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Abstract

The main purpose of the work presented here is to study transforma-
tions of sequences of orthogonal polynomials associated with a hermitian
linear functional £, using spectral transformations of the corresponding
C-function F. We show that a rational spectral transformation of F is
given by a finite composition of four canonical spectral transformations.
In addition to the canonical spectral transformations, we deal with two
new examples of linear spectral transformations. First, we analyze a spec-
tral transformation of £ such that the corresponding moment matrix is
the result of the addition of a constant on the main diagonal or on two
symmetric sub-diagonals of the initial moment matrix. Next, we intro-
duce a spectral transformation of £ by the addition of the first derivative
of a complex Dirac linear functional when its support is a point on the
unit circle or two points symmetric with respect to the unit circle. In this
case, outer relative asymptotics for the new sequences of orthogonal poly-
nomials in terms of the original ones are obtained. Necessary and suf-
ficient conditions for the quasi-definiteness of the new linear functionals
are given. The relation between the corresponding sequence of orthogo-
nal polynomials in terms of the original one is presented. We also consider
polynomials which satisfy the same recurrence relation as the polynomials
orthogonal with respect to the linear functional £, with the restriction that
the Verblunsky coefficients are in modulus greater than one. With positive
or alternating positive-negative values for Verblunsky coefficients, zeros,
quadrature rules, integral representation, and associated moment problem
are analyzed. We also investigate the location, monotonicity, and asymp-
totics of the zeros of polynomials orthogonal with respect to a discrete
Sobolev inner product for measures supported on the real line and on the

unit circle.



Keywords: Orthogonal polynomials on the real line; orthogonal poly-
nomials on the unit circle; Szegé polynomials on the real line; Hankel
matrices; Toeplitz matrices; discrete Sobolev orthogonal polynomials on
the real line; discrete Sobolev orthogonal polynomials on the unit circle;
outer relative asymtotics; zeros; S-functions; C-functions; rational spec-
tral transformations; canonical spectral transformations.
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Chapter 1

Introduction

I tend to write about what interests me, in the hope that others will also be interested.

— J. Milnor. Interview with John Milnor [163]]

Orthogonal polynomials have very useful properties in the solution of mathemati-
cal and physical problems. Their relations with moment problems [99; [176], rational
approximation [24; [149], operator theory [102 [109], analytic functions (de Branges’
proof [56] of the Bieberbach conjecture), interpolation, quadrature [46} 73} [1415 [188]],
electrostatics [93]], statistical quantum mechanics [180]], special functions [[L1], num-
ber theory [[15] (irrationality [L6] and transcendence [55]), graph theory [27]], combi-
natorics, random matrices [S7]], stochastic process [[172], data sorting and compression
[63]], computer tomography [121]], and their role in the spectral theory of linear differ-
ential operators and Sturm-Liouville problems [148]], as well as their applications in
the theory of integrable systems [69;184; (143} |144]] constitute some illustrative samples
of their impact.

1.1 Motivation and main objectives

Let consider the classical mechanical problem of a 1-dimensional chain of parti-
cles with neighbor interactions. Assume that the system is homogeneous (contains no
impurities) and that the mass of each particle is m. We denote by y, the displacement

of the n-th particle, and by ¢(y,+1 —y,) the interaction potential between neighboring

1



1. INTRODUCTION

particles. We can consider this system as a chain of infinitely many particles joined

together with non-linear springs; see Figure[I.1]

Figure 1.1: A model for 1-dimensional lattice

Therefore, if 4
F(r)= —d—w(r) =—¢'(r)
r

is the force of the spring when it is stretched by the amount r, and r,, = y,4+1 —yy is the
mutual displacement, then by Newton’s law, the equation that governs the evolution is

my, = ¢ Ont =Yn) =€ On = Yn-1)-

If F(r) is proportional to r, that is, when F(r) obeys Hooke’s law, the spring is

. . . K . .
linear and the potential can be written as ¢(r) = zrz. Thus, the equation of motion is

my;’ql = K(Yn-1=2Yn +Yn+1)s

and the solutions yf,l) are given by a linear superposition of the normal modes. In

particular, when the particles n = 0 and n = N + 1 are fixed,

W= C,,sin(NﬂJrl - )cos(wlt+61), 1=1,2,...,N,

where w; = 2 Vk/msin(rl/ (2N +2)), the amplitude C,, of each mode is a constant deter-
mined by the initial conditions. In this case there is no transfer of energy between the
models. Therefore, the linear lattice is non-ergodic, and cannot be an object of statisti-
cal mechanics unless some modification is made. In the early 1950s, the general belief
was that if a non-linearity is introduced in the model, then the energy flows between
the different modes, eventually leading to a stable state of statistical equilibrium [68]].

This phenomenon was explained by the connection to solitons H

'In mathematics and physics, a soliton is a self-reinforcing solitary wave (a wave packet or pulse) that
maintains its shape while it travels at constant speed. Solitons are caused by a cancellation of non-linear and
dispersive effects in the medium.



There are non-linear lattices which admit periodic behavior at least when the energy
is not too high. Lattices with exponential interaction have the desired properties. The

Toda lattice [[191]] is given by setting
e(r)=e"+r-1.

Flaschka [69] (see also [[143} [144]) proved complete integrability for the Toda lattice
by recasting it as a Lax equation for Jacobi matrices. Later, Van Moerbeke [142],
following a similar work [138]] on Hill’s equation [[122]], used the Jacobi matrices to
define the Toda hierarchy for the periodic Toda lattices, and to find the corresponding
Lax pairs.

Flaschka’s change of variable is given by

| PR 1
— _e_(}fﬁl yn)/2 bn — _yl,‘t

an 2 ’ 2

Hence the new variables obey the evolution equations

a;’1 an(bps1 —by), (1.1)
b, Ad:-d_)), a-1=0, n>0, (1.2)

with initial data b,, = b,(0) = b,(0), a, = a,(0) > 0, which we suppose uniformly bounded
Set J, to be the semi-infinite Jacobi matrix associated with the system (L.I)-(T.2),

that is )
bo(t) ap(t) 0 0

ap(t) bi®) a1(® O
J=| 0 a@® bt) ax)
0 0  ax® b3

We use the notation Jo = J,,, which is the matrix of the operator of multiplication by x
in the basis of orthonormal polynomials on the real line. Favard’s theorem says that,
given any Jacobi matrix J, there exists a measure p on the real line for which J=J u- In

general, i is not unique.

Flaschka’s main observation is that the equations (T.I)-(T.2) can be reformulated in

'sup (jan| +1bal) < co.
n



1. INTRODUCTION

terms of the Jacobi matrix J; as Lax pairs
J=[AJ1=AJ - JA,

with

0 ao(t) 0 0
—ap() 0 a0
A=| 0 a0 a® “l=J).-UJ)-.
0 0 -axn O

where we use the standard notation (J;); for the upper-triangular, and (J;)- for the
lower-triangular projection of the matrix J,. At the same time, the corresponding or-

thogonality measure du(-,t) goes through a simple spectral transformation,
du(x,t) = e *du(x,0), t>0. (1.3)

Notice that spectral transformations of orthogonal polynomials on the real line play a
central role in the solution of the problem, see also [34]]. Indeed, the solution of Toda
lattice is a combination of the inverse spectral problem from {a,},>0, {b,},>0 associated
with the measure du = du(-,0), the spectral transformation @ and the direct spectral

problem from {a,,(1)},>0, {6, (t)}n=0 associated with the measure du(:,?).

Given the infinity matrix J,, which is a bounded self-adjoint operator in X(Z.,),
we can define [80;[177] the so-called S-function by

S (@) ={e1.Ju—0"er).

where {e;}i>0 = {(9; j) j>0}i>0 18 a vector basis in (3(Z.). In terms of the spectral measure

S(x)sz. (1.4)
IX=y

u associated with J,,,

In many problems, (I.4) has more simple analytical and transformation proper-
ties than the measure u, and, hence, S is often much more convenient for analysis.
Recently, Peherstorfer, Spiridonov, and Zhedanov [154] established a correspondence
between the Toda lattice and differential equations for (T.4), using an alternative ap-

proach proposed in [153]]. If the coefficients {a,(t)},>0, {Pn(¥)}n=0 satisfy the system

4



of equations (L.I)-(T.2)) with ao(¢) and by(7) taken as arbitrary initial functions of time,

then the corresponding S-function S (-, 7) satisfies the Riccati equation
9 __ _ _ 200¢2
6tS (x,1) = =1+ (x=bo(®))S (x,1) — az()S “(x,1).

Usually, the Toda lattice is studied using matrix spectral functions [150].
The problem of classifying all possible spectral transformations of orthogonal poly-

nomials corresponding to a rational spectral transformation of the S-function S, i.e.,

a(x)S (x)+ b(x)

BEHE )

a(x)d(x)—b(x)c(x) #0, (1.5)

where a, b, ¢, and d are coprime polynomials, in other words, the description of a gen-
erator system of the set of rational spectral transformations, was raised by Marcelldn,
Dehesa, and Ronveaux [123] in 1990. Two years later, Peherstorfer [151]] analyzed a
particular class of rational spectral transformations. Indeed, he deduced the relation
between the corresponding linear functionals. In 1997, Zhedanov [202] proved that the
linear spectral transformation, i.e.,

S () = LB THW flfi; b, (1.6)
where a, b, and d are polynomials that provide a true asymptotic behavior to (T.3))
can be represented as a finite composition of Christoffel [188] and Geronimus [74;
73] spectral transformations, and also that any rational spectral transformation can be
obtained as a finite composition of linear and associated elementary transformations
[202]. Notice that (I.6) is not contained into (T.3)), to achieve this we need to relax the
conditions imposed on (I.5). We recall that the problem of classifying general rational
spectral transformation is not yet solved. Here a natural question arises. What we can
say about the generator system for rational spectral transformations of C-functions in
the theory of orthogonal polynomials on the unit circle? This work is organized around
this question.

Surprisingly, the theory of orthogonal polynomials with respect to non-trivial prob-
ability measures supported on the unit circle had not been so popular until the mid-
1980’s. The monographs by Szeg6 [87;188]], Freud [[71]], and Geronimus [78] were the
main (and the few) major contributions to the subject, despite the fact that people work-
ing in linear prediction theory and digital signal processing used as a basic background

orthogonal polynomials on the unit circle; see [S9] and references therein. The recent

5



1. INTRODUCTION

monograph by Simon [178]] constitutes an updated overview of the most remarkable
directions of research in the theory, both from a theoretical approach (extensions of the
Szegd theory from an analytic point of view), as well as from their applications in the
spectral analysis of unitary operators, GGT [77;86;(190] and CMV [29] matrix repre-
sentations of the multiplication operator, quadrature formulas, and integrable systems
(Ablowitz-Ladik systems [146], which include Schur flows as particular case), among
others. Many concepts developed on orthogonal polynomials on the real line have an

analogues in this theory.

The Schur flow equation — which can be naturally called Toda lattice for the unit

circle — is given by
@), = (1=l @ns1 =), @-1 =0, n>0, (1.7

where {a@,},>0 is a complex function sequence with |, | < 1, initially occurred in [1} 2]],
under the name of discrete modified KdV equation, as a spatial discretization of the

modified Korteweg-de Vries equation [[108]

i) VYN &
5/ %D =676 D=2 f(x,0) = 25 f (6 0).

In a very recent work [84], Golinskii proved that the solution of the system (I.7)
reduces to the combination of the direct and the inverse spectral problems related by

means of the Bessel transformation
do(z,1) = C()e'“* Ddo(z,0), 1> 0, (1.8)

where o is a non-trivial probability measure supported on the unit circle and C(¥) is a
normalization factor. Additionally, using CMV matrices the Lax pair for this system is

found, and the dynamics of the corresponding spectral measures are described.

Given (T.4), the natural 'S-function’ in the theory of orthogonal polynomials on
the unit circle is the C-function F [177] given by

T 10
Fo) = f C *2 10 0), (19)

Leif—7
where o is a non-trivial probability measure supported on [—m,7r]. The Cauchy kernel

6



has the Poisson kernel as its real part, and this is positive, so
RF(z)>0, |zZ<1, F@O)=1.

Hence, (I.9) is the function introduced by Carathéodory in [31].

In this work — in the more general framework of hermitian linear functionals which
are not necessarily positive definite — we consider, sequences of orthogonal polynomi-
als deduced from spectral transformations of the corresponding C-function F. Our aim
is to obtain and analyze the generator system of rational spectral transformations for

non-trivial C-functions given by

Fz)= %, A@)D(z) - BR)C(2) #0, (1.10)
where A, B, C, and D are coprime polynomials or Laurent polynomials. This result
can be considered as a ’unit circle analogue’ of the well known result by Zhedanov
for orthogonal polynomials on the real line [202]. Furthermore, we introduce and
study relevant examples of general linear spectral transformations associated with the
addition of Lebesgue measure and derivatives of complex Dirac’s deltas. However, in
this, as well as in all research directions, more problems related to our original problem
have arisen; some have been solved, and the rest are in Chapter|[7]as a part of the open

problems formulated therein.

1.2 Overview of the text

The original contributions of this work appear in twelve articles whose content is
distributed as follows.

Chapter 3] develops the results of [41;42]. Chapter 4 corresponds to [33; 36% 38].
The results of ChapterE] are contained in [32; 37;139; 140]. In Chapter@ are included
the results of [35} 43]. Finally, the Appendixes E] and B] contain results discussed in
[375144].

Chapter [2] is meant for non-experts and therefore it contains some introductory
and background material. We give a brief outline of orthogonal polynomials on the
real line and on the unit circle, respectively. However, proofs of statements are not
given. The emphasis is focussed on spectral transformation of the corresponding S-

functions and C-functions. This chapter could be omitted without destroying the unity

7



1. INTRODUCTION

or completeness of the work. The original content of this work appears in the next
chapters. Let us describe briefly our main contributions.
In Chapter [3] we study the sequence of polynomials {®,},( which satisfies the

following recurrence relation
0p41(2) = 20n(@) + (D" 21 ©)2), @nr1 €C, n>0,

with the restriction |@,+1| > 1. The analysis of Perron-Carathéodory continued fractions
shows that these polynomials satisfy the Szeg6 orthogonality with respect to a hermi-
tian linear functional £ in IP, which satisfies a special quasi-definite condition. In two
particular cases, @, > 0 and (—1)"a@, > 0, respectively, zeros of the sequence of poly-
nomials {®,},>o (real Szegd polynomials [194]) and associated quadrature rules are
also studied. As a consequence of this study, we solve the following moment problem.
Given a sequence {u,} ;) of real numbers, we find necessary and sufficient conditions

for the existence and uniqueness of a measure u supported on (1, 00), such that

Un = foo T.(x)du(x), n=0. (1.11)
1

Here {T,},>¢ are the Chebyshev polynomials of the first kind.

It is very well known that the Gram matrix of the bilinear form in P associated
with a linear functional £ in A, in terms of the canonical basis {z"},>0, is a Toeplitz
matrix. In Chapter 4] we analyze two linear spectral transformations of £ such that the
corresponding Toeplitz matrix is the result of the addition of a constant in the main
diagonal, i.e.,

—d
<f,g>£0=<f,g>£+MLf(z)g(z)7;, f,.8eP, meR,

or in two symmetric sub-diagonals, i.e.,
J e dz _ SN dz .
fo&r.=f,@r+m | ZfDg@)s—+m | 77/ f(2)g(2)s—, meC, j>O0,
J T 27UZ T 27UZ

of the initial Toeplitz matrix. We focus our attention on the analysis of the quasi-
definite character of the perturbed linear functional, as well as in the explicit expres-
sions of the new orthogonal polynomial sequence in terms of the first one. These
transformations are known as local spectral transformations of the corresponding C-

function (I.9); see Chapter[6] Analogous transformations for orthogonal polynomials

8



on the real line, i.e., perturbations on the anti-diagonals of the corresponding Hankel
matrix, are also considered. We define the modification of a quasi-definite functional
M by the addition of derivatives of a real Dirac’s delta linear functional, whose action

results in such a perturbation, i.e.,
<Mj,p> =M, p)+mpP (@), peP, macR, j=0.

We establish necessary and sufficient conditions in order to preserve the quasi-definite
character. A relation between the corresponding sequences of orthogonal polynomials
is obtained, as well as the asymptotic behavior of their zeros. We also determine the
relation between such perturbations and the so-called canonical linear spectral trans-
formations. In the first part of Chapter [5| we deal with a new example of linear spectral
transformation associated with the influence of complex Dirac’s deltas and their deriva-
tives on the quasi-definiteness and the sequence of orthogonal polynomials associated
with L. This problem is related to the inverse polynomial modification [30], which is
one of the generators of linear spectral transformations for the C-function (T.9), as we
see in Chapter [6] We analyze the regularity conditions of a modification of the quasi-
definite linear functional £ by the addition of the first derivative of the complex Dirac’s

linear functional when its support is a point on the unit circle, i.e.,

(.81, =(f-.8)p—im(af (@gl@)-Af(@)g (@), meR, lal=1,

or two symmetric points with respect to the unit circle, i.e.,

:8)z, = () +im(o” f@g @ -af (@@ )

+im(af@ g @-a ' p'@ @), maeC, la#0,1.

Outer relative asymptotics for the new sequence of monic orthogonal polynomials

in terms of the original ones are obtained.

In the second part of Chapter[5| we assume L is a positive definite linear functional
associated with a positive measure o~. We study the relative asymptotics of the discrete

Sobolev orthogonal polynomials. We focus our attention on the behavior of the zeros

9



1. INTRODUCTION

with respect to the particular case,

(f.8)s, = fT f@E@dr(@) + Af Na)gP(@), aeC, A1eR., j=0.

In Chapter [6] we obtain and study the set of generators for rational spectral trans-

formations, which are related with the direct polynomial modification, i.e.,
(Lr. f)= <£,(Z—a+z‘1 —c_x)f(z)>, feA, aeC,
and the inverse of a polynomial modification, i.e.,
(Lrovs(z-a+'-2) f@)=(L.f), feA, aeC,

as well as with the +k associated polynomials [152]]. We deduce the relation between
the corresponding C-functions and we study the regularity of the new linear function-
als. We classify the spectral transformations of a C-function in terms of the moments
associated with the linear functional £. We also characterize the polynomial coeffi-
cients of a generic rational spectral transformation.

In Chapter|7| some concluding remarks which include indications of the direction
of future work are presented. Finally, in Appendix [A]we consider the discrete Sobolev
inner product associated with measures supported on the interval (a,b) C R (not neces-

sary bounded), i.e.,

b - -
(P Pp, = f P®)g®)du(x) + Ap N (@)g (@), a¢(ab), 1>0, j=0,

generalizing some known results concerning the asymptotic behavior of the zeros of
the corresponding sequence of orthogonal polynomials. We also provide some nu-
merical examples to illustrate the behavior of the zeros. Moreover, in Appendix [B]
the Uvarov perturbation of a quasi-definite linear functional by the addition of Dirac’s

linear functionals supported on r different points is studied.
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Chapter 2

Orthogonal polynomials

What is true for OPRL Ds even more true for orthogonal polynomials on the unit circle (OPUC).
— B. Simon. OPUC on one foot. Boll. Amer. Math. Soc., 42:431-460, 2005

Orthogonal polynomials on the real line have attracted the interest of researchers
for along time. This subject is a classical one whose origins can be traced to Legendre’s
work [[114] on planetary motion. The study of the algebraic and analytic properties of
orthogonal polynomials in the complex plane was initiated by Szegd in [[187]], and later
continued by Szegd himself and several authors as Geronimus, Keldysh, Korovkin,
Lavrentiev, and Smirnov. An overview of the developments until 1964, with more than
50 references on this subject, is due to Suetin [184]]. The complex analogue of the
theory of orthogonal polynomials on the real line is naturally played by orthogonal
polynomials on the unit circle. Following the works of Stieltjes, Hamburger, Toeplitz
and others, Szeg6 investigated orthogonality on the unit circle in a series of papers
around 1920 [185} [186], where he introduced orthogonal polynomials, known in the
literature as Szeg6 polynomials.

In this chapter we present a short introduction to the theory of orthogonal polyno-
mials on the real line (especially for comparison purposes) and orthogonal polynomials
on the unit circle. We discuss recurrence relations, reproducing kernel, associated mo-
ment problems, distribution of their zeros, quadrature rules, among other results that

we need in the sequel. We also consider transformations of orthogonal polynomials

!Orthogonal Polynomials on the Real Line.
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2. ORTHOGONAL POLYNOMIALS

using spectral transformations of the corresponding S-functions and C-functions, re-
spectively. Finally, we establish the connection between measures on a bounded inter-
val and on the unit circle by the so-called Szegd transformation. Most of the material
is classical and available in different monographs as [46l], [[71]], [188], [78[79]], and the
very recent monographs by Simon [178};[180]. Therefore formal theorems and proofs

are not given.

2.1 Orthogonal polynomials on the real line

Definition

Let M be a linear functional in the linear space IP of the polynomials with complex
coefficients. We define the moment of order n associated with M as the complex
number

Uy =M, X"y, n=0. 2.1

The Gram matrix associated with the canonical basis {x"},>0 of PP is given by

o m1 o
M1 M2 e el
_ i+j N . .. .
H=[(Mx )]i’jzo = .o . 2.2)
HMn  HMn+1 ... H2n

The matrices of this type, with constant values along anti-diagonals, are known as
Hankel matrices [92]].

The moment functional 2.1)) is said to be quasi-definite if the moment matrix H is
strongly regular, or, equivalently, if the determinants of the principal leading subma-
trices H,, of order (n+ 1) X (n+ 1) are all different from O for every n > 0. In this case
there exists a unique (up to an arbitrary non-zero factor) sequence {Pp},~o of monic or-
thogonal polynomials with respect to M. We define the orthogonal monic polynomial,
P,, of degree n, by

(M.PuPu) =3 Spm: Y # 0.

12



Three-term recurrence relation

One of the most important characteristics of orthogonal polynomials on the real line
is the fact that any three consecutive polynomials are connected by a simple relation
which we can derive in a straightforward way. Indeed, let consider the polynomial
Pp+1(x) — xPy(x), which is of degree at most n. Since {Pk}Z:0 is a basis for the linear

space IP,,, we can write

_ <M,xPnPk>

n
xXPp(x) = Pypy1(x) + /ln,kpk(x)a Ank
;) (m.PY)

As P, is orthogonal to every polynomial of degree at most n— 1, we have 1,0 = 4,1 =

~o=Ayp—2=0and
(m.pP2) (M.xP2)
App-1 = T o\ Ann = T
(mrr ) (m.pi)
We can thus find suitable complex numbers by, by,... and di,d>, ..., such that
xXPy(x) = Py () + b, P(x)+d,P,—1(x), d,#0, n=0. 2.3)

This three-term recurrence relation holds if we set P_; = 0 and Py = 1 as initial condi-

tions.

We next take up the important converse of the previous result. Let {b,},>0 and
{dn}n>1 be arbitrary sequences of complex numbers with d, # 0, and let {P,},-( be
defined by the recurrence relation (2.3). Then, there is a unique functional M such that
(M, 1) =d,, and {P,},» is the sequence of monic orthogonal polynomials with respect
to M. We refer to this result as Favard’s theorem [[64]].

Jacobi matrices
We can write the three-term recurrence relation @D in matrix form,
xP(x) = JP(x), P=[Py.P,...1",
where the semi-infinite tridiagonal matrix J is defined by

13



2. ORTHOGONAL POLYNOMIALS

bo 1 0 0
d by 1 0

J=10 d by 1
0 0 dzs b3

J is said to be the monic Jacobi matrix [[94] associated with the linear functional M.
A useful property of the matrix J is that the eigenvalues of its n X n leading principal
submatrices J, are the zeros of the polynomial P,. Indeed, P, is the characteristic
polynomial of J,,,
Pp(x) = det(xI, — Jn),

where I, is the n X n identity matrix.

Integral representation

We can say that M is positive definite if and only if its moments are all real and
detH,, > 0, n > 0. In this case there exists a unique sequence of orthonormal polynomi-

als {pn},50 With respect to M, i.e., the following condition is satisfied,

<M, Pan) = 6n,ma

where

Pu(X) = ypx" + 6,51 + (lower degree terms), v, >0, n3>0.

From the Riesz representation theorem [164; [170], we know that every positive

definite linear functional M has an integral representation (not necessarily unique)

(M, X"y = fx”d,u(x), 2.4)
i

where u denotes a non-trivial positive Borel measure supported on some infinite subset

I of the real line. For orthonormal polynomials, (2.3) becomes

XPn(X) = A1 Pust () + by pp(X) + anpu-1 (%), @a=dy, n>0, (2.5)

14



with initial conditions p_; =0, pg = ,ual/ 2, and the recurrence coefficients are given by

an = f XPp-1(X) pp(X)du(x) = Il 5,
I Yn

On _ Ons1

Yn Vn+1

bn= f xpr(x)du(x) =
I
Therefore,
Pu(x) = (@n@n-1 -+ 1) Pp(x) = Y Pu(x)
and the associated Jacobi matrix is

>b0 ag 0 0
aq b1 ar 0
J,=|0 a b a

0 0 as b3

There are explicit formulas for orthogonal polynomials in terms of determinants.

The orthonormal polynomial of degree n is given by Heine’s formula [90]

Ho M1 M2 .. M
X ML H2 M3 e g
X)) = ————— : : o (2.6)
Pn VdetH,, detH,_
Mn—1 Mn  Hn+l .. H2n—1
1 X x2 . X"

where the leading coefficient vy, is the ratio of two Hankel determinants,

_ detH,,_;
"=\ GetH,
In the positive definite case, Favard’s theorem can be rephrased as follows. If
dnt1 >0 and b, € R, n > 0, there is a non-trivial positive Borel measure p for which
the Jacobi matrix is J,; equivalently, the corresponding sequence of orthogonal poly-

nomials obeys (2.5). In general this measure is not unique, but a sufficient condition

for uniqueness is that the moment problem is determinate.
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2. ORTHOGONAL POLYNOMIALS

Moment problem

Moment problems occur in different mathematical contexts like probability theory,
mathematical physics, statistical mechanics, potential theory, constructive analysis or
dynamical systems. An excellent account of the history of moment problems is given in
[LO7]]. In its simplest terms, a moment problem is related to the existence of a measure

u defined on an interval I C R for which all the moments

Un = f Xdu(x), n>0, Q2.7)
1

exist. If the solution to the moment problem is unique, it is called determinate. Other-
wise, the moment problem is said to be indeterminate. The monographs [3]] and [[175]
are the classical sources on moment problems; see also [[176] from a different point of
view using methods from the theory of finite difference operators.

There are many variations of a moment problem, depending on the interval /. In all
of them, as suggested above, there are two questions to be answered, namely existence
and uniqueness. Three particular cases of the general moment problem have come to
be called classical moment problems, although strictly the term describes a much wider

class. These are the following:

i) The Hamburger moment problem, where the measure is supported on (—oo,0).
ii) The Stieltjes moment problem, where the measure is supported on (0, o).

iii) The Hausdorff moment problem, where the measure is supported on (0, 1).

The Hausdorff moment problem is always determinate [89]. Stieltjes, in his mem-
oir [182] introduced and solved the moment problem which was named after him by
making extensive use of continued fractions. The necessary and sufficient conditions
for determinacy of this moment problem are given by detH,, > 0, detHﬁll) >0,n >0,

where
M1 §2%) . HMn+1
M2 M3 e M2
H) - 2|
n+l  Mn+2  --- H2n+1

In [88], Hamburger solved the moment problem on the whole real line, showing that it
was not just a trivial extension of Stieltjes’ work. The Hamburger moment problem is
determined if and only if detH,, > 0, n > 0.
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More recent variations of these problems are the strong moment problems. In these
cases, the sequence {11, },5( is replaced by the bilateral sequence {u,},ez of real num-
bers and the moment problem can be stated as follows. Given such a sequence {u, }nez

of real numbers, find a measure u such that

Un = fx"d,u(x), ne’Z.
I

The strong Stieltjes and strong Hamburger moment problems can be formulated
in the same way as the classical problems. The necessary and sufficient conditions
are also given in terms of Hankel determinants involving the moments. Jones, Thron,
and Waadeland [101] proposed and solved the strong Stieltjes moment problem, while
Jones, Njastad, and Thron [96] solved the strong Hamburger moment problem. In both
cases, a central role was played by continued fractions.

Continued fractions

As Brezinski [22] points out, continued fractions were used implicitly for many
centuries before their real discovery. An excellent text on the arithmetical and metrical
properties of regular continued fractions is the classical work of Khintchine [106],
which is the starting point for the most recent book by Rocket and Sziisz [167]. In
addition to these texts, the analytic theory of continued fractions is very well covered
in [1005 [119; (1205 [196]).

A continued fraction is a finite or infinite expansion of the form

r
q0+—=q0+g+g+g+---, (2.8)
mn ql ‘IZ CI3

q1+
3

9>+
qz+...

where {r,},>0 and {g,},,»o are real or complex numbers, or functions of real or complex

variables. The finite continued fraction,

R

-n :q0+ /114. %/4. #/4_...4. %/’

On @ lq2 13 qn
obtained by truncation of ([2.8)), is called the n-th approximate of the continued fraction
(2:8). The limit of R,/ O, when n tends to infinity is the value of the continued fraction.
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2. ORTHOGONAL POLYNOMIALS

The numerators R, and denominators Q,, satisfy, respectively, the Wallis recurrence
relations [[197]]

Ruvi = qunaRy+ 1Ry, n>1, (2.9
On+1 = Gn+10On + 1nt1Qn-1, n21, (2.10)

with Ry = qo, Qo = 1, R| = qoq1 + 1, and Q| = q;. These formulas lead directly to the
connection between orthogonal polynomials and continued fractions. If we consider

the following continued fraction

then Q, := P, satisfies (2.3).
Christoffel-Darboux identity

In the literature, the polynomials

Kn(x,y) = Zpk(x)pk(y), n=0,
k=0

are usually called Kernel polynomials. The name comes from the fact that for any

polynomial, g,,, of degree at most n, is given by

qn(y) = fl Gn(0) K, (x,y)du(x).

The Kernel polynomial K, can be represented in a simple way in terms of the
polynomials p, and p,+; throughout the Christoffel-Darboux identity [45} 147} 53],

Pt 1(X0)Pn(y) = Pu(X)Pus1(y)
1 x _ y 9

Ku(x,y) = any

that can be deduced in a straightforward way from the three-term recurrence relation
(2:3). When y tends to x, we obtain its confluent form

Kn(%,0) = et (P (pa(0) = P (X) s ().
This last identity is used to prove two results that we show in this section, interlacing
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of zeros and Gauss-Jacobi quadrature formula.

Zeros

The fundamental theorem of algebra states that any polynomial of degree n has
exactly n zeros (counting multiplicities). When dealing with orthogonal polynomials
with respect to non-trivial probability measures supported on the real line, one can say
much more about their localization. Two of the most relevant properties of zeros are
the following:

i) The zeros of p, are all real, simple and are located in the interior of the convex hull

Mot 1.

ii) Suppose x,,1 < Xp2 < - < X, are the zeros of p,, then

Xng < Xn—1k < Xnkst, 1<k<n-1

The property ii) can also be proved using the Jacobi matrix J,, from the inclusion prin-
ciple for the eigenvalues of a hermitian matrix [92].

The following result is due to Wendroff [200]. Let P,.; and P, be two monic
polynomials whose zeros are simple, real, and strictly interlacing. Then there is a
positive Borel measure u for which they are the corresponding orthogonal polynomials
of degrees n+ 1 and n, respectively. All such measures have the same starting sequence
Ppi1,Pp,Pp_1,...,Po.

Quadrature

A numerical quadrature consists of approximating the integral of a function f: I C
R — R by a finite sum which uses only n function evaluations. For a positive Borel
measure y supported on /, an n-point quadrature rule is a set of points xp, x2,...,x, and
a set of associated numbers Ay, 15,...,4,, such that

f1 FEu) ~ 3 A f ()
k=1

in some sense for a large class of functions as possible.

By convex hull of a set E ¢ C we mean the smallest convex set containing E. G c C is convex if for
each pair of points x,y € G the line connecting x and y is a subset of G.
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2. ORTHOGONAL POLYNOMIALS

A Gauss-Jacobi quadrature [95;/182] is a quadrature rule constructed to yield an ex-
act result for polynomials of degree at most 2n — 1, by a suitable choice of the nodes and
weights. If we choose the n nodes of a quadrature rule as the n zeros Xy 1,Xn2,...,Xun
of the orthogonal polynomial, P,, with respect to u supported on I and if we denote
the corresponding so-called Cotes or Christoffel numbers by 4,1, 4,2, ..., Ann, then for

every polynomial Q,,_; of degree at most 2n— 1,

Z/ln,k Q2n—l(xn,k) = fI‘QZn—l(x)d/J(x)o
k=1

The Christoffel numbers are positive and are given by

n—1 -1
Anje = [Z pi(xn,k)] .
=0

2.1.1 Classical orthogonal polynomials

The most important polynomials on the real line are the classical orthogonal poly-
nomials [188]. They are the Hermite polynomials, the Laguerre polynomials, the Ja-
cobi polynomials (some special cases are the Gegenbauer polynomials, the Chebyshev
polynomials, and the Legendre polynomials). These polynomials possess many prop-
erties that no other orthogonal polynomial system does. Among others, it is remarkable
that the classical orthogonal polynomials satisfy a second order linear differential equa-
tion [[17;169]

0(x)y" () + 7(x)y" (x) + Apy(x) = 0,

where 6 is a polynomial of degree at most 2 and 7 is a polynomial of degree 1, both
independent of n. They also can be represented by a Rodrigues’ distributional formula
[51;162]

n

Py(x) =

(w(x)8"(x)),

cpw(x) dx*
where w is the weight function and 6 is a polynomial independent of n. Moreover,
for every classical orthogonal polynomial sequence, their derivatives constitute also an

orthogonal polynomial sequence on the same interval of orthogonality [50; 1105 [199].

20



Jacobi polynomials

The Jacobi polynomials [46; [188]], appear in the study of rotation groups Ehnd
in the solution to the equations of motion of the symmetric top [139].  They are
orthogonal with respect to the absolutely continuous measure du(a,8; x) = (1 —x)*(1 +
x)Bdx, supported on [—1,1] where for integrability reasons we need to take ., > —1.

