
Journal of Mathematical Modelling and Algorithms 3: 183–208, 2004.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

183

A Scatter Search Method for the Bi-Criteria
Multi-dimensional {0,1}-Knapsack Problem
using Surrogate Relaxation

CARLOS GOMES DA SILVA1,�, JOÃO CLÍMACO2 and JOSÉ FIGUEIRA2,��
1INESC-Coimbra and Escola Superior de Tecnologia e Gestão de Leiria, Morro do Lena,
Alto Vieiro, 2401-951 Leiria, Portugal. e-mail: cgsilva@estg.iplei.pt
2INESC-Coimbra and Faculdade de Economia, Universidade de Coimbra, Av. Dias da Silva, 165,
3004-512 Coimbra, Portugal. e-mail: jclimaco@inescc.pt, figueira@fe.uc.pt

Abstract. This paper presents a scatter search (SS) based method for the bi-criteria multi-dimen-
sional knapsack problem. The method is organized according to the usual structure of SS: (1) di-
versification, (2) improvement, (3) reference set update, (4) subset generation, and (5) solution
combination. Surrogate relaxation is used to convert the multi-constraint problem into a single con-
straint one, which is used in the diversification method and to evaluate the quality of the solutions.
The definition of the appropriate surrogate multiplier vector is also discussed. Tests on several sets
of large size instances show that the results are of high quality and an accurate description of the
entire set of the non-dominated solutions can be obtained within reasonable computational time.
Comparisons with other meta-heuristics are also presented. In the tested instances the obtained set of
potentially non-dominated solutions dominates the set found with those meta-heuristics.
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1. Introduction

The multi-dimensional {0,1}-knapsack problem (MDKP) has a combinatorial na-
ture aiming to maximize the sum of the values of the items to be selected from a
given set, taking into account several resource constraints. It is an extension of the
well-known {0,1}-knapsack problem. The only difference concerns the number of
the resource constraints. In the latter this number is only one and in the former it is
more than one.

The MDKP has many applications in the fields of capital budgeting, cutting
stock, cargo loading, allocating processors and databases in distributed computer
systems [8]. Due to its hard complexity (it is an NP-complete combinatorial prob-
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lem) the size of the instances which can be solved exactly is modest. Frévillle and
Plateau [6] mentioned the limit of 5 constraints and 200 variables for previous
works. Exact methods are based on dynamic programming [9, 29] or in branch-
and-bound techniques [26, 8, 23]. Large size instances can only be managed with
approximate methods which establish a balance between the quality of the solu-
tions and the computational time required. And, in fact, the literature is much richer
in these kind of approaches [20, 22, 3, 15, 1, 19, 28]. An extensive survey of the
research developed in the MDKP can be found in Chu and Beasley [3], where the
works are classified into exact and heuristic algorithms.

Many practical situations require the incorporation of several conflicting cri-
teria. In general, in a multiple criteria model there is no a feasible solution that
optimizes simultaneously all the criteria. Consequently a compromise among the
criteria must be achieved. Solving these models consists of determining compro-
mise solutions, called non-dominated/efficient solutions. One of the most popular
approaches to “solve” multiple criteria problems aims to generate the whole set
of the non-dominated/efficient solutions [18]. Nevertheless, like in the single cri-
terion instances, computational requirements involved in large size ones, forbid
the determination of that set. Thus, approximate methods, as meta-heuristics, were
developed for generating an approximation of the non-dominated solutions set.
Actually the solutions may be dominated, and for this reason, they are called po-
tentially non-dominated solutions. Several meta-heuristics were designed to tackle
multiple criteria combinatorial problems. Nevertheless, they are considerably less
than those for the single criterion case. The existing methods are mainly genetic,
tabu search, and simulated annealing based algorithms [7, 27, 31, 17].

In this paper we follow this line of research, aiming to get an accurate ap-
proximation of the whole set of non-dominated solutions of the bi-criteria MDKP
problem. Our interest concerns large size instances. The Scatter Search (SS) meta-
heuristic due to Glover [11] is used together with the surrogate relaxation tech-
nique.

