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Abstract

This paper presents an interactive method for solving general 0-1 multiobjective linear programs using Simulated
Annealing and Tabu Search. The interactive protocol with the decision maker is based on the specification of
reservation levels for the objective function values. These reservation levels narrow the scope of the search in
each interaction in order to identify regions of major interest to the decision maker. Metaheuristic approaches are
used to generate potentially nondominated solutions in the computational phases. Generic versions of Simulated
Annealing and Tabu Search for 0-1 single objective linear problems were developed which include a general routine
for repairing unfeasible solutions. This routine improves significantly the results of single objective problems and,
consequently, the quality of the potentially nondominated solutions generated for the multiobjective problems.
Computational results and examples are presented.
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The computational complexity of single objective combinatorial problems has provided a
basis for an increasing interest in the development of heuristic approaches aimed at dealing
with those problems. However, most of these approaches are problem-specific. Therefore
one that applies to one problem usually does not to a different one. Over the last decade,
several techniques far more generally applicable have been developed such as the following
metaheuristic ones: Simulated Annealing (Kirkpatrick, Gellat, and Vecchi, 1983), Tabu
Search (Glover, 1986), and Genetic Algorithms (Goldberg, 1989) among others. In spite
of being generic heuristic approaches, in most applications reported until now their use has
been problem-specific and different implementations have been developed for each new
combinatorial problem tackled. The main difficulty of a general purpose algorithm lies in
the incorporation of a general mechanism intended to restore the primal feasibility of the
system. In fact, it has been shown that the idea of keeping feasibility at every stage of the
search is more advantageous than relaxing the constraints and using a penalty function in
the cost (Abramson, Dang, and Krishnamoorthy, 1996).

We believe that problem-specific implementations of any metaheuristics should out-
perform generic ones but, in our opinion, good general-purpose algorithms are be very
useful when dealing with problems with no particular structure. This fact motivated our
interest in metaheuristics and we started by developing Simulated Annealing and Tabu
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Search versions for generic single objective 0-1 linear programs. Until now, few generic
versions of metaheuristic methods have been reported. Examples of such approaches are the
developments of Aboudi and J¨ornsten (1994) and Lokketangen, J¨ornsten, and Storoy (1994)
for Tabu Search and the Simulated Annealing codes of Connolly (1992) and Abramson,
Dang, and Krishnamoorthy (1996).

It is now generally accepted that many real-world problems should consider multiple
criteria. Besides, the 0-1 multiobjective problem is a stimulating area of research due to its
applications, namely in areas concerning capital budgeting, project selection, delivery and
routing, facility location problems and so on. Interactive methods allow the contribution of
the decision maker (DM) during the solution search process by inputting information that
may lead to solutions more in consonance with his/her preferences. Metaheuristics can play
an important role in providing effective interactive processes since the computational effort
inherent in exact methods may, depending on the circumstances, jeopardize the interactive
process.

The adaptation of metaheuristics to multiobjective problems, even for particular instances,
has been little explored so far. However, we should mention the recent work of some
researchers in this area: Serafini (1994), Fortemps, Teghem, and Ulungu (1994), Ulungu
(1993), Czyzak and Jaszkiewicz (1996) and Hansen (1997).

In this paper we propose an interactive method to solve multiobjective 0-1 linear problems
which is based on two metaheuristic approaches: Simulated Annealing and Tabu Search.
The basic idea underlying the method is the progressive search of nondominated or “good”
approximations of nondominated (potentially nondominated) solutions that belong to re-
gions of interest to the DM. In the first phase of the decision process, the DM may impose
bounds on the objective function values (reservation levels) that are used to narrow the
scope of the search in each interaction. The search of potentially nondominated solutions
is made in the area around the solutions that optimize individually each objective function
in that restricted region. It provides an approximation of the corresponding nondominated
subset that tends to be closer to exact vectors in the extreme areas of the region (where
the individual optima for that region lie) rather than in the middle of the region. If the
DM wishes to know “better” approximations in the middle, he/she can then specify new
reservation levels that narrow the region to be explored with respect to the previous one.

After a global search following metaheuristic routines, the DM may use exact multiobjec-
tive techniques that help him/her to come to a final compromise regarding a nondominated
solution. These techniques enable the DM to either check if a solution given by a metaheuris-
tics is really a nondominated solution or to compute the nondominated solution(s) closest
to a criterion reference point (which representsaspiration levelsfor the objective functions)
by optimizing anachievementscalarizing function (in the sense of Wierzbicki (1980)). In
order to give a better perception of the maxima errors involved in approximations and thus
a better evaluation of the quality of those solutions, the DM is provided with bounds given
by specific nondominated solutions for the linear relaxation of the multiobjective problem.

The protocol proposed herein to interact with the DM is in accordance with Larichev and
Nikiforov (1987) who concluded that, in general, good methods use information relative
to the objective function values in the dialogue with the DM in order to create a system of
preferences. According to Nakayama (1985) this may lead to two different ways of acting:
fixing aspiration levelsor reservation levels.
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In Section 1 of this paper we present a version of Simulated Annealing and another of Tabu
Search for generic 0-1 linear programs with a single objective. In Section 2 the interactive
method for multiobjective problems is discussed and described. Computational examples
are presented in Section 3. The paper closes with concluding remarks in Section 4.

