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It is the main goal of this thesis to study the regularity of solutions for a

nonlinear elliptic system coming from population segregation, and the free

boundary problem that is obtained in the limit as the competition parameter

goes to infinity (� → 0). The system is described by the following equations:





M−(u�

i
) =

1

�
u�

i

�

j �=i

u�

j
, i = 1, . . . , d, in Ω,

u�

i
= φi, i = 1, . . . , d, on ∂Ω.

The diffusion operator, which in the literature is usually taken to be a linear

operator, is replaced by the nonlinear minimal Pucci operator M−. The re-

sults are similar to those obtained for the corresponding linear problem, work

done by Caffarelli, Karakhanyan, and Fang-Hua Lin, but the techniques are

substantially different. The main results are existence and Hölder regularity of

solutions of the elliptic system, characterization of the limit as a free boundary

problem, and Lipschitz regularity at the boundary for the limiting problem.
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Chapter 1

Introduction

In this dissertation we study the existence and regularity of solutions of

a problem motivated by population dynamics. The motivation of the models

and main results will be presented in the next chapter, but generally speaking,

the goal of this work is to generalize the regularity results for the system






∆u�

i
=

1

�
u�

i

�

i �=j

u�

j
in Ω, i = 1, . . . , d,

u�

i
> 0 in Ω, i = 1, . . . , d,

u�

i
(x) = φi(x) ≥ 0 on ∂ Ω, i = 1, . . . , d,

φi φj = 0 on ∂ Ω, i �= j

(1.1)

and 




∆ui = 0 when ui > 0, i = 1, . . . , d,

∆(ui −
�

i �=j

uj) ≤ 0 in Ω, i = 1, . . . , d,

ui(x) > 0 in Ω, i = 1, . . . , d,

ui uj = 0 in Ω, i �= j,

ui = φi on ∂Ω, i = 1, . . . , d,

(1.2)
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presented in Sections 1 and 2 of [4], to the following nonlinear elliptic system

of equations





M−(u�

i
) =

1

�
u�

i

�

j �=i

u�

j
, in Ω, i = 1, . . . , d,

u�

i
> 0 in Ω, i = 1, . . . , d,

u�

i
= φi on ∂Ω, i = 1, . . . , d,

φi φj = 0 on ∂Ω, i �= j,

whereM− denotes the extremal Pucci operator (see (1.8)), and to characterize

the limit problem, analogous to (1.2), for this case.

We have chosen this problem, besides its intrinsic mathematical inter-

est, in order to study a model that takes into account diffusion with prefer-

ential directions, so we are able to model situations with maximal diffusion.

The choice of the operator is also related with its natural comparison with a

non-divergence linear operator with measurable coefficients.

1.1 Motivation and main results

1.1.1 Some models of segregation of populations

The problem we study is motivated by the Gause-Lotka-Voltera model

of extinction or coexistence of species that live in the same territory, can

diffuse, and have high competition rates.

Consider the equation,

∂ui

∂t
= di∆ui� �� �

diffusion term

+Riui − aiui
2 −

�

i �=j

bijuiuj in Ω,

2



which models populations of different species in competition, where

ui(x, t) is the density of the population i at time t and position x;

Ri is the intrinsic rate of growth of species i;

di is the diffusion rate for species i;

ai is a positive number that characterizes the intraspecies competition

for the species i;

bij is a positive number that characterizes the interspecies competition

between the species i and j.

In the papers [25, 27] this model was studied initially without diffusion.

These papers studied how species can survive or get extinct with time, depend-

ing on the interactions among them. Upon adding diffusion, Mimura, Ei and

Fang proved that the existence of a stable solution depends on the shape of

the domain and on the relations between the coefficients in the equation. The

characterization for two species has been proven to be easier, while the three

species interactions remain to be fully understood in these papers.

In the sequence of papers by Dancer and Du [15, 16, 20] the authors

decided to first understand better the steady case (time independent) in order

to obtain results for the parabolic problem. In these papers, one can find suf-

ficient and necessary conditions for the existence of positive solutions (u1, u2)

3



and (u1, u2, u3) with explicit conditions on the coefficients Ri, ai, bij for the

following problem:





−∆ui = Riui − aiui
2 −

�

i �=j

bijuiuj in Ω,

ui = 0 on ∂Ω,

ui > 0 in Ω,

(1.3)

with i = 1, 2 and i = 1, 2, 3, respectively.

The spatial segregation obtained in the limit as bij → ∞ of the competition-

diffusion system was associated with a free boundary problem by Dancer, Hil-

horst, Mimura, and Peletier in [19] (i.e. in the case of high competition between

the species). In [17] the existence and uniqueness of the solution to Problem

(1.3) with just two populations has been studied using variational methods.

Later in [9], Conti, Terracini and Verzini proved that the limit problem

is related with the optimal partition problem in N dimensional domains. Since

then, several papers by Conti, Felli, Terracini and Verzini [10, 11, 12, 13, 14]

studied with a general formulation, the existence, uniqueness, and regularity

for the asymptotic limit of the following system,





−∆u�

1 = f(u�

1)−
1

�
u�

1u
�

2 in Ω,

−∆u�

2 = f(u�

2)−
1

�
u�

1u
�

2 in Ω,

ui = φi on ∂Ω, i = 1, 2.

where φi(x)φj(x) = 0, for i �= j. In these papers, the existence of a limit pair

of functions (u1, u2) such that (u�

1, u
�

2) → (u1, u2) when � → 0 is shown to have

a tight connection with two different mathematical problems. Namely,

4



a) to find the solution of a free boundary problem characterized by the

conditions:





−∆ui = f(ui)χ{ui>0} i = 1, 2,

ui(x) > 0 in Ω, i = 1, 2,

u1(x) u2(x) = 0 in Ω,

ui = φi on ∂ Ω, i = 1, 2,

b) to find the solution for an optimal partition problem. Optimal partition

problems are problems like, for example, (from [7]):

Let Ω be a bounded, smooth domain in Rn,
and let m ≥ 1 be a positive integer. One seeks
for a partition of Ω into m, mutually disjoint
subsets, Ωj, j = 1, . . . ,m such that Ω is its
union and that it minimizes the sum of the
first Dirichlet eigenvalue of the Laplacian on
Ωj with zero Dirichlet boundary condition on
∂Ωj.

(1.4)

The existence and uniqueness of solution for a type of free boundary

problem of the form 




−∆u = f(u)χ{u>0}

u(x) > 0 in Ω,

u = 0 on ∂Ω

with u bounded, was studied using variational methods by Dancer [18].

5



Then the regularity of solutions for the free boundary problem






∆u�

i
=

1

�
u�

i

�

i �=j

u�

j
in Ω, i = 1, . . . , d,

u�

i
> 0 in Ω, i = 1, . . . , d,

u�

i
(x) = φi(x) ≥ 0 on ∂ Ω, i = 1, . . . , d,

φi φj = 0 on ∂ Ω, i �= j

(1.5)

was studied by Caffarelli, Karakhanyan and Lin in [3, 4] with the viscosity ap-

proach. More specifically, in [4] the authors proved that the singular perturbed

elliptic system (1.1) has as limit when � → 0, the following free boundary prob-

lem 




∆ui = 0 when ui > 0, i = 1, . . . , d,

∆(ui −
�

i �=j

uj) ≤ 0 in Ω, i = 1, . . . , d,

ui(x) > 0 in Ω, i = 1, . . . , d,

ui uj = 0 in Ω, i �= j,

ui = φi on ∂Ω, i = 1, . . . , d.

(1.6)

They also proved that the limit solutions ui are Hölder continuous and have

linear growth from a free boundary point. Also that the set of interfaces

{x : u(x) = 0} consists of two parts: a singular set of Hausdorff dimension

n−2 where three or more species can concur; and a family of analytic surfaces,

level surfaces of harmonic functions.

The segregation model that we study in this thesis has the diffusion

operator replaced by the nonlinear minimal Pucci operator M−. Besides the

inherent interest of the extension of these results to the nonlinear setting,

6



we think that this work may be relevant to those interested in non-standard

diffusion models. In this work, we were able to extend to the nonlinear setting

the regularity results for the solutions proven by Caffarelli, Karakhanyan and

Lin. The statement of the problem and main results are presented in the next

section.

1.1.2 Set-up of the problem and main results

Let Ω ⊂ Rn be a bounded domain where d populations co-exist. Con-

sider the following system of fully nonlinear elliptic equations with Dirichlet

boundary data for





M−(u�

i
) =

1

�
u�

i

�

j �=i

u�

j
, i = 1, . . . , d, in Ω,

u�

i
= φi, i = 1, . . . , d, on ∂Ω,

(1.7)

where u�

i
, (i = 1, . . . , d) are non-negative functions defined in Ω that can be

seen as a density of the population i, and the parameter 1
�
characterizes the

level of competition between species.

Each φi is a non-negative Hölder continuous function defined on ∂Ω

such that φi(x)φj(x) = 0 for i �= j, meaning that they have disjoint supports.

Here M− denotes the extremal Pucci operator, defined as

M−(ω) := inf
A∈Aλ,Λ

aijDij(ω(x)) = Λ
�

ei<0

ei + λ
�

ei>0

ei, (1.8)

where Aλ,Λ is the set of symmetric n × n real matrices with eigenvalues in

[λ,Λ], for some fixed constants 0 < λ < Λ, and ei are the eigenvalues of the

matrix D2ω(x).

7



We assume that u�

i
are bounded, 0 ≤ u�

i
≤ N, for all i. Note that

λ∆ω ≥ M−(ω), thus u�

i
are subharmonic, for all i.

Our results in this thesis are the following:

Theorem (Existence). Let � > 0 constant, and Ω be a Lipschitz domain. Let

φi be non-negative Hölder continuous functions defined on ∂Ω. Then there exist

continuous functions (u�

1, · · · , u�

d
) depending on the parameter � such that u�

i

is a viscosity solution of Problem (1.7).

Theorem (Regularity of solutions). Let � > 0 constant and φi be non-negative

Hölder continuous functions defined on ∂Ω. Let u� = (u�

1, · · · , u�

d
) be solutions

of Problem (1.7) in B1(0). Then there exist a constant α, 0 < α < 1, such

that for any �, u� ∈ (Cα (B1(0)))
d
and

�u���
Cα

�
B 1

2

��d ≤ C(N),

with N = supj

��u�

j

��
L∞(B1(0))

and C(N) independent of �.

In the limit as � → 0, this model forces the populations to segregate,

meaning that in the limit the supports of the functions are disjoint and

u�

i
u�

j

�
� µ in the sense of measures, when � → 0.

The measure µ has support on the free boundary. Recall that the support of

a measure µ is the complementary of the set

{E : E the biggest open set such that µ(E) = 0}.

8



Theorem (Characterization of the limit problem). Let φi be non-negative

Hölder continuous functions defined on ∂Ω. If u ∈ (Cα)d is the limit of solu-

tions of (1.7), then

1. M−
�
ui −

�
k �=j

uk

�
≤ 0;

2. (supp ui)o ∩
�
supp (

�
k �=i

uk)
�o

= ∅ for i = 1, . . . d;

3. M−(ui) = 0, when ui(x) > 0, for x ∈ Ω i = 1, . . . , d;

4. ui(x) = φi(x), for x ∈ ∂Ω, i = 1, . . . , d.

Theorem (Lipschitz regularity for the free boundary problem). If u belonging

to (Cα(B1(0)))d, is the limit of solutions of (1.7) in B1(0), and x0 belongs to the

set ∂ (supp u1) ∩B 1
2
(0), then, without loss of generality, the growth of u1 near

the boundary of its support is controlled in a linear way and u1 is Lipschitz.

More precisely, there exist a universal constant C such that for any solution

u, for any point x0 on the free boundary:

1. supBR(x0) u1 ≤ C R,

2. �u1�Lip(BR(x0)) ≤ C,

where C = C(n, �u�L2(B1)) and R ≤ 1
4 .

Although the last three results are similar in spirit to the ones proved

in [4] for the elliptic linear system of equations, our proofs use different tech-

niques.

9



The organization of this thesis is the following.

In Chapter 2 we review the definition and properties of the Pucci oper-

ator, some of the results necessary for this work from the viscosity theory for

fully nonlinear elliptic differential equations. Some properties of subharmonic

functions and the Fabes and Strook inequality are presented. These results

are essential tools for this work.

Each main result is developed in a separate chapter.

Chapter 3 is dedicate to prove existence of solution for Problem (1.7).

The proof of Hölder regularity up to the boundary for an equation of the type

M−(u) = f(x) with Hölder boundary values in Lipschitz domain necessary

for the existence proof is also contained in this chapter.

Then, in Chapter 4, we prove Hölder regularity uniform in � for u� and

this allows us to characterize the limit problem that is, in fact, a new system

of equations that constitute a free boundary problem. We will recall here some

free boundary type of problems and state the essential monotonicity formula

introduced in [1].

To study the regularity of the free boundary problem we need to study

independently the regularity of the solution and of the free boundary set. In

this work, we present the regularity of the solution; the regularity of the free

boundary remains an open problem for which there are no tools.

The main result, the linear decay from the free boundary, is developed

in Chapter 6.

10



Chapter 2

Preliminaries and important tools

2.1 Some properties of subharmonic functions

In this thesis we use some known properties of subharmonic functions

that are presented here with proof. The first result is a very useful inequality

that can be obtained from Green’s Identity with a special Green function.

Lemma 2.1.1. Let u be subharmonic function, that is, ∆u ≥ 0. Then,

�r
2

�2
 
B r

2
(xo)

∆udx ≤ C

 
∂Br(xo)

(u(x)− u(x0)) dS (2.1)

Proof. Consider Γ̃ to be the Green function:

Γ̃(x) =
1

nωn(2− n)

�
1

|x− x0|n−2 − 1

rn−2

�
,

where ωn is the volume of the unit ball in Rn. Thenˆ
Br(xo)

∆u(x)Γ̃(x)−∆Γ̃(x)u(x)dx =

ˆ
∂Br(xo)

∂u

∂ν
Γ̃(x)

� �� �
=0

−∂Γ̃(x0)

∂ν
u(x)dS.

Andˆ
Br(xo)

∆u(x)Γ̃(x)dx =

 
∂Br(xo)

u(x0)dS +

ˆ
∂Br(xo)

�
−∂Γ̃(x)

∂ν
u(x)

�
dS

=

 
∂Br(xo)

u(x0)dS +

ˆ
∂Br(xo)

�
− (2− n)

nωn(2− n)

1

|x− x0|n−1u(x)

�
dS

=
1

nωnrn−1

ˆ
∂Br(xo)

u(x0)− u(x)dS.

11



Therefore,

1

nωn(n− 2)

ˆ
Br(xo)

∆u

�
1

|x− x0|n−2 − 1

rn−2

�
dx =

 
∂Br(xo)

(u(x)− u(x0)) dS.