SS is a population based evolutionary method, which exploits the knowledge
of the problem to create new, and hence better solutions from the combination of
existing ones. The fact that the relevant information regarding the optimal solution
is embedded in a diversified subset of “elite” solutions is one of the fundamentals
of SS. Taking multiple solutions into account as a foundation for creating new ones
and using heuristics which combine them through mechanisms that promote diver-
sity and quality, SS thus enhances the exploration of the information not contained
in each solution individually. The usual process for solving a problem by means of
creating progressively better solutions is divided into five components [11]: (1) the
diversification generation method (which creates a collection of trial solutions),
(2) the improvement method (which transforms the trial solutions into enhanced
ones, and usually restores feasibility), (3) the reference set update method (which
maintains the reference set with the best solutions according to certain criteria),
(4) the subset generation method (which creates subsets of solutions from the ref-
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erence set), and (5) the solution combination method (which combines solutions
from each subset, thus creating new ones).

The technique of surrogate relaxation [10, 5] is used to convert the multi-con-
straint knapsack into the well-known single constraint knapsack by generating
adequate surrogate multipliers. The aggregation of the constraints can give a good
information about the efficient solutions of the original problem, working as a
powerful tool to guide the search of those solutions. A modified version of the
method due to Gomes da Silva et al. [13] is applied to the surrogate problem.

The rest of the paper is organized as follows: Section 2 presents the bi-criteria
MDKP; Section 3 is devoted to the SS method; Section 4 describes the computa-
tional experiments and results; and Section 5 presents the main conclusions and
future research.

2. The Bi-Criteria Multi-Dimensional Knapsack Problem

The bi-criteria multi-dimensional knapsack problem can be formulated as follows:

max z1(x1, . . . , xj , . . . , xn) =
n∑

j=1

c1
jxj ,

max z2(x1, . . . , xj , . . . , xn) =
n∑

j=1

c2
jxj

subject to:
n∑

j=1

aij xj � bi, i = 1, . . . , m,

xj ∈ {0, 1}, j = 1, . . . , n,

(1)

where, c1
j and c2

j represents the value of item j in the criteria 1 and 2, respectively,
xj = 1 if item j , (j = 1, . . . , n) is included in the knapsack and xj = 0 otherwise,
aij means the weight of item j in knapsack constraint i (i = 1, . . . , m) and bi is
the overall amount of the resource i.

We assume that c1
j , c

2
j , bi and aij are positive integers and that aij � bi with∑n

j=1 aij > bi .
Constraints

∑n
j=1 aij xj � bi , i = 1, . . . , m and xj ∈ {0, 1}, j = 1, . . . , n

define the feasible region in the decision space, and their image when applying the
criteria functions z1 and z2 define the feasible region in the criteria space.

A feasible solution, x, is said to be efficient if and only if there is no a feasible
solution, y, such that zk(x) � zk(y), k = 1, 2 and zk(x) < zk(y) for at least one k.
The image, in the criteria space, of an efficient solution is called a non-dominated
solution.

The aim is to generate an approximation of the set of the non-dominated so-
lutions. These approximate solutions will be called potentially efficient/non-domi-
nated solutions (PNDS).
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Glover [10] introduced a relaxation technique called the surrogate relaxation. In
this technique non-negative multipliers are used to aggregate difficult constraints.

Applying the surrogate relaxation to problem (1) for creating a linear combina-
tion of the m knapsack constraints, we have the so called surrogate constraint:

m∑
i=1

ui

n∑
j=1

aij xj �
m∑

i=1

uibi (2)

which is equivalent to,

n∑
j=1

(
m∑

i=1

uiaij

)
xj �

m∑
i=1

uibi . (3)

Considering wj = ∑m
i=1 uiaij and W = ∑m

i=1 uibi , the surrogate problem can
be written as follows,

max z1(x1, . . . , xj , . . . , xn) =
n∑

j=1

c1
jxj ,

max z2(x1, . . . , xj , . . . , xn) =
n∑

j=1

c2
jxj

subject to:
n∑

j=1

wjxj � W,

xj ∈ {0, 1}, j = 1, . . . , n

(4)

which is a single constraint knapsack problem.
The surrogate multipliers are used to build a surrogate constraint, transforming

the problem into a single constraint one. There are several surrogate constraints,
but the most adequate is the one which produces the correct combination of the
resources, i.e., the one which produces a feasible region, as close as possible, to
the one generated by the initial resource constraints.

By relaxing the integrality constraints in (1) an easier problem is obtained.
However, in the presence of many constraints their surrogate relaxation can be
interesting:

max z1(x1, . . . , xj , . . . , xn) =
n∑

j=1

c1
jxj ,

max z2(x1, . . . , xj , . . . , xn) =
n∑

j=1

c2
jxj

subject to:
n∑

j=1

wjxj � W,

xj ∈ [0, 1], j = 1, . . . , n.