1. Simulated annealing and tabu search for single objective 0-1 linear programs

1.1. Simulated annealing

Consider the general scheme of the Simulated Annealing algorithm:

Let Sdenote the solution space,c the objective function to be minimized (cost) andN
the neighbourhood structure.
Select an initial solutionxo ∈ S; setT := To > 0 (initial temperature)
Repeat

Repeat
Randomly selecty ∈ N(xo); δ := c(y)− c(xo);
if δ < 0 thenxo := y
elsegenerate randomd uniformly in the range [0,1];

if d < e−δ/T thenxo := y;
until iteration count= Nrep
setT := α(T);

until stoppingcondition= true;
xo is the approximation to the optimal solution.

T is the control parameter which plays the role of the temperature in the physical system.
Initially, with large values ofT , large increases in cost will be accepted; asT decreases only
smaller increases will be accepted and finally, as the value ofT approaches 0, no increases
in cost will be accepted at all. The way and the rate at which this parameter is reduced is
usually referred to ascooling schedule. Detailed descriptions of Simulated Annealing can
be found in Kirkpatrick, Gellat, and Vecchi (1983), Aarts and Korst (1989) and Dowsland
(1993).

The algorithm given above is a very general one and some decisions must be made in
order to implement it:generic decisions− T O, the stoppingcondition and the cooling
schedule (Nrepandα(T)); problem specific decisions− S, c andN.

The Simulated Annealing version we propose here is designed for 0-1 linear programs
and will be denoted by0-1SAin what follows. Let us begin by thespecific decisionsfor
0-1SA.

A neighbour solution from the current one can be obtained by amovewhich consists in
changing the value of one variablexi from 0 to 1 or from 1 to 0. However, the question
of the better way to deal with constraints naturally arises. Concerning specific problems,
some authors have proposed relaxing the feasibility conditions including a penalty term in
the cost function to discourage violations of the relaxed constraints. We experimented this
approach in several types of problems and the results were not attractive. Difficulties arose
in the selection of an adequate penalty term. Besides, in highly constrained solution spaces,
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it is possible that during the whole process no feasible solution is found. The p-median
location problem whose formulation is presented in the appendix (entitled P-MEDIAN)
is such an example. Although a small problem, no solution was primal feasible during
a Simulated Annealing run of 1800 iterations by applying just simple moves like the one
stated above. We recall that we are interested in a general algorithm for 0-1 linear programs,
so we cannot profit from any special structure of the constraints.

Another possibility is to try to restore the feasibility of each new neighbour solution com-
puted. In this case, the solution space is restricted to the feasible solution space. Connolly
(1992) developed a routine to restore solution feasibility called RESTORE which is used in
the program GPSIMAN (a general purpose Simulated Annealing). Our computational ex-
periments with this routine led us to realize that a large number of variables must be flipped
when the primal feasibility is hardly achieved and the algorithm often backtracks (by undo-
ing the last move), thus requiring high computational effort. We developed a new routine to
restore primal feasibility trying to overcome these drawbacks (Alves and Cl´ımaco, 1996).
In our opinion, most difficulties with Connolly’s routine are due to the computing process
of themost helpfulvariable to be flipped. A help-score depends on the way a variable helps
violated constraints without regard to how much it can “destroy” satisfied constraints. In
our routine, the selection of themost helpfulvariable considers two aspects: how helpful
it is for any currently-unfeasible constraint and to what extent it destroys the feasibility of
any currently satisfied constraint.

The routine we propose relies on parts of Balas’s zero-one additive algorithm (Balas, 1965)
and works as follows:

• Initially, all variables are “free” except the one (randomly determined) which was first
flipped to obtain the neighbour solution.
While the solution is not feasible and the feasibility can be restored:

• find themost helpfulfree variablexj (if none exists, feasibility cannot be restored)
• changexj value from 0 to 1 or the reverse;xj becomes not free

Themost helpfulfree variablexj is determined in the following manner:

Without loss of generality we assume that all constraints are “≤”
• Calculate the slacksi for each constraint (satisfied or not):si = RHSi − LHSi

• (constrainti is not satisfied wheneversi < 0)
• Create a subset P of free variables in which one variable is helpful for at least one

violated constraint. P is defined as

P= { j free:(ai j < 0 andxj = 0) or (ai j > 0 andxj = 1) for i such thatsi < 0}

whereai j is the coefficient of variablexj in the constrainti .
• For every constrainti such thatsi < 0, defineyi as

yi = si +
∑

{ j∈P:ai j<0 andxj=0}
(−ai j )+

∑
{ j∈P:ai j>0 andxj=1}

ai j
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• If P = ∅ or there is anyyi < 0 then the feasibility of the solution cannot be attained—
in this particular case,0-1SAwill evaluate an unfeasible solution penalizing it in the
cost function which means that this process does not backtrack.
Otherwise calculate the score (≤0) of each variable in P. This score measures the
weakness of a helpful variable:

SCOREj =


∑

{i :si−ai j<0}
(si − ai j ) if xj = 0∑

{i :si+ai j<0}
(si + ai j ) if xj = 1

• The variable with the highestSCOREis selected to be flipped.