Since u is subharmonic,
�

1
|x−x0|n−2 − 1

rn−2

�
is nonnegative in Br(x0), and since

for x ∈ B r
2
(x0) we have the inequality,

�
1

( r2)
n−2

− 1

rn−2

�
≤

�
1

|x− x0|n−2 − 1

rn−2

�
,

we obtain,

1

nωn(n− 2)

ˆ
B r

2
(x0)

∆u(x)

�
1

( r2)
n−2

− 1

rn−2

�
dx ≤

 
∂Br(xo)

(u(x)− u(x0)) dS.

Therefore,

1

nωn(n− 2)

�
1− 1

2n−2

�
1

( r2)
n−2

ˆ
B r

2
(xo)

∆u(x)dx ≤
 
∂Br(x0)

(u(x)− u(x0)) dS

that is,
�r
2

�2
 
B r

2
(x0)

∆udx ≤ C

 
∂Br(x0)

(u(x)− u(x0)) dS.

The second result is related with the growth of subharmonic functions

in thin domains. More precisely, we will need the following results.

Lemma 2.1.2 (L∞ decay for subharmonic functions supported in small do-

mains). Let u be a non-negative subharmonic function in a domain that con-

tains B1(0). If for some small �0 > 0,

sup
B1(0)

u ≤ 1 and
|{u �= 0} ∩ B1(0)|

|B1(0)|
≤ �0

then,

sup
B 1

2
(0)

u ≤ �0 2
n.
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Proof. Let y be an arbitrary point in the ballB 1
2
(0).Due to the subharmonicity

and the fact that u is a non-negative function

u(y) ≤
 
B 1

2
(y)

u(x)dx ≤ 1���B 1
2
(y)

���

ˆ
B1(0)

u(x)dx ≤ |B1(0) ∩ supp u|���B 1
2
(y)

���
sup
B1(0)

u(x)

and so by hypotheses,

u(y) ≤ �0 ωn�
1
2

�n
ωn

= �0 2
n,

which gives the result.

Proposition 2.1.3. Let u be a non-negative subharmonic function in a do-

main that contains B1(0). If for some ρ ≤ 1 and for some constants N, �0 ≥ 0

sup
x∈Bρ(0)

u(x) ≤ Nρ and
|{u �= 0} ∩ Bρ(0)|

|Bρ(0)|
≤ �0,

then,

sup
x∈B ρ

2
(0)

u(x) ≤ N ρ �0 2
n.

Proof. Consider the function v defined on B1(0) by

v(x) =
1

Nρ
u(ρ x).

The new function v satisfies

sup
x∈B1(0)

v(x) ≤ 1,

and so, by Lemma 2.1.2, we have that

sup
x∈B 1

2
(0)

v(x) ≤ �0 2
n.
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Substituting v by its definition in terms of u gives that,

sup
x∈B 1

2
(0)

1

Nρ
u(ρ x) ≤ �0 2

n ⇔ sup
y∈B ρ

2
(0)

u(y) ≤ N ρ �0 2
n,

which gives the final result.

2.2 Pucci Operators: General properties

In this section we present the definition of viscosity solutions and re-

view the general properties of Pucci operators. We also introduce the spaces

S(λ,Λ, f) and S(λ,Λ, f) and some results from the fully nonlinear elliptic

theory that are used in this work (see [2] for the proofs and more detail). Def-

inition 2.2.2, Remark 2.2.1, and Proposition 2.2.5 are valid in a more general

setting for a fully nonlinear elliptic operator F (D2u) (see [2] for more details).

Here M+ and M− will denote the extremal Pucci operators,

M+(u) := sup
A∈Aλ,Λ

aijDij(u) = sup
A∈Aλ,Λ

Tr(AD2u) = λ
�

ei<0

ei + Λ
�

ei>0

ei,

M−(u) := inf
A∈Aλ,Λ

aijDij(u) = inf
A∈Aλ,Λ

Tr(AD2u) = Λ
�

ei<0

ei + λ
�

ei>0

ei,

where Aλ,Λ is the set of symmetric (n× n) matrices with eigenvalues in [λ,Λ]

for 0 < λ < Λ, and ei are the eigenvalues of the matrix D2u.

To see this, consider a fixed x. Let M = D2u and {vi}i be the basis

of Rn of the eigenvectors of M with eigenvalues ei. Let O be the orthogonal

matrix that change the variables to the basis of eigenvectors of M . Then

OMOt = [δijei]ij = D.

14



As the trace is invariant under change of coordinates,

Tr(AM) = Tr(AMOtO) = Tr(OAMOt) = Tr(OAOtOMOt) = Tr(OAOt

� �� �
Ã

D),

the Pucci operator does not fix A, A ∈ Aλ,Λ. Note that A and Ã have the

same eigenvalues. So, let ei are the eigenvalues of the matrix D2u for a certain

x and A be the extreme case possible in order to maximize (or minimize) the

trace:

Aei =

�
Λei, ei > 0
λei, ei < 0

Then

M+(u) = sup
A∈Aλ,Λ

Tr(AD2u) = λ
�

ei<0

ei + Λ
�

ei>0

ei

The analog is valid to M−.

These two operators are a special case of nonlinear uniformly elliptic

operators:

Definition 2.2.1. Let F : S × Ω → R, where S is the space of real n × n

symmetric matrices and Ω ⊂ Rn. We say that

- F is a uniform elliptic operator if there are two positive constants λ ≤ Λ,

called ellipticity constants, such that, for any M ∈ S and x ∈ Ω

λ �N� ≤ F (M +N)− F (M) ≤ Λ �N�

for all nonnegative definite matrix N ∈ S, where �N� = sup|x|=1 |Nx| is

the value of the maximum eigenvalue of N if N ≥ 0.
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- F is concave (convex) if it is concave (convex) as a function of M ∈ S.

When dealing with these operators we consider solutions in the viscosity

sense.

Definition 2.2.2. Let f be a continuous function defined in Ω and 0 < λ < Λ

two constants. We denote by S(λ,Λ, f) the space of continuous functions u

defined in Ω that are viscosity subsolutions of M+(u) = f(x) in Ω, meaning

that if x0 ∈ Ω, A is a neighborhood of x0, and P a paraboloid (see Remark

2.2.2) that touches u from above at x0, i.e.

P (x) ≥ u(x) ∀x ∈ A and P (x0) = u(x0),

then

M+(P (x0)) ≥ f(x0).

In similar way, we denote by S(λ,Λ, f) the space of continuous functions u

defined in Ω that are viscosity supersolutions of M−(u) = f(x) in Ω, meaning

that if x0 ∈ Ω, A is a neighborhood of x0, and P a paraboloid (see Remark

2.2.2) that touches u from below at x0, i.e.

P (x) ≤ u(x) ∀x ∈ A and P (x0) = u(x0),

then

M−(P (x0)) ≤ f(x0).
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Remark 2.2.1. As in [2] we will denote by S�(λ,Λ, f) the set of viscosity solu-

tions

S(λ,Λ,− |f |) ∩ S(λ,Λ, |f |).

Remark 2.2.2. A paraboloid P is a polynomial in (x1, x2, · · · , xn) of second

degree:

P (x) = l0 + l(x) +
1

2
xtAx

where l0 is a constant, A = D2P is a symmetric matrix and l(x) is a linear

function.

Remark 2.2.3. Observe now that if ω(z) defined on Bd(y) is a solution to

M±(ω) = 0 we have invariance under translation by y (2.2), rotation by R

(2.3) and dilation by 1
d
and rescaling by d (2.4):

ω(x) = ω(x+ y� �� �
z

), x ∈ Bd(0) ⇒ M±(ω(x)) = M±(ω(z)), x ∈ Bd(0), (2.2)

ω(x) = ω(Rx), x ∈ Bd(0) ⇒ M±(ω(x)) = M±(ω(z)), x ∈ Bd(0), (2.3)

ω(x) =
1

d
ω(dx), x ∈ B1(0) ⇒ M±(ω(x)) = dM±(ω(z)), x ∈ B1(0), (2.4)

and so, ω(x) defined in B1(0) is still a solution toM±(ω) = 0 with the direction

en as we want.

Remark 2.2.4. Observe that

inf
A∈Aλ,Λ

aijDij(u(x)) ≤ aij(x)Dij(u(x)) ≤ sup
A∈Aλ,Λ

aijDij(u(x)).

Before proceeding, let us call the attention upon for the following prop-

erties of Pucci operators. Those properties follow easily from the definition

and previous remarks. Let u, v be smooth functions and 0 < λ < 1 < Λ :

17



- M−(u) ≤ Λ∆u ≤ M+(u) ;

- M−(−u) = −M+(u);

- M−(u)+M−(v) ≤ M−(u+v) ≤ M+(u)+M−(v) and soM− is concave;

- M+(u)+M−(v) ≤ M+(u+v) ≤ M+(u)+M+(v) and so M+ is convex;

- 0 ≤ M−(u�

i
) ≤ Λ∆u�

i
≤ M+(u�

i
) ⇒ u�

i
is subharmonic in the viscosity

sense;

- 0 ≤
�

i
M−(u�

i
) ≤ M−(

�
i
u�

i
) ≤ ∆(

�
i
u�

i
) which implies that

�
i
u�

i
is

subharmonic in the viscosity sense;

Remark 2.2.5. Observe that if u is continuous and subharmonic in the viscosity

sense then u is subharmonic in the distributional sense, meaning that

ˆ
Ω

∆u φ dx :=

ˆ
Ω

u∆φ dx ≥ 0 ∀φ ≥ 0, φ ∈ C∞
0 .

Now, we recall the comparison principle for viscosity solutions, Corol-

lary 3.7 in [2], that states that a viscosity subsolution that is negative on the

boundary has to remain negative in whole domain, and that a viscosity su-

persolution that is positive on the boundary has to remain positive in whole

domain:

Proposition 2.2.1. Assume that u ∈ C(Ω). Then,

1. u ∈ S(λ,Λ, 0) and u ≤ 0 on ∂Ω imply u ≤ 0 in Ω.
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2. u ∈ S(λ,Λ, 0) and u ≥ 0 on ∂Ω imply u ≥ 0 in Ω.

The following compactness result (Proposition 4.11 in [2]) follows from

the closedness of the family of viscosity solutions of Problem (2.5) under the

uniform convergence and the Ascoli-Arzela theorem.

Proposition 2.2.2. Let {Fk}k≥1 be a sequence of uniformly elliptic operators

with ellipticity constants λ, Λ and let {uk}k≥1 ⊂ C(Ω) be viscosity solutions in

Ω of

Fk(D
2uk, x) = f(x), (2.5)

with f continuous and bounded. Assume that Fk converges uniformly in com-

pact sets of S × Ω to F, where S is the space of real symmetric matrices, and

that uk is uniformly bounded in compact sets of Ω. Then there exist u ∈ C(Ω)

and a subsequence of {uk}k≥1 that converges uniformly to u in compact sets of

Ω. Moreover, F (D2u, x) = f(x) in the viscosity sense in Ω.

Below is the L� Lemma that follows from Lemma 4.6 in [2], using a

standard covering argument. Note that it is enough to consider f+ instead of

|f | due to the Alexandroff-Bakelman-Pucci estimate, Theorem 3.2 in [2].

Lemma 2.2.3. If u ∈ S(f+) in B1(0), u ∈ C (B1(0)), f a is continuous and

bounded function in B1(0), and they satisfy:

1. infB 1
2
(0) u(x) ≤ 1

2. u(x) ≥ 0 in B1(0)
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3. �f+�Ln
(B1(0))

≤ �0

Then, if �0 is sufficiently small, there exist d and � positive universal constants

such that:

���{x ∈ B 1
4
(0) : u(x) ≥ t}

��� ≤ dt−�, for all t > 0.

Now, we recall the inequality that gives interior Hölder regularity and

that follows from the Harnack inequality for viscosity solutions:

Proposition 2.2.4. Let ω ∈ S(λ,Λ, |f |) ∩ S(λ,Λ,− |f |) with f a continuous

and bounded function in B1(0). Then, there exists a universal constant µ < 1

such that

oscB 1
2
(0)ω ≤ µoscB1(0)ω + �f�

Ln(B1(0))
.

The interior Hölder regularity that we will use is a particular case of

Theorem 7.1 in [2], and Sobolev embedding:

Proposition 2.2.5. Let ω be a bounded viscosity solution of M−(ω) = f(x)

in B1(0), with f a continuous bounded function in B1(0). Then there exists a

positive constant C depending only on n, λ,Λ such that ω ∈ W 2,p(B 1
2
(0)), for

any p < ∞, and so ω ∈ C1,α̃(B 1
2
(0)) for any α̃ < 1, and we have

�ω�
C1,α̃(B 1

2
(0)) ≤ C

�
�ω�

L∞(B1(0))
+ �f�

Lp(B1(0))

�
.

Remark 2.2.6. (1) The same result under the same hypothesis is also valid for

a general uniformly elliptic operator, concave or convex.

(2) Observe that if f ∈ C α̃ then ω ∈ C2,α̃.
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2.3 Existence of barriers

One of the essential tools in this thesis is the existence of ”fundamental”

sub and supersolutions for the extremal Pucci operators that work as a barrier.

Since the radii of the balls in which we need existence of barriers has to be

arbitrary we construct those on the most general setting as is stated below.

Lemma 2.3.1. Given constants 0 < λ < Λ and M, r, a, b, ρ ≥ 0, a r

b
< r <

ρ there exist a smooth function defined on Bρ(0)\Ba r
2b
(0) and a constant c,

c(α, a, b), and a universal constant α such that:

1. ψ(x) = rM for x ∈ ∂B a r
b
(0)

2. ψ(x) = 0 for x ∈ ∂Br(0)

3. M−(ψ) ≥ 0 for x ∈ Br(0)\Ba r
2b
(0)

4.
∂ψ

∂ν
= cM when x ∈ ∂Br(0), and c = −α aα

bα−aα
.

Proof. Consider first r = 1 andM = 1, we will rescale afterwards. Let α,M2 >

0, α > n− 2 and

ϕ(x) = M1 +M2
1

|x|α .

where M1, M2 and α are such that the following conditions are satisfied:

1. ϕ(x) = 0 when |x| = 1

2. ϕ(x) = 1 when |x| = a

b
< 1

3. M−(ϕ) ≥ 0 in B1(0)\B a
2b
(0)
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In detail,

1. ϕ(x) = 0 when |x| = 1 ⇒ M1 = −M2

2. ϕ(x) = 1 when |x| = a

b
⇒ M2 =

1

(a
b )

α−1
= aα

bα−aα
≥ 0

and so have that,

ϕ(x) = −M2 +M2
1

|x|α with M2 =
aα

bα − aα
.