(5)
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Figure 1. Surrogate frontiers for an instance with n = 20, m = 3.

Solving problem (5), i.e., determining the set of all the extreme efficient solu-
tions, an upper frontier for problem (4) is obtained, which is obviously an upper
frontier for the original problem (1). This frontier is placed above the one obtained
by solving the linear relaxation of problem (1). We refer to the latter frontier as the
true upper frontier.

However, with distinct surrogate multipliers different upper frontiers can thus
be defined as it can be seen in Figure 1.

A set of multipliers which produces a frontier that is tight for one stretch of the
true upper frontier could be a bad choice to another stretch of it. The objective is to
find the set of multipliers which leads to a frontier which is as tighter as possible
for all stretches of the true upper frontier.

One criterion that can be used to evaluate the tightness of a frontier is to consider
the upper frontier which minimizes the sum of the maximum values of criteria z1

and z2. This criterion leads to the following particular problem:

h(u)= max
{
z1(x) : uAx � ub, x ∈ [0, 1]n}+

+ max
{
z2(x) : uAx � ub, x ∈ [0, 1]n}, (6)

where A is the matrix with the original coefficients and u is the vector of the
multipliers.

To distinguish the solutions in the two independent problems involved in h(u)

let us restate equation (6) as:

h(u)= max
{
z1(x) : uAx � ub, x ∈ [0, 1]n}+

+ max
{
z2(y) : uAy � ub, y ∈ [0, 1]n} (7)

which is equivalent to,

h(u) = max
{
z1(x) + z2(y) : uAx � ub, uAy � ub, x, y ∈ [0, 1]n}. (8)
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This criterion is particularly convenient because it is associated with a linear
problem. When h(u) decreases due to the simultaneous reduction of z1(x) and
z2(x) then the frontier associated with the multipliers is indeed contained in a
smaller area. In this case, the reduction of h(u) corresponds to a decrease of the
area where the frontier could be contained. Obviously, this is not always the case.

The associate surrogate multipliers are thus obtained by solving the dual surro-
gate problem:

min
u∈Rm+

{h(u)}. (9)

To determine the surrogate multipliers we consider the following iterative
process, a subgradient-like method, which searches for a direction of potential
decrease of the function h(u).

Procedure Surrogate_Multipliers
begin

t ← 0;
Let ut ∈ Rm+ be a vector of multipliers such that ut ← 1

m
(1, 1, . . . , 1);

repeat
Compute h(u) and let (xt∗, yt∗) be an optimal solution;
if (Axt∗ − b � 0) and (Ayt∗ − b � 0) then stop;
gut ← (Axt∗ − b) + (Ayt∗ − b);
Define θ ∈ R+ according to Rules 1 or 2 (below);
ut+1 ← ut + θ

gut

‖gut ‖2
2
;

if (ut+1
i < 0) then ut+1

i ← 0, i = 1, . . . , m;
ut+1 ← ut+1

‖ut+1‖1
;

t ← t + 1;
until (stopping condition)

end

Notice that gut is a direction of potential decrease of h(u). In fact, as proved by
Greenberg and Pierskalla [14] when searching for the optimal surrogate multipli-
ers, one should neither decrease the multipliers of the infeasible constraints nor
increase the multipliers of the feasible constraints. The direction gut verifies these
requirements in the cases (a) and (b) below, and can also verify it in the case (c):

(a) (Axt∗ −b)i � 0 and (Ayt∗ −b)i � 0, where (γ )i is the component i of column
vector γ .
In this case (Axt∗−b)i+ (Ayt∗−b)i > 0. Hence, (gut )i > 0 and the multiplier
of the infeasible constraint does not decrease.

(b) (Axt∗ − b)i � 0 and (Ayt∗ − b)i � 0.
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In this case (Axt∗−b)i +(Ayt∗−b)i < 0. Hence, (gut )i < 0 and the multiplier
of the feasible constraint does not increase.

(c) (Axt∗ − b)i × (Ayt∗ − b)i < 0.
In this case (Axt∗ − b)i + (Ayt∗ − b)i could also be non-positive or nonneg-
ative. If the dominant effect is the first (second), i.e., (Axt∗ −b)i + (Ayt∗ −b)i

� 0 (� 0), then (gut )i � 0 (� 0), and it could be possible that the potential
reduction of h(u) due to the non-increase (non-decrease) of the multiplier
of the feasible (infeasible) constraint is higher than the potential increase of
h(u) due to the non-increase (non-decrease) of the multiplier of the infeasible
(feasible) constraint.