These polynomials satisfy the orthogonality condition

1 +8+1

2¢ ITn+a+DI'(n+p+1

[ PP odutan o - UALAEVAULZLADS I
-1 n!Cn+a+p+1) I'n+a+p+1)

where I' is the Gamma function. From Rodrigues’ formula we get

! @
(=2yn!(1 - x)2(1 + x)P dx"

P = (A= (1+ 0P,
or, equivalently, solving the differential equation by Frobenius’ methods, the Jacobi

polynomials are defined via the hypergeometric function as follows

2Ma+ Dy
POy = 2 L 2F1(

n+a+p+1)}

_[nta S (-n)pnta+f+1)] (1-x 2
“\ n )Z (a+ k! 2 /-

1-x
—n,n+a+,6’+1;a/+l;—2

Jj=0

The n-th Jacobi polynomial is the unique polynomial solution of the second order

linear homogeneous differential equation
=1y () +(QR+a+B)x+a—-B)Y (x)—nn+1+a+B)y(x) =0.
Particular cases are @ = 8 = —1/2, given the Chebyshev polynomials of first kind,

2
_ 2 D7 c1j2-172)
Tu(0) =25 5P (0.
The change of variable x = cosé gives T,(x) = cos(nf). The sequence {T},},>¢ is used
as an approximation to a least squares fit, and it is a special case of the Gegenbauer

polynomial with o = 0.

1A rotation group is a group in which the elements are orthogonal matrices with determinant 1. In the
case of three-dimensional space, the rotation group is known as the special orthogonal group.

21



2. ORTHOGONAL POLYNOMIALS

When @ =8 =-1/2, we have the Chebyshev polynomial of second kind

n+ DY 12172

_ 2n+1(
Un(x)=2 Qnr2y L (x).

With x = cosé, we get U,(x) = sin(n+ 1)0/sinf. The sequence {U,},>( arises in the
development of four-dimensional spherical harmonics in angular momentum theory.

{Upn},50 18 also a special case of the Gegenbauer polynomial with @ = 1.

Laguerre polynomials

The Laguerre polynomials [46f [188] arise in quantum mechanics, as the radial
part of the solution of the Schrodinger’s equation for the hydrogen atom. They are
orthogonal on the positive half of the real line, satisfying

© I'n+a+1
fo L)LY (o dp(a; x) = T)5

where du(a; x) = x*e *dx and @ > —1. Rodrigues’ formula for them is

e* d"
LY = ——

nlx® dx" (75",

The polynomial Lf{’) satisfies a second order linear differential equation that is a con-

fluent hypergeometric equation
xy"(X) + (@ +1 -2y (x) +ny(x) = 0,

and the Laguerre polynomials are a terminating confluent hypergeometric series

L (x) =

(=D'Tr+a+1) 2 (n+a/)(—x)j

Fi(- 1,x) =
Ta+1) 1Fi(-n,a+1,x) Z H

=0\t

Hermite polynomials

When du(x) = ¢~ dx on the whole real line, we have the Hermite polynomials
[46; [188]], satisfying the orthogonality relation

foo Hy(x)Hp(x)du(x) = \/;Tznn!6n,m~
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They arise in probability, such as the Edgeworth series, in numerical analysis as Gaus-
sian quadrature, and in physics, where they give rise to the eigenstates of the quantum

harmonic oscillator. From Rodrigues’ formula,

di’l
Hy(x) = (-1)'e” T,
X

and we can deduce their explicit formula in terms of hypergeometric functions

1
Hoy(x) = (=1)"(1/2); 1 F, (—n,z;xz),

3
Hoi1(x) = (=1)" (3/2),; x1 Fy (—n, E;xz)-

The choice 6 = 1 and 7(x) = —2x gives their characterization as the polynomial eigen-

functions of the second order linear differential operator

Lly(0)] =y"(x) - 2xy'(x).

2.1.2 S-functions and rational spectral transformations
S-functions

The study of perturbations of the linear functional M introduced in 2.I)), and their

effects on the corresponding S-function
1
S(x)=</\/(,—>, (2.11)
A=y

where the functional M acts on the variable y, has a significant relevance in the theory
of orthogonal polynomials on the real line. S admits, as a formal series expansion at

infinity, the following equivalent representation

< Mk
S =) —7
=0

2.12)

i.e., it is a generating function of the sequence of moments for the linear functional M

(questions of convergence are not considered). If the moments associated with u are
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2. ORTHOGONAL POLYNOMIALS

given by (2.7), the functions
5,00 = [ 2240 n>0.
11Xy
constitute a second (independent) solution of the difference equation

XYn = A1 Ynel +buyn +anyn-1, n=0.

They are called second kind functions associated with u. In this case, the S-function

%u>5(>&fW@)

One of the important properties of the S-functions is its representation in terms of

[[L82] is given by

continued fractions, [182]

1| a%‘ az

—b()_ ‘ x—bl_ ‘ x—bz_

S(x) = (2.13)
E

In fact, (2.13) was a starting point for the general theory of orthogonal polynomials in

pioneering works by Chebyshev [45] and Stieltjes [[182].

Spectral transformations

A rational spectral transformation [202] of the S-function S is a new S-function

defined by
_a(x)S (x)+b(x) 3
SR(X) = m, a(x)d(x) b(x)c(x) * 0, (214)

where a, b, ¢, and d are coprime polynomials. The spectral transformation
§ 1) = LSO, 2.15)
d(x)
where a, b, and d are polynomials that provide a true asymptotic behavior to (2.14)
is said to be linear. These polynomials should be chosen in such a way that the new
S-function, S g, has the same asymptotic behavior as initial (2.12)),

o Mk
Sr(x) = el
=0 ¥
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where {1}, is the sequence of transformed moments. Hence, in general, the coef-
ficients of the polynomials a, b, ¢, and d depend on the original moments {u,},50. In
particular, this means that the spectral transformations do not form a group. Indeed, for
a given spectral transformation there exist many different reciprocal spectral transfor-
mations. Nevertheless, it is clear that one can always construct a composition of two
spectral transformations, and moreover, for a given spectral transformation there is at
least one reciprocal.

In terms of the moments, we can classify the spectral transformations of S-functions

as follows.

i) Local spectral transformations: spectral transformations under the modification

of a finite number of moments.

ii) Global spectral transformations: spectral transformations under the modification

of an infinite number of moments.

Notice that i) is a special case of general linear spectral transformations related with
perturbations on the anti-diagonals of the Hankel matrix (2.2). A large subclass of ii)

can be represented by the rational spectral transformation.

Linear spectral transformations

Without loss of generality, we can assume that the measure y is normalized, i.e.,
o = 1. The Christoffel transformation [188]] corresponds to a modification of the mea-
sure u defined by
x—p
——du(x), B¢l (2.16)
M1 -B

The sequence of orthogonal polynomials {P,,(:; uc)}n=0 associated with this transforma-

duc(x) =

tion is given by

Pa
(t=B)PaCipte) = Pos1 (X) = P—l(/f)mx), n>0.

Indeed, Christoftel transformation leads to the Kernel polynomial. Denoting the trans-

formation (2.16) by Rc(B), the corresponding S-function becomes

(=S -1

Sc(x) =Rec@B)S (0)] =
m-p

2.17)

Conversely, if we start with a linear spectral transformation where a is a polynomial
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2. ORTHOGONAL POLYNOMIALS

of first degree, b is constant, d = 1, the only choice for such a spectral transformation
is @:17). In general, a linear spectral transformation with d = 1 is equivalent to a finite
composition of Christoffel transformations [202].

The reciprocal of a Christoffel transformation is the so-called Geronimus transfor-

mation [74;[75]], consisting of a perturbation of u such that

(B—x)"'du(x) + mé(x—p)
m+S(B)

dig(x) = , Bel, meR,. (2.18)

The sequence of orthogonal polynomials {P,(:;1g)},>0 With respect to 2.18) can

be written as

Pui i) = xPo(0) - 2B p 5, 030

Qn—l(ﬂ’ m)
where Po(-;ug) = 1, and Q,(8,m) is a solution of the recurrence relation (23) with

auxiliary parameter (3,

0,(B.m)=S,(B)+mP,(B), n=0.

This transformation is denoted by Rg(8,m). The corresponding S-function is

SB)+m—S(x)

Sc(x) =Ra(B.m)S (0] = G-B)m+SB)

(2.19)

We can see that the transformation (2.19) is reciprocal to (2.17). However, in con-
trast to the Christoffel transformation, (2.19) contains two free parameters, where the
second free parameter defines the value of additional discrete mass as is seen is (2.18).
In general, one can prove that a linear spectral transformation with a = 1 is equivalent

to a finite composition of Geronimus transformations [202].

It is easy to see that for different values of 8 we have
Re(B1) o Rg(B2,m) = Rg(B2,m) oRe(B1).
However, for the same parameter we have the following relations

Re(B)oRg(B,m) =1 (Identity transformation),
Re(B,m)oRc(B) = Ry(B,m) (Uvarov transformation).

The Uvarov transformation [74575]] consists of the addition of a real positive mass
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to the measure w,

du(x) + mé(x — )

duy,(x) = L+m

, Bel, meR,.

The relation between the corresponding S-functions is

S +mx-p)!

Su(®) =RuB.m)IS (x)] = Tom

Rational spectral transformations

In [202]] it was proved that by means of +k associated transformations we can re-
duce (2:19) to the linear form. Combining Christoffel transformation (2:17), Geron-
imus transformations (]219[), and the +k associated transformations we get a wide class
of rational spectral transformations (2.14).

From the sequence of monic orthogonal polynomials {P,},>0 we can define the
sequence of associated monic polynomials [[76], {P;k)}yg(), k > 1, by means of the shifted

recurrence relation

PY () = (6= bus) PO (0 = dyii PO (), >0, (2.20)

+

with P(_kl) =0 and Pf)k) = 1. The recurrence relation (2:20) can also be written in the
matrix form
®)(x) = JOp® o —[ph po "
PO =JOPO), PO =[PP PP, |

where J® is the tridiagonal matrix

[ by 1 0 0
dis1 b 1 0

JO=| 0 diyo by 1

0 0  dis3z bres

i.e., we have removed in the monic Jacobi matrix J the first k rows and columns.

The S-function corresponding to the associated polynomials of order k, S ®, can
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2. ORTHOGONAL POLYNOMIALS

be obtained using the formula

Si(x)

NOE _—
) d1Sk-1(x)

where S is given by
Sk(x) = S ()Pr(x) = P, ().

We denote this transformation of the Stieltjes functions by RO[S (x)] = S ©(x).

If we are interested to characterize the sequence of monic polynomials {P,},>( or-
thogonal with respect to M, we consider the associated sequence of monic polynomials

1
(7}

150 and we have the following asymptotic expansion around infinity

P,(x)S (x)— P;(11—)1(x) — O(x_"_l)_

It plays an important role in the theory of continued fractions. Returning to the Wallis
recurrence relations (2.10), let us notice that the numerators satisfy Pﬁ,l)(x) =d1Qy+1(x),
n>-l.

On the other hand, let us consider a new family of orthogonal polynomials, {P,(l_k)}@o,
which is obtained by pushing down k rows and columns in the Jacobi matrix J, and by
introducing in the upper left corner new coefficients b_; (i = k,k—1,..., 1) on the diago-
nal, and d_; (i = k—1,k—2,...,0) on the lower sub-diagonal. The monic Jacobi matrix

for the new sequence of polynomials is

(b 1
djr1 bgsr 1

(=k) —
J - b() 1 ’

di by

These polynomials are called anti-associated polynomials of order k, and were ana-
lyzed in [[L68]].

Their corresponding Stieltjes formula can be obtained from [202]

P08 () - P ()

sk
" &P (08 (0 - PV )

221
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where {Zi-,'}m = {d‘i}?:k—l U{d;}i>1. If k = 1, then the anti-associated polynomials of the
first kind appear and its corresponding Stieltjes function S <V, given by @2:21), is

1

S(fl)(x) e
x—by—diS (x)

(2.22)

where S is the Stieltjes function associated with y, and Zo and c?l are free parameters.
We denote R%l% )[S (x)] = SD(x). Observe that R is not a unique inverse of R(D,
0,41

because of its dependence on the free parameters by and d;.

2.2 Orthogonal polynomials on the unit circle

Definition

Let £ be a linear functional in the linear space of Laurent polynomials with complex

coefficients, A, satisfying
cn ={L7"y=AL,z")=C_y, neZz. (2.23)

L is said to be a hermitian linear functional. A bilinear functional associated with £

can be introduced in IP as follows

(fr8)r= <£,f(z)§(z_l)>, f.geP.

The complex numbers {c,},ez are said to be the moments associated with £ and the

infinite matrix

>C0 C1 e Cﬂ
c.1 Co v Cpe
T:[z",zf ] =\ : oo , (2.24)
( >£ i,j>0
C_n C_n+1 “ee CO .o

is the Gram matrix of the above bilinear functional in terms of the canonical basis
{Z"}n>0 of P. It is known in the literature as a Toeplitz matrix, a matrix in which each
descending diagonal from left to right is constant [92].

If T,, the (n+1) X (n+1) principal leading submatrix of T, is non-singular for every
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2. ORTHOGONAL POLYNOMIALS

n >0, L is said to be quasi-definite, and there exists a sequence of monic polynomials
{®;},50, orthogonal with respect to L,

(D, D) =KiOpm, ky#0, nz0.

Szegd recurrence relations

We have seen that orthogonal polynomials on the real line satisfy a three-term re-
currence relation. Such a recurrence relation does not hold for orthogonal polynomials
on the unit circle, but there are also recurrence formulas. These polynomials satisfy the

following forward and backward recurrence relations

0,41(2) = 205(D) + Py (O (2), 1 >0, (2.25)
0p41(2) = (1= 1@p41 () ) 200 (2) + s 1 (0D, ), 130, (2.26)

where @5 (z) = z”@,,(z‘l) = 7/ (®,).(2) is the so-called reversed polynomial, and the
complex numbers {D,(0)},>1, with

D, (0)#1, n>1,

are known as Verblunsky, Schur or reflection coefficients. The monic orthogonal poly-
nomials are therefore completely determined by the sequence {®,(0)},>1. To obtain the
recurrence formula, we take into account the fact that the reversed polynomial ®;(z)
is the unique polynomial of degree at most n orthogonal to zX, 1 <k < n. @2:23) and
(2:26) are called either the Szegd recurrence or Szegd difference relations. Moreover,

we have dotT
ety >1

) nz1,
detT,_

(O, ©p) p =k = ko = co. (2.27)

We can derive a recurrence formula which does not involve the reversed polynomi-

als,
D, (0)Dp11(2) = 2Py (0) + @1 (0) P (2) = 202 D1 ()P,-1(2), 130, (2.28)

if we assume ®_; = 0. The polynomials @, can be found from ®,_; and ©,, if
®,(0) # 0. This is an analogue of the three-term recurrence relation (2.3)) for orthogonal
polynomials on the real line, except for the factor z in the last term. In [52]], the authors

find bounds for complex zeros of polynomials generated by this kind of recurrence
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relations.

Integral representation

If co = 1 and detT,, > 0O, for every n > 0, L is said to be positive definite and it has

the following integral representation

(L,f)=frf(Z)dU(z), feP, (2.29)

where o is a non-trivial probability measure supported on the unit circle T. In such
a case, there exists a unique sequence of polynomials {¢,},>0 With positive leading

coeflicient, such that

fT‘(f’n(Z)(pm(Z)dO'(Z) = 5m,n-

{#nln=0 1s said to be the sequence of orthonormal polynomials with respect to do.
Denoting by «, the leading coefficient of ¢,, ®, = «; !¢, is the corresponding monic

orthogonal polynomial of degree n. Moreover, (®,,®,), = ||<I>n||(2r =k, >0.

From the Pythagoras theorem, in (2.25) we get

(1|2
D112

=1-|0,0)*>0, n>1 (2.30)
This shows that in the positive definite case the Verblunsky coeflicients always satisfy
|D,0) <1, n>1. (2.31)

In this situation, we have an analogous of the Favard theorem [173; [174; 193], for-
mulated as follows. Any sequence of complex numbers obeying (2.3T)) arises as the
Verblunsky coeflicients of a unique non-trivial probability measure supported on the

unit circle.

We use the notation p,, = /1 =D, (0)]2 = ||®ple-/[|Ps-1lls- = Kn—1/&s. Hence, for the
orthonormal polynomials ¢,, the recurrence relations (2.25)-(2.28) become

Prt19n+1(2) = 26n(2) = Pn11(0)py,(2), n >0,
Gn11(2) = Pns12¢0(2) + Py 1(0)g,, 1 (2), n>0, (2.32)
P19 (0)41(2) = (2D, (0) + Dyr41(0))9(2) — 200 P4 1(0)Py-1(2)(2), n=0.
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2. ORTHOGONAL POLYNOMIALS

Kernel polynomials

In the case of orthogonal polynomials on the unit circle we have a simple expres-
sion for the reproducing kernel [35[71;[178]], similar to the Christoftfel-Darboux formula
on the real line. The n-th polynomial kernel K, (z,y) associated with {®,}, is defined
by

K, (ey) = Zn: O;MP@) _ @) D) (2) = Py 1 () P41 (2)

2.33
27K Koo (1-30) @3
_ ¢:+1(y)¢:+1 (2) = Pnr1 (N Pn+1(2)
h 1-yz ’
and it satisfies the reproducing property,
[ Kt o = 75 (234)

for every polynomial f of degree at most n. Taking into account ¢, ., (0) = k,+1®; ,,(0) =

Kn+1, we find that

1
D;(2) = - Kn(z,0) =k, Ky(2,0), n>0, (2.35)

Kn

which is an expression for the reversed polynomials as a linear combination of the

orthogonal polynomials up to degree n.

GGT matrices

Using (2:35) and the forward recurrence formula (2.23), we are able to express

n+1

2¢a(2) as a linear combination of {¢}*),

\ 1 o
2n(2) = —K" 6112) = Pt (0) > D 0)i(2).
n+ n k:0

or, in the matrix form,

29(z) = Hod(2),
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where ¢(z) = [¢0(2), $1(2), - .- ]T, and the matrix H, is defined by

-ZL®,1(000;0), j<i,
[Hcr]i,j:<Z¢is¢j>£: K% j=i+1,

0, j>i+1.

This lower Hessenberg matrix [92], where the j-th row has at most its first j+ 1
components non-zero, is called GGT representation of the multiplication by z, after
[[77; 186 190].

In an analog way to the real line case, the zeros of the monic orthogonal polynomial
®,, are the eigenvalues of (H,),, the n X n principal leading sub-matrix of the GGT

matrix H;. Hence, @, is the characteristic polynomial of (H,),,,

D, (z) = det (zl, = (He)n) - (2.36)

Szeg6 extremum problem and S class

The measure of orthogonality do- can be decomposed as the sum of a purely abso-
lutely continuous measure with respect to the Lebesgue measure and a singular part.
Thus, if we denote by o, the Radon-Nikodym derivative [170] of the measure o sup-
ported in [—m, ], then

6
do(9) = a"(@);i—ﬂ +dos, 2.37)

where o is the singular part of 0.

The Szegd extremum problem on the unit circle consists of finding
AR) = lim A,(2),

with .
()= inf { f £ der(); f e Pn}.

A(z) is said to be the Christoffel function. The solution of this problem for |z] < 1 was
given by Szegd in [1855 [186].
In the literature, an important class of measures is the Szegd class S. We summarize

some relevant characterizations to the S class. The following conditions are equivalent:
d de
i) ces. ii) f logo” (6)— > —co.
- 2n
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2. ORTHOGONAL POLYNOMIALS

iii) Y [0u(0)F <oo. ) A0) = [ [(1 = [®ps1 (0)) < +oo,
n=0

n=0

From this we deduce that if the measure o does not belong to the S class, the GGT

matrix H is unitary. In general, H,- satisfies
i) HoHZ =1, i) HIH, = 1-2(0)¢(0)¢(0)".
As a part of the analysis when o € S, one can construct the Szegé function D,
defined in D as
i0

1 (Te%+7 ,
D(Z)ZCXP(Ef ElOgO' ®)de], zeD.
-

Thus, |D|? = o’ almost everywhere on T, and the solution of the Szeg6 extremum
problem is given by
A2) =(1-IDE)P, zeD.

N class

We say that o belongs to the Nevai class N, if

lim @,(0) = lim 4@ _y

n—oo Kl’l

The relation between the classes S and N can be viewed using the results in [136].

If o € S, then it has a normal L2-derivative behavior, i.e.,

1
2

| (el 2
lim ( f MU’GM@] =1,
n—oo —n n
and thus o € N. Furthermore, if € N,

D,(z) _

D, 1)

<|D,0),  zeC\D.

Thus,

lim Pn(@) =z
n—eo @, _1(z)

uniformly in compact subsets of C \D.
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This result can be obtained under weaker conditions. A well known result of
Rakhmanov [[160] states that any probability measure o~ with o’ > 0 almost everywhere

on T belongs to the class N.

CMYV matrices

The GGT matrix has several constraints. If o € S, {¢,}, is not basis on A and the
matrix H, is not unitary. Even more, all entries above the main diagonal and the first
sub-diagonal are non-zero, and they depend on an unbounded number of Verblunsky
coefficients. Consequently, the GGT matrix is somewhat difficult to manipulate. The
more useful basis was discovered by Cantero, Moral, and Velazquez [29] (this result is
one of the most interesting developments in the theory of orthogonal polynomials on
the unit circle in recent years) as a matrix realization for the multiplication by z, with
respect to the CMV orthonormal basis {y;}i>0,

<ZXian>£=0, li—jl>k k=>0.

In this case k = 2 to be compared with k = 1 for the Jacobi matrices which corre-
spond to the real line case. The CMYV basis {y,},( is obtained by orthonormalizing
1,224,222, .. .} using the Gram-Schmidt process and the matrix, called the CMV
matrix,

C=

(zviox)) L]

is five-diagonal. Its origins are outlined in [198] (see also [179]). Remarkably, the

i.j20°
basis {xx},s0 can be expressed in terms of the sequences {¢,},5¢ and {¢},~0.

xX2n(2) =27"95,(2)s  xon41(2) =2 "P2ns1(2), n>0.

There is an important relation between CMV and monic orthogonal polynomials as
(2:36) for the GGT representation,

q)n(z) = det(ZIn - Cn)’

where C,, is the n X n principal leading sub-matrix of the CMV matrix C.

The CMV matrices play the same role in the study of orthogonal polynomials on

the unit circle that Jacobi matrices in orthogonal polynomials on the real line.
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2. ORTHOGONAL POLYNOMIALS

Zeros

If @, is an orthogonal polynomial of degree n, all its zeros lie in the interior of the
convex hull of the support of the measure of orthogonality [67], and we recover the
properties of zeros for orthogonal polynomials on the real line. From the Christoffel-

Darboux formula we have for z =y,

167, | @I = pns1 )
1— |z

K@) = ) 0@ = (2.38)
k=0

If z,,,1 is a zero of ¢, with |z,1| = 1, then using 2.38) for n—1, ¢} (z,,1) = 0, and from
the recurrence relation (2.32) we get ¢,—1(zn,1) = 0. Repeating this argument, we have
&1(z0,1) =0, k <n,butfor k=0, ¢p = 1, which gives a contradiction. Hence we conclude
that ¢,, has no zeros on the unit circle, and thus all the zeros of ¢, are in D.

In Section [2.T] we see that the interlacing property for the zeros of two polynomi-
als P,_1 and P,, means that they are the (n — 1)-st and n-th orthogonal polynomials
associated with a measure du supported on the real line. In the case of the unit circle,
we have an analogous result, which is known in the literature as the Schur-Cohn-Jury
criterion [[12]]. A monic polynomial f;, has its n zeros inside the unit circle if and only

if the sequence of parameters {Ax};_,, defined by the following backward algorithm

&n(@) = fu(@), fu(0)=hy,

() = (861~ 1844y @), k=n—1,n=2,...0,

1
z(1 = hg11?)

satisfies |hi| <1, k> 1.

2.2.1 (C-functions and rational spectral transformations

C-functions

oo
In the sequel, we consider that Z c,kzk converges on |z| < r, for some r > 0, where

k=0
{cn}nso 1s the sequence of moments (2.23). Let F : E ¢ C — C be a complex function

associated with the linear functional £, defined as follows

F(Z)=< yﬂ>
y
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Here £ acts on y. F is said to be a C-function associated with the linear functional L.
(e8]

Since Z it converges on |z| < r, F(z) is analytic in a neighborhood of z = 0, and we
k=0
get the following representation of F(z) as a series expansion at z =0

F@)=co+2) ey, <, (2.39)
k=1

where ¢gp € R and c_; € C.

If L is positive definite and ¢y = 1, there is a probability measure o supported on the
unit circle such that F can be represented as a Riesz-Herglotz transformation [915[165]]

of do as follows
+
F) = f Y2 (). (2.40)
TY—Z2

A complex function F which has a representation of the form (2.40) is called a
Carathéodory function [31]]. It can be shown that F is a Carathéodory function if and
only if F(z) is analytic in |z] < 1 and RF(z) > 0 for |z] < 1; see Chapter From
this it follows immediately that F~! is a Carathéodory function if and only if F is a

Carathéodory function.

Characterization of orthogonal polynomials

For a given polynomial 7 of degree n with leading coefficient 7, the polynomial of
the second kind of , I1, with respect to £, is defined by

<.£, 2 ry) - n<z>)>, deg >0,
ME=4\"z-y

—1co, degm =0,

where £ acts on y.

Next, we give necessary and sufficient conditions for a polynomial to be orthogonal
with respect to a linear, not necessarily positive definite functional £, with the help of
the associated C-function F. The following statement holds [[155]]:

(®n(2.8), =0, k=0,....n-1,
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2. ORTHOGONAL POLYNOMIALS

if and only if

O(F(2)-Qu()=0("), [d<1, (2.41)
D}()F () + Q@) =0("), k<1, (2.42)

where €, is the polynomial of second kind associated with ®,, with respect to L.

There is an interesting way to rephrase the previous result, namely, given a linear
functional £ and its C-function F, and given Q,, a monic polynomial of degree n,
define Q,,, a monic polynomial, by (Z.41). Then, O, = @, if and only if (2.42) holds.

Spectral transformations

As in the real line case, by a spectral transformation of F' we mean a new C-function

associated with the hermitian linear functional Z, a modification of £, such that

[e9)
F@)=t+2) e, <,
k=1

where {¢,},50 is the sequence of transformed moments. Following the definition of
Zhedanov [202] we refer to rational spectral transformation as a transformation of a

C-function F given by

F(z) = %, A@)D(z) - BR)C(2) #0, (2.43)
where A, B, C, and D are coprime polynomials or Laurent polynomials. If C =0, and A,
B, C are polynomials or Laurent polynomials that provide a true asymptotic behavior
to (2.43), we have the linear spectral transformations. Following our classification in
terms of the moments, the local spectral transformation is a special case of general
linear spectral transformation related to perturbations on two symmetric sub-diagonals

of the Toeplitz matrix (2.24).

Linear spectral transformations

We use the C-function F' as a main tool in the investigation of spectral transforma-

tions of orthogonal polynomials. As an analog of the Christoffel transformation (2:16))
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for S-functions, we consider a perturbation L of £ defined by

(.ER,f>=<£,%(z—a+z_l—6)f(z)>, feA, aeC. (2.44)

It constitutes an example of linear spectral transformation and it was introduced in
[28; [183]. It is natural to analyze the existence of the inverse transformation, i.e., if

there exists a linear functional L1y such that

(Lpov.(z-a+27" =) @)= (LS. feA, (2.45)

as well as to analyze if the quasi-definite character of the linear functional is preserved
by such a transformation. Notice that this transformation does not define a unique
linear functional Ly-1). The uniqueness depends on a free parameter. Recently, the
spectral transformations (2.44) and (2:45) have been studied with a new approach in
the framework of inverse problems for sequences of monic orthogonal polynomials
[30].

For all values of a, such that |R(a)| > 1, the Laurent polynomial z—a +z~! —@ can
be represented as a polynomial of the form — é |z—BI?, where 8 € R \ {0}. The particular
cases (2.44) and 2.43)) with |R(@)| > 1 have been extensively covered in [72]] and the
references therein.

Rational spectral transformations

Two remarkable examples of rational spectral transformations are due to Peherstor-
fer [152]. We denote by { @,Sk)}n;o the k-th associated sequence of polynomials of order
k > 1 for the monic orthogonal sequence {®, },>0, that constitutes the analog of the asso-
ciated polynomials, satisfying (2.20). In this case they are generated by the recurrence
relation

), (2) = 2007(2) + Dyt (0) (0 2))

+

n>0. (2.46)

Notice that {(Dﬁlk)}n;o is again a sequence of orthogonal polynomials with respect to a

new hermitian linear functional such that F® is the corresponding C-function.

Denoting by 7 ®[F ()] = F®(z) the forward transformation of F, the correspond-
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2. ORTHOGONAL POLYNOMIALS

ing C-function is a rational spectral transformation given by

(@1(2) +D;(2) F(2) - () + Q4 ()
(@62) - 0;(2) F(2) — @) - ()

F(k) (2) =

where Q,, is the polynomial of second kind of ®,, with respect to £. In other words, we

remove the first k Verblunsky coeflicients from the original sequence.

On the other hand, if we add complex numbers z1,22,...,2¢ wWith |z;] # 1, 1 <i <k,
to the original sequence of Verblunsky coefficients, we have the backward associated
sequence of polynomials {(D,(q_k)} as a sequence of monic orthogonal polynomials
generated by {z}_; U {#2(0)}nz1.

Denoting by ¥ P[F(z)] = F"P(z) the backward transformation of F, the corre-

n=0

sponding C-function is a rational spectral transformation given by

~ (U@ + QD) F) - Q4 (2) + Qu(2)
(®;(2)— Be(2)) F() + D) + D (2)

FP@) =

where @y (respectively Q) is the k-th degree polynomial generated using the com-
plex numbers z1,2,...,2 (respectively —z1,—22,...,—2x) through the recurrence rela-
tion (2.46), i.e., Q; is the polynomial of second kind associated with @;. It is easily
verified that ¥ o 7K = 7. Generally, the inverse is not always true since it depends

on the choice of free parameters.

2.2.2 Connection with orthogonal polynomials on [—1, 1]

Given a non-trivial probability measure u, supported on the interval [—1, 1], then

there exists a sequence of orthonormal polynomials {p,},, such that

1
f Pn(X)pm(x)du(x) = 6n,m-
-1
We can define a measure o supported on [—m, 7] such that
1
do(0) = Eld,u(cose)l.
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In particular, if u is an absolutely continuous measure, i.e., du(x) = w(x)dx, then
1 .
do(0) = Ew(cos 0)|sin9|d6.

This is the so-called Szeg6 transformation of probability measures supported on [—1, 1]

to probability measures supported on T.

If u is a non-trivial probability measure on [—1, 1] (this is the reason why we intro-
duced the factor 1/2), o is also a symmetric probability measure on the unit circle and,

as a consequence, there exists a sequence of orthonormal polynomials {¢,}, such that

T
f $n(€)pn(®)dor(8) = 6y m,
-
as well as the corresponding sequence of monic orthogonal polynomials. In this case,

D,0)e(=1,1), n>1.

There is a relation between the sequence of orthogonal polynomials associated with
a measure u supported on [—1, 1] and the sequence of orthogonal polynomials associ-
ated with the measure o supported on the unit circle. The sequence of orthogonal
polynomials {®,},>0 on the unit circle associated with the measure o has real coeffi-

cients. In addition, if 2x = z+ 771, so that x = cos@ corresponds to z = ¢ then

0 (P (2) + 2 Da(1/2)). 2.47)

N, W (0)

From (2.47) one can obtain a relation between the coefficients of the recurrence

relations (2.3)) and (2.25)-(2.26),

2= J(1 =02 () (103, (0))(1+ D220, n> 1,
26y = 21 (0) (1 = ©2,(0)) = 241 (0) (1 + @2, (0)), 0.
Conversely, if R, = P41/ Py, then

Rn(l) +Rn(_l)

©2,(0) = Ry(1) = Rp(=1) =1, @2,41(0) = Ry =R, (=)’

There is also a relation between the S-function and C-function associated with u
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and o, respectively, as follows

F(z) =

_2 pl _2
1 zfd/x(y)zl ZS(X)’

2z 1 X=Yy 2z
or, equivalently,

F
S=

x> —1

with2x=z+z 'andz=x—- Vx2-1.
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Chapter 3

On special classes of Szego

polynomials

The notion of Schur parameters Ds fundamental not only in the theory of orthogonal polynomials ...

— A. Mukaihira and Y. Nakamura. [[145]

From Chapter E] we know that the Verblunsky coefficients {®,(0)},>; associated
with a measure supported on the unit circle satisfy (2.31). Moreover, by the Favard
theorem, any sequence obeying (2.31) arises as the Verblunsky coefficients of a unique
non-trivial probability measure supported on the unit circle. An interesting question
arises: What happens when |®,,(0)| > 1 at most for some n? Clearly, these polynomials
can not be orthogonal on the unit circle. In 1999, Vinet and Zhedanov [194] constructed
special classes of Szeg6 polynomials when |®,(0)| > 1, n > 1. This situation is more
interesting, because there are sequences {®,(0)},>; for which the moment problem
is indeterminate. They consider two possible choices of the Verblunsky coefficients
when the support of the associated measure lies on the real line. They note that if
®,(0) > 1, n > 1, the corresponding orthogonality measure is supported on the negative
half side of the real line. On the other hand, if (-1)"®,(0) > 1, n > 1, the corresponding
orthogonality measure is supported on the positive half side side of the real line. Their

main tool is a mapping from symmetric polynomials on the real line to the Szeg6

"Verblunsky coefficients.
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3. ON SPECIAL CLASSES OF SZEGO POLYNOMIALS

polynomials [58} 60]; see also Chapter [T}

The aim of this chapter is to study the properties of the sequence of monic orthog-
onal polynomials {®,},-o, which satisfy the same recurrence relation as orthogonal
polynomials on the unit circle (Szeg6 orthogonality) with

®,(00eC, [D,0)>1, n>1.