Note that if a

b
is very small then M2 is very small too. On the other hand, the

second derivatives of ϕ are given by:

∂ijϕ(x) = −αM2 |x|−α−2 δij − α(−α− 2)M2xixj |x|−α−4 .

Evaluating the Hessian of ϕ at a point (r, 0, · · · , 0) one obtains:

∂ijϕ = 0 i �= j

∂11ϕ = M2α(α + 1)r−α−2

∂iiϕ = −αM2r
−α−2 i > 1

And so by radial symmetry and rotational invariance the Pucci operator is

given by

M−(ϕ(x)) = M2λα(α + 1) |x|−α−2 − Λ (n− 1)αM2 |x|−α−2

= M2α |x|−α−2 (λ(α + 1)− Λ (n− 1)) .

In order to satisfy (3) one needs that:

α ≥ Λ(n− 1)− λ

λ
,
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which gives that

ϕ(x) = −M2 +M2
1

|x|α with M2 =
aα

bα − aα
and α ≥ Λ(n− 1)− λ

λ
.

Notice that the normal derivative is:

∂ϕ

∂ν
(x) = −αM2

1

|x|α+1 .

And so when r = |x| = 1,

∂ϕ

∂ν
(x) = −αM2 = −α

aα

bα − aα
.

Let c = −α aα

bα−aα
.

Now let us consider a dilation and obtain the result for general r and M = 1.

Let ϕ̃(x) = rϕ(x
r
). Then ϕ̃ defined on Br(0) satisfies:

1. ϕ̃(x) = 0 when |x| = r

2. ϕ̃(x) = r when |x| = a r

b

3. M−(ϕ̃) ≥ 0 in Br(0)\Ba r
2b
(0)

4. ∂ϕ̃

∂ν
(x) = c when |x| = r

Finally for an arbitrary M, let ψ(x) = Mϕ̃(x). Now it is easy to check that

the barrier function ψ satisfies:

1. ψ(x) = 0 when |x| = r

2. ψ(x) = rM when |x| = a r

b
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3. M−(ψ) ≥ 0 in Br(0)\Ba r
2b
(0)

4. ∂ψ

∂ν
(x) = cM when |x| = r

Lemma 2.3.2. Given constants 0 < λ < Λ and M, r, a, b, ρ ≥ 0, a

b
r < r < ρ,

there exist a smooth function defined on Bρ(0)\Ba r
2b
(0), a constant c, c(α, a, b),

and a universal constant α such that:

1. ψ(x) = rM for x ∈ ∂Br(0)

2. ψ(x) = 0 for x ∈ ∂Br
a
b
(0)

3. M+(ψ) ≤ 0 for x ∈ Br(0)\Br
a
2b
(0)

4.
∂ψ

∂ν
= cM when x ∈ ∂Br

a
b
(0), where c = α 1

a
b−(

a
b )

α+1

Proof. Consider first r = 1 andM = 1, we will rescale afterwards. Let α,M2 >

0 α > n− 2 and

ϕ(x) = M1 −M2
1

|x|α .

where M1, M2, and α are such that the following conditions are satisfied:

1. ϕ(x) = 0 when |x| = a

b

2. ϕ(x) = 1 when |x| = 1

3. M+(ϕ) ≤ 0 in B1(0)\B a
2b
(0)
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In detail, (1) and (2) imply that

M1 = 1 +M2 and M2 =
aα

bα − aα

and so have that,

ϕ(x) = 1 +M2 −M2
1

|x|α with M2 =
aα

bα − aα
.

On the other hand, the second derivatives of ϕ are given by:

∂ijϕ(x) = αM2 |x|−α−2 δij + α(−α− 2)M2xixj |x|−α−4 .

Evaluating the Hessian of ϕ at a point (r, 0, · · · , 0) one obtains:

∂ijϕ = 0 i �= j

∂11ϕ = −M2α(α + 1)r−α−2

∂iiϕ = αM2r
−α−2 i > 1

And so by radial symmetry and rotational invariance the Pucci operator is

given by

M+(ϕ(x)) = Λ (n− 1)αM2 |x|−α−2 − λM2α(α + 1) |x|−α−2

= M2α |x|−α−2 (Λ (n− 1)− λ(α + 1)) .

In order to satisfy (3) one needs that:

Λ (n− 1)− λ(α + 1) ≤ 0 ⇔ α ≥ Λ(n− 1)− λ

λ
,

which gives that

ϕ(x) = 1 +M2 −M2
1

|x|α with M2 =
aα

bα − aα
and α ≥ Λ(n− 1)− λ

λ
.
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Notice that the normal derivative is:

∂ϕ

∂ν
(x) = αM2

1

|x|α+1 .

And so when |x| = a

b
,

∂ϕ

∂ν
(x) = αM2

1
�
a

b

�α+1 =
α

a

b
−
�
a

b

�α+1 .

Let c = α

a
b−(

a
b )

α+1 .

Now let us consider a dilation and obtain the result for general r and M = 1.

Let ϕ̃(x) = rϕ(x
r
). Then ϕ̃ defined on Br(0) satisfies:

1. ϕ̃(x) = 0 when |x| = r a

b
,

2. ϕ̃(x) = r when |x| = r,

3. M+(ϕ̃) ≤ 0 in Br(0)\Br
a
2b
(0),

4. ∂ϕ̃

∂ν
(x) = c when |x| = r a

b
.

Finally for an arbitrary M, let ψ(x) = Mϕ̃(x). Now, it is easy to check that

the barrier function ψ satisfies

1. ψ(x) = 0 when |x| = r a

b
,

2. ψ(x) = rM when |x| = r,

3. M+(ψ) ≤ 0 in Br(0)\Br
a
2b
(0),

4. ∂ψ

∂ν
(x) = cM when |x| = r a

b
.
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Remark 2.3.1. Observe that the barrier on Lemma 2.3.2 could have been ob-

tained from the barrier on Lemma 2.3.1 by doing −ψ(x)+1, since M−(ψ) ≥ 0

implies M+(−ψ + 1) ≤ 0.

2.4 Fabes and Strook inequality

To prove the uniform Hölder regularity for the solutions of the elliptic

system we need to use the Fabes and Strook inequality that we state below.

For the proof of the Lemma see [22] (for more details see also [6, 21]). This

inequality relates the value of the integral of the generalized Green function

in a ball with the integral in a non-trivial subset. The generalized Green

functions allows us to have a representation formula for viscosity solutions of

linear operators in non divergence form and measurable coefficients. For more

details about the generalized Green functions see [8].

Lemma 2.4.1 (Fabes and Strook inequality). Let G(x, y) denote the Green’s

function for a linear operator L with measurable coefficients Lu = aij(x)Diju,

[aij(x)] ∈ Aλ,Λ. Then, there exist universal constants C and β such that

whenever E ⊂ Br, and Br ⊂ B 1
2
the following holds:

�
|E|
|Br|

�β ˆ
Br

G(x, y)dy ≤ C

ˆ
E

G(x, y)dy for all x ∈ B1.
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Chapter 3

Existence of solutions

3.1 Preliminaries

To prove the existence theorem, Theorem 3.3.1, we will need a fixed-

point argument that can be found in [23], pg 280. We recall the result here

for the sake of completeness:

Proposition 3.1.1. Let σ be a closed, convex subset of a Banach space B.

Let T : σ → σ be a continuous function such that T (σ) is a pre-compact set.

Then T has a fixed point.

To apply the fixed point theorem, we need an existence result and

regularity up to the boundary for a Bellman-type equation. In the following

results, we denote by G the operator

G[ωi] := G(D2ωi, x) = inf
ast ∈ Q

[ast] ∈ Aλ,Λ

�
astDstωi −

1

�
ωi

�

j �=i

u�

j

�

= M−(ωi)−
1

�
ωi

�

j �=i

u�

j
,

with u�

j
fixed positive continuous functions and Aλ,Λ the set of symmetric n×n

real matrices with eigenvalues in [λ,Λ], for 0 < λ < Λ. The existence result is
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Theorem 17.18 in [23], but we also state it below in the adequate form for our

purpose.

Proposition 3.1.2. Let Ω be a bounded domain in Rn
satisfying the exterior

sphere condition for all x ∈ ∂Ω. Let u�

j
, j �= i, be given functions, and ast

symmetric matrices. Suppose that, for all s, t, j, there exists a positive constant

µ such that:

ast ∈ C2(Ω) and �ast�C2(Ω) ≤ µλ;

1
�
u�

j
∈ C2(Ω) and

��1
�
u�

j

��
C2(Ω)

≤ µλ;

and

0 ≤ λ |ξ|2 ≤ astξsξt ≤ Λ |ξ|2 , and u�

j
≥ 0.

Then, for any φi ∈ C(∂Ω), there exists a unique solution ωi ∈ C2(Ω) ∩ C(Ω)

of �
G(D2ωi, x) = 0, in Ω
ωi = φi on ∂Ω.

We also need a generalization of the comparison principle that the

reader can find on page 443 in [23] and comment on page 446:

Proposition 3.1.3. Let u, v ∈ C(Ω)∩C2(Ω). If G[u] ≥ G[v] in Ω and u ≤ v

in ∂Ω, then u ≤ v in Ω.
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3.2 An improvement: Hölder regularity up to the bound-
ary.

The next Proposition is the Hölder regularity up to the boundary for

a viscosity solution of an equation of the type M−(ω) = f(x) in a Lipschitz

domain. The proof we present here uses the comparison principle and an

inductive construction of barriers. A different proof, by Luis Escauriaza, can

be found in [21], Lemma 3. Escauriaza uses the Fabes and Stroock inequality

(see Lemma 2.4.1) to estimate the Hölder norm of the solution up to the

boundary in terms of the Lq norm of the right-hand side.

This result is an improvement of Proposition 4.12 and 4.13 in [2] for

general Lipschitz domains.

Proposition 3.2.1. Let Ω be an Lipschitz domain. Let ω ∈ C2(Ω)∩C (Ω) be

a viscosity solution of






M−(ω) = f(x) in Ω,

ω = φ on ∂Ω,
(3.1)

with f ≥ 0 and f ∈ C(Ω) ∩ C2(Ω), φ ∈ Cβ(∂Ω). Then ω ∈ Cγ(Ω), where

γ = min(α̃, α) and α̃, α are the universal Hölder exponents for the interior

regularity and boundary regularity, respectively.

The proof of this proposition follows the same lines of the proof of

Proposition 4.13, in [2]. Once the interior regularity and the regularity for

an arbitrary point in the boundary is guaranteed the proof is basically the

interplay of these two results depending on how close two points are, compared
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to the maximum of their distance to the boundary. The interior regularity

comes from Proposition 2.2.5. To prove the regularity for an arbitrary point

on the boundary, Proposition 3.2.5, we need the couple of Lemmas that follow.

The first Lemma establishes the decay of a subsolution of M+ in con-

centric balls centered at an external point in the outside cone. The proof uses

a standard comparison argument and the use of a barrier function.

Lemma 3.2.2. Let Ω be an Lipschitz domain and C an external cone centered

at x0 ∈ ∂Ω, with some universal opening. Let y ∈ C be the center of the balls

B1 ⊂ B2 ⊂ B3
such that B1 ∈ C, and that dist(∂B2 ∩ Ω, x0) > δ > 0. Let u

be a solution of M+(u) ≥ 0 in the viscosity sense in Ω, such that u ≤ 1 on

B3 ∩ Ω and u ≤ 0 on B3 ∩ ∂Ω. Then, there exist λ > 0 such that

u(x) ≤ λ < 1 in B2 ∩ Ω.

Proof. Since the domain is Lipschitz there exists a cone C with opening equal

to ρ, such that for any point of the boundary we can place the cone with

opening ρ and vertex at that point such that C ∩ Ω = ∅.

Without loss of generality, take the cone with origin at x0 ∈ ∂Ω and

with axis en,

C =




x : (x− x0) · en < −ρ

����
n−1�

i=1

(x− x0)2i




 ,

and consider the origin as the center of the balls B1, B2, B3 as illustrated in

Figure 3.1.
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Ω

B3

B1

B2

u ≤ 1

u < λ < 1

u ≤ 0 ∂Ω

C

x0

Figure 3.1: Reference decay.

Applying Lemma 2.3.2 with M = 1
r
where r is the radius of B3 and ar

b

equal to the radius of B1 we obtain a supersolution ψ, M+(ψ) ≤ 0 in B3\B1,

such that ψ(x) = 0 in ∂B1 and ψ(x) = 1 in ∂B3. And so

u(x) ≤ ψ(x) on ∂(B3 ∩ Ω)

Applying the comparison principle stated in Proposition 2.2.1 we can conclude

that

u(x) ≤ ψ(x) in B3 ∩ Ω

Let λ = ψ(x) < 1 for x ∈ ∂B2 ∩ Ω. As ψ is an increasing function, see

Figure 3.2, we can conclude that for x ∈ B2 ∩Ω we have that u(x) ≤ λ < 1 as

we claim.
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λ

1

0

ψ

Figure 3.2: Upper bound for u due to the supersolution ψ.

The next Lemma is important for the iteration construction. Basically

we prove that if the boundary data is bounded from above in half of the unit

ball centered at a boundary point, and the function is bounded in the unit

ball then in one fourth of the ball, the function decays by a fixed value.

Lemma 3.2.3. Let Ω be a Lipschitz domain and C an external cone with

universal opening. Let 0 ∈ ∂Ω be the origin of the cone. Let v be a solution of

M+(u) ≥ 0 in the viscosity sense in Ω, such that v ≤ 1 on B1(0)∩Ω, v(0) = 0

and v(x) ≤
�
1
2

�β
on B 1

2
(0)∩∂Ω, for some β > 0. Then, there exists a constant

�
1
2

�β
< µ < 1 such that

v(x) ≤ µ in B 1
4
(0) ∩ Ω.

Proof. By hypothesis,

v(x) ≤
�
1

2

�β

, x ∈ ∂Ω ∩ B 1
2
(0).

Let

ω(x) =
v(x2 )− (12)

β

1− (12)
β

for x ∈ B1(0) ∩ Ω 1
2
,
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where Ω 1
2
= {2x : x ∈ Ω}. ω satisfies all the hypotheses of Lemma 3.2.2 with:

1. x0 = 0;

2. C the uniform external cone with axis without loss of generality equals

to en axis;

3. B1 = Br(y) with y = (0, · · · , 0,− 1
10) and r ≤ dist(y, ∂C), r = ρ

10 ;

4. B2 = B 7
10
(y);

5. B3 = B 4
5
(y).

Observe that B3 ⊂ B1(0) and that B 1
2
(0) ⊂ B2. Then by Lemma 3.2.2

ω(x) ≤ λ < 1 in B2 ∩ Ω 1
2

and so we have also that, for x ∈ B 1
2
(0) ∩ Ω 1

2
,

v(x2 )− (12)
β

1−
�
1
2

�β ≤ λ ⇔ v(
x

2
) ≤ λ(1−

�
1

2

�β

) +

�
1

2

�β

= λ+ (1− λ)

�
1

2

�β

� �� �
µ

,

and
�
1
2

�β ≤ µ ≤ 1. Then, we obtain that

v(z) ≤ µ z ∈ B 1
4
(0) ∩ Ω.

