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Abstract Excitation emission fluorescence matrices (EEMs)
of Verapamil drug were obtained by direct and by derivatiza-
tion fluorescence spectroscopy. The fluorescence excitation
and emission wavelengths were displaced to longer wave-
lengths and the fluorescence intensity was enhanced upon
derivation with respect to the native fluorescence of the
drug. The complete EEM of the native fluorescence of the
drug and of the derivatization product were rapidly acquired
by using a charged-coupled device detector (CCD), which is
advantageous in terms of speed in the analysis, with respect
to the use of a conventional photomultiplier detector. The
EEMs were analyzed by several second-order multivariate
calibration methods exploiting the second order advantage.
The three-dimensional decomposition methods used, based
in different assumptions about the trilinearity of the three

way data structure under analysis, were parallel factor
analysis (PARAFAC), bilinear least squares (BLLS), parallel
factor analysis 2 (PARAFAC2) and multivariate curve
resolution—alternating least squares (MCR-ALS). The
determination was performed by using the standard addition
approach. The figures of merit of the PARAFAC and BLLS
methods were calculated, obtaining a lower limit of
detection with the derivatization procedure, when compared
with the direct measurement of the fluorescence of the drug.
In Verapamil drug the best estimations were found with the
BLLS and the MCR-ALS models. In the quantification of
Verapamil in a pharmaceutical formulation the best estima-
tion, when compared with the result obtained by the US
Pharmacopeia high performance liquid chromatography
approach, was obtained by direct fluorescence spectroscopy
with MCR-ALS and by derivatization fluorescence spec-
troscopy with the PARAFAC2 model.
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Introduction

Spectrofluorimetry is a well known analytical technique
used as a quantitative tool in several areas, such as chem-
istry, medicine, environmental and food science, owing to
its intrinsic sensitivity, easiness of use and availability of
instruments [1, 2]. Nevertheless, traditional fluorescence
spectra are broad and featureless and analyte spectra are
often irresolvable from interferent spectra or background
fluorescence. In consequence, the analysis of multi-component
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or complex samples can be hindered when the measurements
are carried out in only one excitation or emission wavelength,
and, in these cases, high order data are particularly suitable.

Nowadays, the availability of high-order instrumental
data, coupled to newly chemometric algorithms for data
processing, is increasing the regular use of multi-way
analysis for complex analytical problems [3, 4]. Second
order, i.e., matrix data for a given sample, can be produced
in a variety of ways, among which one of the simpler is
an excitation-emission matrix (EEM). It is well known
that molecular fluorescence generates multidimensional
excitation-emission spectral data per sample and that the
recording of this type of data conveys the advantage of
been carried out in a single instrument. EEMs present
simultaneously all the excitation and emission spectra of
one sample, and can be defined as a three dimensional
plot with the excitation and emission wavelengths and
corresponding intensities as xyz axes. Alternatively, EEMs
can be represented as a numerical data matrix of the
fluorescence intensities as function of the excitation and
emission wavelengths. Because EEMs contain a lot of
information about the sample under analysis they are
particularly useful for the analysis of complex mixtures
[2]. Examples on the use of second-order spectrofluorimetric
data to analyze complex samples can be found in recent
reports [4, 5].

A drawback for the use of the full potential of the
information content in the EEMs is the time needed to
obtain one data matrix, if a conventional photomultiplier
detection system is used. Nowadays, a solution to this
problem is the use of a spectrofluorimeter equipped with a
charged-coupled device detector (CCD), that allows fast
acquisition of full EEMs [1, 2]. In consequence, the
outlined advances in molecular fluorescence instrumenta-
tion and chemometrics three-dimensional decomposition
methods make feasible the use of multi-parametric deter-
minations to achieve selective measurements [3, 4]. The
rapid acquisition, coupled to the use of three-dimensional
decomposition methods, gives these analytical methodolo-
gies a great potential for their application on rotinary
quality analytical control [5].

