary to set a higher 

weight for the scores obtained with these types of attacks than with other types. Bad 

results in these attacks would then affect the global stage score obtained for the 

framework. To illustrate this case, we set the scores for these two attacks with 25% 

each, and the remaining 50% is equally distributed among the rest of attacks. The 

results are presented in Table 6.IV under the name of Scenario2. 
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At the Framework Block every framework has a stage score, which is aggregated to 

calculate a final score that can be used to compare different frameworks. Up to this 

point, all three scores have been weighted equally (33.3% each). Let us assume that 

the aim of our experiments is to select a framework for a security-critical service, 

where resisting DoS is much more important than performance in the absence of 

attacks. Our quality model must reflect this by defining a higher weight for the 

stages where performance is affected by the attacks (attack and post-attack stages). We 

illustrate this case by setting the attack stage with 50% and the post-attack stage with a 

30%. The pre-attack stage is set with the remaining 20%. The results are presented in 

Table 6.IV in the Scenario3 row. 

The results shown in Table 6.IV reflect the final score obtained by each framework in 

every analysis and its ranking (between parentheses). We can see how the variations 

applied on the weights at the Entry block (Scenario1) have made the frameworks 

swap positions. The score for CXF v3 has incremented drastically (when compared 

to the neutral scenario), which means that it obtained good scores in the attributes 

related to Resources Consumption. 

When the weights at the Stage block are modified (Scenario2), CXF v3 improves with 

respect to Axis 2 and becomes second. CXF v3 is actually the only framework that 

improved its score, which means that the other three frameworks obtained low 

scores in the entry block for the evaluation in presence of the Soap array and 

Malicious Attachment attacks. Finally, the results for Scenario3 (Framework Block) 

show that the two versions of CXF have a better performance in presence of attacks 

than the remaining ones, being Axis 2 relegated to the last position, while Metro 

becomes third. 

The different cases shown serve very distinct purposes. In the end, is it up to the 

benchmark user to use any available knowledge to properly configure the 

benchmark so that requirements are respected. Depending on the frameworks and 

use cases being analyzed, variations in the final scores are expected, which simply 

reflects the experimental conditions set by the benchmark user. 

6.5 Fulfilling Benchmarking Properties 

Several benchmarking properties should be verified when designing and 

implementing a benchmark. The most relevant ones are: repeatability, portability, 

non-intrusiveness, scalability, and representativeness (Karama Kanoun and 

Spainhower 2008).  

Regarding repeatability, we executed the benchmark three times and did not observe 

noticeable differences in the results. Portability was also shown since the benchmark 

was used to assess and compare 7 frameworks from different vendors/developers 

while using the same procedure. The proposed benchmark is also non-intrusive since 
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its execution does not require any changes to the frameworks under benchmarking. 

The monitoring tool used may add some overhead to the system, but any existing 

overhead is the same for all frameworks tested and is, overall, negligible (making the 

comparison fair). 

Our benchmark is scalable as it can be applied to frameworks of different dimensions. 

In our experiments, we tested frameworks that are very diverse, in terms of size and 

complexity. Some are known to be quite simple and hold a small number of library 

dependencies (e.g., XINS), while others are large and more complex, holding many 

library dependencies (e.g., Axis 2). 

Representativeness refers to the workload, the attackload, and the metrics used 

(represented by the attributes in our approach), and the overall definition of the 

quality models. The former three components must represent as much as possible 

real system conditions. In our benchmark, we use the workload from WSTest (Sun 

Microsystems 2004), a well-known performance benchmark, which defines different 

types of operations with different data types as parameters and allows configuring 

workloads of different sizes. Nevertheless, the proposed benchmark permits any 

other type of workload to be used, allowing to further resemble the frameworks 

deployment environment.  

The representativeness of the attackload is one obvious challenge since it is difficult 

to emulate an attack scenario and the behavior of an attacker, mainly due to the 

diversity of possible attacks (e.g., number of clients used for the attack, the size or 

content of the malicious payload). We opted for an attackload defined based on 

security research studies, existing testing tools, and field experience, and that was 

also used with success in chapters 4 and 5. 

The metrics used are quite typical. The two performance metrics (throughput and 

response time) are widely used for measuring performance in different systems and 

remain a standard in the industry (Sun Microsystems 2004). The two resource 

consumption metrics (CPU usage and memory allocation) are also relevant as most 

of the currently known attacks try to exploit the use of system resources to deny 

service to legitimate clients (Jensen, Gruschka, and Herkenhöner 2009), and also 

because they have been extensively used before in similar research contexts.  