3.2.1 Iterative decay

Now we will be able to prove an iterative decay illustrated in Figure

3.3.
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Ω

µk

µk+1

|x|β

1

4k

1

4k+11

4k 2

1

4k+1 2

1

4k+2

µk+2

Figure 3.3: Iterative decay.

Lemma 3.2.4. Let Ω be a Lipschitz domain and C an external cone with

universal opening. Let 0 ∈ ∂Ω be the origin of the cone. Let v be a solution

of M+(u) ≥ 0 in the viscosity sense in Ω, such that v ≤ µk on B 1
4k
(0) ∩ Ω,

(µ0 = 1), v(0) = 0 and v(x) ≤
�

1
4k 2

�β
on B 1

4k 2
(0) ∩ ∂Ω. Then, there exist

a constant, µk+1, µk+1 := λµk + (1 − λ)
�

1
4k 2

�β
for some λ ∈ (0, 1) universal,

such that

v(x) ≤ µk+1 in B 1
4k+1

(0) ∩ Ω.

Proof. By scaling and dilation, define for x ∈ B1(0)

ω(x) =
v( x

4k )−
�

1
4k 2

�β

µk −
�

1
4k 2

�β .
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Since ω satisfies the hypotheses of Lemma 3.2.3, considering this dilation and

scaling, we see that

ω(x) ≤ λ < 1 in B 1
4
(0) ∩ Ω

and so, like in the previous proof, we have also that

v( x

4k )−
�

1
4k 2

�β

µk −
�

1
4k 2

�β ≤ λ ⇔ v(
x

4k
) ≤ λµk + (1− λ)

�
1

4k 2

�β

� �� �
µk+1

for x ∈ B 1
4
(0) ∩ Ω.

Therefore,

v(y) ≤ µk+1 for y ∈ B 1
4k+1

(0) ∩ Ω,

with
�

1
4k 2

�β ≤ µk+1 ≤ µk. This finishes the proof.

Remark 3.2.1. Observe that the decay at each step of this iteration is constant

and equal to C0

�
1
4k

�α
for α much smaller than β and C0 a large positive

constant. In fact, there exit constants C0 and α such that µk ≤ C0

�
1
4k

�α
. By

induction, for k = 0 the result is true by Lemma 3.2.3 for C0 ≥ 1. Assuming

the result valid for a general k, we have that

µk+1 = λµk + (1− λ)

�
1

4k 2

�β

≤ 1

4α(k+1)

�
4αλC0 + (1− λ)

1

2β−2α4k(β−α)

�

Take α = �β and such that 4αλ < 1 then
�
4αλC0 + (1− λ)

1

2β−2α4k(β−α)

�
≤ C0

for C0 large constant since,

4αλC0 + (1− λ)
1

2β−2α4k(β−α)
= 4αλ����

<1

C0 + (1− λ)
1

2β(1−2�)4kβ(1−�)
≤ C0
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⇔ C0 ≥ (1− λ)
1

(1− 4αλ)2β(1−2�)4kβ(1−�)
.

Remark 3.2.2. Note that Lemmas 3.2.2 - 3.2.4 are valid for v a viscosity solu-

tion of Problem (3.1).

Proposition 3.2.5 (Hölder regularity up to the boundary). Let Ω be an Lips-

chitz domain and C an external cone with universal opening that only depends

on the domain. Let x0 ∈ ∂Ω be the origin of the cone. Let v be a viscosity

solution of Problem (3.1) such that |v(x)| ≤ 1 on B1(x0) ∩ Ω, v(x0) = 0 and

|v(x)| ≤ |x|β on B1(x0) ∩ ∂Ω. Then, there exist constants C > 0 and α << β

such that

sup
x∈B1(x0)∩Ω

|v(x)− v(x0)|
|x− x0|α

≤ C

and C = C(�f�L∞).

Remark 3.2.3. The constant C in the previous proposition would depend on

� if this result was to be applied to our main problem. The uniform Hölder

regularity in � will be proved in the next section and does not depend on this

result.

Proof. Assume by translation invariance that x0 = 0. Note that v(0) = v(x0) =

0. So if we prove that

|v(x)| ≤ C |x|α ,

the result follows. Observe that on the boundary the regularity of the bound-

ary data gives the result directly. Let k be such that

1

4k+1
≤ |x| ≤ 1

4k
.
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Using Lemma 3.2.3 followed by Lemma 3.2.4 (see Remark 3.2.2) we can assume

that for x such that |x| = ρ < 1
4k we have:

v(x) ≤ µk.

Then, taking in account the previous remark, we also have,

v(x) ≤ C0

�
1

4k

�α

but then

v(x) ≤ C04
α

�
1

4k+1

�α

≤ C04
α |x|α .

To obtain the other inequality observe that −v(x) ≤ 1. So if we consider

instead of −v the function

ω(x) =
�f�L∞

2nλ
|x|2 − v(x).

we have that, for x ∈ B1(0),

M+(ω(x)) ≥ M−

�
�f�L∞

2nλ
|x|2

�
−M−(v) ≥ �f�L∞ − f(x) ≥ 0.

Observe that we have as well, for x ∈ ∂Ω ∩B1(0) that

ω(x) =
�f�L∞

2nλ
|x|2 − φ(x) ≤

�
�f�L∞

2nλ
+ C

�
|x|β .

Therefore, we can apply the comparison principle for ω and a barrier function

as in Lemma 3.2.3. Repeating the same construction as in the proof of Lemma

3.2.3 and Lemma 3.2.4 we obtain also that

ω(x) ≤ C |ρ|α

38



and so, in an analogous way, we obtain that

−v(x) ≤ C̃ |ρ|α .

with C̃ depending of �f�L∞ . This completes the proof.

With this result that is the analogous of Proposition 4.12 in [2], the

proof of Proposition 3.2.1 follows as the proof of Propositon 4.13 in [2].

3.3 Proof of Theorem 3.3.1

In this section we finally present the proof of the existence of solution

for the nonlinear elliptic system.

Theorem 3.3.1 (Existence). Let � > 0 constant, and Ω be a Lipschitz domain.

Let φi be a non-negative Hölder continuous functions defined on ∂Ω. Then there

exist continuous functions (u�

1, · · · , u�

d
) depending on the parameter � such that

u�

i
is a viscosity solution of Problem (1.7).

Proof. Let B be the Banach space of bounded continuous vector-valued func-

tions defined on a domain Ω with the norm

�(u�

1, u
�

2, · · · , u�

d
)�

B
= max

i

�
sup
x∈Ω

|ui(x)|
�

Let σ be the subset of bounded continuous functions that satisfy prescribed

boundary data, and are bounded from above and from below as is stated below:

σ =




(u�

1, u
�

2, · · · , u�

d
) :

u�

i
is continuous, u�

i
(x) = φi(x) when x ∈ ∂Ω,

0 ≤ u�

i
(x) ≤ sup

i

�φi�L∞





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σ is a closed and convex subset of B. Let T be the operator that is defined

in the following way: T ((u�

1, u
�

2, · · · , u�

d
)) = (v�1, v

�

2, · · · , v�d) if (u�

1, u
�

2, · · · , u�

d
)

and (v�1, v
�

2, · · · , v�d) are such that,





M−(v�
i
) =

1

�

�

j �=i

v�
i
u�

j
i = 1, . . . , d in Ω

v�
i
= φi, i = 1, . . . , d, in ∂Ω,

in the viscosity sense, where u�

j
, j �= i are fixed. Let g(u�) = 1

�

�
j �=i

u�

j
and

observe that each of the previous equations of the vector u� = (u�

1, u
�

2, · · · , u�

d
)

take the form:

M−(v�
i
) = v�

i
g(u�).

Observe that if T has a fixed point, then

T ((u�

1, u
�

2, · · · , u�

d
)) = (u�

1, u
�

2, · · · , u�

d
)

meaning that u�

i
= φi on the boundary and that

M−(u�

i
) =

1

�

�

j �=i

u�

i
u�

j
i = 1, . . . , d

in Ω, which proves the existence as desired.

So in order for T to have a fixed point we need to prove that it satisfies

the hypotheses of Proposition 3.1.1:

1. T (σ) ⊂ σ : We need to prove that there exists a regular solution for each

one of the equations





M−(v�
k
)− v�

k
g(u�) = 0, k = 1, . . . , d, in Ω

v�
k
= φk, k = 1, . . . , d, in ∂Ω.
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Observe that if such a regular solution exists, the comparison principle

is valid by Proposition 3.1.3.

To use Proposition 3.1.2 we can rewrite the differential equation in the

form

F (v�
k
) = inf

aij ∈ Q

[aij] ∈ Aλ,Λ

(aijDijv�k − v�
k
g(u�)) = 0, k = 1, . . . , d.

since, by density, taking the infimum in Q is equal to taking the infimum

over R. Let (Ωl)l∈N be a family of smooth domains contained in Ω such

that Ωl � Ω as l → ∞. Since we do not have the desired regularity on

the coefficients of v�
k
we will first consider the boundary value problem

in each smooth domain Ωl with the following regularized equation,

F δ(v�
k
) = inf

aij ∈ Q

[aij] ∈ Aλ,Λ

(aijDijv�k − v�
k
(g(u�) � ρδ)) = 0, k = 1, . . . , d,

where ρδ is an approximation of the identity. And we will consider

suitable boundary data that converges to the original boundary data

when we approach the original domain.

So now, by Proposition 3.1.2, there exist a unique solution (v�
k
)δ
l
in

C2(Ω) ∩ C0(Ω) with

(v�
k
)δ
l
= (φk)l on ∂Ωl, k = 1, · · · , d.

Taking the limit in l we obtain the existence of (v�
k
)δ, solutions in Ω with

boundary data equal to φk. From Proposition 3.2.1 we also have that
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there exists a universal exponent γ such that (v�
k
)δ is Hölder continuous

up to the boundary, (v�
k
)δ ∈ Cγ(Ω).

As we have F δ → F uniformly due to the properties of identity approx-

imation, we can conclude that

F δ(v�
k

δ)
δ→0−→ F (v�

k
)

by Proposition 2.2.2, this is, that v�
k
∈ Cγ(Ω) is the solution for our

problem F (v�
k
) = 0 in Ω, for all k.

We need also to prove that for each k, 0 ≤ v�
k
≤ supi �φi�L∞ .

Suppose, by contradiction that there exists x0 such that v�
k
(x0) < 0.

Since v�
k
= φk on ∂Ω and φk is non-negative, x0 must be an interior

point. But, if v�
k
has an interior minimum attained at x0 then there

exists a paraboloid P touching v�
k
from above at x0 and such that

M−(P (x0)) > 0.

Since, g(u�) ≥ 0, on the other hand we have that

M−(v�
k
(x0)) = v�

k
(x0) g(u�(x0)) ≤ 0,

and so we have a contradiction.

Analogously, suppose, by contradiction that there exists x0 such that

v�
k
(x0) > supi �φi�L∞ . Then, by the same reason as before x0 must be

an interior point and

M−(v�
k
(x0)) < 0.
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Since, g(u�) ≥ 0, we have that

M−(v�
k
(x0)) = v�

k
(x0) g(u�(x0)) ≥ 0,

and so we have a contradiction.

2. T is continuous: Let us assume that for each fixed � we have

((u�

1)n, · · · , (u�

d
)n) → (u�

1, · · · , u�

d
) ∈ [C (Ω)]d

meaning that when n tends to ∞,

max
1<i<d

�(u�

i
)n − u�

i
�
L∞ → 0.

We need to prove that

�T ((u�

1)n, · · · , (u�

d
)n)− T (u�

1, · · · , u�

d
)�[C(Ω)]d → 0

when n → ∞. Since,

T ((u�

1)n, · · · , (u�

d
)n) = ((v�1)n, · · · , (v�d)n)

if we prove that there exists a constant C, independent of i, so that we

have the estimate

�(v�
i
)n − v�

i
�
L∞ ≤ Cmax

j

��(u�

j
)n − u�

j

��
L∞

the result follows. For all x ∈ Ω, let ωn be the function

ωn(x) = (v�
i
)n(x)− v�

i
(x),
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and suppose by contradiction that there exists y ∈ Ω such that

ωn(y) > r2Kmax
j

��(u�

j
)n − u�

j

��
L∞ , (3.2)

for some large K > 0, where r is such that Ω ⊂ Br(0). We want to prove

that this is impossible if K is sufficiently large. Let hn be the concave

radially symmetric function,

hn(x) = γ(r2 − |x|2),

with γ = Kmaxi �(u�

i
)n − u�

i
�
L∞ . Observe that:

(a) hn(x) = 0 on ∂Br(0);

(b) hn(x) ≤ r2 K maxj
��(u�

j
)n − u�

j

��
L∞ for all x in Br(0);

(c) 0 = ωn(x) ≤ hn(x) on ∂Ω, since (v�
i
)n and v�

i
are solutions with the

same boundary data.

So, since we are assuming (3.2), there exists a negative minimum of

hn − ωn. Let x0 be the point where the negative minimum value of

hn − ωn is attained, hn(x0) − ωn(x0) ≤ 0. Then we have that for any

matrix A ∈ Aλ,Λ,

aijDij ((hn − ωn) (x0)) ≥ 0 and aijDijhn(x) =
�

i

−2 γ aii ≤ 0.
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Moreover,

M+(ωn) ≥ M−((v�
i
)n)−M−(v�

i
)

=
1

�

�
((v�

i
)n − v�

i
)
�

j �=i

(u�

j
)n − v�

i

�

j �=i

�
u�

j
− (u�

j
)n
�
�

≥ 1

�

�
((v�

i
)n − v�

i
)
�

j �=i

(u�

j
)n − v�

i
(d− 1)max

j

��(u�

j
)n − u�

j

��
L∞

�

adding and substrating 1
�
v�
i

�
j �=i

(u�

j
)n. Then, if aωij are the coefficients

associated to ωn, i.e.

aωn
ij
Dijωn = M+(ωn),

then

0 ≤ aωn
ij
Dij (hn − ωn) (x0)

≤
�

i

−2 γ aωn
ii
(x0)−

1

�
((v�

i
)n − v�

i
) (x0)

�

j �=i

(u�

j
)n(x0)

+
1

�
v�
i
(x0)(d− 1)max

j

��(u�

j
)n − u�

j

��
L∞

≤
�

i

−2Kmax
j

��(u�

j
)n − u�

j

��
L∞ aωn

ii
(x0)

+
1

�
v�
i
(x0)(d− 1)max

j

��(u�

j
)n − u�

j

��
L∞ ,

because 0 < hn(x0) ≤ ωn(x0) and
�

j �=i
(u�

j
)n(x0) ≥ 0 and so

−1

�
((v�

i
)n − v�

i
) (x0)

�

j �=i

(u�

j
)n(x0) ≤ 0.