In our development a central role is played by continued fractions. We emphasize the
natural parallelism existing between the theories of orthogonal polynomials on the real
line and those on the unit circle. An analysis of the Perron-Carathéodory continued
fractions [97]] shows that these polynomials satisfy the Szegd orthogonality, where the
linear functional £ defined in (2.23) satisfies

Cop=cCny  (=D)"D2detT, >0, n>=0.

The relations between the polynomials @, (w; z) = ®,(2) — wzP,-1(2), w # 1, and
the para-orthogonal polynomials [97]], ®,(z) + 7®;,(2), || = 1 are also analysed. In the
two particular cases considered in [194], the zeros of the Szeg6 polynomials, those of
para-orthogonal polynomials, and the associated quadrature rules have been studied.
As a consequence of this study, we solve the moment problem (I.T1) associated with
the Chebyshev polynomials of the first kind. This chapter could be considered in many
aspects as a continuation of the introductory theory of orthogonal polynomials, using
a different approach to the subject based on continued fractions and their modified

approximates.

3.1 Special class of Szego polynomials

The treatment of this section is similar to that is given in [99], where the authors
assume that |®,(0)| # 1, n > 1. The results given here, in addition to making the chapter
self-contained, help the reader to see the specific properties satisfied by the associated

Toeplitz and Hankel determinants when |®,(0)] > 1, n > 1.
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3.1.1 Szegé polynomials from continued fractions

We start with the so-called Perron-Carathéodory continued fraction

2
ﬂr—%%ﬂ—(éj— il )Z—(QJ—-~, G
a1z (03] (054

where we assume that 8y > 0 and |@,| > 1, n > 1. This continued fraction was introduced
in [97]; see also [98; 99]. If we compare (B.I) with (2.8), then we have go = o,

_ _ _ _ 2 _= _
ri==2B0,q1=1,ry==1,rp = —(|C¥n| - 1)2, Qon = @pz, and @41 = @y, n 2 1.

Let {A,},50 and {B,},>( be the sequence of numerator and denominator polynomi-

als of (3-1), respectively. Then these polynomials satisfy the recurrence relations

An@)|_ AMAQ)_AMQ@W o1 32)
Bu@| [Bua@| [Bua@| '
M“ﬂ=nmw%wthHﬂ,nL 3.3)
Bpt1 (Z) BZn(Z) Byn1 (Z)

where By =1, By = 1, Ag = By, and A = —f3y. From these recurrence relations, since

a, #0,n>1, we get

“”ﬂ4%%ﬁhm—%wth“”ﬂ,nL

Boy42(2) n By ()| an B2y-2(2)

with By = 1, Ba(z) = @1z2—1, Ao = Bo, A2(z) = —Bo(@1z+ 1), and
Mm@}&fmjhm@}%ﬂwquhmwynzL
Boy43(2) A | Boapr1(@)|  @n B2;-1(2)

Here By =1, B3(z) = z—ay, A; = =By, and A3(z) = —Bo(z+ a1). From these recur-
rence relations one can easily observe that both By, and B, are polynomials of exact

degree n. Likewise, both Ay, and A, are polynomials of exact degree n. More

precisely,
Bon(@) =" +...+(-1)", Byi1(2) =" +...+(=1)"ay,
An(2) = =Bo@aZ" + ...+ (=1)"1), A1 (@) = ~Po (" +..+ (1) ay), n2 1.
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3. ON SPECIAL CLASSES OF SZEGO POLYNOMIALS

Using the above recurrence relations one can also easily conclude that

AS, (@) = A1 (1/2) = A1 (1/2) = (- 1) A (z), 120, (3.4)
B, (2) = 2" Bons1(1/2) = 2" Bons1(1/2) = (=1)"Ban(z), n 0. (3.5)

Moreover, from these recurrence relations we obtain

(2ﬂoan+1 ]—[ (Jon? - 1)]z"+1 +0(2),

A2(2) _ Awm(@) _ =1
Boa(2)  Ba(2) _(%&;1 [ (- 1)]z-" O, nxt,
r=1

s [T 0(e),

A13(2)  Azps1(2) _

— r=1
BZn+3(Z) an+1(Z) _ 2,BOan+l ﬁ(|ar|2_ 1)]Z—(Vl+1)+0<z—(”+2))7 n> ]’
r=1
n
_|> 1 r2_1 "0 n+l ,
M@ An) _| (0 [ ]{er )]Z o)
Bu1@ B |50 51 ﬁ(mrlz—1))z‘"+0(z—<"+‘>), 1.

r=1
Thus, there exists a pair of formal power series
F@=co+2) cd, <1, Fa@=-co-2) c,x™" kI>1, (3.6)
n=1 n=1

with ¢y =80 and c_1 = c] = Soa1, such that

F(x)- 228 = [2ﬁoan+l [ (o= 1)]z”+1 +0(z?), nx1,

r=1
n

Foo(2) - An(@) _ —[2/305;1 (I ? - 1)]z‘" +0(7™Y), nz1,

Bon(z) 1
Aon+1(2) ar 0 et
F(Z)_Bz,,+1(z):[2ﬂ°a”lg(|a’|2_1))z +0("!). nx1, (3.7)

A2n+1(2) _ . 2 —(n+1) —(n+2)
Foo(@‘m——[zﬁoanﬂl:[(WA —1)]Z * +0(z * ), n>1.
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That is, (3-I) corresponds to the formal power series expansions F and F. Using
the reciprocal properties (3.4)-(3-3), we also conclude that these formal power series

expansions are such that
Cc_,=c¢Cy, nx=1. (3.8)
n

n
If we write By,41(z) = Z by 7" and Agpi1(z) = Zawz’, then from (3.7),
r=0 r=0

n

F(2) i bn,rzr - Z an,rZr = 7,,2” + O(Zn+1) , n>1,
r=0

r=0
n n
- — -n-2
Foo(Z)an,rZr H—Zan,rzr n:O(Z n )’ n> 1’
r=0 r=0

n
where y,, = (=1)"28p l_l(larl2 —1). This leads to two systems of n + 1 linear equations

r=1
and n + 1 unknowns as follows

Aib=a+c¢, A,b=-a,

T T T
where a = [@no,an1s-.sanp-1,ann]" . b= [bn,07 bn,h cee abn,n—lsbn,n] ,¢=1[0,0,...,0,7,]",

co 0 0 0] [co 2¢1 -+ 2¢po1 2ch |
2c_4 co ‘e 0 0 0 co -+ 242 2cn-1
Al = s A= : b
20 541 2C_pi2 c+ € 0 o o0 - co 2cq
| 2c.n 2¢-p41 0 2¢-1 oo o o .. 0 co |

or, equivalently, the linear system

o 1 Cnm1 Cn || bno 0
C-1 ] o Cp=2 Cp—1 bn,l 0
1
_1 (3.9)
2
Cn+l C—pt2 o C1 bn,nfl 0
| C-n Cop+l = C-1 co [L bn,n ] | Vn ]
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3. ON SPECIAL CLASSES OF SZEGO POLYNOMIALS

Applying Cramer’s rule for the coeflicient b, , = 1 we get
n
detTo=co =Py, detT, = [(—1)”ﬁ0 l_[(lozrl2 - 1)} detT,_;, n=>1.
r=1

Therefore,

detTn=((—1)"ﬁo (I, ? —1 {( " 1/30 |ar|2—1)]detTn_1=...,

n—1 1
[( ) Bo |a,|2— ) {( ] | |6¥r|2—1)]---[(—1)ﬁ01—[(|ar|2—1)[30],
r=1
= (-1 )”“’“”2/33” ﬂ[ﬁ (a1 ]

r=

Hence, if By > 0, then

n m
detTo =By >0, (=1)""™D/2detT, = g1+ ﬂ[ﬂ(mrﬁ—l)} >0, n>1.

m=1Lr=1

Since (—1)D/2 = (—)L+D/2]if we look at the Hankel determinants

Cn  Cop+l =+ €0
Cp+l C—p+2 -+ C]
©) _ (=n) "
detH1 = ¢, detHn+1— : : e
CO Cl e cn

which can be obtained by a rearrangement of rows of the Toeplitz determinants detT,,
then we have
detH >0, n>0. (3.10)

Applying Cramer’s rule in (3.9) for the coefficient b, = (—1)"@,, we obtain

cl oo cn C—l oo Cn_2
1 co o Cp—1 1 cp -t Cp-3
a =
" detT, detT,_;
Cn+2 C1 Cop 0 C-



The above determinant expression follows by considering the transpose and then using

(3:8). Hence, through an interchanging of rows in the determinants,
detH™? = detHS™ = a,, detHS"™™D, 0> 1. @3.11)
Since |a@,| > 1, this means

[detH ™+ > detH "™V >0, n>1.

= |detH§l_”)

Now, with respect to the formal power series expansions F and Fo, in (3.6), we
S
define the linear functional £ on A. If [, 4(z) = Z An?" A €Cand —c0 <7 < 5 < 00,

m=r

then

5
(L1.5) = Z/lmcm.
m=r

Therefore, from (3.9), we have for the monic polynomials @, = By, 1,
) my 1 1
(P,(2),2") p = Eynén,m, 0<m<n, n>1.

Also, from (3.2)) and (3.4)-(3.3),
Dp(2) = 2@y 1 () + (=)', ®;,_;(z), n>1,

with ®g =1, ®;(z) = z— . Based on these facts, we refer to {B2,,+1},>0 as the sequence

of Szeg6 polynomials generated by the Perron-Carathéodory continued fraction (3-T).

3.1.2 Szegé polynomials from series expansions

Under the conditions (3.8) and (3.10), £ is referred to as an sq-definite moment
functional, meaning ’special quasi-definite moment functional’. When the moments

are also real, the name rsq-definite moment functional is used.

The sequence of polynomials {®,},( is defined by @y = 1, and ®,, a monic poly-
nomial of degree n orthogonal with respect to the sq-definite linear functional £. Then,

with the condition (3.10), these polynomials always exist. In fact, we can easily obtain
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3. ON SPECIAL CLASSES OF SZEGO POLYNOMIALS

an analog result to (2.6),

(€] 1 o Cp—l Cn
| C-1 o tt Cp2 Cp-1
D,(z) = ——| : : , n>1. (3.12)
" detT,_;| - : :
Cn+tl C—p+2 = €0 1
1 z . Zn—l Zn
Moreover,
detT,

(Dn(2),2") ;= (D) (2),2 m<n, n>1l. (3.13)

n—m) —
L det Tn—l n,ms

The information on (®;(z),z"~") , follows from (3-8), and with this symmetric prop-
erty we have
(s @,y =" @) s Ls €A (3.14)

We call {®,},>o the sequence of Szegd polynomials associated with the sq-definite

moment functional L.

Theorem 3.1.1. Let @, = (=1)"®,(0), n > 1, where {®,},~¢ is the sequence of Szegd
polynomials associated with the sq-definite moment functional L. Then the following

statements hold:
i) The polynomials {®,},> satisfy the recurrence relations

D) = (=)' @pz®p 1 () + @) (), n21,
D, (2) = (-1, @} )~ (leu* ~ 1) 2@y 1), n> 1.

i) lag|>1,n=1

iii) If we set Byn(2) = (=1)"®}(2), Ban+1(z) = ©u(2), n 20, then (B}, is the se-
quence of the denominator polynomials of (3.1).

Proof. Set
A(Z) = 0, (2) = 2@, 1(2) - D, _1(2), n>1,

where @, = —<¢>2_1(Z),Zn> ’ / <(I>n_1(z),z"_1> = We consider A as a polynomial of de-
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gree n, and we will show that it is identically zero. Clearly,

(A,2"), =0, 1<m<n. (3.15)
n—1
Since A(0) = 0, we can write A*(z) = Zan,kd)k(z), and hence
k=0
n—1
AR = ) ).
k=0

Using here the results of (3:15) for m = n, m =n—1 until m = 1 and noting at each stage
that (£, ®;_,.» # 0, we successively obtain that ap = 0, a; = 0 until a,—; = 0. Hence,
A =0 and thus

D, (2) = @y 2Pp-1(2) + D, (2).

Comparing the coefficients of 7!, we obtain @, = ©,(0), thus the first of the recurrence

relations follows.

Now, to prove the second recurrence relation, we set
A(2) = Dy(2) = (= 1)@y ®p(2) + 2 @p-1(2), n21

with @, = — (@n(z),z”)L/<<Dn_1(z),z"71 >£. Hence,

Since A(0) = 0, we can follow the same procedure as above and we get A = 0. Thus,
D,(2) = (_l)na'nd);k,(z) =y z2Pp-1(2).

Comparing the coefficients of 7, we obtain «,, = |a,|? 1, thus the second of the recur-
rence relations is deduced.

Since (2.277)), we obtain from the above recurrence relation,

detT,
detT,_;

= (Dy(2).2") £ = (D@ (O} 2" g = (janl = 1) (@1 (0, 27)

detT, -

2 n—1

= —(laaP-1)—l a1
(|a, | )detTn_z "
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3. ON SPECIAL CLASSES OF SZEGO POLYNOMIALS

Thus,

detT, detT,_
1= -T2 s
detT; _,

By convention, detT_; = 1. We can easily verify that to get (3.10) is sufficient to
establish that |cxn|2 —1>0,n>1, and with this, ii).
To verify iii), let notice that by setting B,(2) = (—1)"®}(2), Ban+1(2) = ©un(2),

n > 0, we obtain from i),

By (2) = @nzBoy-1(2) = Bon—2(2), n2>1

B2u+1(2) = @ Bon(2) — (I = 1)2Bop-1(2), n>1,
with By = B; = 1. Hence, from the theory of continued fractions the result follows. O
Since a,, = (=1)"®,(0), from we obtain, such as in (3.11)),

_detH™™  detH["
detHS™D  detH™D’

ay, n>1. (3.16)
Since a, # 0, from i) of the above theorem, the following recurrence relation always

holds,
Du41(2) = 2= Bt 1) Pn(2) = §u412Pp-1(2), n 21, (3.17)
04
where @g = 1, ©1(z) = z— 1, B1 = @1, Sn+1 = PBu+1 (|a'n|2— 1) and 8,41 = ;H ,n>1.

n

3.1.3 Polynomials of second kind

Let {€,},5¢ be the polynomials of the second kind of {®,},5. It is easily verified

that Q,, is a polynomial of exact degree n. More precisely,
Qu(2) = —co (" +...+ (=1 ).

Theorem 3.1.2. Let {®,},q be the Szegd polynomials associated with the sq-definite
moment functional L. Then, the polynomials of second kind Q,, satisfy:

Z+y

k
) Qn(Z)=<£,—(Z—k(l)n(y)—d)n(z))>, O<k<n—1. n>1.
I=y\y

k
ii) —Q;;(z)=<L,ﬂ(z—k®;(y)—®;(z))>, 1<k<n, n>1.
Z=y\y
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iii) _QZ(Z) =(-1 )nanZQn—l (@) - QZ—I (),
Qu(2) = (1)@, Q5(2) ~ (Jnl = 1)2Q 1), n2 1.

iv) Forn >0, if we set A,(z) = (—1)””(2;"1(2), A2p41(2) = Qu(2), then {A,),50 is the
sequence of numerator polynomials of (B.1), with Bo = co and a;,, = (—1)"®,(0),
n> 1

Proof. The proof of the results in this theorem is the same as in [99]. O

From the above theorem, it also follows that the polynomials {Q,},-o satisfy the

three term recurrence relation

Qui1(2) = (Z_,BnJrl)Qn(Z) —6n1282-1(), n>1, (3.18)

with Ry = —co and Q;(z) = —co(z+ @1). The values of ¢, and 3, are as in (3.17).

3.1.4 Para-orthogonal polynomials

For w € C, we consider the sequence of polynomials {®,(w;-)},>0 and {Q,(w;)}x>0
given by @p(w;-) =1, Qo(w;-) = —cop, and

D, (w;2) = Dy (2) —wzP,-1(z), Quw;z) =Q(2) —wzQ,-1(z), n=>1.
Obviously, @,(0;z) = ®,(z) and for any w,
D, (w;0)=0,0)=(-1)"a,#0, n>1.
Theorem 3.1.3. Let @, = (=1)"®,(0), n > 1, where {®D,},5¢ is the sequence of Szegd

polynomials associated with the sq-definite moment functional L. Then, the following

hold:

i) (Dp(w;2),2") =0, 1<m<n-1

+ k
i) Q,,(w;z)z<L,%(Z—k®n(w;y)—d)n(w;z))>, l<k<n-1, nz2
z=y\y
. +y (. .
iii)y —Q,(w;2) = L,—y O y) - (w;2)|), 1<k<n-1, nz2
2=y \y
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3. ON SPECIAL CLASSES OF SZEGO POLYNOMIALS

Proof. The proof of i) is immediate. To prove ii), we can write using i) of Theorem

B.I2
Qu(w;7) = Qy(2) — w1 (2), n=2,
k
- <£, S (Z—kcbn(y) - cbn<z>)>
z=y\y
k—1
—wz<£,H—y(z—_CDn_l(y)—CDn_l(z)», 1<k<n-1.
2=y k!

This leads us to the required result. Similarly, iii) follows from ii) of Theorem 3.1.2]
O

For convenience, we write 5,,(w;z) = En(z) —515,,_1(@ and ﬁn(w;z) = E(z) -

Dzl_en_l(z), n > 1. Hence, observe that
D} (w32) = 7' D3 1/2) = 'S w(w; 1/2) = Di(x) —@D’_ (), n>1.
From the recurrence relations for @, in Theorem [3.1.1]
D,(1;2) = (=)' @@ (0:2),  Dp(—leal +1;2) = (1)@, @(0:2), n>1. (3.19)

Theorem 3.1.4. Let o), = (—1)"®,(0), n > 1, where {®,},5 are the Szegd polynomials

l—w-— 2
associated with the sq-definite moment functional L. If v = ;u—la,,l, then
-w
N e 1-v
i) On(v;z) ="Q,(v;1/2) = Chra, Op(w;z), n>1;
1-v

ii) Q(vi2) = 2'Ru(v; 1/2) = Qw;z), n=1;

=Dlay,
1-v
(=Dan

d;(viz)

iii) n?" 0, (v;1/2) - 2" P (v 1/2) =

O (w;z), n>1.
In particular, if w, =1-¢&a,, with |é| =1, then

V) Oh(wn32) = " Op(w; 1/2) = (~1)"EQy(wpi2), n>1;

V) Qp(wni2) = 2" Ru(wns 1/2) = (1" €Qu(wni2), n> 1

vi) nZ" ' @p(wns 1/2) = 2" 20w 1/2) = (= 1)"EQ)(wn32),  n> 1.

d®,,(w;7)

_ d®,(w;z2)
dz B '

Here, (/f;l(w;z) = )
Z

and @) (w;z)
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Proof. Since w and v are different from 1, the proof of i) follows from the relations in
(B-19). i), especially when n > 2, follows from Theorem [3.1.3] iii) is obtained from i)
by taking derivatives. To obtain the remaining parts, we let w = v = w,, and this gives

lwp, — 1|2 = |a'n|2' o

Notice that we can also write

2 =
B0 2) = Du(1 — ETn:2) = "TQ'T&;‘ (@4(2) + 7). (3.20)

1-
where 7= (—1)”? £

ay f— @y
sical Szeg6 polynomials [99], we refer to the polynomials ®,(z) +7®; (z), when |7| =1,

. Again, following the notation used in the case of the clas-

as the para-orthogonal polynomial of degree n associated with {®,},5¢. Since |7] =1,
whenever |£| = 1, the polynomials ®,(w,;-) are hence para-orthogonal polynomials

multiplied by constant factors.

From i) of Theorem [3.1.3] we have forn > 1,

O( 11 , w=0,
Zn+
Q(w;z) ., _ Qu(w2) _ 1 B
F(Z)—m =0(7"), Fw(2) D,(0:2) = O(Zln_l), w=1, (3.21)
O(Z_")’ w#1{0,1}.

Let consider the sequence of polynomials {le)(w; }ns1 and {)(5,2)((1); M1,

X D(@:2) = Qp(@; )Py 1(2) = Q1 @D Pp(w;2), n>1,
P (@:2) = VY(w;2)Dp1(2) — O, (D DPp(ws2), n> 1.

From the recurrence relations (3.17) and (3:18),

X D(@:2) = Q@)D 1(2) = Q1 QD (2),
= —616n-122(Q-2(D)Pp-3(2) + Qu3(D)Dp-2(2)) = ...
= G-t - - 63627 1 (=Q0(2) D1 (2) + Q1 (2)D0(2))

=-2coa162 67", n>2, (3.22)
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3. ON SPECIAL CLASSES OF SZEGO POLYNOMIALS

XD (@:2) = anz (P 2P, (2) = ), H(Pp-1(2)) = 6aPr2 ()P, 1(2) + (1 ~W)D]_; (2)
= Gun12° (V) ()P-3(2) = D}, _3(DPy2(2) ~ 6uPu2(D)Py-1 (2)+
+ (1= )P, (2) +6nz2®;_(2) = SuSn-12Pn-2(D)Py3(2)
= Gusua12247(0:2) + (1 = ) D2 (2) + o1 D25(2), n> 2, (3.23)

with)((ll)(w;z) = —-2cpaj, al/\/f)z)(w;z) =0, and)((lz)(w;z) =1-w.
The proof of the following result follows to the same method of the proof given in

[52].

Theorem 3.1.5. Let o, = (—=1)"®,(0), n > 1, where {®,},,5o are the Szegd polynomials
associated with the sq-definite moment functional L. Then, for w # 1, the zeros of

@, (w;-) are the eigenvalues of the following lower Hessenberg matrix,

m ¢ 0 - 0 0
m m s3 - 0 0

nom oMo Su-l 0 I
oo gn

m mn2 13 Mn-1 (1—0.))
n

momom M o]

where 1 = a1, 1, = &, @p_1, and §p = @, @1 —@p/ap_1, ¥ =2,...,1.

Proof. From (3.17) and the definition of {®,(w,)},>0, We have

z-B1 - 0 0 0
-z =2 -3 - 0 0
0 -z z-B3 0 0
Qy(wiz)=| . ) ) ) ) ;
0 0 0 o Z2=Bum1 —Sn
0 0 0 -z (1 -w)z—PBn

or, equivalently, ®,(w;z) = det(zA, —B,,), where A, and B, are matrices of order n
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given by

1 0 0 0 B 2 O 0
-1 1 0 0 0 B ¢3 0
A,=|0 -1 1 0|, B,={0 0 ps 0
0 0 0 l-w 0 0 0 Bn

Since A,, is non-singular, @, (w;z) = detA, det (zln - A;‘Bn) = (1 —w)detG,,, where

[z-p1 S 0 0 0
B z—(s2+p2) a3 0 0
G,=| : : : : :
Bi 2+ B2 g3 +P3 0 2—(Sn-1+Bu-1) Sn
B S2tfy B i tBer 20 -0 = (GatBa)
) 1-w 1-w l-w 1-w
Thus, the result follows. m]

3.2 Polynomials with real zeros

Let £ be an rsq-definite moment functional. That is, all the moments {c,},c7 are
real and the properties (3.8) and (3.10) hold. Clearly, the associated Szeg8 polynomials
{®y},0 are all real and, in particular, we can state the following theorem.

Theorem 3.2.1. Let @, = (—1)"®,(0), n > 1, where {®,},5o are the Szegd polynomials
associated with the rsq-definite moment functional L. Then, the following statements

are equivalent.
i) detHS™ >0, n>1.
i) a,>1, n>1

iit) The zeros of the polynomials ®,(w;-), n > 1, when w < 1, are simple and lie on

the positive half side of the real line.

Proof. If L is an rsq-definite moment functional then their moments are real and
detH™" > 0, n > 1. Hence, from (3.16), detH,™ >0, n> 1, and @, > 1, n.> 1.
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3. ON SPECIAL CLASSES OF SZEGO POLYNOMIALS

On the other hand, if @, > 1, n > 1, then detHff”) >0, n > 1, follows from (3.11).
Therefore i) and i) are equivalent.

We now prove the equivalence of ii) and iii). Suppose that all zeros of @, (w;-),
n > 1, are positive. Since the leading coefficient 1 — w of ®,(w;-) is positive, a, =
(—1)'"®,(w;0) >0, n > 1. Combining this with the fact that £ is an rsq-definite moment
functional, ii) follows. On the other hand, if @, > 1, n > 1, then, from (3.23) and by
induction, we can prove that Xg,z)(w;z) >0,n>1, for w < 1 and for any real values of
z. Using this with the additional conditions (—1)"®,(0) > 0, n > 1, we easily establish
that the zeros of ®,(w;-) are positive and simple (and, even more, interlace with the
zeros of ®@,_1). This proves the equivalence of ii) and iii). Consequently, our theorem
is proved. O

The recurrence relation (3.17), which corresponds to the conditions of the above
theorem, has been studied, for instance, in [161]].

Remark 3.2.1. One can also establish in an analog way (or using the polynomials
Y. (2) = (—1)'"®,(—2), n > 1) the equivalence of the statements.
i) (~D)"detHS™” >0 n>1.

i) (=D)'ap>1 n>1.

iii) The zeros of the polynomials ®,(w;-), n > 1, when w < 1, are simple and lie on

the negative half side of the real line.

In fact, when (-1)"a, > 1, n > 1, the polynomials {®,},-( are the denominator

polynomials of a positive continued fraction,

Az |, bz |, Az
‘1+mz ‘1+n2z ‘1+n3z

A,>0, n,>0, n=0.

This kind of continued fractions are known as 7 -fractions. We can thus also use some
known results on the denominator polynomials of a positive 7 -fraction given in [101].
From now on we restrict our analysis to the case when a,, > 1, n > 1, and we refer to
the associated moment functional as an rsq-definite moment functional on (0, o).

The results given from here can be easily extended to the case when (—1)"a, > 1,
n > 1, that is, when the moment functional is an rsq-definite moment functional on
(—0,0).
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Corollary 3.2.1. Let {®,},( be the sequence of Szegd polynomials associated with an
rsq-definite moment functional L on (0,00). Then, for the zeros z,(w) of ®n(w;-), we

have
i 0< Zn,l(w) < Zn,Z(w) <...< Zn,n—l(w) < Zn,n(w): w<l
i) Zn,l(w) <0< Zn,Z(w) <...< Zn,n—l(w) < Zn,n(w)s w>1.

Proof. All we need to verify is that when w > 1, the zeros of @, (w;-) are still real and
simple, and that one of the zeros is of the opposite sign. We verify this using the monic
polynomial (1 —w)~'®,(w;-). Substituting z =0 and z = 20.r(0), r=1,2,...,n, in the

definition of ®,(w;-),
n n
[ [anrt@) = =) [ J2nr0
r=1 r=1

and
_ w
(1= ) @y (@320,0)) = —— 20Oy @ r(0), 7=1.2,..m.

Since the zeros of ®,(0;-) = @, are positive, simple and interlace with the zeros of
®,,_1, we can conclude that the zeros of ®@,(w;-) interlace with the zeros of ®@,, proving
that they are real and simple. Moreover, at the most one zero of ®@,(w;-) can have

negative sign, which certainly happens if (1 — w) is negative. O
We can now state the following results on the quadrature rules associated with the

polynomials {®,,(w;-)},>0-

Theorem 3.2.2. Let w < 1 and let {®,},5o be the Szegd polynomials associated with

an rsq-definite moment functional L on (0, 00). Then, the following statements hold.

Q,(w;2) c Znr(w)+2z Q, (‘U; Zn r(w))
= - Anr s Anr = - P
D, (w;2) o Zn,r(w) -z @) ' @) _2Zn,r(w)q);1 (w;zn,r(w))

)

i) Aa(@) >0, > dpw)=co, 1<r<n
r=1

iii) Forany n> 1, if [ (z) = Zj;k ajzj is a Laurent polynomial such that —n+1 <

k < s <n—1, then the quadrature rule holds

<-£, lk,s) = Z An,r(w)lk,s (Zn,r(a))) .
r=1
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3. ON SPECIAL CLASSES OF SZEGO POLYNOMIALS

Proof. To prove i), first observe that the zeros of ®,(w;-) are simple and lie within

(0,0). Hence, a partial fraction decomposition of the given type verifies i).

Notice that 4, ,(w) can be written as

—Q,(w; Zn,r(w))q)n—l (Z)/Zn,r(w) +Q, (Zn,r(w))q)n(w; Zn,r(w))
20),(03 20, (@)D 1 (2) = D _ (DD (@3 20, ()

_ _ngl) (“);Zn,r(w)) /Zn,r(a))

2/\/512) (‘U;Zn,r(w))
co(arl* = D(aal* = 1)... (lan-1* = D23 (w)

X2 (0320, (@))

/In,r(w) =

>

where y\(w:-) and x{?(w;-) are as in (3:22) and (3.23). Since a, > 1 for n > 1, one
can easily verify that the numerator and denominator above are positive and, hence ii)
is established.

When n = 1, iii) clearly follows from ii). To obtain iii) when n > 2, we note that

l~k, s = y”_llk,s(y) € IPy,—». Hence, the interpolation on the zeros of @, (w;-) gives

~ C D, (w;y) ~
I s(y) = ; li,s (Zn,r(W)
' ; (y - Zn,r(w)) @;, (w; Zn,r(w)) ' ( " )
+7/;,S (Zn,l (w),... »Zn,n(w);y) D, (w;y).
Here, we use the divided difference Iy (2, 1(), . ., Znn(w);y) € P,_», and therefore,

(s Gn1 (@) Zan (@) P(@3 ),y ) = 0.

This means,
n —_—
<£, lk,s) = (l-k,s,y_"“>£ = Z /ln,r(w)(zn,r(w))n_llk,s (Zn,r(w)) >
r=1

where

(@) = < Dnli) y”‘1>
L

(y - Zn,r(a))) (D}"l (w; Zn,r(w)) ’

Taking into account

@ .
Qn(w;z>+2z"<M,y‘"“> =®n(w;z)<£,y—”>,
y—=z L y—=z
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we get the statement of our theorem. O

Moreover, using the results given in Theorem [3.1.4]and Theorem [3.2.2] the follow-

1-w— o,
ing results can also be easily verified. If w <1 and v = ;U—Iall, then for n > 1,
-w

Zn,r(w) = 1/Zn,n—r+1(v)’ /ln,r(w) = /ln,n—r+1(V)’ r=12,...,n. (3.24)

The results in Theorem [3.2.2] allow one to define the step function z,(w;.) by

0, 0<y<zm1(w),

s
Un(w;y) = Z/ln,r(w), Zn,s(w) <y=< Zn,s+1(w),

r=1

0, Zn,n(w) <y<oo.

Then, from i) of Theorem [3.2.2) we get

Qu(w; 0
Qp(wiz) Jo y-z

and hence, from (3:21), forn > 1,
Cs = f Yduy(wyy), -n+1<s<n-1.
0

Helly’s selection principle [46] states that a sequence of functions which is locally
of bounded total variation has a convergent subsequence. Hence, using the Helly selec-
tion theorem, there exists a subsequence {n;} such that {¢,, (w)} converges to a bounded
non-decreasing function u defined on the positive half side of the real line. The function

( is such that it has infinitely many points of increase in (0, co) and

Qp (w;z . ©y+ 4
L, AC I, f Y (i) = f T2 00, 0 <are(z) < 2x.
k—oo Oy (W52) k- Jy y—2z 0o V-2

The convergence is also uniform for compact subsets within 0 < arg(z) < 2. The points

of increase (support) of i lie entirely on the positive half side of the real line. Moreover,

e = f Viduy), nez, (3.25)
0
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3. ON SPECIAL CLASSES OF SZEGO POLYNOMIALS

and

detT,
detT,_; ™™

0<m<n, n>1.

(3.26)

fo y "0, ()du(y) = j; y D (v)duly) =

Assuming L to be an rsq-definite moment functional on (0, c0), we now consider
the sequence of polynomials {®,(w;)},>0, where @, = 1 —a,,. The zeros of @, (w,;")
are on the positive half side of the real line. Using the results given in Theorem [3.1.4]
we can say more about these zeros and also the quadrature weights A, ,(w,) which
follow from Theorem

Zn,r(an) = I/Zﬂ,ﬂ*l’+l (an)’ An,r(an) = /lrz,rzfr+1 (an), r=12,...,n, n>1.
This means that the distribution given by the step function w,(w,;-) satisfies
dﬂn(z’;n;y) = _d,un(/";n; 1/y), y€(0,00).

Hence, applying the Helly selection theorem we can state the following result.

Theorem 3.2.3. Let a, = (—1)"®,(0), where {®,},5o are the Szegd polynomials asso-
ciated with L, which is an rsq-definite moment functional on (0, 00). Then there exists a

bounded non-decreasing function y, with all its points of increase on (0,00), such that

du(y) = —du(1/y). Moreover, (3.25) and (3:26) hold.

Let 0 <a < b < oco. We say that the strong positive measure v, defined on (a,b),
belongs to the symmetric class S3[£,8,b] if

dvy) __dvE/y)
¥

y€[a,b],

where 0 < 8 < b, a = 82/b and 2¢ € Z. The classification of the symmetry is according
to the value of £ [19;48;[161]]. Notice that our orthogonality measure y is classified as
the class S3(0,1,b), 1 <b < co.

To be able to talk about Szegd polynomials on a positive interval [a, b], it is impor-
tant that the measure belongs to the class S3 (0, 1,b). Otherwise, the monic polynomials
{®,},50 defined on [a,b] by (3.26) do not satisfy i) of Theorem [3.1.1] For example, if
the measure belongs to the class 83(1/2,1,b), then for the monic polynomials {®,},
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defined by (3.26) we would have, instead of i in Theorem [3.1.1]
Dy(2) = an)n(z) =z0p-1(2) + an)n—l(z) = @72®y-2(2), n=2,

where 8, = ®,(0) and &, > 0.

We now look at some properties of the sequences of polynomials {®,(w;)}n>0
and {®,,(0,; )}ns0, Where w, = 1 — @, as above, and &, = 1 + a,, when L is an rsq-
definite moment functional on (0,c0). From Theorem [3.1.4] and Corollary 3.2.1] the

only negative zero of @, (w,;-) is —1.