A zero-score means that the variable is helpful without weakness. Thus, changing the
value of this variable yields a feasible solution.

This procedure has performed well in most of the problems tested. However,0-1SA
gives better results if the selection of the variable to be flipped is random with probabilities
proportional to the variable scores instead of selecting the variable with the highest score
all the time. This change, which avoids the process to be biased, is only recommended
in problems where the feasibility of the solutions is easily restored.0-1SAautomatically
switches from the stochastic to the deterministic choice of themost helpfulvariable when
the first iterations show that the feasibility of the problem is not easily restored. This is the
case of the P-MEDIAN problem (in appendix).

Generic decisions in 0-1SA
The initial solution: the initial solution is obtained by rounding the optimal solution for the

linear relaxation of the problem. If this solution is unfeasible, the procedure described
above is used to attain the feasibility.

The cooling schedule: the temperature reduction relationT := α . T has been considered
(usually, 0.8≤ α ≤ 0.99). T is the control parameter (temperature) and is given byK .t .
The initial temperature isTo = K .to with to being close to 1 and the final temperature
is K .t f with t f being close to 0.K is automatically determined for each problem. After
several experiments using differentK values in different problems we have decided to
considerK = 0.5cavg(wherecavgdenotes the average absolute coefficient in the objective
function). The parametersα, to, t f andNrepare specified by the user.

Computational results of 0-1SA
We selected a set of 10 test problems which includes 8 multiple-constraint knapsack

problems (MCKP), a p-median problem (in appendix) and a set covering problem (SCP).
The MCKP (from 28 to 105 variables) and the SCP (192 variables, 240 constraints) were
taken from the literature and are available in the OR-Library by Beasley (1990). The MCKP
are the following: PET5, PET6, PET7 which are originally due to Petersen (1967), SENTO1,
SENTO2 which are due to Senyu and Toyoda (1967) and WEING6, WEING7, WEING8
which are due to Weingarter and Ness (1967). The SCP is called SCPCYC6 and is from
Grossman and Wool (1997). Despite their small size, these MCKP were chosen because they
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have been tested by other metaheuristic approaches, namely those from Khuri, B¨ach, and
Heitkötter (1994), Aboudi and J¨ornsten (1994), Lokketangen, J¨ornsten, and Storoy (1994)
and Drexl (1988). The SCP was chosen due to its difficulty. In order to provide a better
analysis of the quality of the solution versus time to each problem, we took the computational
time of the optimal solution given by the CPLEX commercial solver as the reference time
to fix the0-1SAparameters. We consideredto = 0.98, t f = 0.01 (for SCPCYC6,t f =
0.001),α = 0.95 andNrepwas adjusted between 1 and 20 so that a0-1SArun would not
take longer than 50% of the corresponding CPLEX time. This is of little significance for
the MCKP since the maximum CPLEX time is 13 secs for SENTO1. However, concerning
the SCPCYC6, owing to the fact that the CPLEX could not find the optimal solution in
10 hours—giving a “better integer value” of 64—we considered then 2 mins 40 secs runs
of 0-1SAthat, in fact, provided better solutions. Both CPLEX and0-1SAwere run in a
personal computer Pentium 166 MHz.

Table 1 shows a summary of the computational results produced by 20 runs of0-1SA
for each problem. It includes the gap between the optimum and the best solution given by
0-1SA(100× |optimum-best|/|optimum|). Concerning the solution quality for the MCKP,
some comparisons with other procedures can be made:

(i) 0-1SAgave a better average solution than the GENEsYs algorithm from Khuri, B¨ach
and Heitkötter (1994) for all but one (PET6) of the test problems;

(ii) the “best solution” given by0-1SAis better than (or equal to) the “best solution” provided
by Drexl (1988) or Aboudi and J¨ornsten (1994) or Lokketangen, J¨ornsten, and Storoy
(1994), respectively, for all, for all but one (PET6) and for all but one (PET7) of the
test problems.

As stated before,0-1SAtries to restore the primal feasibility of each neighbour solution
produced by a first random move. Note here that the restoring routine was called at every
iteration of the p-median problem (performing nearly 5 additional moves each time) and
from 10% (in WEING7) to 70% (in SENTO1 and WEING8) of the iterations of the other
problems. The number of additional moves for each solution varied from 1 to 3 within
these problems.

Table 1. Computational results of0-1SA.