Taking K > d−1
λ�

supi �φi�L∞ , we obtain that

0 ≤ aωn
ij
Dij (hn − ωn) (x0) < 0

which is a contradition.
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3. T (σ) is precompact: This a consequence of (1), since the solutions to the

equation are Hölder continuous, and this set is precompact in σ.

This concludes the proof.
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Chapter 4

Regularity of solutions

To obtain Hölder regularity for the solutions we want to construct a

barrier function of the type c |x− x0|α and prove that it is a upper and lower

bound for the solution for all x0. One way of doing so is to prove that there

exists a uniform decay on the oscillation of the solution over dyadic balls.

Meaning that, we will prove that there exist two constants 0 < λ, µ̃ < 1,

independent of �, such that for all i = 1, . . . , d, we have

oscx∈Bλ(0)u
�

i
(x) ≤ µ̃ oscx∈B1(0)u

�

i
(x).

The Cα regularity of each function will follow from here in a standard way

using Lemma 8.23, in [23]. We will follow this strategy to prove the regularity

following the proof presented in [4]. We will prove first the decay of the

oscillation under certain particular hypotheses and then use this result to

prove the uniform Cα regularity for a solution of Problem (1.7). Instead of

the Green representation formula for the Laplace operator used in [4] we need

to use the Fabes and Strook inequality and the generalized green functions for

second order elliptic operators with measurable coefficients (for more details

see [8, 21]).
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4.1 Some Lemmas

We first establish some conditions under which the maximum of a func-

tion in a smaller ball is lower.

Lemma 4.1.1. Let u�
be a solution of Problem (1.7). LetMi = maxx∈B1(0) u

�

i
(x)

and Oi = oscx∈B1(0)u
�

i
(x). If for some positive constant γ0 one of the following

hypotheses is verified

1.

���{x ∈ B 1
4
(0) : u�

i
(x) ≤ Mi − γ0Oi}

��� ≥ γ0

2.

���{x ∈ B 1
4
(0) : M−(u�

i
(x)) ≥ γ0 Oi}

��� ≥ γ0

3.

���{x ∈ B 1
4
(0) : M−(u�

i
(x)) ≥ γ0 u�

i
(x)}

��� ≥ γ0

then there exist a small positive constant c0 = c0(γ0) such that the following

decay estimate is valid:

max
x∈B 1

4
(0)

u�

i
(x) ≤ Mi − c0 Oi

and so

oscB 1
4
(0)u�

i
(x) ≤ c̃0 Oi, with c̃0 < 1.

Proof.

1. By contradiction, assume that for all c0 small, exist a point x0 ∈ B 1
4
(0)

such that

u�

i
(x0) ≥ Mi − c0 Oi
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and let

vi(x) =
Mi − u�

i
(x)

Oi

.

vi satisfy the following properties, with fi(x) = −u�

i
(x)

�c0 Oi

�
j
u�

j
(x):

(a) infB 1
2
(0)

vi(x)
c0

≤ infB 1
4
(0)

vi(x)
c0

≤ 1

(b) M−(vi
c0
) ≤ fi(x)

(c) vi(x) ≥ 0 in B1(0)

(d)
��f+

i

��
Ln = 0 since f+

i
(x) = 0.

Then we can apply the L�− Lemma stated as Lemma 2.2.3, to conclude

that ����{x ∈ B 1
4
(0) :

vi(x)

c0
≥ t}

���� ≤ dt−δ,

for d, δ universal constants and for all t > 0. If t = γ0

c0
then we have

���{x ∈ B 1
4
(0) : vi(x) ≥ γ0}

��� ≤ d(
γ0
c0
)−δ

But, taking in account the hypothesis we have:

γ0 ≤
���{x ∈ B 1

4
(0) : vi(x) ≥ γ0}

��� ≤ d(
γ0
c0
)−δ

Since c0 is arbitrary, if cδ0 <
γ
δ+1
0
d

we have the contradiction.

2. If u�

i
is a solution for M−(u�

i
) = f(u�

i
) there exists a symmetric matrix

with coefficients aij(x) with

λ |ξ|2 ≤ aij(x)ξiξj ≤ Λ |ξ|2
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such that

akl(x)Dklu�

i
(x) = f(u�

i
(x))

For that particular matrix consider the linear problem with measurable

coefficients in B1(0) :

La (v(x)) = g(x),

and let G(x, ·) be the respective Green function on B1(0) such that for

all x ∈ B1(0),

v(x) = −
ˆ
B1(0)

G(x, y)g(y)dy + boundary terms

(see [8, 21]). Since

akl(x)Dkl(Mi − u�

i
(x)) = −f(u�

i
(x)),

and since the boundary values are positive and G(x, y)f(u�

i
(y)) ≥ 0 for

all y, we conclude that

Mi − u�

i
(x) ≥ −

ˆ
B1(0)

G(x, y)(−f(u�

i
(y)))dy

≥
ˆ
Ai

(G(x, y))(f(u�

i
(y)))dy

≥ γ0 Oi

ˆ
Ai

G(x, y)dy,

for Ai := {x ∈ B 1
4
(0) : M−(u�

i
(x)) ≥ γ0 Oi}. Since by hypothesis

|Ai| :=
���{x ∈ B 1

4
(0) : M−(u�

i
(x)) ≥ γ0 Oi}

��� ≥ γ0
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and due to Fabes-Strook inequality, (see Lemma 2.4.1 and Theorem 2 in

[22] for more details) there exist γ and c, universal constants such that

for 1
4 < r < 1

2 ,

γ0 Oi

ˆ
Ai

G(x, y)dy ≥ c γ0 Oi

�
|Ai|

|Br(0)|

�γ ˆ
Br(0)

G(x, y)dy

≥ c γ0 Oi

�
γ0

|Br(0)|

�γ ˆ
Br(0)

G(x, y)dy.

We claim that for x ∈ B 1
4
(0) there exists an universal constant C such

that: ˆ
Br(0)

G(x, y)dy ≥ C. (4.1)

So again by hypothesis and due to the claim (that we will prove later)

we have

c γ0 Oi

�
γ0

|Br(0)|

�γ ˆ
Br(0)

G(x, y)dy ≥ c γ0 Oi

�
γ0

|Br(0)|

�γ

C

and finally

Mi − u�

i
(x) ≥ c γ0 Oi

�
γ0

|Br(0)|

�γ

C = c0Oi,

with c0 < 1.

To prove claim (4.1) we argue that for x ∈ B 1
4
(0)ˆ

Br(0)

G(x, y)dy =
1

2nΛ

ˆ
Br(0)

G(x, y)(2nΛ)dy

≥ 1

2nΛ

ˆ
Br(0)

G(x, y)

�
2
�

i

aii

�
dy

≥ 1

2nΛ

ˆ
Br(0)

G̃(x, y)

�
2
�

i

aii

�
dy

=
1

2nΛ

�
r2 − |x|2

�
≥ C,
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where G̃ is the Green function for La onBr(0), since x is interior moreover

aij(x)Dij(r
2 − |x|2) = −2

�

i

aii(x)

and 2nλ ≤ 2
�

i
aii(x) ≤ 2nΛ.

3. Let

Ai =
�
x ∈ B 1

4
(0) : M−(u�

i
(x)) ≥ γ0 u�

i
(x)

�

and

Hi =

�
x ∈ Ai : u�

i
(x) ≤ Mi

2

�

and consider the two possible cases:

(a) |Ai\Hi| ≥
1

2
|Ai| and (b) |Ai\Hi| <

1

2
|Ai| .

(a) If |Ai\Hi| ≥ 1
2 |Ai| then as

�
x ∈ Ai\Hi : M−(u�

i
(x)) ≥ γ0

Mi
2

�

∩
�
x ∈ B 1

4
(0) : M−(u�

i
(x)) ≥ γ0 Oi

2

�

since Oi
2 ≤ Mi

2 , we can conclude that

����

�
x ∈ B 1

4
(0) : M−(u�

i
(x)) ≥ γ0

Oi

2

����� ≥ |Ai\Hi| ≥
1

2
|Ai| ≥

γ0
2
.

Then we have the decay by (2) with γ0 replaced by γ0

2 .
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(b) If |Ai\Hi| < 1
2 |Ai| then as

Hi =

�
x ∈ Ai : u�

i
(x) ≤ Mi

2

�
⊂

�
x ∈ B 1

4
(0) : u�

i
(x) ≤ Mi − β0Oi

�

for β0 ≤ Mi
2Oi

and

|Hi| = |Ai\ (Ai\Hi)| = |Ai| − |(Ai\Hi)| ≥
|Ai|
2

≥ γ0
2

we have

���
�
x ∈ B 1

4
(0) : u�

i
(x) ≤ Mi − γ̃0Oi

���� ≥ γ̃0
2

for γ̃0 = min(β0, γ0). The decay follows by (1).

Next Lemma states that if all the oscillations are tiny compared to just

one that remains big (see Figure 4.1), then the largest oscillation has to decay

due to an increase of the minimum in a smaller ball.

Lemma 4.1.2. Let u�
be a solution of Problem (1.7) in B1(0). Let

O1
i
= oscx∈B1(0)u

�

i
(x).

Assume that for some δ > 0, sufficiently small,

�

j �=1

O1
j
≤ δO1

1.

then O1
1 must decay in B 1

2
(0), that is, there exist µ < 1 such that

O
1
2
1 ≤ µO1

1.
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O1

Oi

Ok

Figure 4.1: Illustration of our hypotheses about oscillations.

Proof. Let ω be the solution of the problem





M−(ω(x)) = 0, x ∈ B1(0)

ω(x) = u�

1(x), x ∈ ∂B1(0)

Since u�

1 − ω is a subsolution for the positive Pucci extremal operator

M+(u�

1 − ω) ≥ M−(u�

1) +M+(−ω) ≥ 0,

and u�

1−ω+
�

i �=1(Mi−u�

i
) is a supersolution for the negative Pucci extremal

operator,

M−

�
u�

1 +
�

i �=1

(Mi − u�

i
)− ω

�
≤ M−

�
u�

1 +
�

i �=1

(Mi − u�

i
)

�
+M+(−ω)

≤ M−(u�

1) +
�

i �=1

M+(Mi − u�

i
)

≤ M−(u�

1)−
�

i �=1

M−(u�

i
) ≤ 0,

by the maximum principle for viscosity solutions and our hypotheses we get,

u�

1(x) ≤ ω(x) ≤ u�

1(x) +
�

i �=1

(Mi − u�

i
(x)) ≤ u�

1 + δO1
1.
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Since ω ∈ S�(λ,Λ, 0), ω decays, namely

oscx∈B 1
2
(0)ω(x) ≤ µ oscx∈B1(0)ω(x)

and from this inequalities, since

maxω −minω ≤ maxu�

1 + δO1
1 −minω ≤ maxu�

1 + δO1
1 −min u�

1,

we can conclude that

oscBr(0)ω ≤ oscBr(0)u
�

1 + δO1
1.

In a analogous way,

oscBr(0)u
�

1 ≤ oscBr(0)ω + δO1
1.

So, then,

oscB 1
2
(0)u�

1 ≤ oscB 1
2
(0)ω + δO1

1 ≤ µ oscx∈B1(0)ω(x) + δO1
1

≤ µ
�
oscB1(0)u

�

1 + δO1
1

�
+ δO1

1.

Simplifying,

oscB 1
2
(0)u�

1 ≤ (µ (1 + δ) + δ)O1
1,

which concludes the proof by taking δ sufficiently small.

4.2 Uniform in � Hölder regularity: proof of Theorem
4.2.1

In this section we finally present the proof of the regularity Theorem
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Theorem 4.2.1 (Regularity of solutions). Let � and φi be as in Theorem 3.3.1.

Let u� = (u�

1, · · · , u�

d
) be solutions of Problem (1.7) in B1(0). Then there exist

a constant α, 0 < α < 1, such that for any �, u� ∈ (Cα (B1(0)))
d
and

�u���
Cα

�
B 1

2

��d ≤ C(N),

with N = supj

��u�

j

��
L∞(B1(0))

and C(N) independent of �.

Proof. We prove this theorem iteratively. We will prove that the oscillation of

u� will decay, by some constant factor µ̃ < 1, independent of � when it goes

from B1(0) to Bλ(0) for some λ < 1 also independent of �. Meaning that, we

will prove that there exist two constants 0 < λ, µ̃ < 1, independent of �, such

that for all i = 1, . . . , d, we have

oscx∈Bλ(0)u
�

i
(x) ≤ µ̃ oscx∈B1(0)u

�

i
(x).

The Cα regularity of each function will follow from here in a standard way using

Lemma 8.23, in [23]. Since, what matters is the ratio between oscillations

oscBλ(0)u
�

i
(x)

oscB1(0)u
�

i
(x)

≤ µ̃,

the result will hold true if we prove this decay for the normalized functions,

which satisfy the same equation with a different value of �. Thus, consider

u�

1, u
�

2, · · · , u�

d
solutions of Problem (1.7) on B1(0) and the renormalized func-

tions u�

1, · · · , u�

d
,

u�

i
(x) = ρ u�

i
(x) , x ∈ B1(0), i = 1, · · · , d,
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with ρ = 1
maxx∈B1(0),k=1,...,d u�

k
(x)

. These functions are bounded from above by

one and satisfy

M−(u�

i
(x)) =

1

ρ �����
�

u�

i
(x)

�

i �=l

u�

l
(x), i = 1, · · · , d.

Briefly, the iterative process consists of the following. We prove that

in B 1
4
(0) at least the largest oscillation decays. Without loss of generality

consider u�

1 the function with the largest oscillation. Then, there exists µ < 1

such that

oscx∈B 1
4
(0)u�

1(x) ≤ µ oscx∈B1(0)u
�

1(x).

Then, we consider the renormalization by the dilation in x :

u�

i
(x) = ρ u�

i

�
1

4
x

�
, x ∈ B1(0), i = 1, · · · , d,

with

ρ =
1

maxx∈B 1
4
(0),k=1,...,d u�

k
(x)

> 1.

Observe that these functions are solutions of the system

M−
�
u�

i
(x)

�
=

1

ρ 42 �� �� �
�

u�

i
(x)

�

i �=l

u�

l
(x), i = 1, · · · , d.