In (3:20), letting & = @, /|a,| and & = —ay, /|a,|, we have for the monic polynomials
q)n(an;z)/lan| and —@,(wp;2)/ |l

(Dn(z’;n;Z) _ D,(2) +an);;(z) Dy (0n32) _ D,(2) _Tn(DZ(Z)

= = n>1
|, 1+ |a,| ’ —|ay,l 1 —a,l ’ ’
where 7, = (—1)"@,/|ay,|. Hence, from i) of Theorem[3.1.1] we obtain
D11 (Wn+152) _( _ lan| @1 )(Dn(z’)\n;z)
|41l @, lapl |av,|
ltn] @i Q) 1(2) + 71 D), (2)
-— (lanl = D(@p-11+ 1z - ,
@y lap] 1 +|au-1l
D1 1(Dn+152) _( _ lan| @1 )(Dn(d)n;z)
—lapi1] @, lapl —la,|
lan| anst D, 1(2) _?n—lq)*_l(z)
-— (lanl + D(l@p-11- Dz & ,
@y lap] 1 —lan-1l
— n—1 a% [l .
where 7,1 = (1) W . Consequently, these lead to recurrence relations for
ap|” Ap+l
D, (Wn;2) -0, (Op32) . —
1 and n(@n ), since T,_; = Tp_; Whena, > 1, n > 1.
|, |y

Theorem 3.2.4. Let a, = (—1)"®,(0), where {®,},5o are the Szegd polynomials asso-

ciated with L, which is an rsq-definite moment functional on (0,0). Then,

(Dn+l(an+l;z) _ (Dn("’;n;z) _ (Dn—l(an—l;z)

(z—1) (@ = (-1 + Nz——"——, n21,
A+ n @n-1
(D” Vn ; " ; — vn— 5
+1(On+132) = (z-1) D, (p32) —(ap+ D(@p-1 — I)ZM’ n>1,
—p+1 —%n Tn-1
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3. ON SPECIAL CLASSES OF SZEGO POLYNOMIALS

1@ Do (@o; Dy (wr; Do (wo;
iy D@D | ®@0i0) | @) Do)
@1 @o -] —Q

0.

Let £ be an rsq-definite moment functional on (0, ) defined as in (3:8)-(3.10) and
satisfying the conditions of Theorem [3.2.1] If ®, denotes the n-th Szeg6 polynomial
associated with this moment functional, then the zeros z,, of @, are positive. We

arrange them in an increasing order
0< nl <Zp2 < <Znn-1<Znn-

In what follows we denote by z;, . and k,,,, the zeros of ®; and Kj,(«,-), respectively.
Interesting inequalities between zeros of these polynomials follow from Theorem[3.171]
and from (2.33). Our results read as follows.

Theorem 3.2.5. The zeros of @, and @}, interlace. More precisely,
0<25) <Znl <Zn11 <+ <2yt <Znn-l <Zn-ln-1 <Zny < Znn-
Proof. By Theorem[3.1.T} we have
0, (2) = (=1 @) = (l@al® = Dz®p-1(2), 2 1.
Since the zeros of @,, and ®,,_; interlace, we obtain from the above relation
sgn ((=1)"®},(zn,r)) = sgn(Pn-1(zn,s))

and
sgn ((Dn(znf 1 ,r)) =5gn ((—1)”([);(an 1 ,r)) .

Hence there exist zfl,r, r=1,...,n, zeros of @}, such that
* * *
0< 1 <Znl1<Zp-11<--< Znn-1 <Znn-1 <Zn-1,n-1 <Zpp < Znn,

thus proving the theorem. O

Theorem 3.2.6. If « <0, then the zeros of ©,, and K,(«,-) satisfy the interlacing prop-

erly
% % %
0< Zn,l <Zp1< kn—l,l <. < Zn,n—l <Znn-1< kn—l,n—l < Zn,n <Znn-
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Proof. By (2.33)
Ky (1 - az)Ky-1(z,@) = @y (@)D}, (2) = Dp(@)Dp(2).

Since (=1)""*1/2 det T,, > 0 and (2.27), we have sgn(k,,) = (—1)". We also have sgn(®,(a)) =
(=1)" and @} (a) > 0. On the other hand, by Theorem[3.2.5] @, and @} have interlacing
zeros. Therefore, from the above relation

(-1 )nsgn (Kn—l(zn,r’ (Z)) =sgn ((D:;(Z}’L,F)) , 1<r<n,
and
sgn (K,,_l(zfl’r,cx)) = —sgn ((Dn(zf,,r)), l<r<n.

Hence, there exist zeros k,—1,, r=1,...,n—1, of K,_1(z, @), satisfying 0 < z;‘l 1 <Zna <

kn—l,l <--< Z:;,n—l <Zpn-1< kn—l,n—l < Z:,n <Znn- O

3.2.1 Associated moment problem

The necessary and sufficient conditions for the existence of a solution of the strong

Stieltjes moment problem introduced in Chapter [I) are the following
detHS™ >0, detHS"™V>0, n>0.
From the Hamburger moment problem, these conditions become

detH>" >0, detH)>"*">0, n>0.
n n+1

The objective of this section is to solve the moment problem (I.TT) formulated in
the introduction. We can easily verify that the modified moments associated with the

Chebyshev polynomials can be rewritten as follows

0

Cp = f T, (cosh 6) du(cosh 6) = —%f
0

—00

1 (oe]
" dia(cosh ) + Ef " dp(cosh 6).
0

6

Substituting x = ¢”, we obtain

1 (! x+x1 1 ™ x+x71 <
cn——zfof’dﬁ( > )+§f1 X"dﬁ( 2 )—foxdu(X),
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where u is a non-decreasing distribution function supported on (0, o)

x+x!

2 >

du 0<x<1;

1
2

), I <x<oo.

Hence, our moment problem can be stated as follows. Given a sequence of real num-
bers {c,},>0 find necessary and sufficient conditions for the existence of a measure u
supported on (0, ), with the symmetry du(x) = —du(1/x), such that,

Cp = f X' du(x), n=0. (3.27)
0

Remark 3.2.2. Consider the following moment problem: Given a sequence {cp},>0 of
real numbers find necessary and sufficient conditions for the existence of a measure &

supported on the whole real line, with the symmetry du(0) = —du(—0), such that

U = f di), n>0.

0

Notice that with the substitution t = ¢ and x = cosh(0) this moment problem is equiva-
lent to the moment problem (3.27).

Theorem 3.2.7. The moment problem associated with the Chebyshev polynomials of

the first kind has at least one solution if and only if ¢, = c_,, and

detH >0, detH """ >0, n>0.

n+1

Proof. The existence of the measure i follows immediately from Theorem[3.2.3] Con-

versely, let u be a measure supported on (0, ). Given the following quadratic form
n n
J(n,D) = Z Zﬂi+j+lvivj, (20, n>1,
i=—n j=—n

it is easily verified that
n

J(n,D) = an Zn: (fom t"+"'+ld/1(x))v,~vj = fo‘w tl( Z xivi)zdu(x) > 0.

i=—n j=-n i=—n
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Since J(n,l) is positive definite, we can establish that

C-2n+l C2n+1+l C2n+k+l
(<2n+]) _ C2n+1+1 C-2n+2+1 C2n+k+1+1
dtHk+l = . . . . >0, k=0,1,2,...,2n.
C2n+k+l  C-2n+k+1+l C2n+2k+l

Thus, for/=0(/=1)withk=2nand k=2n—-1(k=2n-1and k =2n-2), the

result follows. a

Theorem 3.2.8. Let a, = (—1)"®,(0), where {®,},>0 are the Szegd polynomials or-
thogonal with respect to the symmetric measure u. The moment problem associated

with the Chebyshev polynomials of the first kind is determinate if and only if

(o) [ee)
Zen=oo, or Zdnzoo,
n=1

n=1

(3.28)

1 1
where ey = —, dj = —,
coay Ho
n 2
d 1 aZr—l 2r 2~
2n - a,_ 2 13
o\~ o, )a
n 2 2 o?
ery = 1 H[( @,y )(a2r 2~ )]
n = 2 2
@2n-15 5\ @,y — R
n 2
d 1 ay,_—1 aZr
2n+1 — @ 2 2 1 ’
el \U @y J\@,
n 2 2
sl = 1 n[(ab’—l _1)( @3,
n+l = — 5 7 .
@, \U g g, -1

Proof. From ii) of Theorem [3.1.1} and iii) of Theorem [3.1.2] we have the following
Perron-Carathéodory continued fraction,

H H @-De 1 @-
iz @

(3.29)

n(Z)
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3. ON SPECIAL CLASSES OF SZEGO POLYNOMIALS

The results in Theorem [3.2.2]allow us to define the step function u, by

0, 0<x<z1,

s
Hn(x) = Z Ay Zns <X L Zpstls

r=1

#09 Zn,n < X < OO,

where z,- are the zeros of the polynomial ®,. Then, from i) of Theorem [3.2.2}

Q(2) f"" x+z
= _d ¥ s > 17
D,(2) -z n(x), n

and -
cS:f X*duy,(x), -n+1<s<n-1, n>1,
0

from the previous consideration, we have

w (C()(Dn(_w) + Qn(—W)) B f""
2 D, (-w) -

dﬁn(x)v

xX+w

where du(x) = xdu(x). Expanding f %dﬁn (x), we can easily verify that
0 Xtw

Q,(w) |—aw—aow? ... —a_ " +O(w(”+1)),
aSn(W) ag+aw .+ au g w D +0(w™),
where

Q,(w) = (—D”% (COQa(—W) +Qu(~w)),  Dp(w) = (—=1)"D,,(—w).

From Theorem , detH](;zln”) >0,k=0,1,...,2n, [ =0,+1,£2,..., we can prove
that the Hankel determinants

ar ar+1 R |
Ar+1 ar+2 e Ar+n
detHY =| : Sl ez, (3.30)
Arin-2  Qrip-1 ...  Ar+2p-3
Ar+n-1 Ar+n Tt Ar42n-2
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satisfy the following conditions,

detH " >0, n>0,
detH ™ >0, detH,*" <0, n>1. (3.31)

Therefore, the Chebyshev moment problem can be identified as a strong Stieltjes mo-
ment problem. Then there exists a solution if (3.31) holds [101]]. Obviously, du(x) =

xdu(x) is a solution, taking into account that

ap = fw(—x)”dﬁ(x), ne’.
0

Furthermore, we have

fo Y () = 22 fo Y i) < 2210 fn Y iy (0,

x+w Dy, (W) x+w Dop1(w) x+w

where w > 0. Moreover, there also exist solutions du®(x) and du‘"(x), limits of
diiny(x) and din,+1(x), respectively, such that

f T Y 50 < f T g < f QLN
0o X+w 0o X+w 0o X+tw

If ﬁ,, /6,1 converges, then the uniqueness of the solution is proved. Hence, we need to

verify the convergence of the following Perron-Carathéodory continued fraction

Qu(z) aw ‘+ arw ‘+ asw |
Du(2)  |[wHB1 Wty | w+pSs

+-- (3.32)

where a| =1, B, = ap/a,-1, and @, = 3, (ai_l —1). Notice that (3.32)) can be expressed

as follows
Q,(2) W W W

©,(2) B ‘ el +d1w+ ‘ €2+d2w+ ‘ e3+dyw

. (3.33)

where

1 1 " (o
e = —, d1=—0, d2n:l_[( 2”), €2, = Bondon,

_ a2y
r=1

—_

d2n+l = €2n+1 :ﬁ2n+1d2n+l, n>1.

- 5 b
@2n11don
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3. ON SPECIAL CLASSES OF SZEGO POLYNOMIALS

By [101]}, the Perron-Carathéodory continued fraction (3.33)) converges uniformly
on compact subsets of {w;|arg(w)| <z} if and only if (3.28) holds, as required. i
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Chapter 4

Spectral transformations of

moment matrices

Our hero is the intrepid, yet sensitive matrix A.
Our villain is E, who keeps perturbing A.
When A is perturbed he puts on a crumpled hat: A=A+E.
— G. W. Stewart and J. -G. Sun. Matrix perturbation theory. Academic Press, New York, 1990

It is very well known that the Gram matrices of the bilinear functionals associated
with 2.1) and (2:23) in the canonical basis {z"},>0 of IP are Hankel and Toeplitz ma-
trices, respectively. The main objective of this chapter is to study the perturbation of a
fixed moment of the corresponding moment matrix. We refer to [[7} 18; [10; [145 255 26
83k 11115 1255 [147] for other contributions involving related perturbations of moment
functionals.

This chapter is divided into two parts. In the first one, given a strongly regular
Hankel matrix, and its associated sequence of moments — which defines a quasi-definite
moment linear functional M — we study the perturbation on one anti-diagonal of the
corresponding Hankel matrix. We define a linear functional M;, whose action results
in such a perturbation and we establish necessary and sufficient conditions in order to
preserve the quasi-definite character. A relation between the corresponding sequences
of orthogonal polynomials is obtained, as well as the asymptotic behavior of their zeros.

In the second one, we analyze a general linear spectral transformation of £, £;, such
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4. SPECTRAL TRANSFORMATIONS OF MOMENT MATRICES

that the corresponding Toeplitz matrix is the result of the addition of a constant in two
symmetric sub-diagonals of the initial Toeplitz matrix. We focus our attention on the
analysis of the quasi-definite character of the perturbed linear functional, as well as on
the explicit expressions of the new monic orthogonal polynomial sequence in terms of
the first one. Some illustrative examples are pointed out.

4.1 Hankel matrices

Before introducing the problem to be analyzed in this section, let us briefly discuss
one rather straightforward but interesting example where the moments are modified in
a natural way. Instead of the canonical basis of IP, let us consider the basis {1, (x -

a), (x—a)?, ...}, where a € R. Then, the new sequence of moments {v,},>0 is given by

U, = <M’ (x_a)"> = <M’Z(I;)(_])"—jan—jxj> = Z(’;)(_l)n_jan_jﬂj’ n>0.

J=0 J=0
“.1)

As a consequence, H the Hankel matrix associated with the new basis is

Ho H1+my Hn +my
M1 +my M2 +myp o MHpyl Mgy
ﬁ=[< _ i+j>] - : : :
M, (x-a) 20 ,
MHn+My  Hpyl TMpyyp o0 Wops] T M2p4

i-1 .

where mg = 0 and m; = Z(l,)(—l)i_jai_ju j- Thus, if M is a quasi-definite moment
— \J
j=1

linear functional, then the polynomials

L) U] U2 s Up
Uy (%) U3 ce Un+1
Po(x) = —— , n=0, (42
detH,,_;
Up-1 Up Un+1 c U2p—-1
1 (x—a) (x—a? - (x-a)
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constitute a sequence of monic polynomials orthogonal with respect to M, using the
new basis, where F,, (x) = P,(x). Notice that this simple change of the basis results in
a perturbation on the anti-diagonals of the original moment matrix (2.2). Namely, the
J-th anti-diagonal is perturbed by the addition of the constant m;. In the remaining of
the manuscript, we will use the basis {1, (x—a), (x— a)z, ...}, since most of the required
calculations can be performed in a most simple way. Now a natural question arises: Is
there a linear functional M; such that its action results on a perturbation of (only) the
moment v; or, equivalently, the (j+ 1)-th anti-diagonal of the corresponding Hankel
matrix H? In other words, we are interested in the properties of the functional M;

whose moments are given by

—_— Um n ;t j7
Up=Mj,(x—a)") = 4.3)

v, +m, n=j,

for some m € R.

4.1.1 Perturbation on the anti-diagonals of a Hankel matrix

In order to state our main result, we need some definitions. Given a moment linear

functional M, the usual distributional derivative DM [[135] is given by
(DM, p)==(M.p"), peP.
In particular, if j is a non-negative integer, then
(DV5(x~a), p(x) = (1) pY(a).

In the last years, modifications by means of real Dirac’s deltas have been considered
by several authors from different points of view (hypergeometric character, holonomic
equations that these polynomials satisfy, electrostatic interpretation of zeros, asymp-
totic properties, among others). In a pioneering result by Krall [111] were obtained
three new classes of polynomials orthogonal with respect to measures which are not
absolutely continuous with respect to the Lebesgue measure; the resulting polynomials
satisfy a fourth-order linear differential equation. Nevai [147] considered the addi-
tion of finitely many mass points to a positive measure supported on a bounded subset

of the real line, and studied the asymptotic behavior of the corresponding orthogonal
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4. SPECTRAL TRANSFORMATIONS OF MOMENT MATRICES

polynomials.

We begin with a simple but important remark. The moment linear functional M;

discussed in the introduction of this chapter is given by

(M;,py = (M,p)+ (- 1)/ <D<f>6<x a), p(x)y = (M, p>+]—p<f>(a) acR. (44)

It is easy to see that all the moments associated with M; are equal to the moments
{vn}ns0 of Min the basis {1, (x—a), (x— a)?, ...}, except for the j-th one, which is equal
to vj+m;. Notice that this perturbation is the simplest one that preserves the Hankel
structure of the moment matrix. We can now state the result, which establishes neces-
sary and sufficient conditions in order to the linear functional M; preserves the quasi-
definite character, and we provide the relation between the corresponding sequences of
monic orthogonal polynomials.

Theorem 4.1.1. Let M be a quasi-definite moment linear functional and {P,},s its
corresponding sequence of monic orthogonal polynomials. Then, the following state-

ments are equivalent:

i) The moment linear functional M;, defined in @.4), is quasi-definite.

i) The matrix 11 + K 1Djy1, where

(j) 0 K(j’o)(a a) K(j_l’o)(a a - K(O’O)(a a)

J K(/ 1)(a a) K(/ 11)(Cl a) K(O 1)(Cl Cl)
Dj+l=ﬁ ot K= . .
0 - ((J)) (JJ) G- 11) . (01)

K ™/(a,a) K., (aa) - K {(aa)

is non-singular, and

PP | Py(a)
) PP @

(M, Pu(j3)Pn) = (M, Py + : D@y +Kj1Djyg)” . |#0
Py(a) PY(a)

Moreover, if both M and M are quasi-definite, and {P,(j;-)}n>0 is the sequence of
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monic orthogonal polynomials with respect to M;, then

. T
KV(a.x) Pu(a)
KY- ", x) PM(a)
. n—1 -1
Pu(j;x) = Pp(x)— . D11 +Kj1Djy) . . 4.5)
K (a,x) P (a)

Proof. Suppose that M; is a quasi-definite moment linear functional. Since {P,},5 is
the sequence of monic orthogonal polynomials with respect to M, there exist constants
An0,---»Ann—1 such that

n—1

Pa(js ) = Pa(x)+ ) Aug Pr(x). (4.6)
k=0

Thus, by the orthogonality property,

r

> () dar

mj =0

! (M, P2)

Ang = , r=mink,j};, 0<k<n-1.

Substituting the above expression in {@.6), and taking the i-th derivative of P,(j;-), we
obtain

l

J

[ [ m' i—, . [ . .

P}P(j;x):Pf?(x)—T{ § (])P,(/ YGsK " (@), i=0,1,...,5 @7
T =0

Evaluating (4.7) at x = a, we have the following linear system

Pu(sa) | [ Pul@)
PG| [P

(Ij+1+Kj+1Dj+1) = .

PlGal [P @

Since M; is quasi-definite, there exists a unique sequence of monic orthogonal polyno-
mials with respect to M;. Thus, the linear system has a unique solution and therefore
the (j+1)x(j+1) matrix I;;1 +K;; 1D}, is non-singular. Furthermore, (4.7) with i =0

reduces to (@.3).

75



4. SPECTRAL TRANSFORMATIONS OF MOMENT MATRICES

On the other hand, notice that for m =0,1,...,n—1, we have

<MjsPn(j;')Pm> =(M,P,Py)

miI (i m; .
- (’ )Pff YGiaPyl@ + =L (Pl 0Pu()P| =0,
It I e
and
. T
P,fﬂ(a) P(a)
. P @ S|P @
0# (M;, Py(j;)Pn)y = (M, P;) + D@1 + K Djyp) .
Pa(a) P )
(4.8)

For the converse, let us assume that ii) holds, and define {P,(j;")}n>0 as in @-3).
Then it is straightforward to show that {P,(j;-)},>0 is the sequence of monic orthogonal
polynomials with respect to M}, and its quasi-definite character is proved. O

4.1.2 Zeros

In this subsection we assume that the linear functional M is positive definite, i.e.,
it has an associated positive measure supported on some interval / € R, and that M;
is quasi-definite. We show some properties regarding the zeros of its corresponding
sequence of monic orthogonal polynomials.

Let x1,...,x, be the zeros of P,(j;-) on I with odd multiplicity, and define Q,(x) =
(x=x1)...(x=x,). Then, P,(j;x)Q,(x)(x —a)*, where k is the smallest integer such
that k > (j+ 1)/2, is a polynomial that does not change sign on / and, furthermore, we

have

(M}, Pu(j; ) Qr()(x = @)%y = (M, P, () Qr(x)(x — a)*y # 0.

From the orthogonality of P,(j;-) with respect to M; we have

Theorem 4.1.2. For n > 2k, the polynomial P,(j;-) has at least n — 2k different zeros
with odd multiplicity on 1.

We now analyze the asymptotic behavior of the zeros of {P,(j;)},>0 when the mass

76



m; tends to infinity. Notice that,

UO “ee Uj+m] cee Ul’l
) vi+m; U2 Upsj
J J J n+j
P,(j;x) = ——— . 4.9
detH,,_ .
Up-1 Un+j-1 U2n-1
1 v (x=a)y - (x—a)"]

On the other hand, let {Rﬁ(a; >0 be the sequence of monic orthogonal polynomi-

als with respect to the linear functional M defined by
M.py = (M, (x=a)'p(x)), k=0.

Here, we assume that a is not a zero of the polynomials {P,},5( in order M to be

quasi-definite. The Hankel matrix associated with Mis

Mk Mi+k ceo Mntk
Ml+k  M2+k coo Hn+l+k
H® =
Mn+k  Hn+l+k -+ Hon+k
From [#2),
U2j+2  U2j+3 Un+j Un+j+1
U2j+3  U2j+4 Un+j+1 Un+j+2
241, 1 . ) . . ) .
Rn—j—l(a’x)_ e+ | - : " : : sn>j+1,
detHn_'j_2
Un+j  Un+j+l Up-2 U2n-1
1 (x-a) - (-2 (x—ay/

. . . . A B . . .
If the matrix in @ is block partitioned into c ol where Aisa (j+1)x(j+1)

matrix, then
A

B
c l = detDdet(A —BD'C).
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4. SPECTRAL TRANSFORMATIONS OF MOMENT MATRICES

It is clear that detD = detHflz_J;r_zz)(x— a)j+1Ri(_’;r_ll)(a;x). Moreover, BD"!Cisa (j+1)x

(j+ 1) matrix that does not depend on m, and thus

Jj=2 n—j—1

detH> ) (x—ay 'R (a5 1) 0(m))
Py(j;x) = , (4.10)

det Hff_f/.*fz)R(m b

where Q(m;) and R(m) are monic polynomials in m; of degree j+ 1. Therefore,

lim P,(j;x) = (@) RV (@5 x), 4.11)
mj—>00

and we conclude

Theorem 4.1.3. The zeros x,;(jim;), k=1,...,n, of the polynomial P,(j;-) converge
2(j+1)

to the zeros of the polynomial (x—a)j”Rn_(j 1

)(@;-) when m tends to infinity.

Observe that when m; tends to infinity the mass point a attracts j+ 1 zeros of
Pp(ji-).

A rather natural question is if x, x(j;m;), considered as functions of m;, tend to

the zeros of (x—a)j“Ri(_j(J;.i)l)

Jj =0, it was proved [61} |62]] that the zeros of the so-called Laguerre and Jacobi type

(a;x) in a monotonic way. For the particular case when

orthogonal polynomials, which are particular cases of the Uvarov spectral transforma-
tion, behave monotonically with respect to m;. Unfortunately, this phenomenon does
not occur for every positive integer j. We have performed some numerical experiments
with specific classical measures. For example, if the initial measure is the one associ-
ated with the Laguerre polynomials Lfl“), j=1, and a = 0, then the zeros x, x(1;m) of
the corresponding polynomials L,(1;-) converge to those of szZj (x), although they

are not monotonic functions of m; when it varies in (0, o).

We present some tables that show the behavior of the zeros of T),(j;-) as a function
of mj, when the initial measure is du(—1/2,-1/2;x) (Chebyshev polynomials of the
first kind; see Chapter[I)) for j=1and n=2,3.

Notice that there exist complex zeros depending on the values of the parameter m;.
It is also observed that two zeros of the polynomial approach the point x = a as m;
increases, as established in Theorem [.1.3]
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Table 4.1: Zeros of T»(j;-) for a =3, j =1 for some values of m

m x2,1(j;m) X22(j;m)

0 —-0.707107 0.707107

0.1 —-0.4034 1.61713

0.5 —-0.317089 3.16098

1 —0.355225 3.74581

5 —0.95446 4.54373

10 -2.39228 4.881

102 3.18582 + 1.08651i 3.18582—1.08651i
103 3.01522+0.317155i 3.01522-0.317155:
10* 3.0015 + 0.0995593i 3.0015 - 0.0995593i
10° 3.00015 + 0.0314605i 3.00015 —0.0314605i

Table 4.2: Zeros of T5(j;-) for a =3, j =1 for some values of m

m x3,1(j;m) x3,2(j;m) x33(j;m)

0 -0.866025 0 0.866025

0.1 -0.801321 0.51227 3.61105

0.5 -1.18576 0.0479705 3.7638

1 —3.70458 -0.305553 3.86415

5 -0.510437 3.38703 +0.805069;  3.38703 —0.805069i
10 -0.525903 3.15823+0.549961i  3.15823 —0.549961i
107 -0.538469 3.01358 +0.167363i  3.01358 —0.167363i
103 -0.539661 3.00134+0.052716i  3.00134—0.052716i
10* -0.539779 3.00013+0.0166637i  3.00013—0.0166637i
10° -0.539791 3.00001 +0.0052693i  3.00001 —0.0052693i

4.2 Toeplitz matrices

From the point of view of perturbations of positive definite hermitian Toeplitz
matrices or, equivalently, probability measures supported on the unit circle, there is a
wide literature [215; 5478 1815 1825 [117; (1275 [128]], emphasizing the analytic properties
of orthogonal polynomials with respect to the perturbed measures. In [25] a spectral
transformation associated with a modification of a measure on the unit circle by the ad-
dition of the normalized Lebesgue measure was introduced. The translation, in terms of
the entries of the new Toeplitz matrix, means that we only perturb the main diagonal of
the original Toeplitz matrix. In the introduction of their work the authors emphasized
that this problem is strongly related with the method introduced by Pisarenko [158]]
for retrieving harmonics from a covariance function. Four years later in [26], the same

authors generalized their previous result and studied the sequence of orthogonal poly-
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4. SPECTRAL TRANSFORMATIONS OF MOMENT MATRICES

nomials associated with the sum of a measure supported on the unit circle in the class
S and a Berstein-Szegd measure [178]]. Indeed, they deduced that the corresponding
measure belongs to the S class and obtained several properties about the norms of the

associated sequence of orthogonal polynomials.

4.2.1 Diagonal perturbation of a Toeplitz matrix

Let £ be the moment linear functional introduced in (Z.23). We define a new linear

functional £ such that its associated bilinear form satisfies

_d
@)z, = o8 m fT fQR@5—, fgEP, mER.  (@12)

Assume that L is a positive definite linear functional and let o be its corresponding
measure as defined in (2.29). Then, this transformation can be expressed in terms of

the corresponding measure o as

. d
d5(2) = do(z) + m——, (4.13)
2miz

i.e., the addition of a Lebesgue measure to 0. We assume m € R, in order o to be a
positive Borel measure supported in T. The moments {c;}rcz associated with £ are
given by

?0 =co+m, Fk =c, keZ. 4.14)

As a consequence, the C-function of the linear functional L is
Fo(z) = F(2) +m. (4.15)
Notice that T, the Toeplitz matrix associated with Ly, is
T=T+ml, (4.16)

i.e., a constant is added to the main diagonal of T. We now proceed to obtain the

sequence of monic orthogonal polynomials with respect to L.

Theorem 4.2.1. Let L be a positive definite linear functional, and denote by {®@,},>0

its associated sequence of monic orthogonal polynomials. Then, {¥,,}n>0, the sequence
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of monic polynomials orthogonal with respect to Ly defined by @12), is given by
W (2) = Du(2) ~ K (2.0)m™ D2 + Py P )™ @,(0), 4.17)

, - T :
with Ky_1(2.0) = [Ky1(2.0). KV (2.0)..... K ¥ V.0)|, D, = diag{;...

1
, : Sl
®@,(0) = [D,(0), D, (0),..., 0" O, and

$0(0) ¢1(0) - Bp_1(0)

0  ¢,0) - ¢;_1<0>
P,_i=| . )

: 0 ’ :

0 0 ¢(’1 1)(0)

Proof. Set

n—1
W(2) = Du(D)+ ) dus(2),
k=0

where, forO <k<n-1,

1 — dy m — dy
= — (P D) —m | TP —— = —— | V() D) ——.
o (@0, fT OO 5 = =40 fT B0

Thus,
-1 () 0.))
d ¥,/0) K,”1 (2,0
D = 0= m [ P01z = 0@y V50 ED )
T Ty J: J

J=0

In particular, for 0 <i<n-1, we get

n=1 () (i.j)
; ; ¥v,”(0) K,,/(0,0)
Y00 = 00 -m Y PO Dt DT (4.19)
= I
So, we have the following system of n linear equations and n unknowns
)] (@)
; ; v,”(0) K, (0 0)
w0(0) = 0(0) - Z e R N
= !
which reads as
(L +mRy—1 D) ¥,(0) = @,(0), (4.20)
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4. SPECTRAL TRANSFORMATIONS OF MOMENT MATRICES

where ¥,,(0) = [,(0)..... ¥ 0)| ",

k0.0 k20,0 - K*70,0)
K“ ‘”(0 0) K“ ”(0 0 - K“ - 1>(0 0)

R, = , . @2
K00.0 KS0.0 - K5 00.0)

As a consequence, (#.20) becomes ¥,,(0) = m ™~ (m~'I,, + R, D2) "' ®,,(0). Thus, @.18)

can be written
¥,.(2) = D, (2) —mK?_ (z,00D2¥,(0) = ,(2) ~ K, (z,0)m ™' D2 + R,-1) "' @,(0),

which is @I7), since R, =P,_|P’_. O

On the other hand, considering the derivatives of order j with respect to the variable
z in the Christoffel-Darboux formula (2:33) we get

K(/ 0)( )

;) (P ©u0) (D))
ke \1-3z k, \1-3z) °

Thus,

K(J O)(O ) -

o; O* () \W o, @, 0
T 0Tl

ﬂ n

Now, by Leibniz rule

D, (z) (j)_ L (j (j—k) 35
(1—§z) _Z(k)(p” O e

k=0

the evaluation at z = 0 yields

Lo PO, H oo,

2T T T Y T

JIT(@,(3);0),

k=0 k=0

where T;(p(y);0) denotes the j—th Taylor polynomial of p(y) around y = 0. In an

analog way,
*(/ k)

{ O _

M) Y = T (@005 0).
e ( —hk!
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Therefore, we have proved

Theorem 4.2.2.

D,(2)

K%),0) = (*(Z)T«D()m— T(ch<>0>)

From the previous theorem, if we denote
* * * T
T(®,(2);0) = [T (@n(2); 0), T} (@n(2); 0), ..., Ty (@u(2);0)]

then, @.17) becomes

D,(z)

Wn(@) = u(2) = == —=T1(®,(2);0)D; ' (m™'D;> + P, 1 P_ )~ ®,(0)
;(Z)TT(CD (2;0)D;, ' (m™' D> + P, PT_ )" ®,(0) (4.22)
= a(z;n)@n(2) + b(z;n) D, (2), (4.23)

where
a(z;n) = 1——TT(CDn(z) 0D, (m™'D,? + P, PT_ ) '®,(0),

b(z;n) = —kiTT(cD*(z) 0D, (m™' D, + P, PT_ )" ®,(0).

Example: Bernstein-Szegd polynomials

Let us consider the measure o such that

1-|81> 46

O g o

1Bl <1, (4.24)

and apply the transformation studied in this section, i.e., let us define a new measure o

1-187 d6 a9

dEF&% = Eﬁ;:;ﬂa“z;'+n7§;,

meR,. (4.25)

Our aim is to find the sequence of monic polynomials orthogonal with respect to
#@.25)), that will be denoted by {¥,,},50. @-24) is known in the literature as Bernstein-
Szegd measure, and its corresponding sequence of monic orthogonal polynomials is
[178]], ®,.(z) = 2" '(z—p), n > 1. Furthermore, we have Di(z)=1- ,6’z, > 1. Notice
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that for n = 1, from (@.23) we get
1@ =(1-8(1-167) [+ (1-188) ")) e=pr=((1 = 168) (m+ (1-167)”" )1 -

Forn>2, Tj(®,(0);0)=0,0< j<n-2, and Tyy_1 (@, (2);0) = —Bz""L. Thus, T(®, (z)'O)—
[0,0,...,—3] On the other hand, To(®:(0);0) = 1, and T;(®%(2);0) = 1 - Bz, 1

n— 1. Therefore, T(®}(2):0) = [1.z=B.2z—f).....2" 2(z—ﬁ)] . Furthermore, in this
case

Pn 1= l_Iﬁlsz_lle
where
1 B 0 0
0o 1 B
I B
0 0 1
Denoting by
1
“1(, -11y-2 -1
anDn( D;?+P, P! l) ( I"+1—|,8|2B Bt) D,,
and taking into account that ®,(0) = [0,0,--- ,—(n— 1)!,8]T, we get
2
atcin) = 1= o (1= Dl
,B n-2 )
b(z;n) = —— e (n— 1)!{no,n—1 +(Z_B)Zni+l,n—lzl),
i=0

where n; ;, 0 <1i,j < n-1, are the entries of N,,. From this, all elements on @]) are
known and we can compute ¥,,. The corresponding Verblunsky coefficients for n > 2
are

¥n(0) =b0;n) =

L =D =)

The first 20 Verblunsky coefficients for different values of m and 8 are shown in Figure
namely m = 5, 8 = —0.2 (blue discs) and m = 10, 8 = —0.5 (purple square).
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Example: Chebyshev polynomials

Let us consider the measure
. do
do(®) =¥ — 1> =, 4.27)
2r

and its corresponding sequence of monic orthogonal polynomials, given by [178]]
1 ¢ ‘
®y(2) = — ;(m D&, n>o0. (4.28)
We introduce the perturbation defined in this section and obtain

do(0) =do(9) + mﬁ (4.29)
2

We now proceed to get an explicit expression for the sequence of monic polynomials

orthogonal with respect to 0. Notice that
J
T(®(2);0) = Zk+1)z, 0<j<n-1,
k=0
and, as a consequence,
1< .
* 0)= —— J- i< n—
Tj@@:0) = —= > (k+ D 0<j<n-1.
k=0
On the other hand, since
1 n
Oy(2)=—— Y (k+ 1", n>0,
"= — ; )

we get

. 1< ’ .
T {(®(2);0) = m;(ml—k)z , 1<j<n-1,

and, thus, '
1 < .
* % . _ _ Jj—k . _
Tj(d)n(z),O) = kzgo(n+1 k™", 1<j<n-1.
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xxxxxx

(a) (b)

Figure 4.1: Verblunsky coeflicients for Bernstein-Szeg and Chebyshev polynomials

1 1
Therefore, T(®,(0);0) = —— [1,2,...,n]" and T(®:(0);0) = n+1,n,n-1,...,2]".
) n+1 n+1
Furthermore, since
Pn(2) = ;i(ku)zk n>0 (4.30)
! (n+D(n+2) & ’ ’ ‘

are the orthonormal polynomials with respect to o, we obtain

P, =D,'A,A, 4.31)
where
11 1 1 0 0
0 1 : 0
A, = A= P ,
Do 1 : 0
o --- 0 1 0 -+ 0 pui

f 2
and p; = m Finally, we have ®,(0) = n% [1,2!,---,n!7, and we can

obtain W, (z) explicitly from @23). Figure #.1(b)| shows the behavior of the corre-
sponding Verblunsky coefficients for different values of m, namely m = 10 (blue discs)
and m = 100 (purple square).