Problem: P-MEDIAN PET5 PET6 PET7 SENTO1 SENTO2 WEING6 WEING7 WEING8 SCPCYC6

n∗m 20∗9 28∗10 39∗5 50∗5 60∗30 60∗30 28∗2 105∗2 105∗2 192∗240

Nrep 1 10 10 6 10 5 5 10 20 20

optimum 3,700 12,400 10,618 16,537 7,772 8,722 130,623 1,095,445 624,319 60

best sol. 3,700 12,400 10,604 16,524 7,772 8,722 130,623 1,095,445 624,319 60

avg sol. 3,700 12,386 10,524.4 16,463.8 7,692.8 8,722 130,235 1,095,352 616,287 65.0

avg time 0.10 sec 0.44 sec 0.39 sec 0.33 sec 3.5 sec 1.27 sec 0.11 sec 0.39 sec 1.9 sec 160 sec

GAPopt-best 0% 0% 0.13% 0.08% 0% 0% 0% 0% 0% 0%
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1.2. Tabu Search

Tabu Search, like Simulated Annealing, is a neighbourhood search heuristics designed to
avoid being trapped in local optima. However, in contrast with Simulated Annealing, the
randomization is de-emphasized in Tabu Search assuming that intelligent search should be
based on more systematic forms of guidance. The search is constrained by classifying cer-
tain moves as forbidden (i.e. tabu) in order to prevent the reversal, or sometimes repetitions,
of the moves. For more details see Glover (1986, 1989, 1990a, 1990b), Glover and Laguna
(1993).

In its simplest form, Tabu Search may be described as follows:

Let S be the solution space andc the objective function to be minimized
• Select an initial solutionxo ∈ S; Letx∗ := xo

The tabu list is initially empty: TL := ∅
Repeat

• Create a candidate list of non-tabu moves—if applied, each move would
generate a new solution from the current one. So, letCandidateN(xo) be the
set of candidate neighbour solutions.
• Choosey ∈ CandidateN(xo) that minimizes the functionevaluation(y) over
this set.
If c(y) < c(x∗) thenx∗ := y
• xo := y and update TL.

until a specified number of iterations have passed without updating the best solution,x∗.

The Tabu Search version we propose herein is devoted to 0-1 linear programs(O-1TS).
A moveleading to a neighbour solution is defined by changing the value of one variable
from 0 to 1 or from 1 to 0. The initial solution is computed as in0-1SA.

0-1TSincludes three phases: a first phase of search that only uses a list of tabu moves,
a second one which is a diversification phase and finally, an intensification phase. Besides
short-term tabu memory, which is used throughout the process, frequency-based memories
are also included in the diversification and intensification phases. Short-term memory is
implemented by a tabu list (last-in-last-out) which records the last #TL (the length of the
tabu list) variables changed from 0 to 1 or the reverse. These variables cannot change their
values (preventing the reversal of certain moves) unless theaspiration criterionis applied.
Theaspiration criterionconsists in overriding the tabu status of a move when it yields the
best solution obtained up to then.

The diversification phase tries to generate solutions that embody different features (vari-
able values) from those previously found, driving the search into new regions. It uses a
frequency memory whose data have been collected from the beginning of the first phase.
This memory vector records the number of times each variable took the value 1 in fea-
sible solutions. At the diversification phase, a variable is allowed to change from 0 to 1
(1 to 0) if this move is non-tabu and the variable frequency of 1’s is smaller (larger) than a
threshold—the threshold is initialized to be the average frequency of 1’s of all the variables
and is increased (decreased) whenever there is no possible move.
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The intensification phase tries to reinforce solution features historically found to be good.
It uses two frequency memory vectors whose data are based on solution quality and have
been collected from the beginning of the second phase: letxbestIandxworstI be, respectively,
the best and the worst feasible solution produced until the end of the first (I) phase; the
memory vectorsrecord1sgoodandrecord1sbadregister the number of times each variable
took value 1, respectively, in “good” and “bad” feasible solutions during the second phase; a
solution has been considered “good” ifc(x) < c(xbestI)+δ or “bad” if c(x) > c(xworstI)− 2δ
with δ = 0.25[c(xworstI) − c(xbestI)]. At the intensification phase, a variablexi is allowed
to change from 0 to 1 (1 to 0) if this move is non-tabu andrecord1sgoodi ≥ g1 and
record1sbadi ≤ b1 (record1sgoodi ≤ g0 and record1sbadi ≥ b0). Initially, g1 =
g0 andb1 = b0 are given by the average value overrecord1sgoodand record1sbad,
respectively. These thresholds are relaxed whenever there is no possible move. In the
current implementation of0-1TSthe intensification phase is performed 3 times, starting
with the three best solutions obtained until the end of the second phase.

0-1TSgoes from one phase to the next one after passing1N iterations (a number specified
by the user) without updating the best solution.