So, basically, they are the solutions of an equivalent system with a

different �, still defined on B1(0).

We start all over to prove that we have again the reduction of the next

largest oscillation, when we are in B 1
4
(0). We call the new function with the
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B1(0)

B 1
4
(0)

Ōk

Ōi

Ō1 < O1

u�
1

u�
i

u�
k

ū�
k

ū�
i

ū�
1

1

1

0

0

O1

Oi

Ok

Figure 4.2: Decay iteration in Theorem 4.2.1. After the renormalization the
oscillation of the first function decays while the others remain the same. In
the original configuration we register that decay and we proceed with the next
renormalization.

largest oscillation u�

i
. So we have that there exists µ < 1, independent of �,

such that

oscx∈B 1
4
(0)u�

i
(x) ≤ µ oscx∈B1(0)u

�

i
(x) ⇒ oscx∈B 1

42
(0)u�

i
(x) ≤ µ oscx∈B 1

4
(0)u�

i
(x).

Considering what has happened in the previous step we can have several sce-

narios. Either we have the reduction of the oscillation from B1(0) to B 1
42
(0)

of just one of the functions, or two or more. (Later, when there is no possible

confusion, the function with the largest oscillation at each iteration will always

be denoted by u�

1).
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We repeat this process taking the renormalizations

u�

i
(x) =

1

maxz∈B1(0),j u
�

j

�
1
4k z

� u�

i

�
1

4k
x

�
, x ∈ B1(0), i = 1, · · · , d,

until eventually we have the reduction of all the oscillations, or until the largest

oscillation is much larger then the other oscillations. If that is the case, then

eventually we will have that, for Oj = oscB1u
�

j
(x),

�

j �=1

Oj ≤ δO1.

In that case, using the Lemma 4.1.2, O1 must also decay and we have the

result. Thus, after repeating this iterative process a finite number of times we

obtain that for some λ < 1, µ̃ < 1 and every i = 1, . . . , d,

oscx∈Bλ(0)u
�

i
(x) ≤ µ̃ oscx∈B1(0)u

�

i
(x).

For simplicity, we will still refer to the renormalized functions bounded

by one, as u�

i
, and also 1

ρ 4k �
will still be denoted by � in each new step. Al-

though, � can be bigger than the one in the first steps, depending on the

number of steps needed, it will eventually remain smaller than one since the

renormalization after each dilation will be a multiplication by a factor smaller

than one.

In what follows u�

j0
denotes at each renormalization, the function that

achieves the maximum value 1 and u�

1 is the function that has maximum

oscillation. Naturally, they can be or not the same function.

Below follows the proof of decay for the renormalized functions in all

possible cases.
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Case 1: Let us assume that 1
�
> 1.

We are going to use the following argument: observe that, if there exists k

such that:
���{x ∈ B 1

4
: u�

k
(x) ≥ γ0}

��� ≥ γ0,

then since for any j �= k

M−(u�

j
(x)) =

1

�
u�

j
(x)(u�

k
+ · · · )

we have,
���
�
x ∈ B 1

4
: M−(u�

j
) ≥ γ0u�

j

���� ≥ γ0.

And so by (3) in Lemma 4.1.1 we can conclude that Oj, for all j �= k decays.

Let 0 < γ < 1
4 be a fixed constant.

1. If maxx u�

1 ≥ γ and O1 does not decay then by (1) in Lemma 4.1.1 we

can conclude that there exists γ0 a positive small constant such that

���
�
x ∈ B 1

4
: u�

1(x) ≥ max
x

u�

1 − γ0O1 ≥
γ

2

���� ≥ 1− γ0 ≥
1

2
,

so then as we observed before, we have for all j �= 1 that,

���
�
x ∈ B 1

4
: M−(u�

j
) ≥ γ

2
u�

j

���� ≥ γ

2
.

And so by (3) in Lemma 4.1.1 we can conclude that Oj, for all j �= 1

decays.

2. If maxx u�

1 < γ then, since O1 ≤ maxx u�

1 < γ, all oscillations are smaller

than γ (see Figure 4.3).
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u�
j0

1

0

1− γ

γ
u�
1

Figure 4.3: All oscillations are smaller than γ.

Then in particular the function u�

j0
has oscillation smaller than γ. Thus,

u�

j0
(x) ≥ 1− γ

and so for all j �= j0, we have for all j �= j0,

M−(u�

j
) ≥ (1− γ)u�

j
.

So again by (3) in Lemma 4.1.1 we can conclude that for all j �= j0, Oj

decays. In particular, the largest oscillation decayed.

Case 2: Let us assume that 1
�
< 1. Let θ = 1

�
.

Observe that, since all the functions are bounded from above by one and are

positive, we have that for all i �= i0, and i0 an arbitrarily fixed indix,

θu�

i0
u�

i
≤ M−(u�

i
) ≤ θu�

i
(d− 1). (4.2)

In a more general point of view we have for any i = 1, . . . , d,

0 ≤ M−(u�

i
) ≤ d, (4.3)
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We will use one or another expression according to convenience. There are

two possible cases: either (1) 1
4 ≤ O1 ≤ 1 or (2) O1 < 1

4 . We prove that in

the first case all the big oscillations decay. So after a finite number of steps,

(and if all the functions did not decay yet in the mean time) we will have that

all oscillations are less than 1
4 . In this case, since the function that attains the

maximum will have also oscillation less than 1
4 , we can prove that all the other

functions decay. In this way, we will eventually be again in the case of

�

j �=j0

Oj ≤ δOj0 .

and as before we have the result. The proof of the decay in each case follows.

1. Assume that 1
4 < O1 ≤ 1. There exists an interior point y ∈ B 1

4
(0), such

that

min u�

1 +
1

8
≤ u�

1(y) ≤ maxu�

1 −
1

8
.

By (4.3) we conclude that the equation for u�

1 has right hand side con-

tinuous and bounded. Then, by regularity, Proposition 2.2.5, we can

conclude that there exists a universal constant C such that for all x ∈

B 1
16C

(y)

|u�

1(x)− u�

1(y)| ≤ �∇u�

1�L∞
1

16C
≤ �u�

1�C1,α

1

16C
≤ 1

16
.

And so, for all x ∈ B 1
16C

(y) we have that

u�

1(x) ≤ maxu�

1 −
1

16
.
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Then by (1) of Lemma 4.1.1, we can conclude that

oscB 1
4
(0)u�

1 ≤ µ oscB1(0)u
�

1 with µ < 1.

With this argument we can conclude that all the functions with oscilla-

tions bigger than 1
4 decay. Moreover, repeating the same argument we

can conclude that all the functions with oscillations bigger than 1
8 decay.

2. Assume that O1 ≤ 1
4 . Observe that in this case u�

j0
(x) ≥ 3

4 for all x ∈

B1(0)

Then for all i �= j0 the function u�

i
satisfies the equation

3

4
θ u�

i
≤ M−(u�

i
) ≤ θ u�

i
(d− 1)

Meaning that,

M−(u�

i
) ∼ θ u�

i

Consider vi, i �= j0, the renormalized functions u�

i
, by the renormalization

vi(x) =
1

maxx∈B1(0) u
�

i
(x)

u�

i
(x) .

Observe that vi has maximum 1 and satisfies in B1(0),

θ
3

4
vi ≤ M−(vi) ≤ θvi(d− 1).

For each function vi, i �= j0, we can have two situations. Either (a)

vi(x) ≥ 1
2 for all x or (b) vi(x) <

1
2 for some x in B1(0). In both cases

we will prove that vi, i �= j0 decay in B 1
4
(0).
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(a) If vi(x) ≥ 1
2 for all x ∈ B1(0). Then

Oi = oscx∈B1(0)vi(x) ≤
1

2
.

We claim that: there exists a universal constant N such that θ ≤

NOi.

Assuming that the claim is true, observe that

0 ≤ M−(vi) ≤ dNOi,

which implies that we can consider the function ω with oscillation

1 in B1(0) defined by

ω(x) =
vi(x)−minz∈B1(0) vi(z)

Oi

.

and that satisfies in B1(0)

0 < M− (ω) ≤ dN.

By regularity, Proposition 2.2.5, there exists a universal constant C

depending on N and d such that,

|ω(x)− ω(y)| ≤ �ω�
C1,α |x− y| ≤ C(N, d) |x− y| .

Assuming that ω didn’t decay, let y ∈ B 1
4
(0) be such that ω(y) < 1

2 .

Then, if σ = min
�
dist(y, ∂B 1

4
), 1

4C(N,d)

�
, for all x ∈ Bσ(y)

|ω(x)− ω(y)| ≤ 1

4

64



And so, for x ∈ Bσ(y),

ω(x) ≤ 1

4
+

1

2
≤ 3

4
.

Then by (1) of Lemma 4.1.1, we can conclude that for all i �= j0,

there exist µ < 1

oscB 1
4
(0)vi(x) ≤ µoscB1(0)vi(x) ⇒ oscB 1

4
(0)u�

i
(x) ≤ µoscB1(0)u

�

i
(x)(x).

Proof of the claim: consider by contradiction that θ > 2nλ 24 Oi.

So, for all x ∈ B1(0),

3

4
vi(x)θ >

3

8
θ > 2nλ 9Oi.

Observe that, if m = minz∈B1(0) vi(z), m < t < m+ oscB1(0)vi(x) is

a positive constant to be chosen later and

P (x) = 8Oi |x|2 + t

we have that for any x, and any t,

M−(vi) ≥
3

4
vi(x)θ > 2nλ 9Oi > M−(P (x)) = 2nλ 8Oi.

and so P can not touch vi from above at any y, since it would

contradict that the vi is a subsolution. But since for t = m and

|x| = 1,

P (x) ≥ m+ 8Oi and P (0) = m,

P crosses the function vi, and so it is possible to find t such that P

would touch the function vi from above at some point, which is a

contradiction.
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(b) If vi(y) <
1
2 for some interior point y of B 1

4
(0) we proceed as before

and use regularity. If the function never attains a value less than 1
2

in B 1
4
(0) then the function has decayed.

With this uniform bound in the Banach space Cα

,
one can conclude

that these sequence converges uniformly (up to a subsequence) to a vector of

functions u.

We will prove in the next chapter that this limit vector function and

its support are in fact the solutions of a free boundary problem.
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Chapter 5

Characterization of limit problem: a free
boundary problem

5.1 Free boundary problems. Monotonicity formula

Free boundary problems consist in problems where the function and

part of the boundary of the support of the function (so called free boundary)

are both unknowns.

Typically the problem consists in an equation that is satisfied in a sub-

set of the domain, a boundary condition for the fixed boundary of the problem

and a condition to be satisfied across the free boundary, or and equation that

is satisfied in all the domain (as here).

In the study of the regularity of the solution of a free boundary problem

two aspects are important: the regularity of the solution on the interior of its

support and across the free boundary; and to characterize the geometry of the

free boundary set itself.

For the similar linear problems, variational and non variational form

(problem (1.4) in [7] and problem (1.2) in [4], respectively), the regularity

results for the free boundary were very similar: that the set of interfaces

{x : u(x) = 0} consists of two parts: a singular set of Hausdorff dimension
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n − 2 where three or more species may concur; and a family of level surfaces

of C2,α and harmonic functions, respectively.

For the nonlinear problem in this thesis we study the regularity of the

solution across the free boundary. The regularity of the free boundary is still

an open problem, since the existent tools, like the Almgren’s monotonicity

formula or similar frequency functions, work just in the linear setting.

The literature for free boundary problems is vast but one can find in

the books [5, 26] essential tools and results about free boundary problems. We

will just recall here the essential tool that we use in this thesis to prove the

Lipchitz regularity of the solution across the free boundary: the Alt-Caffarelli-

Friedman monotonicity formula introduced in [1].

Lemma 5.1.1. Let u, v be two Hölder continuous functions defined on B1(0),

nonnegative, subharmonic when positive and with disjoints supports. Assume

that z0 is an interior point and belongs to the intersection of the boundary of

their support. Then, the following quantity is increasing with the radius ρ and

uniformly bounded,

�
1

ρ2

ˆ
Bρ(z0)

|∇u|2
|x− z0|n−2

dx

��
1

ρ2

ˆ
Bρ(z0)

|∇v|2
|x− z0|n−2

dx

�
≤ N,

since the norm of the densities is bounded, say by the fixed constant N ;

C(n) �(u, v)�4
L2(B1(0))

≤ N.

For the proof see page 214 on [5] and the proof of Lemma 7 (a) in [4].
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5.2 Limit problem

In this chapter we will assume without loss of generality that λ = 1.

Observe that if u� is a viscosity solution of Problem (1.7) then there exists a

subsequence still indexed by � and function u ∈ (Cα)d such that

u� → u uniformly.

We will prove that in the limit as � → 0, this model forces the popula-

tions to segregate, meaning that in the limit the supports of the functions are

disjoint and

u�

i
u�

j

�
� µ in the sense of measures, when � → 0.

The measure µ has support on the free boundary. Recall that the support of

a measure µ is the complementary of the set

{E : E the biggest open set such that µ(E) = 0}.

The following Lemma characterizes the Laplacian of the limit solution.

Lemma 5.2.1. If u ∈ (Cα)d is the limit of a solution of (1.7) then ∆ui are

positive measures.

Proof. Let φ be positive a test function. Then

0 ≤
ˆ

M−(u�

i
)φ ≤

ˆ
∆u�

i
φ =

ˆ
∆φu�

i
→

ˆ
∆φui =

ˆ
φ∆ui

and so ∆ui is a positive distribution which implies that it is a nonnegative

Radon measure.
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Now we are ready to prove the following characterization Theorem:

Theorem 5.2.2 (Characterization of the limit problem). Let φi be as in The-

orem 3.3.1. If

u ∈ (Cα)d is the limit of solutions of (1.7), then

1. M−
�
ui −

�
k �=j

uk

�
≤ 0;

2. (supp ui)o ∩
�
supp (

�
k �=i

uk)
�o

= ∅ for i = 1, . . . d;

3. M−(ui) = 0, when ui(x) > 0, for x ∈ Ω i = 1, . . . , d;

4. ui(x) = φi(x), for x ∈ ∂Ω, i = 1, . . . , d.

Proof. (1) Observe that

M−

�
u�

i
−

�

k �=i

u�

k

�
≤ M−(u�

i
) +M+

�
−
�

k �=i

u�

k

�

≤ M−(u�

i
)−M−

�
�

k �=i

u�

k

�

≤ M−(u�

i
)−

�

k �=i

M−(u�

k
) ≤ 0.