This example can be generalized as follows. Let o be an absolutely continuous
measure whose Radon-Nikodyn derivative with respect to the Lebesgue measure is
o =|z—al?, z=¢", i.e., apositive trigonometric polynomial of degree 1. Applying the

transformation introduced in this section, with m € R, and assuming @ € C, we obtain
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m+lz—al =m+1-az ' —az+lel?, z=¢Y, (4.32)

i.e., another positive trigonometric polynomial that can be represented by |6z — |7,

where 6 € R,y € C. Indeed, as
16z —y1> = 62 —6yz ' —6yz+Iyl2,  z=e",

the comparison of the coefficients with @32) yields 1 +|a|> +m = 6> +|y|> and a = &y.

Thus,
|a/?
52

so we can get ¢ and y in terms of m and a. In other words, in this case we can express

1+lal?+m= +62,

the addition to a Chebyshev measure of a Lebesgue measure (multiplied by a constant

m) as @27).

4.2.2 General perturbation of a Toeplitz matrix

In this subsection we generalize the previous perturbation, adding a mass m to
any sub-diagonal of the Toeplitz matrix. Let .£; be a linear functional such that its

associated bilinear functional satisfies

. ——dz _ s — dz .
(f.8)r. =& +mf Zf(2g(@) 57— +mf 7/ f(g(x)=—, meC, j>0.
j T 27iz T 2miz
(4.33)
Assume /£ is a positive definite linear functional. Then, in terms of the corresponding

measures, the above transformation can be expressed as
_ i dz
do(z) =do(z) + 2R (mz)) —-. (4.34)
2miz
From [@#.33), if F; is the C-function associated with £;, then
Fj(z) = F(2)+2mz/, (4.35)

i.e., a special case of general linear spectral transformation of F. The infinite Toeplitz

matrix T associated with L, is
T=T+mz/ +m(Z")
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4. SPECTRAL TRANSFORMATIONS OF MOMENT MATRICES

where Z is the shift matrix with ones on the first lower-diagonal and zeros on the

remaining entries, and Z7 is its transpose. Equivalently,

(0 -« m 0
0 - m

T=T+ m -
0 m 0

Assume that £ is a positive definite linear functional, and denote by {®,},>¢ its

corresponding sequence of monic orthogonal polynomials. We now proceed to deter-

mine necessary and sufficient conditions for .£; to be a quasi-definite functional, as

well as the relation between {®,},5 and {‘¥,},0. the sequence of monic orthogonal

polynomials with respect to £;.

Theorem 4.2.3. Let L be a positive definite moment linear functional and {®,},>¢ its

corresponding sequence of monic orthogonal polynomials. Then, the following state-

ments are equivalent:
i) Lj is a quasi-definite linear functional.

it) The matrix I, +S,, is non-singular, and

(4.36)

ey

ky =k, + W1 (O, +Sn)"Yn(O)+ﬁﬁ #0, n>1,
n—j)!
with
Y, 0) = |m—2——=, ... m——— + m—= Yo, M2 m———,
(0 J! @) (0)! (n)! (n—2))!
i T
ROl
(n—-j-D!

W,,(0) = [@,(0) — 1! C(0.-1:0) ], ®(0) = [D,(0), D.,(0),..., 0" (0],

mA©,j-1:0j-1) | Boj-1;jn-j-1y | MCoj-130-jin-1y

Sn=| mA(n-j-1:0j-1) | Blin-j1jn-j-1) | MCijin-j-tin-jin-1) |-

mA G jn-1:0,j-1) | Bajn-1:jn-j-1) | MCujn—1:n—jn-1
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where A,B, and C are matrices whose elements are given by

K70,0 K2470.0 _KM0,0 K 0,0)
TN Ny 0 =m - m - > CS, =
M+ ))! Oa+pt T @a=pr oW p)

ds| = s, =

Moreover, {¥,,},>0, the corresponding sequence of monic orthogonal polynomials with

respect to L}, is given by

Y, (2) = A(z;n)D,(2) + B(z;n)D)(z), n>1, (4.37)
with
1., | T {(@n(2); 0)
A(z;n) = l+k—W O)T,+S,)” ' D, T (®,(2);0)+m k—’
1, . _ T, [(®,(2);0)
B(z;n) = —k—W O, +S,)” DnT((D*(Z) 0)—m k—’

T(©4(2):0) = [mT5(@,(2); 0), ., mT35 (@4(2):0) + T (D,(2); 0), ..

mT)_ (©n(2):0)+ Ty, (Pn(2);0),.... AT (Dn(2); 0)] :

n—1
Proof. Let us write ¥,,(z) = ©,(z) + Z Ak Pr(z), where, for 0< k<n-—-1,
k=0

m ; — d m _ —— d
b= [ POOBC - [ 00
kJr iy Ke 27y
Therefore,

. d _ . d
W,(2) = Du(2)—m f VB0 K1 (2Y) — — T f VI (D)Ko (2,y) .
T 2miy T 2miy

Taking into account that

0 AT R )
() = Z‘P © i 5O

y 9
£4 ! =p
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4. SPECTRAL TRANSFORMATIONS OF MOMENT MATRICES

n=1 50.)
K, /(z,0) 1
and, for |y| = 1, K,—1(z,y) = E —yl’ we obtain

f W (K1 (23) S0 K0 "Z’:‘ w0y K1(2,0)
n n-1Z, — 0 = -
qry 12,y 2wy = () ! g ! (+))!

In an analog way,

n—j \P(l+])(0) K’(O D) (z, 0) \ng,l)(o) K’(q%ll_l) (z,0)
= +pt D! = Ot =)

_j d
[k @y =
T iy

Thus, we get

2 LPfll)(O) K(O l+1)(Z,0) . n lPill)(O) K(Ol J)(Z, )

¥,(2) =D, - , 4.38
@=0@mm 2 mor “apr "o a0
or, equivalently,
-1 w0 () n () (0.1=))
) w0 k@0 & o) K0
“Pn(Z) = q)n(Z) _mg (l)' (l+_])' g2 (l)' (l—])' s
n=j=1 (b KO0y KO-

Ny Y of K @0 - @0 439

= ! I+ ) (=pn!

In particular, for 0 < s < n,

J=1 @ (s.1+)) () (s,1=))
W,SS)(O)zmi,S)(o)—mZT” O Ky OO 25 ¥ O Ky 0.0
D! I+ ! e UL (I=n!

. 33 g (m K*1(0,0) . _K¥(0,0) ]

0! G pr T

i.e., we obtain a system of n + 1 linear equations and n + 1 unknowns as follows
n—j—1

P(0) = 0(0) - mZas 0 0) - Z by P (0) -1 Z s P (0).

I=j I=n—j
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Thus, if My, s2:1,,1,) = [Ms,i]5, <s<s9:1, <1<l then

00 [0
(In+l + Sn+1 ) =

¥70) |00

Notice that the entries in the last row of the above matrix vanish, which is consistent
with the fact that ¥ (0) = ®"”(0) = n!. Therefore, if we denote by

¥,,(0) = [¥,(0), ¥,,(0),..., %Y D (0)]7,

then the above (n+ 1) X (n+ 1) linear system can be reduced to a n X n linear system as
follows
@, +S,)¥,(00) = W,(0). (4.40)

Since L; is a quasi-definite linear functional, there exists a unique family of monic
polynomials orthogonal with respect to .L;. Therefore, the matrix I, +S, is non-
singular, according to the existence and uniqueness of the solution of the above linear
system. As a consequence, if

o
K0
J!

0,2 0,0
k*¢0 k00

o tmoy

K,-1(z,0) = : , (4.41)

KO V0 kO D0
o TGy

_ KX e0
M=~

then #39) becomes

K% (2,0)
¥, (2) = Du(2) — L (0D, K, (z,0)—m =
(n— !
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4. SPECTRAL TRANSFORMATIONS OF MOMENT MATRICES

Thus, from (@.40) and Theorem[d.2.2] #37) holds. Furthermore,

0+ <\Pns ch>LJ~

IO 00) <0 90

S LT avr AT or a
(n=J)

=k + WOV, ) +im D,
(n=p!

so ([@.36) follows. For the converse, assume I, + S, is non-singular for every n > 1 and
define {¥,},50 as in @37). We show that {¥,},5, is orthogonal with respect to L;.
Indeed, for 0 < k < n—1 and taking into account [#38), we get

n—j—1 (1) (0, I+J)
B Y0) K, " (z,0)
(Pn, Qi) g, = <(Dn,q)k>1;—m< IZ(; 0! (l+ Y <D1<(Z)>L
\I_,(l)(o) K(Ol ])(Z,O)
} <, O (- (D"(Z)>
bs

n—j-1 ‘Pﬁ,l)(()) (DZH]')(O) . n “Pi,l)(()) (Dil—j)(o) ~
0 d+n! ml:j o' d=-pr

On the other hand,

izn = <\Pn7 (Dn>,£j

S0 0! 0) & wh0) ol 0)

=k,+m —+m -
" 0 a+n! ~ O -
(n=j)
— _O 0
=k, +'¥!(0)Y,(0) +m”—,() #0,
(n=p!
since (@.36) is assumed. Thus, we conclude that £; is quasi-definite. m

Remark 4.2.1. The case Ly (j = 0) reduces to the linear functional analyzed in the
previous subsection, with mass Rm. In such a case, Ko =Ko + Rm. On the other hand,
for j =1, it follows from @33) that k; = k; for 0 <1< j— 1. In other words, we only
need @36)) for n > j. Notice that for a given j, the polynomials of degree n < j remain
unchanged. In such a case, @) and @I} still hold, with the convention that the
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negative derivatives are zero.

Finally, applying the Szeg§ transformation to {#.33)), we get

(x— Vx2-1)/

Sx)=Sx)+2m N

and thus S, the Stieltjes function for the corresponding perturbed measure on the real
line, can not be expressed as a linear spectral transform of S, since square roots appear
for any value of j. Therefore, we conclude that a perturbation on the moments of a
measure supported on T does not yield a general linear spectral transformation of the
corresponding Stieltjes function. Conversely, if we consider a similar perturbation of

the moments of a measure on the real line, then

- m
S =Sx+ e
Applying the Szegd transformation,
1-72 L (1=
Fo(2) = F(Z)"’mm =F(@)+2/m

(22 + 1) Jj+17
which is a general linear spectral transformation of F. In the special case when j =0,

2-1
Fo(z)=F(z)-m——-.
z+1

As a conclusion, the study of general linear spectral transformations on the unit circle
is far more complicated than the real line case.

Example: Lebesgue polynomials

We present an example of the previous transformation when o is the normalized

Lebesgue measure and j = 1, i.e., the transformation

— dz — dz  _ — dz
o8y = f f(@g@)5—+m f 2f(D8@)5—+m f 2f(D8(@) 5=, meC,
T 2miz T 2miz T 2miz
(4.42)
where m € C. Our purpose is to obtain necessary and sufficient conditions for £; to
be a positive definite (quasi-definite) functional. Consequently, we deduce its corre-

sponding family of orthogonal polynomials, as well as the sequence of Verblunsky
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4. SPECTRAL TRANSFORMATIONS OF MOMENT MATRICES

coefficients. Notice that in this case, ®,(z) = 7%, n >0, as well as k,, = 1, n > 0. Thus,
K0 =17, 0<i<n-

So, K,,_1(z,0) = [mz, mz2+m°,...,m7" 1 +m" 3, m 2] and ®,(0)=07,n>1. On
the other hand,
sV if s=1,

0 otherwise,

K1(0,0) = {

and, therefore,

K(s l+1)(0 0)

(.& l+l)(0 O) _K(Y[ 1)(0 0) .
bu=m DD T MOset H s,
K(sl D0.0)

I

s =

Csl =

where ¢, is the Kronecker’s delta. Thus,

(1 m
m 1
I,+S,= T , nx=2
m 1 m
m 1

Notice that for n > 2, I, +S,, is Tn 1, the nx n Toeplitz matrix associated with £;.

We thus need to establish the conditions on m for T,H be non-singular. Since T,,, 118
hermitian, their eigenvalues {/lk}zzl are real numbers. Moreover, Tn_l is quasi-definite
if and only if Ay # 0, for every 1 <k <n[92]]. From Theorem 2.4 in [18]], the eigenvalues

of T,,_; are

+1’

Thus, £ is a quasi-definite linear functional if and only if

k
A= 1+2|m|cos7r— k=1,...,n.
n

L \!
ImI;t—(ZCos il ) , k=1,...,n, n>1,
n

+1
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or, equivalently,
nk

cor (-3
Assuming that (#.43)) holds, {¥,},>o can be obtained using [@37), since all elements
are known. Since K,_;(0,0) = (0,m,0,...,0)" and W,, = [0,...,0,—m(n — 1)!)], the
sequence of Verblunsky coefficients can be computed using (A1.2). It is not difficult

¢ IN. (4.43)

to see that
¥,(0) = —m*(n—1)!0,,

where £; ; = (I, + Sn)l.’J].. An explicit expression for £, can be obtained using the
method described in [[192]. Indeed,

(_1)n+2mn—2

Cn
2 o

where 6, is the solution of the recurrence relation
_ 2 .
0; =61 —|m|"6,_», i=2,...,n,

with initial conditions 8y = #; = 1. Thus,

7—(n+1)

V1 —|m?

en — (2—(11+1) +

)((1 - m)’%@ + m)”),

and therefore we get
~D"3m"2m(n-1)!

(20 2 (1 V=) (14 TR

1-|m|?

¥,(0) = (4.44)

From (@.44) notice that |¥,(0)| grows as n increases, and it grows faster for values
[m| > 1. Using small values of m, the first Verblunsky coefficients are small (close to
zero), but then begin to grow as n increases.
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Chapter 5

Spectral transformations

associated with mass points

...then we get a u (measure) for which mass points do not attract zeros . ..

— E. B. Saff and V. Totik. [171]

In Chapter [4] we consider the addition of a Lebesgue measure to the hermitian
linear functional £ defined in (2:23). In other words, we perturb the main diagonal of
the Toeplitz matrix (2.24). The generalization of the previous perturbations to affect
any sub-diagonal of the Toeplitz matrix (2.24) is also considered. As we see, they are
general linear spectral transformations of the corresponding C-function (2.39).

One of the goals of this chapter is to show two new examples of linear spectral
transformations associated with the first derivative of a complex Dirac’s linear func-
tional. The first one appears when the support of the Dirac’s linear functional is a point
on the unit circle. The second one corresponds to a Dirac’s linear functional supported
in two symmetric points with respect to the unit circle. Necessary and sufficient condi-
tions for the quasi-definiteness of the new linear functional are obtained. Outer relative
asymptotics for the new sequence of monic orthogonal polynomials in terms of the
original ones are studied. We also prove that this spectral transformation can be de-
composed as an iteration of particular cases of the canonical spectral transformations

and (2.45).

The last part of this chapter is devoted to the study of a relevant family of orthogonal
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5. SPECTRAL TRANSFORMATIONS ASSOCIATED WITH MASS POINTS

polynomials associated with perturbations of the original orthogonality measure by
means of mass points: discrete Sobolev orthogonal polynomials. We compare the
discrete Sobolev orthogonal polynomials with the original ones. Finally, we analyze
the behavior of their zeros and provide some numerical examples to illustrate it. An

analogous inner product for measures supported on the real line is study in Appendix

[Al

5.1 Adding the derivative of a Dirac’s delta

Let £ be a hermitian linear functional given by (2.23). Its derivative DL [189] is
defined by

(DL, fY=-i{L,zf'(@)), fEA.

In this section we first consider a perturbation of a linear functional £ by the addition

of a derivative of a Dirac’s delta, i.e.,

(L, [y=(L [)+m(Déa. ), meR, lo|=1 (.1

Let Ly be a linear functional such that
(Lo, Y=L Hr+mf(@), meR, lal=1.

We say that Ly is the Uvarov spectral transformation of the linear functional £ [54].
The connection between the corresponding sequences of monic orthogonal polyno-
mials as well as the associated GGT matrices using LU and QR factorization has
been studied in [54)]. The iteration of Uvarov transformations has been considered
in [78} [117]; see also Appendix [B] Asymptotic properties for the corresponding se-
quences of orthogonal polynomials have been studied in [201]]. Notice that the addi-
tion of a Dirac’s delta derivative (on a point of the unit circle) to a linear functional
can be considered as the limit case of two Uvarov spectral transformations with equal
masses and opposite sign, located on two nearby points on the unit circle ;; = ¢! and
as = €2, 0 < 6,6, < 27, when 6; — 6,, but the difficulties to deal with them yield a
different approach.
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5.1.1 Mass point on the unit circle

In terms of the associated bilinear functional (5.1) becomes
(f:8)z, = (-8 g —im(af (@)g@) - Tf(@)g @)). (5.2)

In the next theorem we obtain necessary and sufficient conditions for £ to be a
quasi-definite linear functional, as well as an expression for its corresponding family

of orthogonal polynomials.

Theorem 5.1.1. Let us assume L is a quasi-definite linear functional and denote by
{Dn},50 its corresponding sequence of monic orthogonal polynomials. Let consider L,
as in (5.2). Then, the following statements are equivalent:

i) L1 is quasi-definite.
it) The matrix D(a) + mK,,_| (o, @), with

©.1) »
K, (@)= Kp1(a,0) K| (a,a)]’ D(a) = [ 0 za}’
1

1,0 1,1
K,(l_l)(a,a) K,(,_l)(a, @)
is non-singular, and

Kk, +m®, () (D(@) + mK,_1(a,@))" @, () £0, n>1. 5.3)

Furthermore, the sequence {¥,},~( of monic orthogonal polynomials associated with

L is given by

T
Kn—l (Z’ a’)

Wn(2) = Pu(z) —m [ KOV, a)} (D(@) +mK, 1 (a,@))”" ®y(a), (5.4

’ T
where @, () = [@n(e), @ (@)] .

Proof. Assume L is quasi-definite and denote by {¥,},,>¢ its corresponding family of

monic orthogonal polynomials. Let us consider the Fourier expansion

n—1

Y, (z) = O,(2) + Z /ln,k(Dk(Z)y
k=0
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5. SPECTRAL TRANSFORMATIONS ASSOCIATED WITH MASS POINTS

where, forn > 1,

(¥, (2) q)k(Z»L (a"l"”(a)(l)k(a) ((Z)(I)k(a'))

Aps = . , 0<k<n-1.
mk ky ki 8

Thus,

n-11im ((1‘}’; (@)Dr(a) — 5‘?,,(0)(1);( (a))

W(2) = Du()+ ) | - Di(2),
=0 k
= 0, (2) +im (¥, (@)Ky-1 (z.0) ~a¥n (@K (2. 0)). (5.5)

Taking the derivative with respect to z in the previous expression and evaluating at

Z = a, we obtain the linear system

¥ (@) = O (@) +im (¥, (@K (@, ) ~@¥ (@K, (@.@), i=0,1,

which yields
D@ _[1+imak®P(@a)  —imaK,-1(@.@) |[¥.(@)
o,@)| | imak V@) 1-imaK "V (@,0)||¥,@)]

and denoting Q = [0, 0’7, we get
D, () = (I + mK,—1 (@, @)D(@)) ¥y ().

Thus, the necessary condition for regularity is that I, + mK,,_ (e, @)D(a) must be non-
singular. Taking into account D '(a) = D(@) we have the first part of our statement.
Furthermore, from (3.3)),

¥,(2) = 0u(@) +m(Kno1 2. 0). KD (@) [_?6 ig} EEZ;}

T
=<1>n(z>—m[ o 11)((1’&))} (D(@) + -1 (@, ) B, (@),
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This yields (5.4). Conversely, if {¥,},0 is given by (5.3), then, for0 <k <n-1,

(¥ ¥i) 1, = (Pa(@) +im (¥, (@K1 (2.0) ~F¥W (@K (@) i),

= (®u(@) +im(a¥, (@)K, 1 (2,0) - @¥ (@K (@ @), i),

—im (a‘{’; (@)¥(a) —a¥, (a/)‘I’;{(a)) =0.
On the other hand, forn > 1,
Ky = (0(2), Y@ 1, = (¥n(2). Pu(2) g,
= (042 +im (¥, (@)Ky-1(2,0) -2 (KL (2. @), 9a(2)),
i (@ (@)B,(@) - TFA (@)@

=k, +m®, (@) (D(@) + mK,—1 (@, @) @,(a) # 0,

where we are using the reproducing property (2.34). As a conclusion, {¥,},5¢ is the
sequence of monic orthogonal polynomials with respect to L. O

Using the Christoffel-Darboux formula (2:33)), another way to express (5.4) is the
following.

Corollary 5.1.1. Let {¥,},0 be the sequence of monic orthogonal polynomials asso-
ciated to L) defined as in (53.2). Then,

(2—@)*Pu(2) = A(z,n, @)D, (2) + B(z,n, @) D}s(2), (5.6)

where A(z,n,a) and B(z,n,a) are polynomials of degree 2 and 1, respectively, in the

variable z, given by

A, @) = (2= ) = o (V1,1 0y(@) + Y1 20 (@)D (@)(z — )
knAn—l
+ (Y21 04(@) + V22 0 (@)(@n(@)z— @) +a®y(@)2)).
mao JRE—
B(z.n,a) = Y1.1D,(@) + Y1 2@ (@)D},
(21,@) = = (V11 @a(@) + V12 (@) P )

+ (Y21 ®n(@) + Y220 (@) @(0) (- @) + a D))

where Y| | = mK,(ll_’})(a, ), Yip= imch,(ﬁ’ll)(a, a), Yy = —im&K,(f_’?)(a, @), Yoo =mak, (a,a),

and A, is the determinant of the matrix D(«) + imK,—1(, @).
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5. SPECTRAL TRANSFORMATIONS ASSOCIATED WITH MASS POINTS

5.1.1.1 Outer relative asymptotics

In this subsection we assume £ is a positive definite linear functional, with an
associated positive Borel measure o~. We are interested in the asymptotic behavior of
the orthogonal polynomials associated with the addition of the derivative of a Dirac’s
delta on the unit circle given in (5.6). We assume that o is regular in the sense of Stahl
and Totik [181]], so that

lim «/" = 1.
n—co
Regularity is a necessary and sufficient condition for the existence of n-th root asymp-
totics, i.e., lim |@,|!/" < co. It is easy to see that the existence of the ratio asymptotics
lim ¢,/ ¢n_n l_iorilplies the existence of the root asymptotics, and, in general, the converse
;l; r?;)t true. Therefore, ratio asymptotics does not must hold for regular measures.
In particular, we study its ratio asymptotics with respect to {®,},o. First, we state

some results that are useful in our study.

Theorem 5.1.2. [115] Let o be a regular finite positive Borel measure supported on
(—m,m). Let J C (—n,m) be a compact subset such that o is absolutely continuous in an
open set containing J. Assume that o’ is positive and continuous at each point of J.

Let i, j be non-negative integers. Then, uniformly for 6 € J, z = €',

D
n—oo piti K,(z,2) i+j+1

Lemma 5.1.1. [85] Let f,g be two polynomials in P with degree at least j. Then

f(j)(z) B g(j_l)(z) (f(j—l)(z))’ f(j—l)(z)
g gV \gliD(z) gUD(z)’

Using the previous lemma, the outer ratio asymptotics for the derivatives of or-

thonormal polynomials are deduced.

Lemma 5.1.2. Assume L is a positive definite linear functional, with an associated
positive Borel measure o and denote by {¢,},5( its corresponding sequence of or-

thonormal polynomials. If o € N, then uniformly in C\ID

) ()
. 9@ . i (2) .
Jim —5— =z lim —77— =0, j>0.
& (2) ¢y (2)
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Proof. According to Lemma[5.1.1}

@) j— (=D ¢ G-D
i@ _ ¢ [¢ <z>] 4 %in @ 57
0@ ¢/ ¢ 0) 40
Using induction in j, we get uniformly in C\ID,
D,V
n— o0 ¢(J 1)(2) ’ n~>oo ¢(j)(Z)
Therefore, if n tends to infinity in (3.7), the result follows. m
Corollary 5.1.2. If o € N, then uniformly in C\D
) K
¢”(])(Z)_o, lim &Y g 0<I<i,0<r<]
00 T @0 5
Proof. From Lemma[5.1.1] we have
6@ _ 6@ (qsn” N )] RENC) 55)
6@ ¢’ 6! 0) ¢ e

Using a similar argument as in the proof of the previous lemma, the first statement
follows. The second statement is a straightforward consequence of the first part of this
corollary and Lemma[5.1.2} m

Theorem 5.1.3. Let L be a positive definite linear functional, whose associated mea-
sure o satisfies the conditions of Theorem @ Let {¥,,},50 the sequence of monic
orthogonal polynomials associated with L, defined as in (5.2). Then, uniformly in
C\D,
i 120 _
n—eo @(2)

Proof. From the expression (3.6),

Y,(z2)  A(z,n,@)  B(z,n,a) ©,(2)
D,(x)  (z-aP  (z-@)? Du)
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5. SPECTRAL TRANSFORMATIONS ASSOCIATED WITH MASS POINTS

Since, for z € €\ D by Corollary|5.1.2]

DI (2)
im —— =0,
n—oo O, (z)
it suffices to show that, for |a| = 1,

. Az,n,a)
Iim ——=>=1
o (z—a)?
Notice that lim @,(a) = O(1), lim @, (@) = O(n), lim ®%(a) = O(1), lim O (@) =
n—oo n—oo n—oo n—oo
O(n), and lim K, (a,@) = O(n).

A
On the other hand, dividing the numerator and denominator of % -1 by
I—a
n?K,_1(a, @), and using Theorem , we obtain
O, (@)Y @ (a)Y
lim LGNNI o1 /n), lim _Ou@Y¥ar o(1/n),
n—e n2K, 1(a,a) n—0 n2K, 1(a,a)
D, ()Y @ ()Y
Jim @Y 5 lim —n@Y12 5

n—e n2K,_1(a,@) n—co n2K,_1(a, @)

Az,n,a)

(z—a)?
the denominator behaves as O(n) and, therefore,

so that the numerator of — 1 behaves as O(1). Similarily, one can shows that

. Alz,n,a)
lim ———— =1
n—oo (Z—a)2

The same arguments can be applied to B(z,n,a), what ensures the result. O

Example: Lebesgue polynomials

We now study one example that illustrates the behavior of the Verblunsky coeffi-

. . . do .
cients associated with the Lebesgue measure do(0) = 7 and to the perturbation (3.2)
JT
given by
d@ ’
do ) = Z + méa,

where m € R and || = 1. It is very well known that ®,(z) = 7" is the n-th monic
orthogonal polynomial with respect to do, and thus ¥, (z), the n-th monic orthogonal

polynomial with respect to do-, can be obtained using (5.6). Indeed, evaluating these
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polynomials at z = 0, for the special case a = 1, is not difficult to show that

¥ (0) = (5.9

6 m 12 m?

nn—n+1) in)(nz(n—l)(n—i-l) 1 )_1
From the last expression we are able to obtain the regularity condition in terms
of the mass, by setting |¥,(0)| # 1, n > 1. Notice that [¥,(0)| — 0, as it can be seen
from (3.9). Thus, there exists a non-negative integer ng, depending on m, such that
[¥,(0)| < 1 for n > ng, but some of the preceding Verblunsky coefficients will be of
modulus greater than 1, destroying the positivity of the perturbed functional. Indeed,

from (5.3), we obtain that the positivity condition for this perturbation is

2 12
m < —=———,
n2n?-1)

Since the right side is a positive monotonic decreasing sequence, we only have a posi-
tive definite case if m = 0.

5.1.2 Mass points outside the unit circle

Now, consider a hermitian linear functional £, such that its associated bilinear

functional satisfies

(f-8)p, = {f-8)p +im (a‘lf(a)g’(ﬁ‘l) - cxf’(cv)g(&‘l)) (5.10)
+im(af@ g (@-a ' p'@ " g@),

with m,a € C, |a| # 0, and |a| # 1. As in the previous section, we are interested in the

regularity conditions for this linear functional and the corresponding family of orthog-

onal polynomials. Assuming that £ is a quasi-definite linear functional and following
the method used in the proof of Theorem [5.1.1] we get

n—1

W(2) = Du(2) + im (¥ (@)K 1 @) -0 (@K @@ )
+im (@ "¥,@ Ky (z.0) - @¥@ KV 2 0). (5.11)
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Evaluating the above expression and its first derivative in & and @ !, we get the follow-

ing linear systems

D, () _[1+ima‘1K,(lo’})(a,5_l) —imaK,_(a, 5_1) [ n(a)} 5.12)
@, (a) ime ' K" D@y 1-imeK V(@@ || (@) '
imak"(@,0)  —ima ' K,_i(@,0) |[P.@ ]
imak\"D(a,0) —ima 'KV (@,0)||¥,@")]|
o,@ ] _[ima ' K@ @) —imaK@ @) |[ W@
® ——1 —1 (1 1) -1 —1 . (1,0) )—1 —-1 4 (5'13)
n(a ima K (@ ,a) —imaeK, V(@ o )| |V, (a)

1+1WK(0’1)(6_1,Q/) —ima 'K,_1@ o) |[P.@ )
zm(;xK(1 1)(__l,cy) 1-ima IK(IO)(__1 @) v (__1)

which yields into the system of 4 linear equations with 4 unknowns
D, (a) _
®,@ ")

where (Q, R)Y = (0, Q’,R,R’)T. Thus, in order £, to be a quasi-definite linear func-
tional, we need that the 4 X 4 matrix defined as above must be non-singular. On the

other hand,

‘Pn(a) _
v.@h|

As a consequence, from (5.11), we get

L+mK, (@, YD)  mK, i(@,0)D@ ") ¥,.(2)
mE,_1@ @ D@ L+mK,@ oD@ || P.@ "]

L+mE (@@ HD@) — mEyi@aD@ ) || @)
mK,_1@ ', @ HD(a) Iz+mKn_1<a Lob@h| |@.@"|

n-1(2,@)

] D(Q)Tn(a)_m[ (()1)( )

—1 T

Ko ff(z __1)) ] p@ @),
(5.14)

where ¥, (@) and ¥, (6’1 ) can be obtained from the above linear system. Assuming that

the regularity conditions hold, and following the method used in the proof of Theorem

5.1.1] it is not difficult to show that {¥,},5(, defined as in (5.14), is the sequence of

monic orthogonal polynomials with respect to £;.

¥n(2) = ©u(2) —m[
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5.1.2.1 Outer relative asymptotics

The following result was proved in [70] using a different method, and it has been
generalized for rectifiable Jordan curves or arcs in [20]. We show here another proof

of the same result.

Lemma 5.1.3. If o € N, then uniformly in C\D,

KM@y 1

(l)( )¢(/)(y) Zy_ I

n—oo

Proof. From the Christoffel-Darboux formula (2:33)), we obtain

B0 )~ a8 3) = 1 =KD @) jzK T V(2 ),

and, as a consequence,

6.9 (5) - 628 ) = (1 - K (2.y) ~ kK2, )
— (K @y + KV e, y).

Thus, dividing by ¢(’)(z)¢( / )(y) and using Corollary |5.1.2) when 7 tends to infinity, the
result follows. o

Remark 5.1.1. Notice that

K(]])(a, (Z) 1
l 9
o gD P -1

lal>1, j>1.