Regarding the definition of the quality models, we followed the same rationale as in 

related work (Dujmović and Nagashima 2006; Martinez, de Andres, and Ruiz 2014; 

Friginal et al. 2011), where similar definitions were made with related concerns and 

successfully applied in similar and realistic contexts. 

The complexity of the benchmark, and despite its simple utilization, might lead to 

some difficulty in mapping the observed behavior with the results. The main 

problem is that a single number is produced to describe the observed behavior. This 

number is computed over a set of different and variable (over time) attribute values 

and is meant to describe the quite complex behavior of the frameworks. However, in 
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what concerns the goals of the benchmark, this is of course a virtue. For comparison 

purposes, we ideally need a single score (or at least a low number of scores, that 

allow easy ranking). This kind of issue might raise a question of validity of the 

benchmark results, for which there are no good solutions, as frameworks are full of 

unknown bugs and if they were known there would be not much need for a 

benchmark (as the option would be to immediately correct them and produce a 

perfect framework).  

We might make a small exercise using, for the neutral scenario, the best and the 

worst framework, respectively Apache Axis2 1.6.1 and Apache CXF 3.0.3. Looking at 

these frameworks issue tracking systems at (Apache Software Foundation 2017a) 

and (Apache Software Foundation 2017b), we find that during 2017 (until the end of 

June), the whole Axis2 project had gathered 28 issues (14 resolved, 14 unresolved), 

whereas the whole CXF project registered 218 issues (166 resolved, 52). If we drill 

down to the specific versions being tested we notice that release 1.6.1 of Axis2 fixes 

24 issues, with its follow up version (1.6.2) fixing 52 (leaving 4 open issues). The bug 

tracking system being used also reports warnings (1 per each version), which are 

issues that have been set as complete but the respective commits are not part of a 

pull request or review. The release of CXF 3.0.3 fixes 58 issues and its follow up 

version (3.0.4) fixes 77. The number of reported warnings are 55 and 67, respectively. 

The numbers mentioned in the previous paragraph do not represent the overall 

quality of each framework but might suggest a certain amount of (unknown) issues 

present in the framework. Some of these issues affect, for instance, performance, or 

performance under particular conditions (e.g., the processing of large incoming 

SOAP messages), which might influence the final trustworthiness score. From an 

external point of view, what is visible is a clearly higher number of issues being 

handled during the development of CXF. From a user’s perspective, this kind of 

information may decrease the belief in the security of the framework.  

Several techniques can be applied to validate the benchmark results. A possibility 

would be to obtain expert scores for each framework (e.g, based on trust evidences, 

such as the ones presented in the previous paragraphs), filter out inconsistent 

answers, and aggregate the expert scores using, for instance, a multi criteria decision 

making technique. This is just an example which has the goal of illustrating a 

possible approach for achieving this kind of objective. Due to its complexity it is out 

of the scope of this thesis. 

6.6 Conclusion 

This chapter discussed the problem of assessing and comparing the security of web 

service frameworks and proposed a security benchmark for these systems. 

Considering the central role that frameworks play nowadays supporting mission- 
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and business-critical services, a benchmark is a valuable tool for providers, helping 

them in selecting the framework that best suits their requirements. 

The benchmark is divided in two phases: i) a security qualification phase where 

frameworks are analyzed using state of the art techniques and tools to detect 

vulnerabilities; and ii) a trustworthiness assessment phase where frameworks are 

analyzed to gather evidences of potentially unsecure behavior. The results are then 

explicitly analyzed by a Multi-Criteria Decision Making evaluation technique that 

computes a trustworthiness score, allowing comparing different frameworks. 

We instantiated the benchmark for the case of Denial of Service attacks. In practice, 

the qualification phase is based on the execution of DoS attacks against services 

(deployed on top of the frameworks being tested) that are being used at the same 

time by legitimate clients. Thus, this first phase is based on the security evaluation 

techniques proposed in Chapter 5. In the second phase, we used the Logic Scoring of 

Preferences (LSP) technique, where data regarding the run-time behavior of the 

frameworks are used to compute a trustworthiness score.  

We illustrated the application of our approach to benchmark a set of 10 well-known 

web service frameworks, which resulted in the disqualification of 6 in the first phase. 