As u�

i
−
�

k �=i
u�

k
→ ui−

�
k �=i

uk when � → 0 uniformly and S(λ,Λ, 0) is closed

under uniform convergence, ui −
�

k �=i
uk is a supersolution of M−:

M−

�
ui −

�

k �=i

uk

�
≤ 0

(2) If ui(x0) = α0 > 0 for any i, i = 1, . . . , d then for δ < α0
2 there

exists an �0 such that for � < �0,
α0
2 < α0 − δ < u�

i
(x0) < α0 + δ < 3α0

2 . So by

Hölder continuity there exist h > 0 such that:
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a) |u�

i
(y)− u�

i
(x0)| ≤ αo

4 in B2h(x0);

b) u�

i
(y) > α0

4 in a ball of radius 2h and center x0.

Observe that applying Green’s Identity with a function u�

i
and the fundamental

solution

Γ̃(x0) =
1

nωn(2− n)

�
1

|x− x0|n−2 − 1

|2h|n−2

�
,

we obtain the inequality (see Lemma 2.1.1)

h2

 
Bh(x0)

∆u�

i
dx ≤ C

 
∂B2h(x0)

(u�

i
(x)− u�

i
(x0)) dS,

where C is a constant just depending on n. From the equation for u�

i
, we

obtain

 
Bh(x0)

α0

�
k �=i

u�

k

4�
dx ≤

 
Bh(x0)

u�

i

�
k �=i

u�

k

�
dx =

 
Bh(x0)

M−(u�

i
)dx

≤
 
Bh(x0)

∆u�

i
dx ≤ C

h2

 
∂B2h(xo)

(u�

i
(y)− u�

i
(xo)) dS

≤ C α0

4h2
.

Thus,  
Bh(xo)

α0

�
k �=i

u�

k

4
dx ≤ � C α0

4h2
,

which implies that,  
Bh(xo)

�

k �=i

u�

k
→ 0
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when � → 0 . By subharmonicity,

�

k �=i

u�

k
(x0) ≤

 
Bh(x0)

�

k �=i

u�

k
→ 0

and so
�

k �=i
uk(x0) = 0 and this proves the result.

(3) To prove that M−(ui) = 0, when ui > 0 assume the set up in the

beginning of (2) for ui(x0). We need to prove that
u�

i

�
k �=iu

�

k

�
→ 0 uniformly

when � → 0 in order to use the closedness of S(λ,Λ). Since,

∆

��
k �=i

u�

k

�

�
≥ M−

��
k �=i

u�

k

�

�
≥ 1

�

�

k �=i

M−u�

k
≥ 0,

�
k �=iu

�

k

�
is subharmonic. So, if we prove that

�
k �=iu

�

k

�
→ 0 in L1(Bh(x0)), then

for y ∈ Bh−δ�(xo),
�

k �=i
u�

k
(y)

�
≤
 
Bδ� (y)

�
k �=i

u�

k

�
dx → 0,

and so
�

k �=iu
�

k

�
→ 0 convergences uniformly in a compact set contained in

Bh(x0). Recall that we proved in (2) that
�

k �=i
u�

k
→ 0 uniformly in a compact

set contained in Bh(x0) and we have that

�

k �=i

u�

k
→ 0 ⇒ ∆

�
�

k �=i

u�

k

�
→ 0 in the sense of distributions.

So, since

α0

4

�
k �=i

u�

k

�
≤

u�

i

�
k �=i

u�

k

�
= M−(u�

i
) ≤

�

k �=i

M−u�

k

≤ M−

�
�

k �=i

u�

k

�
≤ ∆

�
�

k �=i

u�

k

�
,
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we conclude that �
k �=i

u�

k

�
→ 0 in L1.

Then, as we said, we have that

�
k �=i

u�

k

�
→ 0 uniformly in a compact set contained in Bh(x0).

As u�

i
→ ui uniformly and are bounded, we finally conclude that

u�

i

�
k �=i

u�

k

�
→ 0 uniformly in a compact set contained in Bh(x0).

Proceeding analogously with uk, k = 1, · · · , n we conclude that the limit

problem is

M−(ui) = 0, ui > 0 i = 1, . . . , d.

(4) To prove the last statement we will construct an upper and lower

barrier.

(a) Consider as upper barriers the solutions of the d problems, (i = 1, . . . , d):

M−(u�

i
) = 0 in Ω and u�

i
(x) = φi(x)χ{φi(x) �=0} in ∂Ω

So we have that for all i = 1, . . . , d,

M−(u�

i
) = 0 ≤ 1

�
u�

i

�

k �=i

u�

k
= M−(u�

i
) in Ω

and

u�

i
(x) = u�

i
(x) for all x ∈ ∂Ω.

73



So by the comparison principle, for all i and for all � we have the upper

bound

u�

i
(x) ≥ u�

i
(x) for all x ∈ Ω.

Taking limits in � we can deduce that for all i

φi(x) ≥ ui(x) for all x ∈ ∂Ω.

(b) Now consider as a lower barrier the solution of the problem:

M−(ωi) = 0 in Ω and ωi(x) = φi(x)−
�

j �=i

φj(x) in ∂Ω

So we have that for all i = 1, . . . , d,

M−(u�

i
−

�

i �=j

u�

j
) ≤ 0 = M−(ωi) in Ω

and

u�

i
(x)−

�

i �=j

u�

j
(x) = ωi(x) for all x ∈ ∂Ω.

So by the comparison principle, for all i and for all � we have the lower

bound

u�

i
(x)−

�

i �=j

u�

j
(x) ≥ ωi(x) for all x ∈ Ω.

Taking the limit in � we can deduce that for all i

ui(x)−
�

i �=j

φj(x) ≥ φi(x)−
�

j �=i

φj(x) for all x ∈ ∂Ω.

Since by hypothesis we know that φi have disjoint supports, when φi(x) �=

0,

ui(x) ≥ φi(x),

and this proves the statement.
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Chapter 6

Lipschitz regularity for the free boundary
problem

The regularity theorem of this chapter is the main result relating the

growth of one of the functions in terms of the distance of the function to the free

boundary. In the proof we will need to use barriers, properties of subharmonic

functions (see Chapter 2) and the monotonicity formula introduced in [1] (see

Chapter 5).

We start by presenting the linear decay to the boundary for subsolutions

that are bounded and take the value zero in part of the boundary of the

support. This fact is going to play a crucial role in the main proof and it uses

the construction of fundamental barriers that was presented in Chapter 2. In

the main proof we will also use the study of the L∞ decay for subharmonic

functions supported in a small domains that was presented in the next section.

6.1 Linear decay to the boundary

Lemma 6.1.1 (Linear decay to the boundary normalized). Let v be a non-

negative continuous function defined in Ω = Bσ(z0)\B1(0), where σ ≤ 1
2 and

z0 is, without loss of generality, a point on ∂B1(0) with
z0
|z0| = en, en the unit
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vector. Assume that,

1. M+(v) ≥ 0 in Ω,

2. v(x) ≤ Uσ in Ω,

3. v(x) = 0 on ∂B1(0).

then, there exists a universal constant C̃, C̃ = 8
5

α

1
5−(

1
5)

α+1 , such that,

v(x) ≤ C̃Udist(x, ∂B1),

when x ∈ Sσ with Sσ :=
�
B1+σ

4
(0)\B1(0)

�
∩ {x = (x�, xn) : |x� − z�0| < σ

2}. In

particular,

v(x) ≤ C̃ Udist(x, ∂B1),

when x ∈ Bσ
4
(z0).

Proof. Consider the function v extended by zero to all Bσ(z0). Observe that

the extension still satisfies the hypotheses. We will take a barrier φ as in

Lemma 2.3.2 with r = 5σ
8 ,

a

b
= 1

5 and M = U 8
5 , that will be used as a model

and will be sliding tangentially along ∂B1(0) in order to construct a wall of

barriers (see Figure 6.1). With that purpose, take a family of balls {Bσ
8
(y)}y

such that y ∈ B 3σ
8
(z0) ∩ ∂B1−σ

8
(0). So the balls Bσ

8
(y) are tangent to ∂B1(0)

and are inside B1(0), where v is zero. For each ball consider φ is such that:

(a) φ(x) = Uσ for x ∈ ∂B 5σ
8
(y);

(b) φ(x) = 0 for x ∈ ∂Bσ
8
(y);
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(c) M+(φ) ≤ 0 in B 5σ
8
(y)\B σ

16
(y);

(d) ∂φ

∂ν
(x) = U 8

5
α

1
5−(

1
5)

α+1 when |x− y| = σ

8 .

Note that ∪yB 5σ
8
(y) ⊂ Bσ(z0) and so for all y defined previously and for

x ∈ ∂
�
∪yB 5σ

8
(y)

�
we know by hypothesis that

v(x) ≤ Uσ.

We now apply the comparison principle for each barrier depending on y and

respective ring B 5σ
8
(y)\Bσ

8
(y), since v is a subsolution and φ a supersolution

for M+, and we obtain that

φ(x) ≥ v(x), x ∈ ∂B 5σ
8
(y) ∪ ∂Bσ

8
(y) ⇒ φ(x) ≥ v(x), x ∈ B 5σ

8
(y)\Bσ

8
(y).

Hence, repeating this for all y we obtain that

v(x) ≤ φ(x),

for all x ∈ Sσ =
�
B1+σ

4
(0)\B1(0)

�
∩ {x = (x�, xn) : |x� − z�0| < σ

2}. Taking in

account that φ is radially concave, we also obtain that,

v(x) ≤ U
8

5

α
1
5 −

�
1
5

�α+1dist(x, ∂B1(0)). (6.1)

For the final remark, observe that Bσ
4
(z0) ⊂ Sσ.

Corollary 6.1.2 (Linear decay to the boundary). Let v be a non-negative

continuous function defined in Ωt0 = Bσ̃(t0z0)\Bt0(0), where σ̃ ≤ t0
2 and t0z0

is, without loss of generality, a point on ∂Bt0(0) with
z0
|z0| = en, en the unit

vector. Assume that,
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1. M+(v) ≥ 0 in Ωt0 ,

2. v(x) ≤ Ũ σ̃ in Ωt0 ,

3. v(x) = 0 on ∂Bt0(0).

then, there exists a universal constant C̃, C̃ = 8
5

α

1
5−(

1
5)

α+1 , such that,

v(x) ≤ C̃Ũdist(x, ∂Bt0),

when x ∈ Sσ̃ with Sσ̃ :=
�
B

t0+
σ̃
4
(0)\Bt0(0)

�
∩ {x = (x�, xn) : |x� − t0z�0| < σ̃

2}.

In particular,

v(x) ≤ C̃ Ũdist(x, ∂Bt0),

when x ∈ B σ̃
4
(t0z0).

Proof. Consider the function

u(x) =
1

Ũ t0
v(x t0)

defined for x ∈ Ω = Bσ(z0)\B1(0), with σ = σ̃

t0
. Observe that, u satisfies the

hypotheses of Lemma 6.1.1 with U = 1 and notice that σ ≤ 1
2 . Then,

u(x) ≤ C̃ dist(x, ∂B1),

when x ∈ Sσ. Substituting, we obtain

1

Ũ t0
v(x t0) ≤

C̃

t0
dist(t0x, ∂Bt0) ⇔ v(y) ≤ C̃ Udist(y, ∂Bt0),

for y ∈ Sσ̃.
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6.2 Lipschitz regularity of the solutions: proof of The-
orem 6.2.1

We finally present the proof of the main Theorem:

Theorem 6.2.1 (Lipschitz regularity for the free boundary problem). If u ∈

(Cα(B1(0)))d is the limit of solutions of (1.7) in B1(0), and x0 belongs to the

set ∂ (supp u1) ∩B 1
2
(0), then, without loss of generality, the growth of u1 near

the boundary of its support is controlled in a linear way and u1 is Lipschitz.

More precisely, there exist a universal constant C such that for any solution

u, for any point x0 on the free boundary:

1. supBR(x0) u1 ≤ C R,

2. �u1�Lip(BR(x0)) ≤ C,

where C = C(n, �u�L2(B1)) and R ≤ 1
4 .

Proof. (1) The proof is by contradiction. Let x0, z0 ∈ ∂(suppu1) be two interior

points to be characterized later. We will find a smooth function η such that

in Bδ(z0) ⊂ BR(x0) touches the supersolution

u1 −
�

k �=1

uk

from below at z0, and simultaneously satisfies

M−(η(z0)) > 0,
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and this contradicts the definition of supersolution. In fact, we will find a

positive universal constant C0 such that if u1(y) = CR for some y ∈ BR(x0)

and C > C0 then we have a contradiction.

To simplify the notation let u = u1 and v =
�

k �=1 uk. Let us assume

that the free boundary intersects the ball centered at the origin, ∂(supp u) ∩

B 1
2
(0) �= ∅.

By contradiction, assume without loss of generality that u grows above

any linear function in a ball centered at x0; more precisely, assume that for

any constant M � and

x0 ∈ ∂(supp u) ∩B 1
2
(0),

there exists y such that

y ∈ BR(x0) and u(y) = M �R,

where R < 1
4 . Also, we may assume that R = 2d where d = dist(y, ∂suppu) >

0 (if not we can always pick another x0) and so we have

y ∈ BR(x0) and u(y) = M �2d = Md.

For a later purpose we fix z0 ∈ ∂Bd(y) ∩ ∂(supp u) (the closest point to y in

the free boundary).

As u ≥ 0 and u ∈ S∗(λ,Λ, 0) we can apply Harnack for viscosity

solutions on Bd(y),

sup
B d

2
(y)

u ≤ c inf
B d

2
(y)

u
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and conclude that for any x ∈ B d
2
(y)

1

c
M d ≤ u(x) ≤ cM d (6.2)

As observed in Chapter 2, if ω(z) defined on Bd(y) is a solution to M−(ω) = 0,

ω(x) defined in B1(0) is still a solution to M−(ω) = 0 with the direction en

as we want.

So we will prove this theorem using translation, rotation, dilation, and

rescaling arguments on (u1, u2, · · · , ud). In order to simplify the notation the

new functions will always be denoted by the same name.

Consider the functions u, v and u− v satisfying

M−(u) ≥ 0, M−(v) ≥ 0, M−((u− v)(x)) ≤ 0,

(see 2 in Lemma 5.2.1), and defined on an appropriate domain by translation

(2.2), rotation (2.3), dilation and rescaling (2.4) such that y is the new origin,

the direction z0−y

|z0−y| is now the direction en and d is now 1. We will still call z0

the point in ∂B1(0) ∩ ∂suppu. By (6.2) we now have

1

d

1

C
M d ≤ u(x) ≤ 1

d
C M d, x ∈ B 1

2
(0),

that is,
1

C
M ≤ u(x) ≤ CM, x ∈ B 1

2
(0). (6.3)

The rest of the proof consists of the following steps:

First step: we will prove that for a certain M, a positive large constant,

u(x) ≥ M d(x, ∂B1(0))� �� �
1−|x|

x ∈ B1(0)\B 1
2
(0).
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Second step: we will prove that, for a small ρ,

v(x) ≤ C

M
d(x, ∂B1(0))� �� �

|x|−1

x ∈ S ρ
2
, (6.4)

where S ρ
2
:=

�
B1+ ρ

8
(0)\B1(0)

�
∩ {(x�, xn) ∈ Rn : |x� − z�0| < ρ

4} (see Figure

6.1).

u > 0

v > 0

B ρ
16
(y)

y

Rn−1

xn

B ρ
2 (z0)

B1+ ρ
8
(0)

Bδ(z0)

S

B1(0)

B1− ρ
16
(0)

Figure 6.1: Barriers to control v. In the picture S is S ρ
2
defined in Lemma

6.1.1.