The parameter θ , which is the step-size, is initially equal to 2, and then it evolves
according to the following rule (t > 1):

RULE 1. θ = |ut−1gut |.

This rule was suggested by Frévillle and Plateau [6] in the context of the subgra-
dient algorithm for solving the surrogate and Lagrangian dual of the single criterion
multi-dimensional knapsack problem.

However, when applied to the particular problem of minimizing h(u) function,
this rule leads frequently to a strong stagnation in the evolution of h(u) (see Fig-
ure 2). We use an alternative rule which introduces variation in the step-size if the
amount of infeasibility changes considerably. This new rule ensures a non-increase
on the value of the step-size θ if the variation in the amount of the infeasibility
increases. If the latter decreases then the step-size θ does not decrease. The rule is
the following:

RULE 2. θ = min{2, 1
πt }, where

πt =


|vt − vt−1|

vt−1
if vt−1 > 0,

0.5 if vt−1 = 0,

vt being defined as follows,

vt =
∑

{i:aixt∗−bi>0}
(aix

t∗ − bi) +
∑

{i:aiyt∗−bi>0}
(aiy

t∗ − bi)

and ai states for line i in matrix A.

Rule 2 performed well in practice (better than Rule 1).
In the above procedure, we used the maximum number of iterations as a stop-

ping criterion.
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Figure 2. Evolution of h(u).

EXAMPLE 1. Consider the following example of a bi-criteria multi-dimensional
knapsack with 4 constraints and 10 variables:

max z1 = 1x1 + 87x2 + 28x3 + 32x4 + 38x5 + 9x6 + 8x7 + 6x8 + 92x9 + 78x10

max z2 = 4x1 + 21x2 + 68x3 + 17x4 + 43x5 + 48x6 + 85x7 + 30x8 + 37x9 + 33x10

subject to:

70x1 + 85x2 + 72x3 + 31x4 + 17x5 + 33x6 + 47x7 + 25x8 + 83x9 + 28x10 � 246

49x1 + 15x2 + 88x3 + 29x4 + 78x5 + 98x6 + 50x7 + 89x8 + 83x9 + 3x10 � 291

15x1 + 15x2 + 51x3 + 3x4 + 60x5 + 1x6 + 78x7 + 66x8 + 78x9 + 71x10 � 219

56x1 + 21x2 + 69x3 + 60x4 + 96x5 + 65x6 + 100x7 + 25x8 + 68x9 + 30x10 � 295

xj ∈ {0, 1}, j = 1, . . . , 10

The application of the above procedure gives the results shown in Figure 2.

The multipliers which minimize h(u) may not produce the “tightest” upper
frontier. Hence, it is used a complementary criterion that is the area limited by the
origin and the upper frontier generated by the three surrogate vectors (̂u1, û2, û3)

associated with the three lowest values of h(u). Considering,〈(
z1

1, z
1
2

)
,
(
z2

1, z
2
2

)
, . . . ,

(
z
p

1 , z
p

2

)〉
as the sequence of extreme points in the upper frontier, the area can be expressed
as:

R(ût ) =
p∑

α=1

∫ lα

lα−1

ft(z1) dz1, t = 1, 2, 3, (10)

where, lα = zα
1 , α = 1, . . . , p; l0 = 0, and ft (z1) is the function that expresses

z2 dependent of z1 in the upper frontier associated with the surrogate multiplier
vector ut . An upper frontier is obtained by linking all the adjacent extreme points
of problem (5). These points can be easily computed through a process of efficient
pivoting over a simplex tableau with bounded variables (for details refer to Gomes
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da Silva et al. [12, 13]. With the extreme points it is easy to define the line and from
this line the function ft(z1) is derived.

This upper frontier will also be used to evaluate the quality of the solutions (Sec-
tion 4) since it can provide a quantification of the error in assuming a potentially
non-dominated solution as an exact non-dominated one.

3. A Scatter Search Method for the Bi-Criteria MCKP (BCSS)

With the use of surrogate multipliers the original problem is converted into a single
constraint knapsack. For the latter we have recently experienced the problem of
generating an approximation of the set of the non-dominated solutions of the bi-
criteria case [12, 13]. Gomes da Silva et al. [13] proposed a scatter search based
method which was applied to large size instances of the problem (a number of
items up to 6,000 was considered). The method was supported by two fundamental
properties of the solutions in the single criterion and bi-criteria instances, used as
powerful tools for guiding the search of new solutions.