Like in Simulated Annealing, our computational experience showed that repairing un-
feasible solutions improve the results remarkably. Therefore, moves that restore feasibility
have higher priority. However, we have adopted a different strategy from0-1SA: only
one move is performed at each iteration yielding a solution, possibly unfeasible, but that
surely will move towards feasibility in the next iteration. Taking into account the tabu list,
the frequency-based memories, higher priority moves and the aspiration criterion, the set
CandidateN(xo) is defined in different ways whetherxo is feasible or not and depend-
ing on the search phase. If the current solutionxo is feasible, the tabu list, the aspiration
criterion and the frequency-based memories (in the last phases of the search) are used to
identify the elements included inCandidateN(xo). The neighbour solutiony selected will
be the one (not necessarily feasible) that minimizes the functionevaluation(y) over this
set. If xo is not feasible,CandidateN(xo) only includes solutions obtained by a non-tabu
move that reduces the unfeasibility of the solution. According to the restoring routine
described above for0-1SA, y will be the solution obtained by flipping the highest-score
variable. Therefore, the functionevaluation(y) just evaluates candidate solutions obtained
by a move from one feasible solution (the former case). Since these candidate solutions
may be unfeasible,evaluation(y)must include not only the cost function but also a penalty
term that penalizes violated constraints. After experimenting different weights to penalize
each violated constraint we realized that lower weights perform better in the first iterations
(enabling an oscillation that diversify the search) and higher weights fit quite well in the
last iterations (when an intensification is desired). Thus,evaluation(y) = c(y) + W·v
wherev is the number of violated constraints andW is the weight that varies fromcmin to
cmax, the minimum and maximum non-zero absolute coefficients in the objective function,
respectively.

Computational results of 0-1TS
0-1TSwas applied to the set of problems used for0-1SA.The parameter1N was specified

for each problem so that the computational times were similar to those spent by0-1SA.
Several lengths of the tabu list, related to the square root of the number of variables, were
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Table 2. Computational results of0-1TS.

Problem: P-MEDIAN PET5 PET6 PET7 SENTO1 SENTO2 WEING6 WEING7 WEING8 SCPCYC6

1N 20 70 30 20 50 10 25 20 100 500

#TL 2–6 2–6 2–6 3–7 3–7 3–7 2–6 7–11 7–11 7–13

best sol. 3,700 12,400 10,618 16,499 7,772 8,722 130,623 1,095,445 615,110 62

avg sol. 3,700 12,388 10,588.4 16,499 7,772 8,722 130,389 1,095,409 610,170 62.43

#TL-best all 6 2; 4 all all all 2; 3 7; 8; 9 11 7–11

avg time 0.06 sec 0.44 sec 0.38 sec 0.22 sec 1.37 sec 0.22 sec 0.15 sec 0.5 sec 2.0 sec 158 sec

GAPopt-best 0% 0% 0% 0.23% 0% 0% 0% 0% 1.47% 3.33%

experimented. A summary of the computational results is given in Table 2. This table
includes the range of tabu list lengths (#TL) used for each problem and also the best and
average solutions among the results produced for the different #TL.

The results of0-1TSwithin our set of test problems showed that variations of #TL do not
cause large variations in the solution quality. There is a relative stability in the solutions
that usually are good approximations of the optimal solution. In contrast, several runs of
0-1SAmay produce solutions of very different quality due to randomization. Therefore, the
average solution of0-1SAover several runs is, in general, worse than the average solution
of 0-1TSfor different tabu list lengths. Even though, the best0-1SAresult is often better
than or equal to the0-1TSresult. Thus, we can not conclude that there is a metaheuristics
better suited for all the cases than another one.

2. An interactive method for multiobjective 0-1 problems

2.1. Notation and basic concepts

Let fi (x) be the objective functioni to be maximizedin the multiobjective 0-1 linear
program withk objective functions:

max fi (x) = ci x i = 1, . . . , k

s.t.x ∈ S

whereS= {x | Ax = b, x ∈ {0, 1}n}
Let zo be the image of the feasible solutionxo, so thatzo = (zo

1, . . . , z
o
k) = ( f1(xo), . . . ,

fk(xo)).

The solutionza dominates zb if and only if za
i ≥ zb

i for all objectivesi = 1, . . . , k and
za

i > zb
i for at least one objectivei .

A solutionz is said to benondominatediff there does not exist another one thatdominates
it.

Let us callz a potentially nondominatedsolution (terminology used by Czyzak and
Jaskiewicz, 1996) or anapproximation of a nondominatedsolution iff the existence of
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another solution thatdominatesit is still unknown. In what follows, we use the abbreviation
p.n.d to designate “potentially nondominated”.

2.1. The interactive method scheme

The basic idea underlying the method we propose is the progressive and selective search
of p.n.d solutions by focusing the search, in each interaction, on a subregion delimited
by reservation levels specified by the DM for the objective function values. The use of
reservation levels aims at bringing the search process gradually closer to regions of greater
interest to the DM. Each computing phase produces a set of p.n.d. solutions more concen-
trated around the individual optima for the objective functions in the region being explored.
Subparts of a region will be explored deeper if the DM specifies new reservation levels
further narrowing the previous region. This approach tries to avoid the main drawbacks
of generating methods, namely the excessive amount of computational resources required,
both in time and storage space, and the large amount of information presented to the DM
in each interaction. Thus, the method does not intend to provide a good approximation for
the whole set of nondominated solutions, but just for the subregions of greater interest to
the DM.