However, fluorescence based analytical measurements
may have some limitations due to: chemical interferences;
Rayleigh or Raman scattering; overlapped fluorescence
bands; fluorescence background or instrumental noise [1, 2,
6]. Nevertheless, fluorescence is inherently linear in all
dimensions [7]. An excitation-emission matrix consists of a
trilinear part plus some random (noise) and minor devia-
tions from the trilinearity due to scattering and other
chemical and/or instrumental interferences [8]. The latter
are also called three-way data, and are characterized by
following the trilinear or PARAFAC model. Interestingly,
the decomposition of a three-dimensional cube of data is

often unique. This is due to the fact that three-way data are
not merely a collection of two-way data sets, but there is
actually an internal relationship between each of the
matrices. As a consequence, the decomposition of a three-
way data array built with response matrices measured for a
number of samples, allows emission and excitation spectral
profiles, as well as relative concentrations of individual
sample components to be extracted directly. If the model is
correctly specified with the right number of components,
and the trilinear structure is approximately valid, then the
PARAFAC solution will provide estimates of the underly-
ing parameters. This property has been named the second-
order advantage [9]. Hence, the combination of EEMs with
multi-way calibration methods, achieving the second-order
advantage, makes possible the correct modeling of the data
in the presence of possible chemical and/ or instrumental
interferences, and can minimize or eliminate traditionally
time-consuming sample pretreatments.

Verapamil is a calcium channel blocker widely used as
an antihypertensive, antianginal and antiarhythmic drug
[10]. When excited with ultraviolet light exhibits fluores-
cence in different solvents. In a previous work, the adequate
quantification of Verapamil drug, by measuring the direct
native fluorescence of the drug, using a spectrofluorimeter
with a photomultiplier detector, was demonstrated to be
feasible by PARAFAC calibration [11].

It has been demonstrated that, by catalysis of the tertiary
amino group present in his molecule, by means of the
reaction of malonic acid with acetic anhydride, a fluores-
cence derivate is obtained at higher wavelengths than the
intrinsic fluorescence of Verapamil. In this work, several
basic objectives were pretended, a substantial increment of
the speed of the analysis, better chemical conditions to
perform the Verapamil determination and the use of several
second-order multivariate calibration algorithms, allowing
an enhancement of the prediction results. In this context,
EEMs obtained by direct and by derivatization fluores-
cence, using a spectrofluorimeter with a CCD detector, will
be analyzed with three-dimensional decomposition methods,
namely: parallel factor analysis (PARAFAC); bilinear least
squares (BLLS); parallel factor analysis 2 (PARAFAC2)
and multivariate curve resolution-alternating least squares
(MCR-ALS).

The PARAFAC [12, 13] and BLLS [14, 15] models deal
with trilinear three-way data, PARAFAC2 model [16, 17]
handle with small deviations from trilinearity in one of the
dimensions and with different rows (or columns) dimen-
sions of the slices in the three-way data and MCR-ALS
model [18] deals with non trilinear three-way data. The
recently introduced BLLS algorithm, is an alternative to
PARAFAC, also exploiting the second-order advantage.
These chemometric methods are being used in analytical
methodologies coupled to EEM measurements, namely:
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environmental studies [19–28]; clinical analysis [11, 29–
32]; and food research [33, 34].

The analytical performance of PARAFAC, BLLS,
PARAFAC2 and MCR-ALS, to quantify Verapamil drug,
from EEMs obtained by direct and by derivatization
fluorescence spectroscopy, will be compared using standard
solutions and one pharmaceutical formulation. Also, the
results obtained will be compared with those obtained by
a reference US Pharmacopeia high performance liquid
chromatography with ultraviolet detection method (USP
HPLC-UV).

Experimental

Reagents and solutions

Verapamil reference standard and Malonic acid (both ≥99%
purity) were obtained from Sigma-Aldrich Química S.A.
(Spain). Anhydride acetic, methanol and ethanol were
purchased from Merck, Darmstadt (Germany). Deionised
water with resistivity higher than 4 MΩ/cm was used. The
pharmaceutical formulation under analysis was Isoptin®
injectable solution (5 mg/2 ml) from Knoll.

The Verapamil standard stock solutions were prepared in
methanol (direct fluorescence spectroscopy) or in ethanol
(derivatization fluorescence spectroscopy) by rigorous
weighting. For the preparation of the pharmaceutical for-
mulation stock solution the volume of a vial was rigorously
diluted to obtain the required concentration.

Procedures

For Verapamil direct fluorescence spectroscopy the stan-
dard concentrations were obtained using successive three
10 μl additions of a 750 ppm standard solution to 3 ml of a
5 ppm standard or sample solution contained in a 1 cm
quartz cell - to obtain concentrations increments of 2.5, 5
and 7.5 ppm.