It is possible to obtain a generalization of Theorem [5.1.3|for the sequence of monic
orthogonal polynomials associated with (3.10). As above, we can express (3.14) as in
(3-6). Using the Christoffel-Darboux formula (2:33)), we obtain

Wu(2) = (1+A(2.1,0)) @u(z) + Bz, )0} (),
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with
e Q@ D=0 20, @ D, L 0@,
A(z,n ) = k(1 —a-1)2 Y, (@) zmakn(l_a_lz)‘l‘n(a)
_ Q)1 -az)+z2Pu(@) 10— DPul@) o, g
+ima k(-7 Y, (a ) —ima —kn(l—ﬁ )‘Pn(a ),
= e @ @@ (-0 )+ @)
B(Z,n,a)—lmakn(l_a_l )‘I’ (@) —im k(a1 Y. ()
. Oy@) o, — (@)l —ag) +z0(@)
+1ma mql”(a )—lmG,’ kn(l—ﬁ)z \Pn((Y ),

where the values of ¥, (@), ¥/, (a), ¥ (__1) and ‘P;(E_l) can be obtained by solving the
4 x4 linear system shown above. Denoting the entries of the 2 x 2 matrices in (3.12)) -
(3.13) by {b; j}.{ci j}.{ai ;} and {d; j}, respectively, we get

V(@) = (d11@p(@) +d1 2@} (@) + 11 D@ ) + 12 @@ ) /A

W)(@) = (do,1 @n(@) +da 2 ®)y(@) + 2,1 D@ ) + 22 ® @ ) /A
W@ ") = (@11 D) + a1 20} (@) + b1 1 Da@ ") + b1 2 D@ 1)) /A
W@ ") = (a21Pn(@) + a2 20 (@) + b2 1 Pu(@ ) + b2 2 @@ )

where A is the determinant of the 4 X 4 matrix. To get the asymptotic result, it suffices
to show that X(z,n,a) — 0 and E(z,n,a) — 0 as n — oo. First, notice that applying the
corresponding derivatives to the Christoffel-Darboux formula (2:33)), we obtain

Y (1)D4(2) — Op(NDu(2)  zKp1(z.y)

O.1)

Ku-r@y = k(1 -Yyz) 1-yz ~

K(l 0)( y) = Q);';(y)(l)* (@) - q)n(y)q), () + yKn—l(_Zsy),
k,(1-yz) 1-yz

K“ 1)( y) = @ () (1D (2) — B} (V)P (2) ZKfll_’?)(z,yHyK(o '(2)) + K1 (2, y)
k,(1-yz) 1-yz

On the other hand, if £ is positive definite, and its corresponding measure o~ € N, then
by Corollary (see also [137]) we have @, (a) = O(a™), D, (a) = O(na™), and
O,(a) . D ()

=0, <1, 1
7 B I Y o)

=0, l|a>1.
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Assume, without loss of generality, that |o| < 1. If || < 1 and o € S, notice that
®,() and O} (@) are O(a™), then lim K,(a,a) < co and K,(@ ',a"') = O(la|™?"), as
n—oo

well as Kn(aﬂ_l) = Kn@_1 ,a@) = O(n). Observe that, except for the entries contain-
ing K,—1(a,@) and their derivatives, all other entries of the 4 X 4 matrix diverge, and
thus its determinant diverges much faster than any other term in the expressions for
¥, (), ¥, (@), ¥,@ ") and ¥,(@ 1), so that A(z,n,@) — 0 and B(z,n,a) — 0 as n tends

to co. Asa consequence,

Theorem 5.1.4. Let L be a positive definite linear functional, whose associated mea-
sure o € S. Let {¥y,},50 the sequence of monic orthogonal polynomials associated to

L defined as in (5.10). Then, uniformly in C\'T,

N £1¢4)
lim =

=1.
n—oo (Dn(z)

5.1.3 (C-functions and linear spectral transformations

First, we assume that @] = 1. Let us consider the moments associated with L.

Notice that ¢y = ¢g. For k > 1, we have ¢; = (zk, 1> = ¢; — imka®. In a similar way,

L
i = C_x + imka®. Therefore,

Fi(z)=Co+2 Z?_kzk =co+2 Z(c_k +imk@“)Z* = F(z) +2im Z ka*
k=1 k=1 k=1
2ima  2ima?

=F@)+ .
72— (z—a)?
This means that the resulting C-function is a perturbation of F by the addition of a
rational function with a double pole at z = .

Now, we assume |a| > 1, and let consider the moments associated with £,. Notice
that'co = ¢o. For k € IN, we have from (5.10),

Tk = cp — imkd® —imka %, T_p = c_y + imkad® + imka ™,
and, as a consequence,

2ima  2ima®  2ima Dima >

2T ot — 1"
z—a (z-®)F z-a (z—a )2

Fr()=C+2 ) = F() - (5.15)

k=1

This means that the resulting C-function is a perturbation of the initial one by the
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addition of a rational function with two double poles at @ and a !

Connection with special linear transformations

We show that perturbations £, can be expressed in terms of special cases of the
spectral transformations (2.44) and (2.43). Let Fc (@) and Fg(a,m) be linear spectral

transformations associated with the modification of the original functional £ given by

(Lo fy={Llz-af ) (5.16)

and
(Losle—al f@) =(L.f)+mbe, lal=1, meR, (5.17)
respectively [815[82]. The polynomial coeflicients associated with F¢ (@) and Fg(a,m)

are

Ac(2) = Dg(2) = (z— a)(1 —az), Dc(z) =Ag(2) =z,

Be(2) = —acoz” + (ac_ — @cy)z + acy, Bg(2) = @coz® +2iF(qo)z — aco,

where ¢ is a free parameter that depends on the mass used in (5.17). Now, consider
the following product of transformations

Fp = Fo,(a,m) o Fg,(a,my) o Fe,(a) o Fe, (). (5.18)

It is not difficult to show that Fp, the C-function associated with Fp, is given by

Bc,(2) N Bg,(2) . Bc,(2)Ag, (2) . Bg,(2)Ag,(2)
Dg,(z)  Dg,(z)  Dg,(2)Dg,(z2) D, (2)Dg,(2)
Bc,(2)+Bg,(z2)  2(Bc,(2) + Bg, (2))
z-a)l-az)  (z-a@P(l-az)?

Fp(z) = F(2)+

=F(@)+

Assuming that all transformations are normalized, i.e., all of the first moments are
equal to 1, and denoting K| = @c_| —a@c| + 2i5(q§)1)) and K> = ac_1 —ac; +2i$‘(q(()2)),

where qg)l) and qéz) are the free parameters associated with ¥, and ¥, , respectively,
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we obtain

_ Koz K.z
Fo@=Fa+ o= 1 "an T Goard —a2?
L L, L Ly

=F(z)+ (5.19)

+ + + s
(z-a) (- @-al) @-a ')y
for some constants Li, Ly, L3, and Ly, satisfying

—aKy, =L +Ls,
A+laH)Kr+ K = —(@+2a DL+ L, — Qa+a HLs+ L,
—aky =@ 2 +2aa DL -2a 'Ly + (@ + 20 ' @)Ls - 2aL,

0= —a&‘le +5_2L2 - 025_1L3 + a/2L4.

Furthermore, comparing (5.13) and (5.19), we have L, = —aL; and Ly = —a ' L3. Solv-
ing the above system we arrive at

ol

L= , Lz3=-— K>,
1 1= [aP 2 3 1= [ap 2

and thus, we conclude that transformation (5.18) is equivalent to F2(a~!,m), the trans-
formation associated with (3.10) , with

laf?

" i)

5.2 Non-standard inner products

In the last few years, some attention has been paid to the asymptotic properties of
orthogonal polynomials with respect to non-standard inner products. In particular, the
algebraic and analytic properties of orthogonal polynomials associated with a Sobolev
inner product have attracted the interest of many researchers, see [[132] for an updated

overview with more than 300 references.

A discrete Sobolev inner product in C \D is given by

(f.8)s = fT [@g@)do(2) +(Z) A g2)", (5.20)
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where

£2) = (@), FO@D), o fl@m)s o 7 (am),

A is an M X M positive semi-definite hermitian matrix, with M =[; +...+ 1, + m, and
lojl > 1, i =1,...,m. Since A is positive semi-definite, the inner product (3.20) is

positive definite. Therefore, there exists a sequence of polynomials {¥,,},,50,
Un(2) = yu2" + (lower degree terms), 7y, >0,

which is orthonormal with respect to (5.20). We are interested in the outer relative
asymptotic behavior of {i,},-, with respect to the sequence {¢,},., of orthonormal
polynomials with respect to 0. We show that if oo € N and A is positive definite, then
this outer relative asymptotics follows. Similar results have been obtained for the case

when the measure is supported on a bounded interval of the real line [[118;[134].

5.2.1 Outer relative asymptotics

In [[70; 11165 [126], the relative asymptotic behavior of orthogonal polynomials with
respect to a discrete Sobolev inner product on the unit circle was studied. In this sec-
tion, we propose a slightly modified outline.

The nondiagonal structure of the matrix A makes the analysis of the situation much
more difficult. First of all, let us prove an important result which gives precise infor-

mation about the matrix A.

Lemma 5.2.1. The outer relative asymptotic behavior of orthogonal polynomials with

respect to the inner product (5.20) does not depend on the matrix A.

Proof. Let {J”}nzo be the sequence of orthonormal polynomials with respect to the

inner product

(fog)s = fT FOe@do(:)+1Z) B2,

where B is an arbitrary positive definite hermitian matrix of order M. Expanding ¢, in

terms of {¢,},59, we have

n—1
Un(@) = 29, + ) Auadi(2) (5.21)
" k=0
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where

Ak = fT Un(DPDAT(R) = i (DAB(2).

Substituting this expresion in (3.21), we obtain
Vn T
Yn(2) = K—¢n(Z) ¥, AK,(z.2)", (5.22)
n

where K,(2.2) = (Ku(z,01),.... Ky (@ @), .., Kn(zo @), .. K3 (2, i) and K}
(z,y) denotes the i-th (resp. j-th) partial derivative of K,(z,y) with respect to the variable

Z (resp. ¥). In an analogous way, we get

Un(2) = %n(z) ~ 9, (2)BK,(z.2)" (5.23)

where 7, is the leading coefficient of ,. From (5.22) and (5.23) and following the
method used in the proof of Theorem [5.1.1] we get [70; [116]

Vo Un(z) _ det(I+AT,) det(1+BIK,)
Yo Un(@) _ det(1+BT,) det(+AK,)’
7.\" _ det(+BK,) det(I+AK,.)
(Z) " det(I+AK,) det M+ BK,11)’

where IK,, is a positive definite matrix of order M, n > M, which can be described by
blocks. The r, s block of IK,, is the (I, + 1) X (I; + 1) matrix

i __\J=0,...[¢
(K}{l ])(Zr’zﬂ))izo ..... L r,s=0,...,m.
1
T, is obtained through the following equation T, = K, + V,, where V,, = —m
n Z
K.(z,Z)" ¢,(Z). Since [70; 126]
m det(I+AK,) im det(I+AT,) detA
1 — =11 = s
n—oo det(I+BIK,) n—c det(I+BT,) detB
we can deduce that
T Un(2) )’
lim 22979 0 gim (—") -1,
n—00 Y, Yy (2) n—=00\Yn
and the lemma is proved. O

For the discrete Sobolev inner product with a single mass point associated with
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@)?
(f:8)s, = fT [@g@dor () + Af P (@)gP(a), el > 1, (5.24)

we have

Lemma 5.2.2. Let {11150, Yn:1 = Yu:1 2" + (lower degree terms) be the sequence of
orthonormal polynomials with respect to (5.24). If o € N, then

. VYni1 1
lim = —.
n—e Ky al
Proof. From (5.22)) we have
U1 (2) = @ - W @K ). (5.25)

Taking derivatives in (5.25) and evaluating at z = @, we get

Yot [Kn 85 (@)

)
Y (@) = : (5.26)
1+ /lel{Jl)(a,a)
Thus, (5:26) yields N
( By )2 1+ 2K (@, )
@) 14K (@,0)
Using the previous identity and Lemma[5.1.2]
(.J) ) 2
Yor . L+AK} J(@a) g (@) 1
lim == = lim () im —— =
n—eo = n—oo 1+/1Kn]] (cx,a') n—oo |¢nj (a,)|2 ||
and the lemma is proved. O
Using the previous lemma, we prove the relative asymptotics in C\D.
Theorem 5.2.1. If o € N, then uniformly in C\D
Y1 (2) az-a)
im — =B(a), B(a)= (5.27)
n=eo Pp(z) lal@z—1)°
Proof. From (5.23), we have
g0
Yu1(2) _ Ymi | (z@)
o - n@d@ )—). (5.28)
" " $n(Dy (@)
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Using (5.26), we obtain

lim 4y (@) (@) = (|a| - ﬁ) (5.29)

The outer relative asymptotics (3.27) follows letting n tends to infinity in (5.28)), using

Lemmal[5.2.2] Lemma[5.1.3] and (5.29). i

From Theorem [5.2.1 we can see that the outer relative asymptotic behavior of or-
thogonal polynomials associated with (5.24) does not depend on the specific choice of
jand A.

Lemma 5.2.3. o€ N, then S1 € N.

Proof. Assume, without loss of generality, that j =0 and A = 1. From (5.23)) and (5.26)
we get

dn(@)

=Yl — O
Yn;1(2) = p $n(2) 17K, (Q,Q)Kn—l(z,a)- (5.30)

The evaluation at z = 0 of this last expression yields

Un1(0) _ ¢u(0) __ gn(@P  Kn-1(0,0)
Yl K 1+ Kn1(@,0) y,,(a)

and using the Christoffel-Darboux formula (2.33), we obtain

Kn— > n ;kl n
10.) =K_(¢ @ ¢ (0>). 531)
Yn;1 on(a) Vil ¢n(a) Kn
From Corollary|5.1.2{ under our conditions, the following limit holds lim % =
n—o0o ¢n a
1
0. Since K,(a,a) is an increasing sequence and lim m = 0, applying the Stolz-
n—o0 a
Césaro criterion, we have !
Ipn(@)? 1
————=|1l-—. 5.32
n—oo 1+ Ky(a,@) |2 ©-32)
On the other hand, from (5.30) we can deduce the following identity
[n(@)? 1+ Kom1(@,) Yot |
n —1- NG g (Yl (5.33)
1+ Ky(a,) 1+ K,y (o,) Kn
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Thus,
1- Kn— 1 (07 a)
m —-

"7 Y1 nl@)

and the result follows. |

=0

We are now in a position to sumarize the results obtained above, in the following

statement.

Theorem 5.2.2. Let (i}, be the sequence of monic orthogonal polynomials associ-
ated with the inner product (5.20). Then, uniformly in C\D,

N 164) _ = i+l
Jim, gy = | |

Proof. First of all, we prove the result for

1(2) =1,(2) = (£ (1), £ (am)),

and A,, a positive definite hermitian matrix of order m. Let {1 },>0 be the sequence of
orthonormal polynomials with respect to (5.20) for £(Z) = f,,(Z). We can assume, with-
out loss of generality, A,, = I, by Lemma[5.2.1] Therefore, the relative asymptotics
can be written as follows

lim Un; m(2) . Y (2) = l//n;i(z)
im = lim s
noe gp(z) o du(2) Ly Yni-1(2)

which, using Lemma [5.2.3and Theorem [5.2.1] immediately yields

l//nm(z) 1_[3( ).

n—>c>o ¢n

Finally, the proof for a general f(Z) is a straightforward consequence of the previous

analysis. O

5.2.2 Zeros

In this subsection we study the asymptotic behavior of the zeros of orthogonal poly-

nomials associated with the discrete Sobolev inner product (5.24)). In contrast with the
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real line case [4}23;1615162;[130; [157] (see also Appendix E[), there is not a well devel-
oped theory for zeros of discrete Sobolev orthogonal polynomials on the unit circle.

The monic version of (3.28) is
A0 (@)

1+ K% (@, @)

K%z, a). (5.34)

n—1

¥i(2) = Ou(z) -

Thus,
Yo(2) Dy(2)
@ | | e
¥1(2) D,-1(2)

where L, is a n X n lower triangular matrix with 1 as entries in the main diagonal, and

the remaining entries are given by (5.34), i.e.,
1205 @@ (@)

IOl5 (1+ KV (@, )

lm,k =

GGT matrices

One of our aim is to find a relation between Hy, the Hessenberg matrix associated
with the monic orthogonal polynomials {‘¥}},~¢, and H,-. In particular, we get

Dy(2) Do(z) 0
Di(z2) D(2) 0
4 =MHeu| . + D, .|
(anl (Z) (I),k 1 (Z) 1
and, on the other hand,
Yo(2) Yo(2) 0
¥1(2) Yi(2) 0
zl . =Hy),| . [+¥.@].]| (5.35)
¥-1(2) Wi-1(2) 1
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Substituting in (3.33)), we obtain

Dy(z) Oy (2) 0 Do(z)
Dy(z) D1(2) 0 D1(2)
7L, . = (Hy),L, . +®,(2) . +A, . s
D,-1(2) D,-1(2) 1 D,-1(2)
where
0 e 0
A, =
0 e 0
ln 0 ln,n—l

Asa consequence,

Do (2) Do(2) 0
D,(2) . RN EJIE) 0

o L =L HeL LA [+ 0.0 |
D,-1(2) D,_1(2) 1

SO
(Hy), = L, '(Hy),L, +L,'A,

and therefore, since
L,'A,=A,,

we have

Theorem 5.2.3. Let (H,),, and (Hy), be the n X n truncated GGT matrices associated

with {®,},50 and {¥,,},50, respectively. Then,

(H‘P)n = Ln((HO')n - An)L,_,l .

As a consequence, the zeros of Y,+1 are the eigenvalues of the matrix (Hy), — A, a

rank one perturbation of the matrix (Hy),,.

In the previous theorem we have characterized the eigenvalues of the GGT ma-

trix associated with the discrete Sobolev polynomials as the eigenvalues of a rank one

perturbation of the GGT matrix associated with the measure.
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Notice that A,, = (0,...,0, l)T(ln,o, Int,....lhn-1) and, since [, x = 0 for k < j, then

0
~ W 0
oA i @ 6)@
ek @) o[ IRAR T 0P |
1

do
As an example, if do(0) = 7 is the Lebesgue measure, it is not difficult to see that in
Vs

such a case, if @ =0, then A, =0, n # j, and

0
aGY |

j = —. ) b 09 1’ 0, b 0 b

T+ AGN? | [ |
1

where the one is in the position j. On the other hand, if @ = 1, then for n > j,

0
1 (n)!

(n=!

A, = 5[0, L 00 L DL L, B

n—1 2 (n—j-1)!
k! 0
142 (_)
; k=t |1

Asymptotic behavior

First, denote by {¢,(-;do j+1)}u>0 the corresponding sequence of orthonormal poly-
nomial with respect to

doj(z) = lz— Y Vdo(z),  j=0,

i.e., the product of j+ 1 transformations as (5.16). For any j > 0, the relation between
¢n(;doji1) and ¢,(-,do) is given by [126]

- ¢y jo1(zdo ) =

J

Mn—j-1

ol EACO LI sl ] A (5.36)
@n =0
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where 7, is the leading coeflicient of ¢,(-,do j;1), and y, 4 is the k-th component of the

vector
Kii@a) K@) ... K0
0 (1 0)((1 ) K(1 1)(a/ @) ... K(1 /)(a/ @)
[pn@ d@ ... sP@]| " .
K’(fi(;)(a/, ) K,(q]ill)(a, a) ... K(I ])(a @)

If o € N, then [126]

n ;d j a i
tim 2050 (g 1 ) , (5.37)
n—oo ¢n+j+1(Z) o] @z — 1
holds uniformly in |z| > 1 if |@| > 1, and in |z] > 1 if || > 1.
On the other hand, by Theorem [5.2.1] for |a| > 1,
!ﬁn(z) @ z-a (5.38)

R ou@)  lelaz-1

uniformly on every compact subset of |z| > 1. From (5.37) and (5.38)), we have

(u(az 1)) (z—a) lim oulzdojen) lim Ynej1@)

n—oo ¢n+/+1(Z) n—eo ¢n+j+1(Z) .
Hence,

lim ———
n—eo ¢, 1(z; do—ﬁ—l)

YnlD (M(_ —1>) (-,
a

uniformly |z| > 1. The following result follows immediately from Hurwitz’s Theorem
[49].

Theorem 5.2.4. There is a positive integer ng such that, for n > ng, the n-th Sobolev
monic orthogonal polynomial ¥, defined by (5.24), with |a| > 1, has exactly 1 zero in

C\ D accumulating in o, while the remaining zeros belong to D.

This result is analogous to the well known result of Meijer [[140]] for Sobolev or-
thogonal polynomials on the real line; see also Appendix [A] We now turn our attention
to the case when A tends to infinity. For a fixed n, j = 0 and A tends to infinity, n — 1
zeros of i, tend to the zeros of ¢,_1(z,do 1), and the remaining zero tends to z = @. On

the other hand, for j = 1, the zeros of i, tend to the zeros of a linear combination of
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D,(2), (z—a)®,_1(z,do1), and (z— a)zd)n_g(z,dog) when A — co. This result can be
generalized for arbitrary j. Indeed, from (5.36)), notice that

77n,1

7K (@ @) = (=) g1 (2, d0 1) — ¢n<z>+Zynk ).

Applying the last formula recursively for k =0, 1,..., j— 1, we obtain

Theorem 5.2.5. Let {,},50 be the sequence of orthonormal polynomials with respect
to (5:24), with j > 0. Then y,(z) is a linear combination of ¢,(2), (z— @)¢n—1(z,do),
L -y, -1z, dojy1). As a consequence, the zeros of Y,(2) tend to the zeros of

such a linear combination when A — .

Now, we provide an extremal characterization for the limit discrete Sobolev poly-
nomials, when the mass tends to infinity. Notice that when A tends to infinity in (5.34),
we get the limit polynomial

(D(j) (Q) (0 ])(Z

¥(2) = Bul2) - K0

a). (5.39)

It is easily seen that ‘.175,] ) (@) =0, as well as P,, is orthogonal to the linear space span{1,z—
a,...,z—a) ' (z—a)*!, ... (z— )"} € P,. Assume that @n is a monic polynomial
of degree n such that @,(f )(oz) = 0. Then, we can write

. n—1

V(@) = Op(2) + ) Austi(), (5.40)

k=0

for some (unique) complex numbers A4, x, and therefore

(@) + Z At (@) =0

On the other hand, from Cauchy-Schwarz inequality, we get

n—1

n—1
o | Z o al? Z 6@ = KD @.0) Y il
k=0
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5. SPECTRAL TRANSFORMATIONS ASSOCIATED WITH MASS POINTS

and taking norms with respect to y in (5.40), we obtain

n—1
w12 2 2
Bl = 1DaI2 + > Al
k=0

Thus,
n-l D)2
G @, (@)
PG = 1Pl + D sl > 19+ ———.
k=0 Kn—’l (a,@)

But the term in the right hand side is precisely ||‘T’n||(27. As a consequence, we have

proved the following extremal characterization for the limit polynomial ¥,

Theorem 5.2.6. Let P, be the limit monic polynomial of degree n defined by (3.39),
then

||‘T’n||(27 = min{f @n(z)lzd,u(z); @,,(z) = 7" + (lower degree terms), @;j)(a) = 0}.
T

Example: Lebesgue polynomials

For the normalized Lebesgue measure, it is very well known that its corresponding

monic orthogonal polynomial sequence is ®,(z) = 7", n > 0. Thus,

n—1
0) o 0 kU g ke
O, (@) = ——a"/, K {(za)= —za Y,
(n=j! ol ,;(k—ﬁ!
) KV e
K" (@.a) = Z( = j),) a4,

=)

When n, j, and A are fixed and « varies, we were able to identify some ’critical’
values of « that change the behavior of the zeros of i,,. Of course, such values of «
will depend on n, j, and A. The following table illustrates such a situation when n = 30,
j=2,and 1= 10.

Figures illustrates the information in Table [5.1} showing the location of the
zeros of Y3 for several values of @. Namely, the zeros corresponding to @ = 0.4 +0.4i
(blue discs), @ = 0.7 +0.7i (purple square), @ = 1.05 + 1.05: (yellow diamonds), and
@ = 1.6+ 1.6i (green triangles) were plotted. On the other hand, Figure[5.1(b)]illustrates
the behavior of the zeros of ,, as n — co. The zeros corresponding to n = 10, n = 20,

n =30, and n = 100 were plotted. Notice that one of the zeros approaches the value of
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Table 5.1: Critical values for n =30, j=2,and A =10

o Behavior of zeros

0 < |a| <0.8202 All zeros approximately aligned
and increase with

|| ~0.8202 One of the zeros (z;) breaks the
pattern

0.8202 < || < 1.3194 z; increases with

|| ~0.1.3194 z; changes sign

1.1394 < |a| < 1.6263 z; decreases with &

|| ~ 1.6263 z; goes back to the aligned pattern

|| > 1.6263 All zeros approximately aligned

and decrease with

@ as n increases, as stated in Theorem [5.2.4}

Im(z) Im(z)
20

L]
N
-
1O A
*
W
4,
e . CKTREN
. .I'o. * [
CR RS on
Te ¢ ,aAfaa K3 0
..:AAA A Lom . LN
nee { L a0 Re(z) . * ”Y . Re(2)
1 me® 4 A ee 1 Z10 o5 ® A 1.0
LAY i e -
AT WA ., u
-..‘0000.’ °." ’0' o e
fo =
"ajmwm '*%qi'-‘o
1 AAAAA
1.0
Ll
(a) n=30 b)) a=1+i

Figure 5.1: Zeros for Lebesgue polynomials with j =2, 1 =10

Example: Bernstein-Szegd polynomials

In order to analyze the behavior of the zeros according to the location of @, we
present some numerical computations of such zeros for the orthogonal polynomials
associated with perturbations of the form (5.24) for one special case of probability
measures on the unit circle: the Bernstein-Szeg6 measures.

For the Bernstein-Szeg6 measure, see example in Section 2.1} we have ¢,(z) =
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Figure 5.2: Zeros of Bernstein-Szeg6 polynomials with 5 = 0.8 +0.8i, j=2,and 1 =1

7" Y(z=b), n> 1. Thus, we get

() n! n—-j i (n—1)! n—j-1

= - T ey e TR
©0.)) kel ahi_p_ k=D
ki Z(Z N R |
(i) oK e o =) _k_-_lr
K; (a,a)—kzz; (k—j)!a J —(k—j—l)!a U N

and, we obtain again the expression of ¢, using (5.253). We perform a similar numerical
analysis of the zeros of 3¢ as a function of « as in the Lebesgue case. Figure
shows the behavior of the zeros of 3o for fixed j, 4, and b, and several values of
a, namely a = 0.4 +0.4i (blue discs), @ = 0.7 +0.7i (purple square), @ = 1.08 + 1.08i
(yellow diamonds), and @ = 2.2 +2.2i (green triangles). As before, the behavior of the
zeros as n — oo is illustrated in Figure[5.2(b)] using the same values of n plotted in the

Lebesgue case.

On the other hand, the behavior of the zeros of ¢,, when 4 — oo is shown in Figure
[5.2.2] According to Theorem [5.2.5] the zeros of y, tend to a linear combination of
&n(2), (z— )pu_1(z,du1) and (z — @)$,_o(z,du), when j = 1. We computed the zeros

of such polynomials for the Lebesgue (Fig. and Bernstein-Szeg6 (Fig. 5.3(b))
cases.
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Figure 5.3: Zeros of Lebesgue and Bernstein-Szegd polynomials withn =8, j=1

The points on the outer diameter correspond to the zeros of the above mentioned
linear combination. Notice that when A increases, the zeros of ¢, approach the outer
diameter, as per Theorem [5.2.3]
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Chapter 6

Generators of rational spectral

transformations for C-functions

... Stieltjes function(s) [T_]with polynomial coefficients can be presented as a finite superposition of four fun-
damental elementary transforms ...

— A. Zhedanov. [202]

In this chapter we deal with transformations of sequences of orthogonal polynomi-
als associated with the linear functional £ using spectral transformations of the cor-
responding C-function F. First, we study the modifications obtained by multiplying
a hermitian functional by a polynomial of any degree, in short, polynomial modifica-
tions. We characterize when two functionals are related by a polynomial modification.
We are interested in those modifications which preserve their hermitian character. The
possibility of considering modifications that do not preserve the hermitian character of
the functional leads to left and right orthogonality [[13]. Hence, the preservation of the
hermiticity calls for the use of Laurent polynomials as perturbations. Laurent polyno-
mial modifications of hermitian linear functional have been previously considered in
(28 1545 1725 1815 1825 11245 [183]].

Next, we distinguish two related problems: to characterize the quasi-definiteness

character of the direct polynomial modification (2.44) and the inverse polynomial mod-

1S- functions.
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6. GENERATORS OF RATIONAL SPECTRAL TRANSFORMATIONS

ification (2.43) from the original functional. Due to the non-uniqueness of the inverse
problem we pay special attention to this one. Finally, we show that a linear spectral
transformation of F can be obtained as a finite composition of spectral transformations
(2:44)-(2.43), and also that any rational spectral transformations can be obtained as a
finite composition of linear and +k associated spectral transformations.

6.1 Hermitian polynomial transformation

Let £ be the hermitian linear functional introduced in (2.23). The polynomial
modification f£ is defined by

(fL.gy=(L.fa), frg€A.

This polynomial modification is hermitian if and only if f is a hermitian Laurent poly-
nomial, i.e., f = f., which is equivalent to state that f = p+ p., p € IP. Such a polyno-
mial p can be uniquely determined by f simply requiring p(0) € R.

Féjer-Riesz’s Theorem [66; [166]] states that any Laurent polynomial f which is
non-negative on T can be factorized f (€)= p(ei‘g)lz, where p is a polynomial whose
zeros all lie in D or, in other words, one can find p whose zeros are all in C\ D. By
analyticity, f(z) = p(z)p(1/2). Thus, f.£ is positive definite for a positive definite linear
functional £ if f also satisfies Féjer-Riesz’s condition. Its analog on the real line, that
is, P(x) > 0 on R implies P(x) = Q(x)@ where Q has all its zeros in C, it is well
known.

Another way of characterizing a hermitian Laurent polynomial modification is
through the polynomial g = 7427 f of degree 2degp. The condition f = f, means that
g is self-reciprocal, i.e., g = g*. Therefore, hermitian polynomial modifications are re-
lated with self-reciprocal polynomials of even degree. The zeros z; of a self-reciprocal
polynomial lie on the unit circle or appear in symmetric pairs z;, 1/z;. Indeed, this
property characterizes the self-reciprocal polynomials up to numerical factors. This
implies that any self-reciprocal polynomial of even degree factorizes into a product
of self-reciprocal polynomials of degree 2. As a consequence, an arbitrary hermitian
polynomial modification f£ can be factorized as a product of elementary ones of de-
gree one. In the sequel we assume for simplicity that the polynomial modification f
is a monic hermitian Laurent polynomial from which we can deduce immediately the

more general case.
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We denote by W» ﬂhe orthogonal complement in P,, of a subspace W c P,,.

Theorem 6.1.1. [189] Let L be a hermitian linear functional such that the correspond-

ing sequence of monic orthogonal polynomials {®,}, exists. Then,

{qu)"(Z)}Zﬂ U {qu):(Z)}Zﬂ

is a basis of (I Pp_,_1)*™" for n > r > 1 and a generator system of P, for r > n > 0.
As an immediate consequence of Theorem [6.1.1]we have the following result.

Corollary 6.1.1. [30] Let L be a hermitian linear functional such that there exists
the corresponding sequence of monic orthogonal polynomials {®,},-o. Then, every
polynomial ¥,,(z) € (Z'Py_,_1) " has a unique decomposition, ¥, (z) = C(2)®,(z) +
D()®,(z), CeP,, DeP,_y, for n>r > 1, and every polynomial ¥, € P, has in-

finitely many decompositions for r > n > 0.
To study the hermitian polynomial modifications we have the next theorem.

Theorem 6.1.2. [30] Let L and L be hermitian linear functionals with finite segments

of monic orthogonal polynomials {® j};?zo, {¥ j};?;'g, respectively, and let f(z) = p(z) +

p«(2) = 277g(2) with f be a polynomial of degree r. Then, the following statements are

equivalent:
i L=fL in P,

i) There exist Cj € P, D; € P,_; with C;(0) # 0 such that
8@V¥; = Ci(2P)ir(2) + Dj(2)P},,(2), j>0.
iii) There exist C; € P,, D; € P,_y with C;(0) # 0 such that
§Q¥() = DD (D) + Ci@P%,, ). Di@=D7 '@, j>0.

The polynomials C; € P,, D; € IP,_y satisfying ii) or iii) are unique, degC; =r, C;(0) €
R and C;‘.(O) = g(0).

The above theorem has the following consequence for quasi-definite functionals.

The orthogonal complement W+ of a subspace W of an inner product space V is the set of all vectors
in V that are orthogonal to every vector in W.
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6. GENERATORS OF RATIONAL SPECTRAL TRANSFORMATIONS

Corollary 6.1.2. [30] Let L and L be quasi-definite hermitian linear functionals with
sequence of monic orthogonal polynomials {®,},50, {¥n},=0, respectively, and let f(z) =
p(2) + p(2)« = z27"g(z) with f be a polynomial of degree r. Then, L = p.z if and only if
there exist polynomials C,, € P,, D, € P,_1 with C,(0) # 0 such that

8()¥(2) = Co(2)Pp4r(2) + Dy ()P, (2), n>0,
or, equivalently,

8(2)¥,(2) = 2Dy ()P4 (2) + Co(2) D, (2),  n20.

6.2 Laurent polynomial transformation: Direct prob-

lem

The direct problem deals with the case where we suppose that a hermitian linear
functional £ associated with the sequence of orthogonal polynomials {®,},(, and a
hermitian polynomial of degree 1 are given, i.e., we consider the spectral transforma-
tion (2.44). Then, we obtain information about the functional L and its sequence of

monic orthogonal polynomials {¥,},,5-

From (2.43), we get
C_f = (k) F C—(k—1) — (@ + @)C g, 6.1

where {c,},50 is the sequence of moments associated with Lg. Notice that if a =
—2R (), and using (6.1)), we obtain

T=ZT+aT+TZ",

where T is the Toeplitz matrix associated with Lz, and Z is the shift matrix with ones

on the first upper-diagonal and zeros on the remaining entries.