We were able to rank the 4 that passed to the second phase. We also illustrated the 

flexibility of the approach by defining three additional scenario variations and re-

applying the approach. The results show that a security benchmark can be indeed a 

powerful tool to select frameworks and help providers, in specific scenarios, to make 

informed decisions about their deployments. 
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Chapter 7 
Conclusion and Future Work 

This thesis proposed a tool and a set of techniques for evaluating and comparing the 

security of web service frameworks. We introduced a security testing tool, named 

WSFAggressor, an approach that uses the tool to evaluate security, an approach to 

evaluate security from the point of view of legitimate clients (in terms of impact in 

the performance), and a benchmark for the comparison of alternative frameworks, in 

terms of security. The presentation of the contributions is incremental, in the sense 

that each part of a proposal reuses the concepts provided by the previous ones. 

Comparing to previous work, the proposals presented in this thesis innovate in 

several aspects. WSFAggressor, presented in Chapter 3, supports more DoS attacks 

than competing solutions and has special support for security evaluation. The 

security evaluation approach discussed in Chapter 4 is composed of several periods 

and we identified key pairs of periods, from which we show that it is possible to 

extract meaningful data about the behavior of the frameworks being tested. The 

legitimate client view provided by the evaluation approach in Chapter 5 brings in 

the important perspective of clients issuing parallel requests to frameworks, and we 

show how to perform security evaluation in these conditions, which are very 

relevant in services environments. Chapter 6 introduces, to the best of our 

knowledge, the very first security benchmark for web service frameworks. We have 

instantiated it to the case of DoS attacks and demonstrated its usefulness when the 

goal is to compare different alternative frameworks. We now go through each of 

these key contributions and provide their main highlights. 
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In order to accomplish our objectives, we started by researching the state of the art in 

what concerns security evaluation for web services. We placed special focus on DoS 

attacks that target the core functionality of web service frameworks. This effort 

involved studying security research, vulnerability databases, on-line information, 

and existing security testing tools. The outcome was used as basis to create 

WSFAggressor, the security testing tool for Web Service Frameworks presented in 

Chapter 3. At the time of writing, the tool implements a number of DoS attacks that 

cannot be found in alternative security testing tools. Its integration facilities with 

security evaluation approaches are also a feature that distinguishes it from the 

competition. 

Having a tool to perform security tests is insufficient when the goal goes beyond 

detecting simple problems and aims at characterizing the behavior of frameworks in 

presence of attacks. Thus, in Chapter 4 we advanced the proposal and presented an 

approach that allows performing such characterization. It is based on the execution 

of regular requests (pre-attack stage), malicious requests (attack stage), and again 

regular requests (post-attack stage). These stages begin and end with observation 

periods, where no requests are sent to the server.  In all of these periods several 

parameters that represent the state of operation of the server are monitored, such as 

allocated memory, CPU usage, and number of allocated threads. Besides observing 

failures, we analyze and quantify the changes in the system parameters, particularly 

by comparing different key pairs of periods (e.g., the period of regular requests 

before attack, with the same one after attack). The approach was able to disclose not 

only failures in well-known web services middleware, but also showed clear 

differences in the external behavior of the frameworks in presence of security 

attacks.  

In a services environment, where systems are handling a high number of operations 

per unit of time, the perspective of the legitimate clients is of utmost importance. If 

DoS attacks are being carried out against a particular system, legitimate clients 

should experience the lowest performance degradation possible. Thus, in Chapter 5, 

we proposed an approach for evaluating performance of web service frameworks in 

presence of both attacks and legitimate requests. Again, the approach builds on the 

one previously presented, namely the execution of different stages that involve 

regular and malicious requests, but adds a set of new features (e.g., a legitimate 

client and the legitimate client perspective expressed on a set of metrics). The results, 

obtained during the tests using popular frameworks, show obvious differences in 

their behavior, which can be used by providers for framework selection, or by 

developers to improve their implementations. 

Chapter 6 discussed the problem of evaluating the security of frameworks in a 

comparable way, and proposed a security benchmark. The problem here is two-fold. 

On one hand security is a complex concept, involving multiple perspectives and also 
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very much dependent on information that is unknown (e.g., undisclosed 

vulnerabilities in the code, profile of attackers). On the other hand, the evaluation of 

security involves the analysis of multiple criteria, which are many times conflicting. 

To tackle this problem, we propose a security benchmark that is composed of two 

phases. The first serves to eliminate frameworks with known vulnerabilities and the 

second intends to gather evidences of potentially unsecure behavior or evidences of 

the frameworks ability to prevent the manifestation of the undesirable effects of the 

considered threat vectors. To take into account the multiple criteria involved in the 

assessment of each framework, we proposed the use of a Multi-Criteria Decision 

Making (MCDM) evaluation technique, as a means to compute a trustworthiness 

score that allows ranking the frameworks. 