For Verapamil derivatization fluorescence spectroscopy
the dilution of the 1,000 ppm Verapamil standard or sample
solution to an intermediate 10 ppm solution was done in a
way as to obtain the fluorescent derivate condensation
product. For a final volume of 10 ml the dilution was done
after solvent evaporation, addition of 2 ml malonic acid
reagent 0.5%, promotion of the reaction at 100 °C during
5 min followed by dilution to 10 ml. The concentration of
the diluted standard or sample solutions of the fluorescent
derivate condensation product in 5.00 ml glass volumetric
flasks was 0.3 ppm. As for the Verapamil direct fluores-
cence spectroscopy three additions of the 10 ppm standard
solution were done in order to obtain standard concen-
trations of 0.1, 0.3, and 0.5 ppm.

For the chromatographic quantification the mobile phase,
standard and sample solutions were prepared following
the USP recommendations [10]. Standards were prepared
in the mobile phase by rigorous weighting to a final
concentration of 2,000 ppm. Diluted standards and sample
solutions were obtained by dilution with methanol to the
required concentrations. Standard solutions in the range
from 50 to 500 ppm and an expected concentration of
250 ppm for the pharmaceutical formulation sample
solution were used.

Instrumentation

A Spex 3D Spectrofluorimeter with a 75 W xenon lamp
with a CCD detector was used. EEM were acquired, in an
excitation wavelength range from 250 to 550 nm, and in an
emission wavelength range from 250 to 710 nm, with a
resolution of 5 nm and one accumulation. For the direct
fluorescence measurements, an integration time of 18 s
(slits with 0.05 mm) was used and, for the derivatization
fluorescent measurements, an integration time of 0.4 s (slits
with 0.1 mm) were used.

The HPLC determinations were made with a system
constituted by a HP1100 isocratic pump, a manual injection
valve Rheodyne, model 7752i, a Rheodyne 20 μL loop, a
pre-column Agilent (20×4 mm) and a Supelco column
(100×4.6 mm) Hypersil® ODS of 3 μm particle diameter
and a diode array detector (DAD) Ati Unicam Crystal 250
model. The DAD spectra were acquired in a wavelength
range from 200 to 452 nm with a resolution of 2 nm. The
wavelength used for the quantification was 280 nm.

Chemometric analysis

The matrices of experimental data points [excitation (nm)×
emission (nm)] obtained at different standard concentrations
were analyzed using the PARAFAC, BLLS, PARAFAC2
and MCR-ALS and implemented in MATLAB code. The
PARAFAC, PARAFAC2 and MCR-ALS estimations are
found by an iterative alternating least squares procedure. As
convergence criteria a value of 1×10−6, 1×10−7 and 1×10−3

and a maximum number of iterations 2,500, 2,000 and 50
were used for PARAFAC, PARAFAC2 and MCR-ALS,
respectively. The initial estimates used for the PARAFAC,
PARAFAC2 and the MCR-ALS were the estimates of a
model without constraints. The BLLS estimations are found
by a direct least-squares procedure. No initialization or
constraint procedures are required.

For the analysis with PARAFAC and BLLS the data sets
are structured as [excitation (nm) × emission (nm)×
concentration], for the analysis with PARAFAC2 the data
sets are structured as [emission (nm)×excitation (nm)×
concentration] and for the analysis with MCR-ALS as
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[(concentration×emission (nm))×excitation (nm)]. Except
for PARAFAC2 on the second dimension, non-negativity
constraints are applied in all the dimensions of the
Verapamil drug matrices analyzed.

Raw EEMs were reduced for chemometric analysis
(Fig. 1). EEMs obtained by direct spectroscopy were
reduced for an excitation wavelength range from 251.70
to 301.83 nm (10 wavelengths) and an emission wave-
length range from 252.27 to 548.65 nm (58 wavelengths).
EEMs obtained by derivatization spectroscopy were reduced
for an excitation wavelength range from 251.70 to
452.23 nm (37 wavelengths) and an emission wavelength
range from 397.86 to 600.64 nm (40 wavelengths).

All routines employed to carry out the calculations
described in this paper were written in MATLAB [35].
Those for applying PARAFAC and PARAFAC2 models
are available from http://www.models.kvl.dk/source/

nwaytoolbox/ and the MCR-ALS program is available
from http://www.ub.es/gesq/mcr/. For BLLS and for the
calculation of the figures of merit with both PARAFAC
and BLLS models, the MVC-2 routine, available from the
authors on request, was used, including a useful graphical
interface for data input and parameter settings, of the type
already described for first order calibration [36].