The first property comes from the single criterion problem and says that the
optimal solution of the integer knapsack problem only differs from the continuous
one in a very small number of items that are close to the fractional one.

The second property is based on the analysis of the exact efficient solutions of
the bi-criteria instances, and states that an efficient solution can be obtained from
another one by complementing the value (xj is changed to 1−xj ) of a small number
of variables.

The results showed that the approximation to the upper frontier was quite good
and an accurate description of the entire set of the non-dominated solutions could
be obtained within small computational time. The method was structured according
to the basic definition of the scatter search meta-heuristic: diversification method,
improvement method, reference set update method, subset generation method, and
solution combination method.

In this paper that method was adopted to deal with several constraints, taking
into account the specificities of the new problem. In this sense, some of the BCSS
components had to be considerably changed, namely the diversification method,
the improvement method, and the combination method. The reference set update
method and the subset generation method are the same. Aiming at preserving the
global presentation of the method, all the components are described below.

3.1. DIVERSIFICATION METHOD

A non-stochastic procedure based on surrogate relaxation is used to generate a
set of initial solutions. The initial set of solutions is obtained via the transfor-
mation of the multi-constraint problem into a single constraint one, using non-
negative surrogate multipliers as described in Section 2. Regarding the continuous
bi-criteria knapsack problem all the extreme solutions are found through efficient
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pivoting using the bi-criteria simplex method with bounded variables. Each of
the extreme solutions has only one current basic variable, which is frequently a
fractional variable.

The initial set of integer solutions contains thus the solutions obtained from
the extreme solutions, including and excluding the item associated with the basic
variable. These (feasible or infeasible) integer solutions are located around the
boundary of the surrogate frontier, which is, by construction, near to the frontier
defined by the exact non-dominated solutions of the original problem (1).

3.2. IMPROVEMENT METHOD

In the improvement method feasibility is restored and solutions are enhanced.
Restoring feasibility in the MDKP is a very easy task, since removing an item
from the knapsack reduces the infeasibility. However, selecting the most efficient
process to restore feasibility is not so trivial. Several techniques can be found in
the literature: profit-to-weight ratio based on surrogate relaxation [3]; profit-to-
weight ratio considering the most violated constraint [15]; reduced prices based
on Lagrangian relaxation [21]; maximum profit-to-weight ratio [30]; and, penalty
functions [25, 20].

In our computational experiments the profit-to-weight ratio, considering the
most violated constraint, performed better than any of the other strategies.

The infeasible solutions from the initial set are projected into the feasible region
using that repair method considering the criteria z1 and z2 separately. The repair
method searches for the most relatively violated constraint and remove the item
with the lowest profit-to-weight ratio in that constraint, according to criteria z1

and z2. If the solution remains infeasible then the process is repeated.
The pseudo-code of the procedure is presented below.
Let x be an integer infeasible solution and k the selected criterion (k = 1, 2).

Procedure Remove_Items(x, k)
begin

� ← {i : aix − bi > 0; i = 1, . . . , m}; {Violated constraints}
while (� �= ∅) do
begin

{Search the most relatively violated constraint}
i∗ ← arg max

i∈�

{aix − bi

bi

}
;

{Search the item with the lowest ratio}
j ∗ ← arg min

j=1,...,n

{ ck
j

ai∗j

: xj = 1
}

;

xj∗ ← 0; {Remove item}
� ← {i : aix − bi > 0; i = 1, . . . , m}; {Update � }

end
end
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After obtaining a feasible solution the insertion of additional items is investi-
gated. The surrogate problem is used to identify the items that should be considered
first. Items are inserted according to non-increasing order of the profit-to-weight
ratios in the surrogate problem whenever any of the original constraints is not
violated.

The last improvement of the solution is made by trying to replace the item
last inserted by another one with a greater value on the considered criterion. The
procedure can be presented as follows:

Procedure Add_Items(x, k)
begin

Consider
ck

1

wk
1

� · · · � ck
j

wk
j

� · · · � ck
n

wk
n
; {Consider the items ordered}

last ← 0;
for (j = 1 to n) do

if (xj = 0) then
begin

xj ← 1;
if (Ax > b) then xj ← 1; else last ← j ;

end
if (last > 0) then
begin

j ∗ ← arg max
j=last+1,...,n

{
ck
j : ck

j > ck
last, xj = 0, A(x + ej − elast) � b

}
;

if (j ∗ exists) then xj∗ ← 1, xlast ← 0;
end

end

In the above procedure ej is a vector of size n with all the components equal to
zero except component j which is equal to 1.