Simulated Annealing and Tabu Search work as two alternative and complementary com-
puting procedures. A computing phase is performed whenever the DM chooses a (sub)region
to be explored. It consists in running a metaheuristic routine (Simulated Annealing or Tabu
Search)k times (k being the number of objectives). The distinct versions of metaheuristic
approaches are adaptations of0-1SAand 0-1TS(described in Section 1) for the multi-
objective case. These procedures are similar to single objective ones differing only in the
gathering of p.n.d. solutions. A set of p.n.d. solutions,Setpnd, is created at the start and
updated whenever a feasible neighbour solution (accepted or not) is not dominated by any
solution previously found. The neighbour solution is added to theSetpndremoving all the
solutions dominated by this new p.n.d solution.

Thei th run(i = 1, . . . , k) of a metaheuristic routine privileges the objective functioni by
using standard selection and acceptance criteria. For instance, the probability of accepting
the neighboury of the current solutionxo at thei th run of Simulated Annealing is given
by min{1, e( fi (y)− fi (xo))/T } (recall that objective functionfi was defined to be maximized).
This implies that, ify dominatesxo or, y is nondominated in relation toxo and has a better
performance thanxo for the objectivei , theny is accepted. Otherwise it has a probability
of being accepted less than 1. This depends on the magnitude of the decrease in thei th
objective function and the temperatureT . However, in both cases the set of p.n.d. solutions
can be updated withy.

The main reason for so doing—using a pre-defined objective function (i.e. that does
not change during the whole run) in each run of Simulated Annealing or Tabu Search—is
to avoid damaging the “convergence” character of these metaheuristic routines that could
bring out a really good solution to one specific function. An acceptance criterion just based
on a dominance/nondominance relation would lead to a more dispersed set of solutions but
could risk to be far from all parts of the “true” nondominated frontier. Therefore, since the
metaheuristic routine runsk times for each interaction, privileging each objective function
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individually, the majority of p.n.d solutions are collected nearby the optima for the objective
functions in the region under scrutiny. These solutions are usually good approximations
for the corresponding nondominated subsets. Although the search is more concentrated on
the extreme parts of the region, a relatively dispersed set of p.n.d solutions is obtained due
to the unsteady phase of Simulated Annealing for high temperatures and the diversification
phase of Tabu Search (which has already been incorporated in0-1TS).

This procedure enables the DM to make a strategic search and identify the regions where
the solutions corresponding more closely to his/her preferences are placed. Afterwards, a
local analysis can provide a better evaluation of the preferred p.n.d solutions or even the
computation of “true” nondominated solutions. The interactive method includes different
techniques to aid the DM in the final phase of the decision process:

(i) Defining the nondominated frontier of the linear relaxation of the multiobjective prob-
lem confined to a fairly enough subregion. In some situations these upper bounds give
the DM a better evaluation of his/her preferred p.n.d solutions. Likewise, whenever
the differences between the p.n.d solutions and these upper bounds are below certain
thresholds specified by the DM, no further search is needed.

(ii) Evaluating whether a satisfactory p.n.d solution is itself a nondominated solution or
not. In the negative case, the outcome is a nondominated solution close to the p.n.d
solution. Theachievementscalarizing program(Pz̃) is solved with the satisfactory
p.n.d solution playing the role of the reference pointz̃.

min

{
α − ρ

k∑
i=1

ci x

}
(Pz̃)

s.t. z̃i − ci x ≤ α i = 1, . . . , k

x ∈ S

(with ρ positive small enough)
(iii) Using aspiration criterion vectors namely vectors that are nondominated for the lin-

ear relaxation of the problem.(Pz̃) is solved producing the nondominated solution
closest to the aspiration criterionz̃ according to the Tchebycheff (L∞) metric (Steuer,
1986).

The aspiration criterion vector philosophy is likely to be most useful in later phases of
the decision process when the DM is attempting to hit a final solution.

A Pascal-like outline of the interactive algorithm can be stated as follows:

• Let Setpnd:= Ø
Repeat

• Ask the DM to specify reservation levels for all or some objective values:
fi (x) ≥ Li , i ∈ K ⊆ {1, . . . k}
For j := 1 tok
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• run 0-1SAor 0-1TSadding fi (x) ≥ Li , i ∈ K to the original set
of constraints, considering(− f j (x)) the cost function and updating
Setpndat each iteration→ new p.n.d. solutions and the solution in this
region that optimizesf j (x) for the linear relaxation of the problem are
obtained

Until the search is well focused on the regions of most interest to the DM
While the DM does not find a satisfactory compromise solution

• The DM chooses a feasible subregionR⊆ Sof interest
• Perform a local analysis inR by choosing one or more options among

(i)–(iii):
(i) define the nondominated frontier of the linear relaxation ofR in

order to obtain better upper bounds;
(ii) compute the nondominated solution closest (L∞ metric) to a p.n.d

solution belonging toR;
(iii) specify aspiration criterion vectors, namely using information pro-

duced by (i), to compute nondominated solutions inR.

3. Computational examples

In this section we report a computational experiment with two MCKP. These problems
result from including another objective function (randomly generated) in two problems
that have been used for single objective experiments—PET7 and SENTO1. Although the
procedure is not restricted to two objective functions, both examples are biobjective so
that graphical displays are used to present the information. The coefficients of the second
objective functions are stated in the appendix.