Multi-way model fit analysis

The results obtained from the different PARAFAC, BLLS,
PARAFAC2 and MCR-ALS models were compared using
the model fit [Fit (%)]. The model fit (%) for PARAFAC
and PARAFAC2 models is defined by Eq. 1.
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In this equation bxijk is the ijk element of the estimated
three-dimensional matrix and xijk is the ijk element of the
experimental three-dimensional matrix. The model fit (%)
for MCR-ALS models is defined by Eq. 2.
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In this equation bxlj is the lj element of the estimated
bidimensional column-wise augmented data matrix and xlj
is the lj element of the experimental bidimensional column-
wise augmented data matrix with l=k×i.

Also, the results obtained with PARAFAC models were
assessed using the CORCONDIA or core consistency test
[Corcondia(%)] defined by Eq. 3 [8, 12].

Corcondia %ð Þ¼ 100� 1�
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In this equation gefg and tefg denote the elements of the

calculated core and of the intrinsic super-diagonal core,
respectively, and N the number of components of the
model. If they are equal, the core consistency is perfect and
has a value of unity (100%). The appropriate number of
components is accessed with the model with the highest
number of components and a valid value of core consis-
tency diagnostic test. Usually, the number of components is
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Fig. 1 Raw and analysed Verapamil drug EEM. Obtained in a by
direct fluorescence (4.98 ppm) and in b by derivatization fluorescence
spectroscopy (0.30 ppm)
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taken as the largest number for which the latter parameter is
larger than around 50.

The results obtained with MCR-ALS models were
assessed using the lack of fit [LOF(%)] of the MCR-ALS
model defined by Eq. 4 [18].

LOF %ð Þ¼ 100�
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In this equation bxlj is the lj element of the estimated
bidimensional column-wise augmented data matrix by the
MCR-ALSmodel and xlj is the lj element of the experimental
column-wise augmented data matrix in the LOFMCR vs Exp

calculus and of the estimated with principal component
analysis in the LOFMCR vs PCA calculus.

Figures of merit

For both linear models, PARAFAC and BLLS, the figures
of merit were also evaluated. Two important sensitivity
equations have been discussed in the literature, both based
on extensions of Lorber’s net analyte signal (NAS) theory
[37] to the second-order domain. More useful equations are
obtained by considering that the various high-order chemo-
metric methods provide estimated component profiles in the
different dimensions. In the present context, a useful
sensitivity parameter is the so-called MKL (after Messick
et al. [38]) sensitivity for constituent n, whose mathematical
expression as a function of the component profiles, is [39]:

SENn;MKL ¼kn BTB
� �

* CTC
� �� ��1

n o�1=2

nn
ð5Þ

where B and C are matrices containing, as columns, the
profiles for all components in the first and second
dimension respectively (all normalized to unit length),
‘nn’ designates the (n,n) element of a matrix, kn is the total
signal for component n at unit concentration, and the
symbol ‘*’ is the element-wise Hadamard product matrix.
This MKL approach to NAS has already been rigorously

proved to be connected to cases where the second-order
advantage is not exploited, for example, when employing
PARAFAC [8], or BLLS with the so-called least-squares
predictor [40].

In Eq. 5, the profiles are provided with three-way
decomposition using the appropriate algorithm, while the
value of kn is also computed by the algorithm, using
information on the nominal calibration concentrations for
component n.

The selectivity is obtained by dividing the sensitivity by
the total signal for the pure component, and therefore a
suitable expression is [14]:

SELn;MKL ¼ BTB
� �

* CTC
� �� ��1

n o�1=2

nn
ð6Þ

More useful than the sensitivity appears to be the
analytical sensitivity +n, defined, in analogy with univariate
calibration, as the quotient between the sensitivity and the
instrumental noise level. Its inverse establishes the mini-
mum concentration difference which can be appreciated
across the linear range, and is independent on instrument or
scale [41].

The limit of detection (LODn) should also be considered.
An approximation to the LODn can be gathered from the
expression:

LODn ¼ 3sX =SENn ð7Þ
where sX is an estimate of the instrumental noise level.