Third step: Finally we will construct the function η (see Figure 6.2) to

obtain the contradiction, since we will have for δ ≤ ρ

8 :

- M−(u− v) ≤ 0 for all x ∈ Bδ(z0);

- η(x) ≤ (u− v) (x), for all x ∈ Bδ(z0);
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- η(z0) = (u− v) (z0);

- η is a smooth function such that M−(η(z0)) > 0.

and by definition of supersolution this is impossible and the result follows.

u > 0v > 0

u

−v

η(x) = (1− |x|) + M̄(1− |x|)2

Figure 6.2: Barrier function that touches u− v from below at z0.

First step: By Lemma 2.3.1 (r = 1, a = 1, b = 2) there exist a subsolu-

tion ψ of M− on the ring B1(0)\B 1
2
(0) such that:

(a) ψ(x) = 0 for x ∈ ∂B1(0);

(b) ψ(x) = 1
C
M for x ∈ ∂B 1

2
(0);

(c) M−(ψ) ≥ 0 for x ∈ B1(0)\B 1
2
(0);

(d) ∂ψ(x)
∂ν

= − α

2α−1
M

C
for x ∈ ∂B1(0), where ν is the outer normal direction.

Due to the comparison principle applied in the ring B1(0)\B 1
2
(0) and

by (6.3) one can conclude that

u(x) ≥ ψ(x), x ∈ ∂B1(0) ∪ ∂B 1
2
(0) ⇒ u(x) ≥ ψ(x), x ∈ B1(0)\B 1

2
(0),
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and also, since ψ is convex in the radial direction, and by (d),

u(x) ≥ α

2α − 1

M

C� �� �
M

dist(x, ∂B1(0)) x ∈ B1(0)\B 1
2
(0). (6.5)

Second Step: We do not know anything about the free boundary or the

shape of the support of the other densities v =
�

i �=1 ui. But we know that

if z0 is the point on the free boundary closest to 0 then by the monotonicity

formula
�

1

ρ2

ˆ
Bρ(z0)

|∇u|2
|x− z0|n−2

dx

��
1

ρ2

ˆ
Bρ(z0)

|∇v|2
|x− z0|n−2

dx

�
≤ N

since the norm of the densities is bounded, say by the fixed constant N :

C(n) �(u, v)�4
L2(B1(0))

≤ N.

Our goal in this step is to prove that v has to grow very slowly below

a linear function with small slope away from ∂B1(0) ∩ Bρ(z0).

Let us consider the two possible cases around the point z0:

Second Step a): For a sequence of small radii, the measure of the in-

tersection of the support of v with each ball is almost zero: there is a

sequence of radii ρk, ρk → 0, such that

|{v �= 0} ∩ Bρk
(z0)| < � |Bρk

(z0)| ,

or,
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Second Step b): the measure of the support of v contained in a ball with

any radius is not small, say, if for any radius ρ > 0

|{v �= 0} ∩ Bρ(z0)| > � |Bρ(z0)| .

The proof proceeds separately in each case but in both cases we will prove

(6.4).

Proof of Second Step a): If there exists a sequence of radius (ρk)k∈N,

ρk → 0, such that

|{v �= 0} ∩ Bρk
(z0)| < � |Bρk

(z0)| ,

we can consider a subsequence of (ρk)k such that

...ρk+1 <
ρk
2

≤ ρk <
ρk−1

2
≤ ρk−1 · · · ≤ ρ1 ≤ 1.

Since v is bounded in all domain, we have that there exists Ñ1 such that

sup
x∈Bρ1 (z0)

v(x) ≤ Ñ1ρ1.

Then, since v is subharmonic, by Proposition 2.1.3, we have that

sup
x∈B ρ1

2
(z0)

v(x) ≤ � Ñ1ρ12
n.

Then, since

M+(v) ≥ M−(v) ≥
�

i �=1

M−(ui) = 0,
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by Corollary 6.1.2 with Ũ = � Ñ12n+1, σ̃ = ρ1

2 and t0 = 1, we obtain that

there exists a universal constant C̃ :

v(x) ≤ C̃ � Ñ1 2
n+1dist(x, ∂B1),

when x ∈ S ρ1
2
with S ρ1

2
:=

�
B1+

ρ1
8
(0)\B1(0)

�
∩{x = (x�, xn) : |x� − z�0| <

ρ1

4 }. Let � := �0 be such that

�0 C̃ 2n+1 ≤ 1

2
. (6.6)

Then, for x ∈ S ρ1
2

v(x) ≤ Ñ1

2
dist(x, ∂B1).

Take as the next radii in the subsequence ρ2 such that Bρ2(z0) ⊂ S ρ1
2
.

Then,

sup
x∈Bρ2 (z0)

v(x) ≤ Ñ1

2
ρ2.

So we can repeat the process, and so, again by Proposition 2.1.3 with

Ñ2 =
Ñ1
2 , we have that

sup
x∈B ρ2

2
(z0)

v(x) ≤ �0
Ñ1

2
ρ2 2

n.

Then, by Corollary 6.1.2, with Ũ = �0 Ñ1 2n, σ̃ = ρ2

2 and t0 = 1, and by

(6.6),

v(x) ≤ C̃�0 Ñ1 2
ndist(x, ∂B1) ≤

Ñ1

4
dist(x, ∂B1),

when x ∈ S ρ2
2
with S ρ2

2
:=

�
B1+

ρ2
8
(0)\B1(0)

�
∩{x = (x�, xn) : |x� − z�0| <

ρ2

4 }.
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Again take as the next radii in the subsequence ρ3 such that Bρ3(z0) ⊂

S ρ2
2
. Then,

sup
x∈Bρ3 (z0)

v(x) ≤ Ñ1

4
ρ3.

Repeating a finite number of times this process, we have that, for x ∈ S ρk
2

v(x) ≤ Ñ1

2k
dist(x, ∂B1).

Therefore, it is possible to find ρl such that Ñ1
2l ≤ C 1

M
, and so

v(x) ≤ C
1

M
d(x, ∂B1(0))� �� �

|x|−1

x ∈ S ρl
2
.

In particular,

v(x) ≤ C
1

M
d(x, ∂B1(0))� �� �

|x|−1

x ∈ B ρl
8
(z0). (6.7)

Proof of Second Step b): If for any ρ > 0 as small as we want

|{v �= 0} ∩ Bρ(z0)| > � |Bρ(z0)| .

Since

|{v �= 0} ∩ Bρ(z0)| = |{u = 0} ∩ Bρ(z0)| > � |Bρ(z0)| ,

we can apply Poincaré-Sobolev inequality (see page 79 in [24]) to the

function u. Also, by construction

|{u �= 0}| = |{v = 0}| ≥ |Bρ(z0) ∩B1(0)| > � |Bρ(z0)| ,
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so we can also apply the Poincaré-Sobolev inequality to v. Hence,

ˆ
Bρ(z0)

v2(x)dx ≤ C(n, �)ρ2
ˆ
Bρ(z0)

|∇v(x)|2dx,

ˆ
Bρ(z0)

u2(x)dx ≤ C(n, �)ρ2
ˆ
Bρ(z0)

|∇u(x)|2dx.

Then,

ˆ
Bρ(z0)

v2(x)dx ≤ C(n, �)ρ2
ˆ
Bρ(z0)

|∇v(x)|2 ρn−2

|x− z0|n−2
dx,

ˆ
Bρ(z0)

u2(x)dx ≤ C(n, �)ρ2
ˆ
Bρ(z0)

|∇u(x)|2 ρn−2

|x− z0|n−2
dx,

and
�ˆ

Bρ(z0)

v2(x)dx

��ˆ
Bρ(z0)

u2(x)dx

�
≤ C(n, �) ρ2n−4ρ8 N.

But we also know that u is controlled from below by the barrier function from

the First Step, so if A = B1(0)\B 1
2
(0) then

ˆ
Bρ(z0)∩A

ψ2(x)dx ≤
ˆ
Bρ(z0)∩A

u2(x)dx ≤
ˆ
Bρ(z0)

u2(x)dx.

To estimate the integral of the barrier function observe that by Hölder

inequality

1

|Bρ(z0) ∩ A|

�ˆ
Bρ(z0)∩A

ψ(x)dx

�2

≤
ˆ
Bρ(z0)∩A

ψ2(x)dx,

and that

ψ(x) ≥ C(x) for all x ∈ Bρ(z0) ∩ A,
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where C is a cone with base Bρ(z0)∩A, vertex at (1− ρ) z0
|z0| , and height equal

to ρM with M̄ the absolute value of the slope of the barrier function at z0,

namely M̄ = α

2α−1
M

C
, (see (6.5)). Note that M̄ is arbitrarily big and so 1

M
will

be arbitrarily small. So, if c1 is a constant such that |Bρ(z0) ∩ A| = c1ρnωn,

then,

M
2
ρ2c1ρnωn

n2
=

(vol(C))2

|Bρ(z0) ∩ A| ≤
ˆ
Bρ(z0)∩A

ψ2(x)dx.

Therefore,
�ˆ

Bρ(z0)

v2(x)dx

��
c1M

2
ρ2ρnωn

n2

�
≤ C(n, �) ρ2n−4ρ8N,

so
�ˆ

Bρ(z0)

v2(x)dx

�
≤ C(n, �) ρ2n−4ρ8N

c1M
2
ρ2ρnωn

= C(α, n, c1, �)ρ
n+2 N

M
2 .

Let y ∈ B 7ρ
8
(z0) such that B ρ

16
(y) ⊂ Bρ(z0). Due to the subharmonicity

and positivity of v

v(y) ≤
 
B ρ

16
(y)

v(x)dx ≤
�

ρ
ρ

16

�n  
Bρ(z0)

v(x)dx.

On the other hand, the Hölder inequality yields,

� 
Bρ(z0)

v(x)dx

�2

≤
 
Bρ(z0)

v(x)2dx.

All together, for any y ∈ B 7ρ
8
(z0), we have,

v2(y) ≤ 162n
 
Bρ(z0)

v(x)2dx = 162n
1

ρnωn

ˆ
Bρ(z0)

v(x)2dx,
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and hence

v2(y) ≤ 162n

ρnωn

C(α, n, c1, �)ρ
n+2 N

M
2 = 162n C(α, n, c1, �)� �� �

c22

ρ2
N

M
2 .

We conclude that v(y) ≤ c2
√
N

M

7ρ
8 , for y ∈ B 7ρ

8
(z0). Note that doing the same

type of argument for r = ρt, 0 < t < 1 we can conclude that

v(y) ≤ c2
√
N

1

M
|y − z0| . (6.8)

Since, v a subsolution of the positive extremal Pucci operator

M+(v) ≥ M−(v) ≥
�

i �=1

M−(ui) = 0,

and we have by (6.8) that

v(y) ≤ c2
√
N

1

M

ρ

2
, x ∈ B ρ

2
(z0),

by Corollary 6.1.2, with Ũ = c2
√
N

M
, σ̃ = ρ

2 , and t0 = 1, we obtain that

v(y) ≤ C̃
c2
√
N

M
dist(y, ∂B1(0)), when y ∈ S ρ

2
.

As before, S ρ
2
is the portion of an annulus around B1(0) contained in B ρ

2
(z0),

S ρ
2
=

�
B1+ ρ

8
(0)\B1(0)

�
∩ {(x�, xn) ∈ Rn : |x� − z�0| <

ρ

4
}.

More explicitly, we have that for y ∈ B ρ
8
(z0),

v(y) ≤ c2
√
N
8

5

α
1
5 −

�
1
5

�α+1

� �� �
C

1

M
dist(y, ∂B1(0))� �� �

|y|−1

. (6.9)
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Third step: Consider ρ the radii in Second Step a). Consider � to be �0

in Second Step a), and C in (6.7) to be

C = c2
√
N
8

5

α
1
5 −

�
1
5

�α+1 .

Putting together (6.5), (6.7) and (6.9), if A = B1(0) ∩ Bδ(z0) and B = S ∩

Bδ(z0)

u(x) ≥ M(1− |x|) x ∈ A and − v(x) ≥ − C

M
(|x| − 1) x ∈ B.

So letting η be the radial symmetric smooth function defined by (see

Figure 6.2)

η(x) = (1− |x|) +M(1− |x|)2,

we can conclude that

(u− v)(x) ≥ η(x) x ∈ Bδ(z0)

and that

(u− v)(z0) = η(z0).

But notice that the Hessian of η is given by

H(η)(x) =





−1+2M(r−1)
r

0 0 · · · 0

0 −1+2M(r−1)
r

0 · · · 0
...

...
...

...
...

0 · · · 0 −1+2M(r−1)
r

0
0 0 · · · 0 2M





(where r = |x|) and so at z0 because r = 1 we obtain

M−(η(z0)) = λ2M − Λ(n− 1) > 0,
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since M is as big as we wish. But this contradicts the fact that u − v is a

supersolution of M−and this finishes the proof of (1).

(2) Arguing in a similar way as in Proposition 4.13, in [2], we should

consider:

a) When 2 |x− y| < h, h = max(dist(x, ∂suppu1), dist(y, ∂suppu1)), y ∈

Bh
2
(x) so by interior regularity (Proposition 2.2.5 with f = 0) for prop-

erly scaled balls gives that

|u1(x)− u1(y)| ≤ C �u1�L∞(B1(0))
|x− y| ;

b) When 2 |x− y| ≥ h note that for x in the support of u1 and x is the

closest point to x on the free boundary we have from the previous result

that

|u1(x)− u1(x)| ≤ |u1(x)| ≤ Ch.

And so, by adding and subtracting u1(x) and u1(y), where y is the closest

point to y on the free boundary, and by triangular inequality,

|u1(x)− u1(y)|
|x− y| ≤ |u1(x)− u1(x)|

|x− y| +
|u1(x)− u1(y)|

|x− y| +
|u1(y)− u1(y)|

|x− y|

≤ 2 |u1(x)|
h

+
2 |u1(y)|

h
≤ 4C.

Thus,

�u1�Lip(B 1
4
(x0)) = �u1�C0,1(B 1

4
(x0))

≤ C̃,

and the result follows.
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