We instantiated the benchmark to the concrete case of DoS attacks and applied the 

approach to popular web service frameworks. The results clearly show the 

usefulness of the tool for providers, allowing them to decide about the best 

framework to support their particular services (built according to specific 

requirements). We showed how the benchmark can be tuned for particular 

scenarios, where for instance memory allocation is critical, or where being able to 

handle particular types of attacks is important. Again, this flexibility is extremely 

important for the benchmark users that want to assess frameworks in very specific 

conditions. The benchmark allows users to specify those conditions and reflect them 

in the evaluation. 

Future Work 

The work presented in this thesis contributed to gain a large experience in security 

evaluation of web service frameworks and, at the same time, to identify several 

points that can be explored in future research. This way, the following research 

topics can be foreseen as a continuation of the present work: 

 Extending the evaluation techniques to further distributed environments is 

an obvious extension to the work discussed in this thesis and would still 

involve significant challenges. Clients would be distributed on multiple 

nodes and against a clustered, or otherwise distributed, infrastructure; 

attackers could also be distributed; and, of course, the attacks could also be 

changed to take advantage of this different configuration. The behavior of 

frameworks deployed in a distributed environment (e.g., in a cloud 

environment) results in different ways in which the overall system fails (e.g., 

lost messages, crashed nodes) and, overall, this opens new challenges that a 

security evaluation approach must consider (e.g., elasticity, the overall vision 

of the system, the definition of meaningful metrics). 

 Adapting the benchmark to evaluate the security of other types of 

middleware (e.g., RESTFul services middleware) also brings a number of 
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opportunities for research. Adaptations and extensions to the benchmark, 

that derive from the particular context being targeted, will certainly be 

required. We believe that it is possible to use the general concepts discussed 

in this thesis as basis (but potentially requiring strong adaptations) to 

benchmark currently popular types of middleware within the services 

context. We envision that it is possible to adapt the approach to middleware 

for RESTful services; and with stronger adaptations to cloud middleware and 

containers (e.g., the Docker platform).  

 The security benchmark proposed can be adapted to other security 

attributes, such as confidentiality or integrity. Although the approach is 

relatively generic, there will be certainly adaptations required and there is 

much work involved, regarding the specificities of the different attributes 

considered (e.g., evaluation of confidentiality). By being able to apply the 

approach to a large set of security facets, it will be possible to refine the initial 

proposal, for which we will then have strong evidences of being generic. 

Furthermore, it would be possible to define a broader security benchmarking 

approach, that would take in consideration the multiple security attributes. 

 Benchmarking security of middleware for dynamic environments is also a 

case where there is space for research. In the case of dynamic environments, 

where the conditions and requirements change and there are services being 

continuously reconfigured, there is obviously the need for updating 

benchmarking results. A framework benchmarked at a given point and 

selected as being the best under particular conditions, might become a bad 

choice, just because of the presence of changes. Having a way to benchmark a 

given piece of middleware (e.g., a web service framework) and accounting 

for future changes is a difficult problem that poses several interesting 

challenges. 

 Devising techniques for pinpointing the causes of anomalous behaviors in 

services middleware. For instance, in the case of service frameworks, which 

are known to use several components (e.g., an XML Parser), it would be 

interesting if a given security evaluation technique could automatically 

pinpoint the origin of the problem. For instance, when in presence of a 

performance degradation problem, code instrumentation techniques could be 

applied to the entry and exit points (or other crucial points) of each 

component, which would then be used to collect performance-related metrics 

allowing the tester to identify (and possibly replace or even correct) the 

problematic component. Other types of techniques could apply to different 

types of problems. For instance, if the problem is related with high memory 

allocation, it could be possible to monitor the execution of the code, or 

inspect particular data structures or middleware components, and correlate 

them with the periods of high memory usage. 
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 Improving the security of web services middleware. After evaluation and 

problem source identification, it should be possible to suggest, or even 

execute, different techniques to improve the security of a particular 

middleware. Instrumentation or wrapping techniques could apply, to 

automatically or at least semi-automatically fix known types of bugs 

(identified during the evaluation). In the case of deployed systems, if a 

particular component of the middleware is known to be problematic, then 

the option to perform hot-swaps or micro-reboots of components at runtime 

could apply. The impact on legitimate operations being executed at the 

service would have to be minimal, which opens further space for research. 
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