Results and discussion

Figure 1 shows typical raw and reduced EEMs obtained
with direct and derivatization fluorescence spectroscopy of
Verapamil. The analysis of this figure shows that both
EEMs contain first order scattering which interferes with
the main fluorescence band. In the EEM obtained by direct
fluorescence it is also possible to verify the existence of the
minor second order scattering bands. In the EEM obtained
by derivatization fluorescence spectroscopy there is a shift
towards higher wavelengths of the excitation and emission

Table 1 Explained variance of
the first five components
obtained by SVD

[exc.×(conc.×emi.)] Matrix
row augmented in which the
rows are the excitation and the
columns are the emission
spectra obtain in the four con-
centrations levels

Principal
component

Direct fluorescence Derivatization fluorescence

Verapamil,
5 ppm

Four standards
[exc.×(conc.×emi.)]

Verapamil,
0.3 ppm

Four standards
[exc.×(conc.×emi.)]

1 97.87 98.55 93.63 90.54
2 1.30 0.87 5.34 8.09
3 0.50 0.43 0.88 1.20
4 0.18 0.07 0.07 0.11
5 0.08 0.04 0.04 0.04
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bands. Indeed, derivatization with malonic acid/anhydride
acetic provokes a displacement of the excitation maximum
from 375 to 425 nm and a displacement of the emission
maximum from 425 to 475 nm.

The strategy used in this work to reduce the effect of the
scatter bands was to eliminate the section of the EEMs that
contain them. However, it was not possible to separate
completely the scatter bands from the main fluorescence
bands—this is particular critical in the direct fluorescence
EEMs. This information must be accounted for when the
number of linear independent factors present in the EEMs
are estimated.

Interestingly, it is clear from Fig. 1 that the derivatization
approach is advantageous over the direct approach, as the
excitation and emission maxima of the derivatized product
are more separated from the scatter bands than in the direct
procedure.

Singular value decomposition (SVD)

Table 1 and Fig. 2 show the results of the SVD of the single
and augmented row-wise [excitation×(concentration×
emission)] data matrices. In Fig. 2, for an easier com-
parison, normalized singular values for the single and
augmented row-wise matrix are used.

From the analysis of the explained variance of the
singular values of the augmented EEM (Table 1) it is shown

Fig. 2 Singular value decomposition of single and augmented row-
wise data matrices of Verapamil drug obtain in a by direct
fluorescence (4.98 ppm) and in b by derivatization fluorescence
spectroscopy (0.30 ppm)

Table 2 Comparison of the results obtained by the PARAFAC, BLLS, PARAFAC2 and MCR-ALS models in the analysis of a Verapamil drug
EEM (4.98 ppm) obtained by direct fluorescence spectroscopy

Model evaluation Number of components

Two Three Four Five Six

Fluorescence at maximum fluorescence intensity (excitation 263 nm and emission 289 nm)
Estimated concentration (ppm)=5.71 (0.06), Recovery=114.7%
PARAFAC
Estimated concentration (ppm) 4.83 (0.21) 4.94 (0.20) 5.40 (0.10) 5.46 (0.13) 5.44 (0.11)
Recovery (%) 97.0 99.2 108.4 109.6 109.2
Fit (%) 91.7 94.8 95.8 93.6 94.5
Number of Iterations 38 120 686 2500 2500
Corcondia (%) 98.1 -0.3 4.6 11.4 40.6
BLLS
Estimated concentration (ppm) 4.97 (0.11) 4.97 (0.068) 5.21 (0.064) 8.31 (0.95) 5.00 (0.072)
Recovery (%) 99.8 99.8 104.6 166.9 100.4
Number of Iterations 89 96 384 6614 5374
PARAFAC2
Estimated concentration (ppm) 6.02 (0.05) 4.76 (0.25) 8.74 (1.45) 9.11 (1.46) 5.33 (0.21)
Recovery (%) 120.9 95.5 175.5 182.9 107.0
Fit (%) 91.7 94.9 96.1 96.9 97.7
Number of Iterations 2000 755 2000 2000 2000
MCR-ALS
Estimated concentration (ppm) 4.99 (0.22) 4.82 (0.15) 4.82 (0.14) 5.18 (0.21) 4.84 (0.21)
Recovery (%) 100.2 96.8 96.8 104.0 97.2
Fit (%) 92.4 96.2 97.2 98.0 98.5
Number of Iterations 50 50 50 50 50
LofMCRvs.PCA (%) 0.02 0.03 0.18 0.55 0.55
LofMCRvsExp. (%) 7.59 3.81 2.77 1.96 1.55

For the estimated concentration the values in brackets are the standard deviation of the extrapolated concentration
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that two components explain almost 99% of variance. From
the analysis of the normalized singular values of the single
and augmented row-wise matrices (Fig. 2), a minimum of
two and a maximum of five components may be expected
for the single and augmented data matrices of the direct and
derivatization EEM. It is known that, when there is
scattering superimposed with the fluorescence signal,
several minor components appear to explain the spectral
variance. Taking into consideration this information, these
numbers of components will be considered in the sub-
sequent analysis by PARAFAC, BLLS, PARAFAC2 and
MCR-ALS.