6.2.1 Regularity conditions and Verblunsky coefficients

If L is quasi-definite, necessary and sufficient conditions for L to be also quasi-
definite have been studied. Moreover, the explicit expression for sequences of monic

polynomials orthogonal with respect to L have been obtained [28} [183]].
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Theorem 6.2.1. [[183]]

i) If |Ral # 1, and by, b, are zeros of the polynomial Z—(a+a@)z+1, then Ly is
quasi-definite if and only if K;;(b1,b2) # 0, n > 0. In addition, if {¥,}ns0 denotes

the sequence of monic polynomials orthogonal with respect to Lg, then

O, (2)K,,_,(b1,D2) — K;,_,(2,02)@p(b1)
K> (b1,b2)(z—by) ’

Wi-1(2) = n>l1, 6.2)

and
(D"(bl)q)”_l(bZ)_(Dn(bZ)q)n_](bl)
\Pn_ 0 - s n> 1 6_3
' K> (b1,b2)(D1 —b2)kp—1 (6.3)

it) If|Ral| = 1, and b is the double zero of the polynomial 7> — ( + &)z + 1, then Lg
is quasi-definite if and only if K (b,b) # 0, n > 0. In addition,

DK’ (b,b) ~ K’ _ (2,b)Dy (b)

¥o1(2) = K (b,b)(z—D)

, n>=l, (6.4)

and
©,(0)K;_,(D,b)ky—1 — Dy 1 (b)D, (D)

Y,_1(0)=-b
w10 K (b D)y

, n=1.  (6.5)

According to Corollary [6.1.2] (6.2) and (6.4) can be written as follows.
Corollary 6.2.1.

i) If|Ral # 1, and by, b, are the zeros of the polynomial 72 — (a + &)z + 1, then

D11 (01)D; (D
(Z—bl)(z—bz)‘{’n(z):Z(Z_bz_M) ()

k, K5 (by1,b2)
by ®,,41(b1)D,(b2)
k, K5 (by,b>)

+ ((Z —b))®,,1(0) + )CDZ(Z)-

ii) If |Ra| =1, and b is the double zero of the polynomial Z—(a+a&)z+1, then

®pe1 (DD (D
(= b Wa(2) = z(z—b— %bb()))@n(z)
bD,1(b)D, (b .
+ ((Z —-b)D,11(0) + %) 0, (2).

There is another equivalent condition for the quasi-definiteness of Lz and, conse-

quently, an expression for the corresponding Verblunsky coefficients.
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Theorem 6.2.2. [28]] The linear functional Ly is quasi-definite if and only if 11,,(b1) #
0, n >0, where
x®,(x) D (x)

= g,y @ieh)|

Moreover, the families of Verblunsky coefficients {¥,(0)},>1 are given by

(b)) D, (b7

0= o107 2

nzl. (6.6)

In [[72] it was obtained the relation between the corresponding GGT matrices as
well as an explicit expression for the Verblunsky coefficients of associated with this
perturbation is given. Thus, the invariance of the Szegd class of bounded variation

measures follows.

6.2.2 (C-functions

From the relation between the moments (6.1) we get that the C-function associated
with L is

Fr@) =5 ((c+z7 —(@+@)) F@) +co(z-27") +er —c). 6.7)

| —

In a more general situation, if we consider a finite composition of L with order k > 0
defined by

k
Lpw = %[l—[(z—a/,')]ﬁ, a; €C, (6.8)
i=1

we can prove the following result.

Lemma 6.2.1. A spectral transformation given by F (z) = A(2)F (2) + B(2) such that A
and B provide a true asymptotic behavior to 2.43)) is equivalent to (6.8). Furthermore,

1
Az) = Eﬁp(z), B(z) = P(z) — P.(2), (6.9)

where P is the polynomial of second kind associated with

k
p) = n(z - ;)
i=1
with respect to the linear functional (6.8).
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Proof. From (6.7) we get that L is a spectral transformation with C =0 and D = 1.
On the other hand, if we start with a generic spectral transformation where C = 0, B
is a hermitian Laurent polynomial of degree one, and D = 1, A should be a hermitian
Laurent polynomial of degree one (see Section[6.4)), and the only choice for this spectral

transformation is (6.7) containing one free parameter a.

If we consider the linear functional (6.8)), from (6.7) we have
F(2) = AQF )+ BQ). (6.10)

where

A@R) =+ = (a1 +@1) 2+ = (@ +@r)

is a hermitian Laurent polynomial of degree k. This transformation contains k free
parameters . B is a polynomial of the same type and degree as A.

Conversely, if we start with a generic spectral transformation where
A=G@+z =(ar+a@) @+ —(ax+ @)

is a hermitian Laurent polynomial of degree k, C = 0, and D = 1, then B should be
a hermitian Laurent polynomial of same degree as A, in order to satisfy A = A, (see
Section [6.4). Moreover, it is easily seen that for (6.8) the polynomial B is uniquely
determined by means of the sequence of moments {c,},cz associated with the linear
functional £. Furthermore, (6.9) follows immediately from the definition of (6.8). O

6.3 Laurent polynomial transformations: Inverse prob-

lem

In this section we study the inverse polynomial modification given by (2.43). More
precisely, given a hermitian functional £ whose corresponding sequence of monic or-
thogonal polynomials is denoted by {®,},-¢ and a hermitian Laurent polynomial of
degree 1, we obtain information about the hermitian solutions L1y of (2.:45)) and their
sequence of monic orthogonal polynomials {¥,},5o. If L is a positive definite linear
functional, necessary and sufficient conditions in order Ly -1 to be a quasi-definite lin-
ear functional are given. The relation between the corresponding sequences of monic

orthogonal polynomials is presented. We also obtain the relations between the corre-

133



6. GENERATORS OF RATIONAL SPECTRAL TRANSFORMATIONS

sponding C-functions in such a way that a linear spectral transformation appears.

We can describe the hermitian solutions of L1 starting from a particular one
Ly-» [30]. This approach shows that the inverse problem is related to the study of
0
the influence of Dirac’s deltas and their derivatives on the quasi-definiteness and the

sequence of monic orthogonal polynomials of a hermitian functional.

We are only interested in those values of @ such that 0 < |[R(a)| < 1. However, in
this case the zeros b and b of 72 — (@ + @)z + 1 are complex conjugate and, furthermore,
|b| = 1. We denote by o and 0'5;1) the measures associated with the positive definite

case of £ and Ly, respectively, i.e.,

do(z)

2R(z—a) +m8(z~b)+mys(z~b), my,m; €R.

dO-R(—I)(Z) =

Here, o is a non-trivial probability measure supported on T, which can be decomposed
as in (2.37). Thus, if oy = 0, then the integral

=) Trrl—(erm2or 2w Jp2-(at@ztl

%]

_ fz" ew@) do 1 'w(z)
0

has singularities in z = b and z = b. These singularities can be removed if we consider

_ 1 7"w(6)
C}’L = — _—
2ri Jr 22 —(a+@)z+1

n _ n —w( o
I f Zw@-wb) , _ f Z(L_w())dz+lb”w(b)—lbnw(b),
2ni(b-b) \JT z=b T 7—b 2 2

(6.11)
assuming that w € C2*; that is, w satisfies the Lipschitz condition Ebf ordert (0<7<1)
on T [193]]. Notice that this is also valid if o5 # 0, as long as o5 has a finite number of
mass points different from b and b.

From (2.43) we get
C_ = E_(k+1) +E_(k_1) —(a+ 6)?_](. (6.12)
If a = —2R (), and using (6.12)), we obtain

T=ZT+aT+TZ"

Ha() - w3 < Clx—yF, € >0, z,y e T.
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Furthermore, the hermitian Toeplitz matrices can be characterized as T = T* together
with ZTZT =T, and, therefore,
TZ" = TB,

where B =1+aZ7 + (ZT)2 is an infinite lower triangular matrix with ones in the main

diagonal, with the following structure

A |0

1
where A = [
a

0
1]. On the other hand, is not difficult to show that

A 010

A A | O

Az | Ay | Ay

where A; = A™L, Ay = (=1 TA-IM* L k> 2, and

M=A—1AT=[1 a ]
-

—a l-a

In other words, B! is a lower triangular block matrix, with Toeplitz structure. Finally,

TS=T,
where S is given by
ZIT 0|10 |.. A 0|0
p 1 Z] ZIT 0 A2 A1 0
S=7Z"B" ,
0 |Z |27 Az | Ay | A
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0 1
with Z; = [0 0], i.e., S is also a lower triangular block matrix with Toeplitz structure.

6.3.1 Regularity conditions and Verblunsky coefficients

Assume that L1 is quasi-definite and let {¥,},>0 be its corresponding sequence
of monic orthogonal polynomials with leading coeflicients k,. We next state the relation

between {¥,},>0 and {®,},0.

Theorem 6.3.1. Let L be a positive definite linear functional. If Lp-1), given as in
(2:43), is a quasi-definite linear functional, then ¥, the n-th monic polynomial or-

thogonal with respect to L), is

Wo(2) = (z . kk: )cbnl @+ (cbn<0> - <0>] O (. (613)

n—1

Conversely, if {(¥y),=0 is given by (6.13) and assuming that |¥,(0)| # 1, n > 1, then

{Wnlnso is the sequence of monic polynomials orthogonal with respect to Lp-1).

Proof. Let

n—1
W(2) = 02+ ) @ (2). (6.14)
m=0

Multiplying the above expression by ®,, and applying £, for 0 < m < n—1, we get
(LW, D) = Ak,
or, equivalently,
(Lgens (2427 = (@+ @) ¥a@Ou() = dukin.
Thus,

1 _ _
Apgn = . <£R(—1>,(Z+Z_1 —(a+ a))‘I’n(z)(I)m(z)>, Os<m<n-1.
m
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If m=n-1, then

1

/ln,n—l = (<~£R(—l) 2 () Dy (Z)> + <~£R(—l) 2 ! ¥, (2)®)1 (Z)>)

=~

n—1

Gall

(1= ¥0i1 (00,1 0)).

n—1

=~

On the other hand, for0 <m<n-2,

1 — K _
Anm = 1= (L, HaDPn(D) = =12 W1 O 0).

Substituting these values into (6.14), we obtain

k - T 2u0)P(2)
¥a(@) = @u(0) + =Pt ()~ kW1 (0) Y = =
! N m=0 " (6.15)
kn ky x
=0y + —Pp-1(2) = — Y011 (0)D,_, (2).
kn—l kn—l
Using the recurrence relation, we get
* 7511 75" *
Wn(2) = 2@n-1(2) + Pp(0)D,,_ (2) + —Pp-1(2) = —Fps1(0)D),_; (2)
kn—l kn—l
T T (6.16)
= (Z + k nl J(Dn—l @)+ ((Dn(o) - ﬁ\Pn+1 (0)) (D;k,_l (2),
which proves the first statement of the theorem.
Notice that evaluating (6.13)) at z = 0, we get
kn kn
¥n(0) = ©,-1(0) + 0, (0) = —¥11(0), (6.17)
knfl knfl
and thus (6.16) becomes
kn kn .
Wn(2) =[z+ ©y-1(2) + [ ¥n(0) = —Dp—1(0) [D,,_; (D).
kn—l kn—l

If we denote v, = ~n+1 /ky, and I, = ¥,,+1(0) — v, ©,(0), considering the reversed
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polynomial of ¥, 1, we obtain the following linear transfer equation

D,(2)
D (2)

[mmn] _ {z+vn L
o @ |

Lz vpz+1

Notice that the determinant of the above transfer matrix is

vzt D =Pz =2 +(va+ 1=l )2+ v,
=vp(@+ 1)+ (Va1 = [0, 0)) + 1 = [¥,1 (0)) 2
+ V(W1 0)®(0) + W1 (00, (0)) 2

= v,,(z2 —(a+a)z+1),

where the last equality becomes clear looking at (6.18)) in the following theorem. Fur-

thermore, we get

nz+ D1 (@) =LY, (2)
vn (2= (@+@)z+1)

ICER) MRCOLy e STES

n

vn (2= (@+@)z+1)

*
s ,,Z—

D,(2) =

and thus we obtain the following alternative expression that relates both sequences of

polynomials
(&~ @+ @2+ 1) () = Y2+, (Pr1 () = D1 (0¥, 7).

We now prove that the sequence of monic polynomials {¥,},>0 given in (6.13) is or-
thogonal with respect to Lp-1). Notice that ¥,,11(z) — ¥p+1(0)¥;,(2) is a polynomial of
degree n+ 1 that vanishes at z = 0 and, thus, ¥,,11(2) — ¥»+1(0)¥;,(2) = zp(z), where p(z)
is a polynomial of degree n. Then,

(@) = @+ V) Pu(@) + L P}(@) = P1 0) (T 120 1) + (12 + DO, (2)
=22+ V- 1)Pp-1(2) + 21 ), (2) = 2¥0(2),

where the fourth equality follows from (2:30) and (6.17). That is, {¥,,},>0 satisfies a
recurrence relation like (2:23)), and it is therefore an orthogonal sequence with respect
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to some linear functional Z We will prove that Z = Lpn. For0 <k <n-1, consider

(L(z+27" ~(@+@)0,)7) = (L.( - (@+@)z+ 1) Du()7)
= (LY@ )+, (L (P12 = Pt ()5, (2))Z) =0,

On the other hand, for k = n we get

(L ¥02@+v;! (Fnr1 D)= Pust 0¥, @)Z) =7 s =

Thus, {®,},>0 is the sequence of monic polynomials orthogonal with respect to (z +771

—(a+a)) ZL. But then (z +7 1 —(a +6))Z= £ and, therefore, £ = L. O

Theorem 6.3.2. Let L be a positive definite linear functional and o its associated

measure. If Lp-1) is a quasi-definite linear functional, then

D (3@ # (1~ (R - Riato - 7.
ii) (1= 10u(O)) 3+ Auerva+ 1= [¥ur OF =0, n> 1,
where A, = ¥, (0)®,_1(0) + ¥, (0)D,_; (0) + ¢ + @.
Proof. From (6.12)), for k = 0 and assuming that co = 1, we have

1 —
%(El) = 5 + ‘R((X)C().

In addition, in order to be Ly-1) a quasi-definite functional, we need

~ |co @
detT; = _
c-1 Qo

where T is the Toeplitz matrix associated with Lp-1), and ”f,l is its corresponding (n +

=3~ (RE@)* —(I@)* %0,

1)x (n+ 1) leading principal submatrix. Therefore, for the choice of @, we get
1 2
(S@))* # - (5 + 9%(01)70) ,

which is i). Thus, ¢y and J(c}) are free parameters, while R(c)) is determined by ¢o

and the choice of a.
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Furthermore, we have

b = (@, @) = (¥, Do) = (2427 = (@4 0) 100, @1(2)

= — (P 1 (0D, 0) + @+ @) ky + (Fa(2),2Pu (@) 1, -

On the other hand, from (6.15),

A _
(W (2), Z(Dn(Z»LR(,l) = Y1 (0)Y,(0)k, — X ”1 ky + k_nl\PrHl(O)q)n—l(O)km
n— n—
and from (6.17),
- -k, ~
<an(Z)3 Z(I)n(z)>£R(_1) = _Tl’l+1(0)\yn(0)k}’l - k n] kn
n—

+ (‘Pn(o) - 0,(0)+ kk—”‘l’ml (0)) W1 (0)ky
n—1

_ - ko~ K _
= —¥,,41(0)®,(0)k, — k—"kn + k—”|\Pn+1(0>|2kn.

n—1 n—1

Thus, if Ays1 = Ppr1(0)D,(0) + ¥t 1 (0)D,(0) + @ + @, then

— k., ~
o = = Atk + (¥ OF = 1) =k
-
— —~ 2 —~ {2
k, k k,
1= @ (0) = —Apy) —— +|-—¥,,1 (0 —( )
| n( )l ;’L+1kn_1 kh—l n+1( ) kn—l

. I I3
Since, from (6.17), ﬁ‘PnH(O) =k

®,,_1(0)+ D,(0) — ¥, (0), we obtain

2

SR [ o
L= 1O = =An =1 |d>n_1<0)|)(kn_l).

Therefore,
—_— 2 —_—

ko ke
(1—|c1>n_1(0)|2)(k 1) A 1+1—|‘I’n(0)|2=0, (6.18)

which is ii).
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Now, from (6.17),

ky—
Was1(0) = By (0)+[0n(0) = ¥a(0)) = .

n

n—1
(@,0) =¥, O) [ [ (1-12x0)P)
- k=1 +®,_1(0), n>1.

n

[ ](1-meP)e

k=1

We can thus build an algorithm to compute recursively the sequence {¥,+1(0)},>1, start-
ing from ¥;(0); see Algorithm[6.1]

Algorithm 6.1 Check Regularity

input «, ¢, {©,(0)}n>1
1: R(cy) = % +R(a)co

2: if Theorem|[6.3.2]7) then
B W(0)=-=

Co
4: end if

5. forn=1,2,...do

n—1

(@,(0) = o) | (1 - 10£0)P)
k=1

6:  W,4100)= - +®,-1(0)
[ [(1- 0P
k=1
7. if [¥,41(0)| = 1 then
8: break
9: end if
10: end for

Example: Chebyshev polynomials

Let do(8) the measure associated with the Chebyshev polynomials defined in
#@27). 1t is well known [I78] that the family of Verblunsky coefficients associated

with do is |

, 1.
n+1

n

,(0) =

\Y
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Im(¥,(0)) Im(¥,(0))
1.0+ 1.0+
05F 05F
L 0 - . Re(¥,(0)) Re(¥,(0))
-6 -4 -2 2 4 6 -6 -4 -2 2 4 6
051 051
-1.0F _1oF
(a) n =500 (b) n=10°

Figure 6.1: Verblunsky coefficients for Chebyshev polynomials with Ra = 0.8 and
a=0.5i

Now, let us consider the perturbation

lz— 1) de

do()= ———— —,
) 7+l —(a+@) 2n

lzl =1,

where R(a) = 0.6. Notice that b = 0.6 +0.8i. Then, according to (6-11)),

B 1 fz'f le! —1>-0.8 db fz” le! —1>-0.8 46 .
o= —— — — — —— | =—1,
"7 T6i\Jy, 1-006+08)e?2r Jy 1-(0.6-0.8i)e2x

and

1

~ L f27r (|ei0_ 1|2—0.8)€i9 ﬁ _f27r (leiQ_ 1|2—O.8)€i9 ﬁ
T 16i\Jy 1-(0.6+08)e®2r Jy 1-(0.6—08i)e2r

+ %(0.6 +0.80)(0.8) - %(0.6 - O.Si)(O.S)) =0.4.

Observe that part i) of Theorem [6.3.2] holds. Applying the algorithm, the first 500
Verblunsky coefficients are shown in Figure Notice that all of the new Verblun-
sky coeflicients are real. They are distributed on both sides of the origin, in nearly
symmetric intervals. If we repeat the computation for n = 1500, the values accumulate
over such intervals. This is shown in Figure[6.1(b)]

Example: Geronimus polynomials

In this subsection we consider a linear functional such that the corresponding mea-
sure is supported on an arc of the unit circle. Such a situation appears [78;[178] when

®,(0)=a, n> 1, with 0 < |a| < 1. Here the measure o associated with {®,(0)},>; is
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supported on the arc
A, = {eie V<0< 2n—v},

with cos(v/2) = /1 —|al?, but it can have a mass point located on T. The orthogonality

measure o is given by

sin((”rTV)sin(‘%V) )
do(6) = d6+m.5(z— '), (6.19)

27sin Q_TT

N

where ¢'" = T C_land
-a
2a*>—a-a
Aol za=a o s,
m; = |1_Cl|

0, if|1-2a/ < 1.

Moreover, the orthonormal polynomials associated with o are given by

n n n—1 _ n—1

1 RS N ~%
= +a —z(1=la|") —————1|, nel,
¢n(2) el Ak z(1-1aP)

1-|

with

2+ 1+ /(z—e)(z—e ™) z+1— A (z—e)(z—e™?)
- 2 2T 2 '

21

Consider a perturbation of (6.19) given by

— do(2)

with Ra = 0.8 and a = 0.5i. Notice that in this case b = 0.8 + 0.6/ and thus b ¢ A,.
Then,

df =-0.45876,

5 in(10+i7)sin(16-1
_ T”\/sm(26’+67r)sm(26 6”)
co=

s

3

2(cosf—0.8)xsin(6/2)

_ f%" (cos@+isin6) \/Sin(%9+é7r)sm(%9—én)
c1 =

d6 =0.13299,
2(cosf—0.8)rrsin(6/2)
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and i) holds. In such a situation, the algorithm becomes

_ _1412\n—1
la ann(O)](l lal”) ‘a,

[ Ja-mor
k=1

¥n1(0) =

A\
l—‘

and the first 500 Verblunsky coefficients are shown in Figure [6.2(a)]

Im(¥,(0)) Im(¥, (0))
. 1.0 1.0
; : \‘. : : Re(¥,(0) : ! \ . : Re(¥,(0)
~10 =5 5., 10 ~10 =5 N
-05F . —os|
-10t -1o%
(a) n =500 (b) n=10°

Figure 6.2: Verblunsky coefficients for Geronimus polynomials with Ra = 0.8 and
a=0.5i

As it is shown in this figure, the Verblunsky coefficients associated with the mod-
ified measure have the same argument with respect to a certain point (the value of a).
That is, they are located on a straight line, on both sides of a. When n increases, the

density of the points on the line increases, as shown in Figure [6.2(b)]

6.3.2 (C-functions

Assuming that L1 is a quasi-definite linear functional, we denote its associated
C-function by Frc1. Multiplying (6.12) by z*, k > 1, and replacing in (2.39), we get

(o) (o) (o] (o]
k ~ k ~ k —\ '~ &
Z ckZ = Z C_(k+1)Z Z Cc-k-1)2 —(@+ @) Z k2,
k=1 k=1

k=1 k=1

F(z)-1=(z+z7" —(CL'+5))FR(71)(Z)+F50(Z—Z_1 +(a+5))—2’5_1.

Therefore
F@Q+G@ ' —z—(a+a)co+2c_, -1

z+z ! - (a+a)

Fren(2) =
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Notice that from (6.12)), 1+ (o +@)co =¢1 +¢_1, and thus

2F(z) =0z + (C-1 —C1)z+Co

s 6.20
Z—(a+a)z+1 ( )

FR(—I)(Z) =

which is equivalent to

ZF(2) z+b 7+b

+ 6.21
2 —(a+az+l " 6.21)

Fren(z) =

—

2
z-b
where b, b are the zeros of 72 — (a+a)z+1, with |b| =1, and

1~ 3(@) 1(~ 3@
"“:"(C“ 5<b>)’ "= _(CO_ S(b))'

2 2

On the other hand, from (6.21)
b ~ b
(b-b)z—b) (b—b)(z-b)

FR<1)(Z)=( )F(Z)

_ (o] k (o]
~m(1450) Y % —my(1+b2) Y b
k=0 k=0

=[Z - zk]F(z)—ml[l+22bksz—m2(l+22bkzk],

k=1 k=1 k=1

and thus
To+2 ) = —F1+2) e l-m|1+2) b |-m|1+2) K.

Therefore, comparing coefficients of z” on both sides of the last expression, we have

forn>2,
n=1 ¢ —k —n
— b -b 10"-b -
Cp= —C-(n-k)t 3 — —mlbn—mgb”.
~ b-b 2 b-b

Comparing the independent terms and the coefficients for z we can deduce (6.12) for
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n =0 and n = 1. Furthermore, denoting this transformation by ¥ 1),
Fr(@)oFpen(@) =1, Fr-(@) o Fr(@) = Fu(b,my) o Fy (b, my),

that follows in a straightforward way from the definition of Fz and Fp-1y.
Denoting H(z) = (Fp-» (@) o Fr(@)[F(2)],

Fr(z) = Coz% +(C_1 —C1)z+ ¢ __z+b __ z+b
_ Fr@ -z +(c1-c1)z CO=F(Z)+m1Z Ay

H
© Z—(a+@)z+1 z—b -

with ﬁl =m+m, ﬁg = my +my, and

1 S@)) - 1 S
"“_5(” S(b))’ ”’2_2(1 S(b))'

As in (6.8)), given a finite composition of order k € IN of L1y defined by

k
L=R [H(Z - a’i)] Lrcn, a; €C, (6.22)
i=1
we can deduce
— F(i)+B
Lemma 6.3.1. A spectral transformation given by F(z) = y such that B and
<
D provide a true asymptotic behavior to 2.43)) is equivalent to . Furthermore, B
and D are given by
B)=P@-P.(), D@ =Rp(), (6.23)

where P is the polynomial of second kind of

k
p@ =] Jc-e
i=1

with respect to the linear functional (6.22).

Proof. From Lemma @ it is straightforward to show that the C-function Fz,, is
the reciprocal of F ;. However, in contrast to Fg, Fp-1) contains three free parameters
a, ¢ and Jcy, while Rey is determined by ¢g and the choice of a.

Conversely, if we start with a spectral transformation with A = 1, B is a hermitian

Laurent polynomial of degree one and C = 0, then D is a hermitian Laurent polynomial
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of degree one with three restrictions for their coefficients. We hence get just (6.20).
Using an analog of Lemma[6.2.1| we can complete the proof. i

Notice that for different values a1, @,...,a, and 81,82, ....8r, Frw[F] = Frw and
Freo[F1 = Fp-n we get

Fro(ar,az,...,ar) 0 Fpo(B1,82,-...0r) = Fren(B1.62,....87) 0 Frw (a1, a2, ..., ap).
Moreover, for the same parameters, we have the following relations

(Fre-b 0 Frw) (@1, a,...,0,) =T

(Froo 0 Fre-v) (@1, aa,...,0r) = Fylay,...,a) o Fylar,...,a),

where Fy(ay,...,a) is the so-called general Uvarov spectral transformation as the

result of the addition of masses at the points z = a1,z = @2,...,2 = a,; see Appendix @

6.4 Rational spectral transformations

Spectral transformations under the modification of a finite number of moments are
given by
Fi(z) = F(2) + E(2),
where E(z) = Z mjzj form; € C and G a finite subset of non-negative integer numbers.
jeG
Hence, a generator system of local spectral transformations follows immediately from
Chapter [

Theorem 6.4.1. A local spectral transformation can be obtained as a finite compo-
sition of spectral transformations associated with the linear functionals L; defined in
@.33).

In order to prove our main results in the following lemma we characterize the poly-
nomial coefficients of (2.43).

Lemma 6.4.1. Only one of the following two statements holds:

i) The polynomial coefficients in (2.43)) are hermitian Laurent polynomials of the

same degree such that
Ax(2) =A@@), B.(2)=-B@), C.(2)=-C(), D.(2)=D(®).
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ii) The polynomial coefficients in (2.43)) are self-reciprocal polynomials of the same
degree such that

A*(x)=A, B'(z)=-B(z), C'(z)=-C(z), D*(z)=D(2).

Proof. Since F is the rational spectral transformation associated with (2.43) given by

_ —-D(2)F(z) + B(2)

F(2) — ,
CQF(2)-A(z)

(6.24)

multiplying and dividing (6.24)) for z/, where [ is the minimum non-negative integer
number such that 7’A(z), Z/B(z), z/C(z), and ! D(z) are polynomials, and using the char-
acterization of orthogonal polynomials with respect to the functional £ 2.41)-(2:42),
we immediately get

(@, (2)D(z) - Q,(2)C(2)F (2) — 2 (~D,(2) B(2) - 2(2)A2)) = OE™),
I (~®(2)D(2) + Qi2)C(R)F (2) + 7 (D}(2)B(2) - Qs(2)A(2) = O ),

where v is a positive integer such that
Z(A(2) - C()F(2)) = O(").

Therefore, we can deduce that the new polynomial coefficients z/A(z), z'B(z), 7/C(z),
and z'D(z) satisfy the following relations

(ZAQR)" = ZA@), @B@R)* = -ZB@), (ZC(2)" = -Z'C(2), and (' D(2))* = Z'D(z).

Suppose that [ # 0. Then, A, B, C, and D are Laurent hermitian polynomials of the
same degree [, which prove i). On the other hand, if we suppose that / = 0, then A, B,

C, and D are self-reciprocal polynomials of the same degree. Thus, ii) follows. O

If we have a generic rational spectral transformation with self-reciprocal polyno-
mial coefficients of odd degree, then it can not be transformed into a equivalent rational
spectral transformation with hermitian Laurent polynomial coefficients. We use the fol-
lowing result concerning the symmetrization of sequence of orthogonal polynomials to
study this problem.

Theorem 6.4.2. [133]] There exists one and only one sequence of monic polynomials
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{Wn},=0 orthogonal with respect to a hermitian linear functional such that
¥2u(2) = @y, n>0.

Furthermore,
W2u41(2) = 2@y(25), n>0.

Notice that the odd Verblunsky coefficients for the new sequence, {¥(0),},>0, are
zero. A linear functional D is said to be symmetric if all its moments of odd order are
0,1i.e.,

<D,Z2"+l> =0, n>0.

It is interesting to recall that in the real line case if we look for {Q,},>¢, which is a
sequence of monic orthogonal polynomials and such that Qy,,1(x) = xP,(x?), there is
not a unique solution, i.e., we can find an infinity number of sequences of polynomials
{Ry}u50 such that 02, (x) = Ry(x?).

Theorem 6.4.3. A generic rational spectral transformation with self-reciprocal poly-
nomial coefficients of odd degree has symmetric generators to the corresponding sym-
metric rational spectral transformation which has hermitian Laurent polynomial coef-

ficients.

Proof. Let {6”}@ 0 be the sequence of monic orthogonal polynomials associated with
the C-functions, F, a rational spectral transformation of F given by (2.43). We assume
that A, B, C, and D are self-reciprocal polynomials of odd degree. From Theorem|[6.4.7]
there is an unique sequence of monic orthogonal polynomials {i},},, (respectively

{Jn}n> 0) such that
¥2,(2) = Dp(2), Y@ = Du(@®), 10,

with respect to the symmetric linear functional D (respectively D).
On the other hand, the corresponding symmetric C-functions associated with the
symmetric functionals  and D are F p()=F (zz) and F3(z) = F ), respectively.

Therefore,
AP)Fp(2)+ B
C(2)Fp(z)+ D(?)

is a rational spectral transformation associated with Fp with self-reciprocal polynomial

Fi2) =

coeflicients of even degree. Thus, F'z is equivalent to a rational spectral transformation
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with hermitian Laurent polynomial coefficients. O

According to the previous theorem, in the next section we consider only hermitian
Laurent polynomial coefficients.

Example: Aleksandrov transformation

Notice that if the coefficients A, B, C, and D of ([2.43) are constant, then A and D
are real numbers and B and C are pure imaginary numbers. An example of this is the
Aleksandrov transformation [178]].

Let {®,(0)},>1 be the family of Verblunsky coefficients, and let A be a complex
number with |1| = 1. When we consider a new family of Verblunsky coeflicients de-
fined by {®}(0)},>1, with ®}(0) = A®,(0), n > 0, the resulting transformation is called

Aleksandrov transformation. The C-functions are related by

A+ 1)F@)+A1-1

A _
F o= 0 ro+ast

6.4.1 Generator system for rational spectral transformations

Theorem 6.4.4. A generic linear spectral transformation can be obtained as a finite
composition of spectral transformations associated with a modification of the func-

tional by the real part of a polynomial and its inverse.

Proof. Let H = F[F] be the C-function obtained from (2.39) after a generic linear
spectral transformation with hermitian Laurent polynomial coefficients. Hence, we can
apply to F the finite composition of Lz given in Lemma [6.2.1] Thus, we get a new

C-function as a result of the composition

1/2(R p(2))A(R)F (2) + 1/2(R p(2))B(2) + (P(z) — P.(2))D(2)
D(z)

Frio [H(2)] =

with some polynomials such that the zeros of the polynomial p can be chosen as the
parameters of the spectral transformation. Hence, we can always choose Rp = 7D,

where 7 is a constant. Thus, we get
Frio[H()] = TAR)F(2) + TB(2) + P(2) — P.(2). (6.25)

This transformation is reduced to the case considered in (6.10). Therefore, from Lemma
the C-function Fxw[H] is obtained from (2.39) by means of a finite composition
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of 244).
On the other hand, from (6.23) and using a finite composition of (2.43)), we get the
C-function

H(2) = Fpen [Fro [FIF@I],

and so our statement holds. m]

Theorem 6.4.5. A generic rational spectral transformation can be obtained as a finite

composition of linear and associated canonical spectral transformations.

Proof. Assuming hermitian Laurent polynomial as coefficients of the perturbed linear
functional, the application of backward transformations with even degree 2k to the real
spectral transformation ([2.43)) of degree k yields a new rational spectral transformation

where the transformed Laurent polynomial C is hermitian and is given by
C(2) = (A@) + C@) @2p)(2) + 77 (C(D) ~ A@) Do (2).

Notice that the polynomial 52;{ can be chosen in an arbitrary way. Indeed, instead
of choosing arbitrary 2k Verblunsky parameters we can choose the polynomial Dok
satisfying |©2(0)] # 1, and from the Schur-Cohn-J ury criterion we obtain a sequence of
complex numbers 521((0), ... ,61(0) with modulus different of 1. Let (®,(0)),>1 be the
Verblunsky coefficients of the hermitian linear functional associated with (2.43). Then,
by Favard’s theorem (55(0))1.251 U (@,(0)),>1 arises as a new sequence of Verblunsky
coefficients of a hermitian linear functional. Notice that it is unique.

On the other hand, in order to preserve the hermitian character of C, the principal
leading coefficients of A and C are different and not symmetric with respect to the
origin. Thus,

deg (A(z) + C(z)) = deg(C(z2) —A(2)) = k.

Moreover, without loss of generality, the polynomial Z(A(z) + C(2)) evaluated at z = 0
can be chosen in such a way that its modulus is different from one. Therefore, we can
choose the polynomial 52k such that

D2(2) = ~2(C@) +AR).
Using Lemma [6.4.T| we obtain the reciprocal polynomial

(@20).(2) = 275(C(2) - A2)),
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leading to C =0. But this means that we can reduce our rational spectral transformation

to a linear spectral transformation and the result follows. O
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Chapter 7

Conclusions and open problems

’Would you tell me, please, which way I ought to go from here?’

*That depends a good deal on where you want to get to,” said the Cat.

’I don’t much care where —’ said Alice.

’Then it doesn’t matter which way you go,” said the Cat.

’— so long as I get SOMEWHERE,” Alice added as an explanation.
’Oh, you’re sure to do that,” said the Cat, ’if you only walk long enough.’

— L. Carroll. Alice’s Adventures in the Wonderland. Random House, New York, 1865

7.1 Conclusions

The results showed in this work have been focussed on the study of spectral trans-
formations of linear functionals.

We have presented an alternative approach to the theory of orthogonal polynomi-
als, giving a central role to continued fractions. The results have been proved under the
assumption that the Verblunsky coefficients {®,(0)},>0 satisfy [®,(0)| > 1. As a conse-
quence, we have obtained specific properties of the corresponding Hankel and Toeplitz
determinants which we have used to deduce necessary and sufficient conditions for the
existence of the moment problem associated with Chebyshev polynomials of the first
kind.