Concerning the first problem, we have also computed all the “true” nondominated solu-
tions. The purpose of this example is to discuss the quality of the p.n.d solutions obtained
by Simulated Annealing and Tabu Search. Although the method is not intended to approx-
imate the whole nondominated frontier, we give an indication of the distance between all
the p.n.d solutions produced and the “true” nondominated set when the feasible region has
been restricted only twice.

The second example is used to illustrate the interactive algorithm.
For space reasons it is not possible to report all computational tests. We will only mention

the most significant ones. The pictures are copies (sometimes superposed) of computer
displays.

Example 1. PET72, 50 variables (0-1), 5 constraints
We run once Simulated Annealing and Tabu Search independently considering the fol-

lowing sequence of reservation levels: 1st interaction: no limitations; 2nd interaction:
f1(x) ≥ 14500; f2(x) ≥ 31700; 3rd interaction:f1(x) ≥ 15700; f2(x) ≥ 30000;

While Tabu Search does not show any increasing tendency of the computational times
when the region is restricted, the times spent by Simulated Annealing increase significantly.
This fact is due to the way the routine for restoring feasibility is used in each case:0-1TS
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performs just one move towards feasibility by iteration and0-1SAperforms, at each iteration,
all the moves needed to reach feasibility, leading to more timing consuming iterations in
restricted spaces. Therefore, we increased the number of0-1TSiterations from the 1st to
the 3rd interactions and decreased the number of iterations in0-1SAby considering the
following parameters:0-1SA–to = 0.98,t f = 0.005,α = 0.97 in all the interactions,Nrep
= 30 in the 1st interaction andNrep= 5 in the 2nd and 3rd interactions;0-1TS− #TL = 7,
1N = 250 in the 1st interaction,1N = 500 in the 2nd interaction and1N = 1000 in the
3rd interaction.

The results are shown in the graph of figure 1: 18 p.n.d. solutions from Tabu Search and
14 p.n.d solutions from Simulated Annealing, obtained independently. The computational
times spent by Tabu Search were 8, 5 and 6 seconds for the 1st, 2nd and 3rd interactions,
respectively. The corresponding times for Simulated Annealing are 6, 27 and 11 seconds.

All nondominated solutions for this problem have also been computed and they are
displayed in figure 2. The points represented by a cross (+) are nondominated solutions
for the linear relaxation that optimize each objective individually for the region delimited

Figure 1. p.n.d solutions forPET7 2 obtained independently from S.A. and T.S.
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Figure 2. All the nondominated solutions forPET7 2.

Figure 3. p.n.d solutions forPET7 2 superposed to the nondominated solutions.

in each interaction. Figure 3 superposes graph of figure 1 and figure 2 just in the region
where most of the nondominated solutions are placed.

Some quality indices of the p.n.d. solutions may be computed for this problem. If,
for instance, the L∞ metric (maximal component difference) is used to select the nearest
nondominated solution, sayzn, from each p.n.d solutionzp, the gap between the two
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solutions in each dimension may be given by: 100× [(zn
i − zp

i )/z
n
i ], i = 1, 2. Considering

this standard of quality, the following are the average gaps obtained with this experience.
Tabu Search: 0.31% inf1 and 0.19% inf2. Simulated Annealing: 0.43% inf1 and 0.20%
in f2.

From our, still limited, experience with this and other multiobjective 0-1 problems, it
seems that the tradeoff between solution quality and computational time is better in Tabu
Search.

Example 2. SENTO12, 60 variables (0-1), 30 constraints
Let us consider that the DM chose the Tabu Search heuristic routine to compute p.n.d

solutions with #TL = 7 and1N = 5000. The outcome of the first interaction, which did
not consider additional restrictions, is displayed in figure 4.

Performing two more interactions consideringf1(x) ≥ 5300, f2(x) ≥ 5000 in the 2nd
interaction andf1(x) ≥ 5400, f2(x) ≥ 6300 in the 3rd interaction, a new set of p.n.d.
solutions is obtained and is presented here in figure 5.

Let us suppose that solutions 1, 2 and 3, withz1 = (6503, 6842), z2 = (6271, 6878),
z3 = (6250, 7099), were the preferred solutions for the DM and he/she wanted to perform
a local search in the region delimited byf1(x) ≥ 6200 andf2(x) ≥ 6820. The DM started
by choosing the option (i) that computed the nondominated frontier of the linear relaxation
of the problem on the predefined region (figure 6(a)) in order to have a better perception of
the largest errors involved with p.n.d solutions. Let us assume that the DM chose then the

Figure 4. p.n.d solutions forSENTO1 2 obtained in the first interaction.
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Figure 5. p.n.d solutions forSENTO1 2 after three interactions.

Figure 6. Local analysis.

option (iii) of the algorithm considering the aspiration criterion pointz̃ = (6757, 7056).
The result (see figure 6(b)) was the nondominated solutionz4 = (6794, 6828).

Note that if the DM had chosen solutions 1, 2 and 3 for option (ii) he/she would have
concluded that they are “true” nondominated solutions. It should be stressed that solving
(Pz̃) by branch-and-bound to produce exact solutions for this problem (like solution 4) takes
a computational time between ten and thirty times larger than the average time spent by one
run of Tabu Search.