Three-dimensional decomposition analysis

Direct fluorescence spectroscopy

Table 2 presents the results obtained using the fluorescence
intensities at the maximum emission (excitation at 263 nm
and emission at 289 nm) and with PARAFAC, BLLS,

PARAFAC2 and MCR-ALS modelling of the direct EEM.
The analysis of Table 2 shows that readings at maximum
fluorescence intensity overestimates the concentration of
Verapamil (recovery=115%) and only multivariate models
allow good concentrations estimations.

The fit achieved with MCR-ALS are always higher than
the fit obtained with PARAFAC and PARAFAC2. Similar
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Fig. 3 Excitation and emission spectra estimated from the analysis of
the Verapamil drug EEM obtained by direct fluorescence: a two
components non-negativity constraint PARAFAC model, b one
component and one interferent BLLS model, c three components

non-negativity constraint in the first and third dimensions PARAFAC2
model and d two components non-negativity constraint MCR-ALS
model

Table 3 Comparison of the figures of merit calculated for the
PARAFAC and BLLS models at the number of components indicated
obtained by direct fluorescence spectroscopy

PARAFAC BLLS

Number of components 2 2
Sensitivity (SEN) AFU (ml μg−1) 8,650 4,937
Analytical sensitivity (+) (ml μg−1) 10.0 8.6
+−1 (μg ml−1) 0.10 0.11
Selectivity (SEL) 0.42 0.23
Limit of detection (LOD) (μg ml−1) 0.30 0.38

AFU Arbitrary fluorescence units
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model fits were found for the PARAFAC, and PARAFAC2
from two to four components. However, the analysis of the
PARAFAC CORCONDIA test shows that a two component
model is the most appropriate, i.e. it corresponds to the
highest value (98.1%), before the Core consistency value is
lower than 50%. The analysis of the lack of fit of the MCR-
ALS shows that a two and three component models
originates relatively low values for LofMCRvs.PCA (0.02%
and 0.03%, respectively).

With a two component model, as suggested by the
CORCONDIA test, PARAFAC, and MCR-ALS are ade-
quate to model the Verapamil drug EEM obtained by direct
fluorescence. With these models, the predicted concentra-
tion and described recoveries of the expected Verapamil
concentration (4.98 ppm) were: 4.83 and 97.0% with
PARAFAC and 4.99 ppm and 100.2% with MCR-ALS. A
slightly lower Verapamil concentration estimation of 4.82 ppm
and a recovery of 96.8% was found with a three component
MCR-ALS model. For two components PARAFAC2 model
the predicted concentration was not good and only a three
component model allows to obtain recovery of 95.6%.
When BLLS was applied, taken into account one com-

ponent and one interferent in the system, an estimation of
4.97 ppm and a recovery of 99.8% were found, on the
same order of magnitude than MCR-ALS. A similar result
was found with one component and two interferents in the
system. Nevertheless, the best estimation was found with
MCR-ALS.

The Fig. 3 presents the excitation and emission spectra
estimated with the models that allows the best Verapamil
concentration estimation: (a) with a two components non
negativity constraint PARAFAC model; (b) with a one
component and one interferent system BLLS model; (c)
with a three components non negativity constraint in the
first and third dimensions PARAFAC2 model; (d) with a
two components non negativity constraint MCR-ALS
model. For all the models two components correspond to
the Verapamil intrinsic fluorescent and to a background
signal. For the PARAFAC2 model the other component
correspond to scatter bands and background signal.