We also proved that the zeros of orthogonal polynomial @, (w; ) satisfy, for @,(0) >
I,n>1,

0< Zn,l(a)) < Zn,Z(U)) <...< Zn,n—l(w) < Zn,n(w), w < 17
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Zn,l(w) <0< Zn,2(w) <...< Zn,n—l(w) < Zn,n(w)’ w>1.

and, for ®,(0)<1,n>1,
1 (W) < zZpp(W) <... < Zpuo1(W) < Zpp(w) <0, w<1,

Zn1 (W) < Zp2(w) < ... <Zyp-1(W) <0< Zyp(w), w>1.

The properties of the zeros allowed us to define a step function, and by using Helly’s
selection principle we have showed that an rsq-definite linear functional has an integral
representation in terms of a measure that belongs to the class 83(0, 1,b). This result

played a key role to find conditions for the determinacy of our moment problem.

Motivated by applications in integrable systems, we have obtained explicit expres-
sions of the orthogonal polynomials associated with the perturbations of a hermitian
linear functional in terms of the first one. In the same direction, we defined a per-
turbation of a quasi-definite linear functional by the addition of the first derivative of
the Dirac linear functional when its support is a point on the unit circle or two points

symmetric with respect to the unit circle. In both cases we get

N £1¢4)
lim =

1, e C\D,
nhe B, (2) ee )

where {¥,},>( is the sequence of orthogonal polynomials associated with the corre-
sponding perturbed functional. Nevertheless, we are far from achieving our initial

goals.

We have analyzed the previous results for asymptotics of the discrete Sobolev poly-
nomials and their zeros when the mass tends to infinity. The study of these systems was
motivated by the search of efficient algorithms for computing Fourier expansions of a
function in terms of discrete Sobolev orthogonal polynomials. In this direction very
few results are known in the literature. We have stated that the resulting polynomials

tend to a linear combination of polynomial perturbations of several orders, i.e.,

Dn(2), (2= Opn-1(2,dT1), ..., (2= @) b o1 (2,dT 1)

We have characterized the eigenvalues of the Hessenberg matrix (Hy),, associated with
the discrete Sobolev polynomials, i.e., the zeros of the discrete Sobolev polynomials,
as the eigenvalues of a rank one perturbation of the Hessenberg matrix associated with
the measure o, i.e.,

(Hy), = L,(H, - A,)L;",
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where A, and L, are known. As a consequence, the zeros of ¥, are the eigenvalues
of the matrix H,, — A,,, a rank one perturbation of the matrix H,,. We also proved a
characterization for the limit of these discrete Sobolev polynomials, when the mass
tends to infinity as extremal polynomials. The results have been deduced for measures
on the Nevai class, so in this sense they are sharp. We also showed that, as an analog
of the real line case, a generic rational spectral transformation of the C-function is a
finite composition of four canonical spectral transformations which we have studied in
detail. To obtain this result it was essential our classification and characterization of the
polynomial coefficients of rational spectral transformations obtained from the charac-
terization of orthogonal polynomials with respect to a functional given by Peherstorfer
and Steinbauer. All our results are based on the strong relationship between the theory

of orthogonal polynomials on the real line and on the unit circle.

7.2 Open problems

In this section we formulate some open questions which have arisen during our

research.

Zeros of Szego-type polynomials

The Szeg6-type polynomials [112f[113]] are orthogonal with respect to a moment

linear functional 7, such that their moments
Cl’l :<T’Zn>=c—n7 n>09

are all complex. If the linear functional 7™ is such that {c, },c7 is real and (=1)P+DI2detT, >
0, n > 0, then the zeros of associated polynomials have been studied in Chapter [3] We
were unable to obtain the localization and asymptotic behavior of the zeros of Szeg6-
type orthogonal polynomials. In [[112}[113] the authors establish that the hypergeomet-

ric functions

2b+1);

D,(b;z) = W

2F1(-n,b+1;2b+2;1-z), 2b+7Z_, n=>0,

are the Szegb-type polynomials with respect to a moment functional with moments

{ca(D)}nzo0, ( by
co(b) =2, Cn(b)zz(b+1); =c_n(b), n>1.
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Figure [7.I|shows the behavior of the zeros of ®,(b;-) for fixed n = 100 and several
values of the parameter b, namely b = 1000 (green triangles), b = 100i (blue discs),
b =5+ 6i (purple square), and b = 11 (yellow diamonds).

® SEIS

. 20

Figure 7.1: Zeros of the Szeg6-type polynomial » F{(—100,b+ 1;2b+2;1 —z)

Perturbations on anti-diagonals of Hankel matrices

Given j > 0 it is natural to ask if the corresponding perturbation M;, studied in
Chapter [d] preserves the positive definiteness of M. Of course, the necessary and
sufficient conditions are given in Theorem [4.1.1] However, if one is interested in the
existence of a neighborhood (71,72) such that the functional M; is positive definite
for every m; € (t1,72), then to determine such an interval can be very complicated.
An open problem is to analyze if there exists a different approach that allows one to
determine the values of m; such that M; is positive definite. Certainly, the interval
(t1,72) should depend essentially on the initial functional M and the point a.

Another question that might be of interest is if given two positive definite moment
functionals M and M, then there exists a sequence of perturbations M i such that we
can obtain M from the consecutive applications of those perturbations to M, i.e.,

Moy @ 2, M w3

J1

M2
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with the condition that the positiveness must be preserved in each step. As an example,
consider the linear functionals M' and M?, associated with the Chebyshev polynomi-
als of first and second kind, respectively. When using the basis {1,(x—1),(x— D2,
it is easy to see that one of the sequences of moments can be obtained from the other
one by means of a shift. Thus, as explained in Chapter one can go from M! to M?
applying a sequence of perturbations M;, = My, k=0,1,..., witha=1, and m; . How-
ever, proceeding in such a way, the positive definiteness would be lost after second step.
Nevertheless, another sequence M, which preserves the positive definiteness may still

exist.

Zeros of Sobolev orthogonal polynomials on the real line

Several people have studied the zeros of the polynomials S ,(4,¢,7;:), with A =
(0,415-..,4,) and ¢ = (cg,c1,...,cr), orthogonal with respect to the discrete Sobolev

inner product of the form

,
(.o, = fl PEgdux)+ Y 4ipP(cdgP(c), ¢ eR, 420, r=0, (1.1)
i=0
where y is a positive Borel measure supported on I C R. In the Appendix[A]we consider
a particular case of (7.I).

We now formulate some questions: fix 4;, i =0,1,...,k—1,k+1,...,r, in (7.I), and
consider the zeros of S, as functions of ;. Then, how many zeros of S, lie in the
interior of the convex hull of I? Moreover, are these zeros monotonic functions with
respect to the parameter A;? Do they converge when A; goes to infinity? If so, what is
the speed of convergence? For some partial results towards these problems, for specific
measures and vectors A, we refer to [5516; [140; [157], [159] and the references therein.
The most general result in this direction was obtained in [4]. There it is stated that
every S,(4,¢,r;-) possesses at least n —r zeros in the interior of the convex hull of I,

whencop=cy=...=¢c,.

Infinity discrete Sobolev inner products on a rectifiable Jordan curve or arc

The sequences of orthogonal polynomials associated with an orthogonality mea-
sure with finitely many point masses outside a curve or arc have also been studied
by Kaliaguine and Kononova [103} [104;[105]]. The case of an infinity number of mass

point for measures of the Szeg6 supported on the real line is considered by Peherstorfer
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and Yuditskii in [156]. Let f(z) be a function of one variable and let

Z=(Z05e s20>225++-9225 s Zmse--Zmms-+-)
—— —— ~——

I b In

be an infinite vector. Denote

F@ =G@Ds o fD@D,s s f G, S (), ).

The infinite discrete Sobolev inner product in the complex plane is defined by

(), = fc F@3@wEId+12) A g2)", (7.2)

where C is a rectifiable Jordan curve or arc in the complex plane; Ay, the principal
M x M hermitian submatrix of the infinity matrix A, is quasi-definite; z; € Q,i=1,2,...,
and Q denotes the connect component of C\C such that co € Q. It is thus fundamental
to ask: What can be said about the asymptotic behavior of discrete Sobolev orthogonal

polynomial with respect to the inner product (7.2))?

Toda lattices

The study of integrable systems on the unit circle is not so performant as in the
real line case, and its development started at the end of the previous century [9], [65]],
when the system of non-linear differential-difference equations was studied. The
main focus was based on the spectral theory of the GGT matrix H. It was found that

the resulting GGT matrices satisfy a Lax equation
H =[H+H "), H],.

More recently, some developments in this direction have been done; see Chapter
[T} In [84], the author considers the equations (I.7) with a similar approach, but using
an alternative matrix representation of the multiplication operator for Laurent orthog-
onal polynomials, the CMV matrix. The corresponding CMV matrices satisfy a Lax
equation
C =[B,C],

where B is an upper triangular matrix with two non-zero diagonals above the main di-
agonal, whose entries are also expressed in terms of the Verblunsky coefficients. In this

situation, the non-linear differential-difference equation of their associated sequence of
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monic orthogonal polynomials satisfy
D, (2.1) = D1 (2,1) = (2+ D1 (0,0, (0, ) D (2, 1) — (1 = [© (0, )PPy (2, 1),

and the orthogonality measure associated with the Verblunsky coefficients is given by

An interesting open problem is the study of Schur flows associated with the canon-
ical linear spectral transformation of C-functions obtained in Chapter [§] Another in-
teresting question is to analyze the analog of the Lax equations for the corresponding

GGT and CMV matrices associated with such perturbations.
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Appendix A

Discrete Sobolev orthogonal
polynomials on the real line

Let {Q,(4,c¢, j;-)}n=0 be the sequence of orthogonal polynomials with respect to the

discrete Sobolev inner product

b - -
(P, = f P(OGOdu) + ApP (g (e), c¢(ab), 1€Rs, j20, (Al

where y is a positive Borel measure supported in the interval (a,b) (either a or b can
be infinity) and p, g are polynomials with real coefficients. In what follows we assume
all orthogonal polynomials, both those with respect to y and the Sobolev ones, to be
monic.

In this appendix we prove that the zeros of discrete Sobolev orthogonal polynomials
are monotonic functions of the parameter A and establish their asymptotics when either
A converges to zero or to infinity. The precise location of the extreme zeros is also

analyzed.

A.1 Monotonicity and asymptotics of zeros

Let x,x(4,c,)), k=1,...,n, be the zeros of Qn(4,c,j;-). For A=0or n < j, the

polynomials P, = Q,(4,c, j;-) are orthogonal with respect to the inner product

b
PPy = f p(x)q(x)du(x).
a
When A > 0 and n > j some natural questions arise. Are the zeros of Q,(4,c, j;-)
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all real and do they belong to (a,b)? If so, do the zeros of Q,(c, 4, j;-) interlace with
the zeros of P,? Moreover, are the zeros x, (4, ¢, j) monotonic functions with respect
to the parameter A? Do the zeros x, (4, ¢, j) converge when A goes to infinity? If so,

what is the speed of convergence?
The answer of the first two questions was given in [140]]. He proved that the poly-

nomial Q,(4,c, j;-) possesses n real simple zeros and at most one of them is located

outside the interval (a,b). In addition, he showed the following interlacing property. If

¢ < a, then

X, 1(A, ¢, J) < Xn,1 < Xp2(A,¢,]) < Xpp <00 < Xpp(Ad, €, J) < Xnpe (A.2)
If ¢ > b, then

X1 < X, 1(A, ¢, J) < Xp2 < Xp2(A,¢,]) <o+ < X < Xnn(d,C, ). (A.3)

In this appendix our main contribution deals with the remaining questions posed
above. Our result is general in three aspects: the measure involved is any positive
Borel measure, the point ¢ is any value outside (a,b), and j is any positive integer. We
obtain a new interlacing property, the monotonicity of x;, (4, c, j) with respect to 4, as
well as their convergence — when A tends to infinity — to the zeros of some polynomial
with a speed of convergence of order 1/A4. For this propose we define the polynomial
G, j;-) by

PP ©

Ko

Galc, jix) = Py(x) — K (e,x), (A4)

-1
where Kr(,r_sl) denotes the generalized Kernel polynomial of degree n— 1,

o PUWPY )

(r,s)
K~V (x,y) =
no1i Y (P, P

k=0

Notice that when r = 5s=0, K,,_| = K00

.1 18 the usual Kernel polynomial.

Theorem A.1.1. Let A >0 and y,1(c, j),...,ynn(c, J) be the zeros of the polynomial
Gn(c, j;-) defined by (A.4). For everyn> jand ¢ < a, then

)’n,l(c’j) < xn,l(/l,c,j) <xXp1 <---< yn,n(c,j) < xn,n(/l,c’j) < Xpn-
Moreover, each x, x(A,c, j) is a decreasing function of A, foreachk=1,...,n.
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On the other hand, if ¢ > b, then

Xp,1 < xn,l(/l, c,j)< yn,l(cs << Xpn < xn,n(/l, ¢, j)< yn,n(c’ - (AS)

In addition, each x, x(4,c, j) is an increasing function of A, for 1 <k < n.

In both cases, when A goes to infinity,

/111_{1;10 xn,k(/l, Ca J) = y}’l,k(C7 .1)

and

Puyni(c, )
K (c,00G(c, jsynx(e, )

Tim A(ni(c ) = Tar(d . ) = (A6)

Proof. Let us consider the following expression for the discrete Sobolev orthogonal
polynomial [131]],

AP ()

71((/*0)((:, X). (A7)
1+ /IKnJ_’jl (c,0)

n—1

On(,¢, j3%) = Pp(x) =

Considering the normalization
On(A.c. jix) = (14 4K (c,0)) Qu(d.c. ji ),

we derive a simple representation for the n-th discrete Sobolev orthogonal polynomial
On(A,c, j3x) = Po(x) + AK(c,0)G(c, js ).

Observe that G,(c, j;x) = }im 0n(4,c, j;x) is independent of A . Then, evaluating the

above expression in the zeros of P, and Q,(4,c, j;-), we conclude that

sgn(én(/l, c,j;xn,k)) = sgn(Gy(c, j3 k),

sgn (Pn(xpk(4,c, j)) = —sgn(Gy(c, ji xak(4, ¢, )))),

forevery k= 1,...,n— 1. Therefore, using @) and @) Gy(c, j;-) changes signn—1
times at the zeros of 0,(4,c, j;-) and P,. In other words, each interval (x, x, Xn x+1) and
ik, c, ) Xng+1(4,c, j)), 1 £k < n—1, contains one zero of G,(c, j;-). It remains
to find the location of one zero of G,(c, j;-). Taking into account that the polynomial

G (c, j;-) has a positive leader coefficient and the location of the point ¢ with respect to
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the interval (a,b), we obtain the inequalities stated.

To prove the monotonicity of the zeros x, (4, c, j) with respect to A, for every non-

negative g, we consider the polynomial
én(/l+8,c,j;x)=Pn(x)+(/l+8)K(”)(c o)Gy(c, j;x) = Qn(/l ¢ Js x)+sK(”)(c c)Gy(c, j; x).
Thus, for € > 0,

0n(A+8,¢, jsxnx(Asc, ) = 6K M) (e, 0Ga(e, ji xuk(Asc, ),

and
0u(A+8,¢, ji Xngs1 (A0, ) = eKPD (e, 0Gle, s Xaps1(Asc, )

have opposite sign. Therefore, each interval (x, (4, c, j), Xnk+1(4, ¢, j)) contains at least

one zero of én(/l +¢&,c¢, j; x). In addition, if ¢ < a, then

+o00, n even;

sgn(On(A+e.c.jixmi(Le, )= D" lim Qu(A+e.c,jix) = {
—oo, n odd.
Hence,
Xp1(A+e,c, ) <xp1(A,c,)) < - <xpp(A+&,c,)) < x0(A,C, ).
In the other situation, if ¢ > b, then
sen(Qu(A+ .0, jixnn(de, ) = =1 lim Qu(A+ 6., jix) = oo

Hence,

Xn1 (¢, ) <xp1(A+e,c,)) < <Xpp(d,c, j) < Xpp(d+g,c, ).

It remains to prove the limit relations stated in the theorem. For this purpose, we

define the polynomial Q,,(/l, ¢, j;-) by
On(A.c. jix) = —P 2(0) + K (€, 0)Gale, i),
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Notice that the zeros of Q,(4,c, j;-) and Qn(l, ¢, j;+) are the same for each A > 0. Since
lim 0(A.¢. i) = K (e.e)Ga(e i),

by Hurwitz’s Theorem [188], the zeros x, x(4, ¢, j) of Q,(4,c, j;-) converge to the zeros
yni(c, j) of Gy(c, j;-) when A tends to infinity, that is,

}LI{.IO'XH,]C(/LC’J.) :)Jn,k(C,j)’ k = 17"'9’1'

On the other hand, by the Mean Value Theorem, there exist real numbers 6, ; be-

tween yy x(c, j) and x, x(4,c, j), k=1, ..., n, such that

Gu(e, jiyni(e, D)) = Gule, js xnx(d,c, )
yn,k (C, .]) - xn,k(/l, C, ])

= G;l (C, J? Hn,k)’

or, equivalently,

P, (xn,k(/l, C, ]))
K (e, 0)Gl(c, j36up)

/I(Yn,k(c» .]) - xn,k(/l’ c, ])) =

Since /llim Xn k(A ¢, J) = yui(c, j) and 6, is located between y,i(c, j) and x,x(4,c, j)
we also have A]im Onk = yni(c,j). Thus
—00

P Ae,j P ,Jj
lim AG(c. )= maldoc. ) = lim — RO PuOnse)
e Azee KM (e, 0)G(c, jiOnk) K (e, 0)Gr(c, jyni(c, )

n

and our statements hold. |

We used for the proof of Theorem [A.T.1]the technique developed in [159] and the
references therein concerning the zeros of a linear combination of two polynomials
of the same degree with interlacing zeros. We emphasize an interesting consequence
of this theorem. It says that, when A goes from zero to infinity, each zero x, x(4,c, j)
runs monotonically over the entire interval (y, x(c, j), Xnk) OF (Xnk, Yni(c, j)). In other

words, if ¢ < a, then
xn,k(/L C, ,]) € (yl’l,k(ca ,]) = Sup{xn,k(/la C, J)}’ xn,k = il}f{xn,k(/l? C’ ,])})
A
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and, if ¢ > a, then
Xnk(A, ¢, ) € (g = irﬂlf{xn,k(/l, ¢, Pk ynx(c, ) = sup{xu (4, ¢, H}).
A

Meijer [140] obtained the inequalities (A.2)) and (A.3)) for j = 1 using another tech-
nique. Furthermore, for n > 3 he showed that for some choice of ¢ in (a,b), 0,(4,c,1;)
has two complex zeros, if A is sufficiently large. Earlier Marcelldn, Pérez, and Pifar
[129]] had shown the interlacing properties and (A3) when j = 1. Moreover,
the monotonicity of x,x(4,c,1) with respect to A, and the convergence of one of the
extreme zeros to ¢ when n goes to +oco were established in [129].

In the sequel we analyze the location of the smallest (resp. greatest) zero of
0n(4,c¢, j;-) with respect to the point a (resp. b).

Corollary A.1.1. Letn> jand 1> 0.
i) If c <aandy,(c,j) <a, then the smallest zero x,1(A,c, j) satisfies

.xn’](/l,C,j)>a, /l</10’
xn,l(ﬁ»cni) :a’ /12/107
xn,l(/l’ C3 ]) < Cl, /l > /10’
where
Pp(a)

Ao = Ado(n,a,c, j) = — - — .
K, a)PY ()~ K92 (c,c)Py(a)

ii) If c 2 b and y, »(c, j) > b, then the largest zero x,,(A,c, j) satisfies

xn,n(/l,c,j)<bs /l</10,
xn,n(/l’c,j)zba /12/107
xn,n(/l’ C’ J) > b’ /l > /10’

where Ay = Ao(n,b,c, j).

The proofs are an immediate consequence of determining the value of the polyno-
mial 0,(4, ¢, j;-) via (A7), together with the fact that G,(c, j;a) P, (a) < 0if y,1(c, ) <a
or Gy(c, j;b)P,(b) < 0 if y, »(c, j) > b. Observe that for ¢ ¢ [a,b] we derive explicitly
the value Ay of the mass, such that for 2 > Ay one of the zeros is located outside (a, b).

A similar result about the mutual location of ¢ and the extreme zeros of Q,(4,c, j;*)
is the following corollary.

Corollary A.1.2. Letn> jand A > 0.
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i) If c <aandy,(c,)) <c, then the smallest zero x,1(4,c, ) satisfies

-xn,l(/l9c’j)>ci /l</119
-xn,l(/LC’j):C’ /lz/llv
xn,](/l7c’j)<c’ /l>/117

Py()
K. (- K (e, 0)Pac)

n—1

where A1 = A1(n,c, j) =

ii) If c 2 b and y, n(c, j) > c, then the largest zero x,,(A,c, j) satisfies

xn,n(/l’ C’ J) < C, /l < /l] )
xn,n(/l» C? ]) = C9 )' = /11’
xn,n(/l,c’j)>c’ /l>/119

where 11 = A1(n,c, j).

It means that, depending on the value of the parameter A, one zero can be located

outside the interval (min{a, c}, max{b, c}).

A.1.1 Jacobi polynomials

Let {Qﬁ,a’ﬁ )(/1, ¢, J;)lns0 be the polynomials which are orthogonal with respect to the
discrete Sobolev inner product (A.T)) with du = du(a,B;-); see Chapter|[I] Let us denote
by x(@.B) and x, (A, c, j;,B) the zeros of PP and QP (A,c, ji;-), respectively.

To illustrate the results obtained in Corollary [A7T.1] and [A-T.2] we consider two
figures. In the Figure[A.T(a)|we consider n =3, @ =—1/2,8=1/2, j=2,and ¢ = 1 for
some values of A. In the Figure[AT(b)| we take the same values of n, @, B, and j but we
choose ¢ = 2, that is, now c is not an endpoint of (-1, 1) and we vary the parameter A.

We see that in both figures at least one zero of

384cA+m 5 192cA-961—-7m  384cA+n

(-1/2,1/2) . 3
A,c,2;x)=x"— + +
2 ez =x - T~ 2641+ 8(641+7)

is outside of the support (—1,1). Moreover, one zero coincides with » = 1 when A =
Ao =7/(128(3¢—1)) and with ¢ when 2= A; = (1 —4c—4c% +8¢3)/(256¢%(4c - 3)). In
Figure [A-T(a)|observe that since b = ¢ = 1 then Ap = 4;.

We also provide two tables illustrating the monotonicity of the zeros of Qfl”"g )(/l, C, Jie

~

as functions of A, and the convergence of these zeros to the zeros of Gﬁ,a’ﬁ)(c, J3+), which
are the polynomials defined in (A-4). In Table[A ]| we can observe the behavior of the
zeros of Qf‘a’ﬁ)(/l, ¢, j;-) when @ = —1/2, 8=1/2, j=2 and ¢ = 1, for some values of
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Figure A.1: Location of the smallest and greatest zero of Q,(4,c, j; x)

A. It is quite clear that the zeros are increasing functions of A, and they converge to the
zeros of G />'/2(1,2;-), which are —0.696751, 0.0803371, 0.859082, and 1.69964.

Table A.1: Zeros of 5 />"/2(4,1,2;x) = x* = (1/2+ 24002/ (1 + 16640) x> + [~3/4 +
9601/ (r+ 1664)]x2 +[1/4 + 1320/ (n + 1664)]x+ 1/16 — 2401/ (r + 1664.1) for some
values of A

A x4 1,2—1/2,1/2)  xa2(A,1,2,-1/2,1/2)
173000 ~0.74365 ~0.09607

1/2000 ~0.73703 ~0.07079

Ao = A1 = /4096 ~0.72955 ~0.04152

1 ~0.69680 0.08019

10 ~0.69676 0.08032

100 ~0.69675 0.08034

A X3 1,2,—1/2,1/2)  x4a(,1,2,-1/2,1/2)
1/3000 0.59496 0.96120

1/2000 0.63516 0.97465

Ao = A1 = /4096 0.68774 1

1 0.85899 1.69721

10 0.85907 1.69940

100 0.85908 1.69962

In Table we present the zeros of QE‘Q’B)(/L c,j;)ywhena=-1/2,=1/2, j=
2, ¢ = 2 for several choices of A. In this table, since the zeros of GZ_I/ 2l 2)(2,2;-)
are —0.659576, 0.160050, 0.886989, and 3.76418, we observe that the zeros have the
same monotonic and asymptotic behavior when the point ¢ does not coincide with an
endpoint of the interval (—1,1).
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Table A.2: Zeros of Q5 /2 (2,2,2;x) = x* — (1/2+285122/(x+7808.)x> + (=3 /4 +
129601/ (x + 7808.0))x2 + (1/4 + 14904/ (x + 7808))x + 1/16 — 32401/ (x + 7808.) for
some values of A

A 1 (4,2,2,-1/2,1/2)  x32(1,2,2:-1/2,1/2)
Ao = 71/54400 ~0.71792 —0.02081

1/3000 ~0.67724 0.11537

A = 177/133376 ~0.67465 0.12258

1 ~0.65958 0.16003

10 ~0.65958 0.16005

100 ~0.65958 0.16005

A x3(4,2,2,-1/2,1/2)  x34(,2,2:-1/2,1/2)
Ao = 71/54400 0.69706 1

1/3000 0.87010 1.84630

A = 177/133376 0.87350 2

1 0.88699 3.76274

10 0.88699 3.76403

100 0.88699 3.76416

A.1.2 Laguerre polynomials

Let x,x(4,c, j;@) be the zeros of the polynomials {Q,(f) (4, ¢, j;)}n=0 Which are or-
thogonal with respect to the discrete Sobolev inner product (A.T) with du = du(a;-);
see Chapter I}

To illustrate the behavior of x, (4, c, j; @) we show two figures and two tables. We
plot Qg’) (4,c¢, j;x) for @, c, and j fixed and vary A, to show that, depending on the value
of A, the smallest zero can be less than or equal to c. In Figurewe choose v =1,
j=2,and ¢ =0, that is, c is an endpoint of the orthogonality interval. In Figure[A.2(b)|
we choose @ =1, j =2, and ¢ = 2.

In order to illustrate the behavior of the zeros of the polynomials Qg“)(/l,c, Ji)
presented in Theorem [A.T.T] we present some numerical computations in Tables [A.3]
and@ In the first one we show the zeros x4 (4, ¢, j;@), witha=1,c=0and j=2 for
several choices of 1. Observe that, since the point c is on the left side of the interval of
orthogonality, all the zeros of these polynomials are decreasing functions of 4, and they
converge to the zeros of Gil)(O,Z; -), defined in , which are —3.63913, 1.16543,
4.00543, and 9.23750.

In Table@]we choose the same values of @ and j, but in this case ¢ = —2. The zeros
x4 x(4, ¢, j;@) are also monotonic functions and converge to the zeros of Gf‘l)(—2,2; ),
which are —7.76110, 1.07579, 3.76689, and 8.77556.
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Figure A.2: Location of the smallest and greatest zero of Q,(4,c, j; x)

Table A.3: Zeros of 0(4,0,2;x) = x* = (20— 1204/ (3 + 13))x* + (360/(3 + 13)x* -
(240-50404/(3+132))x+120—-360041/(3 + 13 1) for some values of A (1g=A; =3/17)

A )C4,1(/1,0,2; 1) )C4,2(/1,0,2;1) )C4,3(/1,0,2;1) )C4,4(/1,0,2;1)
1/100 0.71843 2.49658 5.60038 10.8012
1/10 0.39195 1.89442 4.85101 10.0719
Ao =41 0 1.60262 4.57292 9.82446
1 -2.21826 1.22608 4.11868 9.37350
10 —3.46229 1.17104 4.01682 9.25187
100 -3.62101 1.16599 4.00657 9.23895
1000 -3.63731 1.16549 4.00554 9.23765

Table A.4: Zeros of 0 (4,-2,2;x) = x* = (20-3962/(3 +28.))x> + (120~ 50162/(3 +
28.1))x% — (240 — 158401/(3 + 282))x + 120 — 11088.1/(3 + 28) for some values of A
(Ao = 15/322 and A; = 471/3854)

A )C4,1(/1,0,2; 1) )C4,2(/1,0,2; 1) X4,3(/1,0,2;1) )C4,4(/1,0,2;1)
1/100 0.660855 2.33685 5.33702 10.4580
Ao 0 1.58118 4.50358 9.62953
1/10 —1.47545 1.26126 4.13306 9.25354
A -2 1.219141 4.06667 9.17819
10 —7.62158 1.07713 3.77041 8.78110
100 —=7.74700 1.07593 3.76724 8.77611
1000 —=7.75969 1.07580 3.76693 8.77561
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Appendix B

Uvarov spectral transformation

In this appendix we deal with a transformation of a quasi-definite functional by
the addition of Dirac’s linear functionals supported on r different points located either
on the unit circle or on its complement. Consider the quasi-definite linear functional £
introduced in (2:23)), and let £ be the linear functional such that its associated bilinear
functional satisfies

£z, =(Frp+ ) mif@)glap, mieR\(O}, lail=1.
i=1

Necessary and sufficient conditions for the regularity of the perturbed linear functional

Ly are deduced. We also obtain the corresponding linear C-functions.

B.1 Mass points on the unit circle

Using an analog method to the one used in [54], we can show
Theorem B.1.1. The following statements are equivalent:
i) Ly is a quasi-definite linear functional.

ii) The matrix D;l + IK,,—1 is non-singular, and

-1
ki +®} (D' +1K, 1) @, %0, n>1.

Moreover, the sequence of monic polynomials orthogonal with respect to Ly is
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B. UVAROV SPECTRAL TRANSFORMATION

given by
_ -1
¥a(0) = ©,() - Ko ) (D +Komt) @0 0> 1, (B.1)

with

K, -1(@) = [Ku-1(z, 1), Ky-1(z,@2), .. . Ky—1(z, /)], D, =diag[my,my,...,m,],
@, = [D,(a)), Dy(2), ..., Du(a,)]”,

and
K,1(ar,a1) Kpi(a,a2) -+ Kypoi(e,ap)
K, 1(az,a1) Ky i(az,a2) -+ Kypi(az,ap)
]anl =
Ko 1(ap,a1) Kp-1(ep,a2) - Kyp1(arap)

Proof. First, let us assume that L is a quasi-definite linear functional and denote by

{¥,},>0 its corresponding sequence of monic orthogonal polynomials. Thus,

n—1 r
1 -
V(@) = o)+ D Ani®h(@: - g == ) il Ppla), nz 1.
k=0 i=1

Then, we have

W,(2) = Op(2)— D mi¥(@) K 1z, @0). (B.2)
i=1

In particular, for j = 1,...,r, we have the following system of r linear equations and r

unknowns ¥, (a;), j=1,2,...,r,

W) = Da)) = D mi¥(@)Kn-1(@), ).
i=1

Therefore,
I+mKy-1(ar,01)  mK,-1(ar,a2) -+ mKy1(ar, )
mKy-1(az2, 1) 1+mK,1(az2,a2) -~ mK,-1(a2,a)
n — ns
m Kp—1(ar, ar) ma K1 (ar, a2) w1 +m Ky (ar, ar)
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where ¥,, = [V,,(a1), Pn(@2),..., ¥, (ar)]. In other words,

(]Kn—lDr +1)Y¥Y, = @,.

Since Ly is assumed to be quasi-definite, the matrix K,_;D, +1I, is non-singular
and, therefore, (B.I)) follows from (B.2).

On the other hand, assume ii) holds. For 0 <k <n—1, we have
r r
(¥ Oi) gy, = <<I>n(z) = ) mi¥(@K, 1 (2, d>k<z>> + ) mi¥ () Pxler)

i=1 i=1

r r
= = > M (@K1 (2@, D) + ) (@) i) = 0,
i=1 i=1
using the reproducing kernel property in the last expression. Furthermore,

,
(T @a)y =K+ ) mi¥u(@)®y(@) = ky + @} D, ¥,
i=1

=k, + @K, | +D ) '@, £0,
which proves that {¥,},50, defined by (B.I), is the sequence of monic polynomials
orthogonal with respect to L. O
Notice that for r = 1, the regularity condition for Ly becomes 1 +mK,—(a|,a;) #

0, n >0, as shown in [54].

Theorem B.1.2. For z € D, the C-function associated with Ly is

a;+2z
@i—z)

N
Fy(@)=F()+ Zml-(
i=1

Proof. Denoting ¢_; = (Ly,z7%), we have

a;+z
ai—-z/)

0 r
Fy(z) =co +2ZF-kzk =F@)+ Zml(
k=1 i=1
i.e., Fy(z) has simple poles at z = «;. O
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B. UVAROV SPECTRAL TRANSFORMATION

B.2 Mass points outside the unit circle

The next step is to consider a perturbation £ such that its corresponding bilinear

functional satisfies

f.8) g, =15 g>L+Z mif(ag(a;) +mif@; Hglan), mie C\(0), ol #0,1.

(B.3)
By analogy with the previous case, we can obtain the following result.
Theorem B.2.1. The following statements are equivalent:
i) Lp is a quasi-definite linear functional.
ii) The matrix 55 rl + f(n_l is non-singular, and
k,+®f (D3 +K, 1) ¥, #0, n>1. (B.4)

Moreover, the corresponding sequence of monic polynomials orthogonal with respect

to Lg is given by
(fln(z) =Q,(2) - Izn—l(z) (ﬁgrl + ]Rn—l)_ E)m nzl, (B.5)

with

D, (@) = [Du(@1),.... Op(@r), Qu (@] )., 0u (@ ], Doy =diagimy,....m. my.....m,),

K1 = [Kio1(z@1), . Kn1(2,@0), K1 (@) ), Kne1 (2@, D),

z [ Ra@o | Ro@ah
n=1= —1 —TT —1
Ro@ o) | Rea@ @)
[Kp-i(@r,01) - Knoi(ar,@)
Ry-1(a,@) =
_Kn—l(a'r’a'l) o Kuoi(ar,ar)

Proceeding as in the proof of Theorem [B.1.2] we obtain
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Theorem B.2.2. For z € D, the C-function associated with Lp is

a;+z _5,»_1+z
+ .

,
Fp@)=F@)+ ). [m; =
i\ iz @ -z

i.e., Fp(z) has simple poles at z = a; and z = 6{1.
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