4. Concluding remarks

This paper presented an interactive metaheuristic algorithm for multiple objective 0-1
linear programs. Two different generic metaheuristic versions — Simulated Annealing
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and Tabu Search—have been incorporated in an interactive framework. They are alterna-
tive and complementary procedures for computing potentially nondominated solutions.

The interactive protocol consists in asking the DM to specify reservation levels for the
objective values. This way of interacting with the DM has two main advantages: usually
this is the type of information the DM is willing to express in the early stage of the decision
process; it enables a progressive reduction of the scope of the search guiding the process
towards solution regions that correspond more closely to the DM’s preferences.

Some upper bounds for the nondominated solutions are computed and presented to the
DM at each interaction. When they are close enough to potentially nondominated solutions,
they can be an important element on the decision process since they provide an argument
for deciding that there is no need to further explore that subregion.

Exact techniques for computing nondominated solutions have also been included. They
are likely to be most useful in the final stage when the DM’s preference system is well
defined and a satisfactory compromise solution must be selected.

Appendix

P-MEDIAN problem:

min f = 1100x2+ 1760x3+ 2200x4+ 1000x5+ 1500x7+ 1000x8+ 2080x9
+1950x10+ 650x12+ 2400x13+ 1200x14+ 600x15

s.t. x1+ x2+ x3+ x4 = 1

x5+ x6+ x7+ x8 = 1

x9+ x10+ x11+ x12 = 1

x13+ x14+ x15+ x16 = 1

y1+ y2+ y3+ y4 ≤ 2

110x1+ 100x5+ 130x9+ 120x13− 230y1≤ 0

110x2+ 100x6+ 130x10+ 120x14− 230y2≤ 0

110x3+ 100x7+ 130x11+ 120x15− 230y3≤ 0

110x4+ 100x8+ 130x12+ 120x16− 230y4≤ 0

xi ∈ {0, 1} i = 1, . . . ,16

yi ∈ {0, 1} i = 1, . . . ,4

Coefficients of the 2nd objective function of the PET72 problem:

468 981 484 71 305 392 105 301 141 332 23 495
444 377 458 798 2840 312 151 364 403 138 334 174
3914 78 159 240 41 123 330 500 207 157 348 407
115 3273 102 810 3951 429 137 196 145 3689 3284 477
427 634

Coefficients of the 2nd objective function of the SENTO12 problem:
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127 786 27 53 301 40 57 333 488 91 34 56
51 247 65 35 83 5 47 64 831 175 100 17
681 12 27 5 45 92 67 567 43 492 4 280
15 345 44 66 8 99 42 84 74 12 51 698
5 48 2 45 9 52 720 431 53 92 82 20
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Khuri, S., T. Bäck, and J. Heitk¨otter. (1994). “The Zero-One Multiple Knapsack Problem and Genetic Algorithms.”

In E. Deaton, D. Oppenheim, J. Urban, and H. Berghel (eds.),Proceedings of the 1994 ACM Symposium on
Applied Computing, ACM-Press, New York, 188–193.

Larichev, O. and A. Nikiforov. (1987). “Analytical Survey of Procedures for Solving Multicriteria Mathemat-
ical Programming Problems.” In Y. Sawaragi, K. Inoue, and H. Nakayama (eds.),Towards Interactive and



AN INTERACTIVE METHOD FOR 0-1 MULTIOBJECTIVE PROBLEMS 403

Intelligent Decision Support Systems. Springer-Verlag, pp. 95–104. Lecture Notes in Economics and Mathe-
matical Systems, Vol. 285.

Lokketangen, A., K. J¨ornsten, and S. Storoy. (1994). “Tabu Search within a Pivot and Complement Framework.”
International Transactions in Operations Research1(3), 305–316.

Nakayama, H. (1985). “On the Components in Interactive Multiobjective Programming Methods.” In M. Grauer,
M. Thompson, and A. Wierzbicki (eds.),Plural Rationality and Interactive Decision Processes, Springer-Verlag,
pp. 234–247. Lecture Notes in Economics and Mathematical Systems, Vol. 248.

Petersen, C.C. (1967). “Computational Experience with Variants of the Balas Algorithm Applied to the Selection
of R&D Projects.”Management Science13(9), 736–750.

Senyu, S. and Y. Toyada. (1967). “An Approach to Linear Programming with 0-1 Variables.”Management Science
15B, 196–207.

Serafini, P. (1994). “Simulated Annealing for Multi Objective Optimization Problems.” In G.H. Tzeng, H.F.
Wang, U.P. Wen, and P.L. Yu (eds.),Multiple Criteria Decision Making, Proceedings of the Xth International
Conference, Taipei 19-24/7/92, Springer-Verlag, pp. 283–292.

Steuer, R. (1986).Multiple Criteria Optimization: Theory, Computation and Application. Wiley.
Ulungu, E.L. (1993).Optimisation Combinatoire Multicrit̀ere: Détermination de l’ensemble des solutions
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