The figures of merit calculated for the PARAFAC and
BLLS models are shown in Table 3. By the analysis of this
table it is possible to observe that similar results were found
for the figures of merit by the two models. Nevertheless a

Table 4 Comparison of the results obtained by the PARAFAC, BLLS, PARAFAC2 and MCR-ALS models in the analysis of a Verapamil drug
EEM (0.30 ppm) obtained by derivatization fluorescence spectroscopy

Model evaluation Number of components

Two Three Four Five Six

Fluorescence at maximum fluorescence intensity (excitation 408 nm and emission 466 nm)
Estimated concentration (ppm)=0.33 (0.06), recovery=110.0%
PARAFAC
Estimated concentration (ppm) 0.37 (0.04) 0.28 (0.04) 0.27 (0.05) 0.24 (0.05) 0.31 (0.09)
Recovery (%) 123.3 93.3 90.0 80.0 103.3
Fit (%) 87.6 93.9 96.5 97.2 97.9
Number of Iterations 188 246 364 360 1592
Corcondia (%) 87.6 32.9 26.9 92.6 2.5
BLLS
Estimated concentration (ppm) 0.29 (0.08) 0.30 (0.02) 0.32 (0.02) 0.33 (0.03) 0.42 (0.26)
Recovery (%) 96.7 100.0 106.7 110.0 140.0
Number of Iterations 44 40 192 819 4385
PARAFAC 2
Estimated concentration (ppm) 0.288 (0.05) 0.284 (0.05) 0.259 (0.03) 0.327 (0.06) 0.298 (0.04)
Recovery (%) 96.0 94.7 86.3 109.0 99.3
Fit (%) 88.5 96.1 97.7 98.3 98.7
Number of Iterations 758 2,000 2,000 2,000 2,000
MCR-ALS
Estimated concentration (ppm) 0.35 (0.03) 0.39 (0.04) 0.30 (0.03) 0.30 (0.03) 0.29 (0.03)
Recovery (%) 116.7 130.0 100.0 100.0 96.7
Fit (%) 88.1 95.5 97.4 98.2 98.3
Number of Iterations 21 50 50 50 21
LofMCRvs.PCA (%) 1.8 1.6 0.6 0.7 1.1
LofMCRvsExp. (%) 11.8 4.5 2.6 1.7 1.7

See footnote of Table 2
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greater sensitivity and selectivity with a slight lower LOD
were found with the PARAFAC model.

Derivatization fluorescence spectroscopy

Table 4 presents the results obtained using the fluorescence
intensities at the maximum emission (excitation 408 nm
and emission 466 nm) and with PARAFAC, BLLS,
PARAFAC2 and MCR-ALS modelling of the Verapamil
drug EEM obtained by derivatization fluorescence spec-
troscopy. The analysis of Table 2 shows that readings at
maximum fluorescence intensity overestimates the concen-
tration of Verapamil (recovery=110%) and only multi-
variate models allow good concentrations estimations.

Similar models fits are achieved with the four methods,
although PARAFAC originates a slightly lower fit. If the
analysis of the PARAFAC CORCONDIA test is strictly
applied, a two component model seems the most appropriate,
i.e. it corresponds to the highest value (87.6%) before the
core consistency drops to a value lower than 50. However,

the core consistency values of the three component model,
32.9, and five component model of 92.6, are indicating that
more than two components may also be appropriated. The
analysis of the lack of fit of the MCR-ALS models shows
that with a four component model, relatively low values are
obtained for LofMCRvs.PCA=0.6%.
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Fig. 4 Excitation and emission spectra estimated from the analysis of
the Verapamil drug EEM obtained by derivatization fluorescence: a
three components non-negativity constraint PARAFAC model, b one
component and two interferents BLLS model, c three components

non-negativity constraint in the first and third dimensions PARAFAC2
model and d four components non-negativity constraint MCR-ALS
model

Table 5 Comparison of the merit figures calculated for the PAR
AFAC and BLLS models at the number of components indicated
obtained by derivatization fluorescence spectroscopy

PARAFAC BLLS

Number of components 3 3
Sensitivity (SEN) AFU (ml μg−1) 140,000 198,839
Analytical sensitivity (+) (ml μg−1) 183 652
+−1 (μg ml−1) 0.005 0.002
Selectivity (SEL) 0.37 0.34
Limit of detection (LOD) μg ml−1 0.02 0.02

AFU Arbitrary fluorescence units
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A three component model was used to model the
Verapamil drug EEM obtained by derivatization fluores-
cence with PARAFAC and PARAFAC2. With these
models, the predicted concentration and described recov-
eries of the expected Verapamil concentration (0.30 ppm)
were 0.28 ppm and 93.3% with PARAFAC; 0.284 ppm and
94.7% with PARAFAC2. With MCR-ALS four component
model a predicted concentration of 0.30 ppm and a
recovery of 100.0%. When BLLS was applied, taken into
account one component and two interferents in the system,
an estimation of 0.30 ppm and a recovery of 100.0% were
found. With the derivatization procedure, similarly to that
observed in the direct analysis, the best estimation of the
four methods was also found with MCR-ALS and BLLS
methods.

The Fig. 4 presents the excitation and emission spectra
estimated with the models that allows the best Verapamil
concentration estimation: (a) with a three components non
negativity constraint PARAFAC model; (b) with a one
component and two interferents system BLLS model; (c)
with a three components non negativity constraint in the
first and third dimensions PARAFAC2 model; (d) with a
four components non negativity constraint MCR-ALS
model. For all the models three of the components corre-
spond to the fluorescence of the derivatization products,
and the four component corresponds to a background
signal.

The figures of merit calculated are shown in Table 5. By
the analysis of this table it is possible to see that similar
results were found for the figures of merit by the two
models. Even so a greater sensitivity was found by the
BLLS model and greater selectivity by the PARAFAC
model. Similar LODs were found with the two models.

Pharmaceutical formulation quantification

Table 6 shows the results of the analysis of Verapamil in a
pharmaceutical formulation using the four decomposition
methods. A greater number of components it is generally
needed in order to obtain good concentrations estimations

which is due to the existence of a more complex back-
ground. In the direct fluorescence approach, four compo-
nents have been used for PARAFAC and PARAFAC2, three
components for BLLS (one component and two inter-
ferents), and five components for MCR-ALS. In the
derivatized procedure, five components have been used
for PARAFAC, three components for BLLS (one compo-
nent and two interferents) and four components for
PARAFAC2 and MCR-ALS. A global comparison of the
results shows that, taking as reference the recovery obtained
by the USP HPLC-UV method (93.6%), the best quantifi-
cation result is found by direct fluorescence spectroscopy
with the MCR-ALS model (95.6%) and by derivatization
fluorescence spectroscopy with the PARAFAC2 model
(93.3%).

Conclusions

The results obtained by the different three-dimensional
decomposition methods allow to conclude that the EEM of
Verapamil drug obtained by direct fluorescence has marked
deviations from the trilinear structure, and the EEM
obtained by derivatization fluorescence spectroscopy has
an approximately trilinear structure. The deviations of the
EEM to the trilinear model are essentially due to the
presence of scatter bands.

For the two EEM structures under investigation the
highest model fit is observed with MCR-ALS. In the
analysis of the EEM obtained by direct fluorescence
spectroscopy at least a two components PARAFAC,
BLLS and MCR-ALS models and a three components
PARAFAC2 model are needed. In the analysis of the EEM
structures obtained by derivatization fluorescence spectros-
copy at least a three components PARAFAC, BLLS and
PARAFAC2 and a four components MCR-ALS models are
needed. The limit of detection found in the derivatized
procedure is lower than in the direct procedure. The best
model estimations in the Verapamil drug are found by the
MCR-ALS and BLLS models. Worse model estimations are

Table 6 Comparison of the
results obtained by the
PARAFAC, BLLS,
PARAFAC2 and MCR-ALS
models in the analysis of a
Verapamil pharmaceutical
formulation EEM, obtained by
direct fluorescence (4.98 ppm)
and by derivatization
fluorescence (0.30 ppm)
spectroscopy

See footnote of Table 2

Model evaluation PARAFAC BLLS PARAFAC 2 MCR-ALS

Direct fluorescence
Estimated concentration (ppm) 4.35 (0.41) 4.94 (0.16) 4.51 (0.44) 4.76 (0.18)
Recovery (%) 87.4 99.2 90.6 95.6
Components number 4 3 (1+2 interferents) 4 5
Derivatization fluorescence
Estimated concentration (ppm) 0.29 (0.11) 0.31 (0.0012) 0.28 (0.10) 0.29 (0.11)
Recovery (%) 96.7 103.3 93.3 96.7
Components number 5 3 (1+2interferents) 4 4
Standard USP HPLC-UV (n=3)
Estimated concentration (ppm)=234.0 (3.3), recovery=93.6%
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obtained for the analysis of the EEM obtained by direct
fluorescence spectroscopy when compared with the deriv-
atization procedure.

The best estimations for the Verapamil concentration in
the pharmaceutical formulation were obtained by direct
fluorescence spectroscopy with the MCR-ALS model and
by derivatization fluorescence spectroscopy with the
PARAFAC2 model. Also, these concentration estimations
agree with those obtained with the USP HPLC-UV
reference method.
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