The improvement method transforms non-integer solutions obtained with the
resolution of the continuous surrogate relaxation (5). The above procedures are
used to define the improvement method for this kind of solutions.

Let x be a solution, β be the index of the basic variable (usually fractional),
and Initial_list a list where all the obtained solutions are saved. The improvement
method is as follows,

Procedure Improvement_Method(x, β)
begin

for (k = 1 to 2) do {Number of criteria}
begin

x0 ← x;
x0

β ← 0;
Add_items(x0, k);
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x0
β ← 1;

Add_items(Remove_items(x0, k), k);
Add solutions to Initial_list;

end
end

3.3. REFERENCE SET UPDATE METHOD

The reference set update method is usually composed of solutions that incorporate
both quality and diversity features. In multiple criteria problems the attribute qual-
ity is not so obvious since there is not a unique function to evaluate the solutions.
We use the concept of efficient solution as a way to incorporate high quality solu-
tions. The diversity is incorporated with the use of the Hamming distance between
each solution and a reference solution, xref, which is considered to be the one with
the highest value on z2 (it could also be z1). This distance, d ref, is computed for all
the solutions in the set of potentially non-dominated solutions:

d ref
k = ‖xref − xk‖ =

n∑
j=1

|xref
j − xk

j |, k = 1, . . . , |X̃|. (11)

To define the reference set R with cardinality |R| the solutions in X̃ are ordered
according to non-decreasing values of d ref. A number of |R| groups with approxi-
mately the same number of solutions are constructed and from each group the mean
solution is selected.

3.4. SUBSET GENERATION METHOD

The subset generation method defines the solutions to be combined in order to
create new ones. The subsets are defined by all the pairs of consecutive solutions
from the reference set. Hence, if the reference set has cardinality |R| then |R − 1|
subsets are considered. Since there is no point in examining the same subset several
times, a Tabu_list is created, and each subset is included in it as long as that subset
is not already part of the list. In this case, it is discarded. Thus, the Tabu_list is
a record of the already examined subsets. But, due to expensive memory require-
ments to maintain vectors with n bits, we opted for saving only their image in the
criteria space, risking to lose some alternative solutions, i.e., different solutions in
the decision space with the same image in the criteria space.

3.5. SOLUTION COMBINATION METHOD

The combination method explores paths between solutions of each subset. Let
{x0, x1} be a given subset. New solutions are obtained by incorporating features
of x1 in x0 when the path x0 → x1 is considered (x0 is named the initiating
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solution, and x1 the guiding solution in the nomenclature of Glover [11]), and
by incorporating features of x0 in x1 when the reverse path is taken into account
(x0 is now the guiding solution, and x1 the initiating one).

Consider for all j = 1, . . . , n,

(sx0x1)j =


1, if x0

j = x1
j = 1,

0, if x0
j = x1

j = 0,

∗, otherwise.

The positions marked with “∗” are called the free positions in the combination of
x0 and x1, and the others are called the fixed positions.

The combination method investigates the possible change of all the free posi-
tions individually. This may imply changing some fixed positions, once feasibility
of the change will always be required. Only two items are involved in the changes.
This means that the combination method only searches for new potentially efficient
solutions around a small neighborhood of x0. This is a very important feature in
order to keep a low computational time, but it is also justified by the fact that when
many constraints are present in the problem and the residual capacity available
is small it is usually difficult that more than one item can be included in all the
knapsacks due to the variations in the coefficients of the matrix A.

When an item, corresponding to a free position, has the value 1 (0) in the
guiding solution then the combination method tries to change the value of this
item in the initiating solution by simply removing (inserting) just another item.
The criteria z1 and z2 are used separately to search for the most profitable change.
Hence, at the most, two new solutions are built.

Since the path from x0 to x1 is different of the path from x1 to x0, the solutions
are swapped and once again the above combination procedure is applied. In this
way, new regions of the decision space will be investigated, enabling the creation
of new solutions.

Finally, note that the combination method only finds improved solutions: they
are feasible and locally the best ones. That is the reason why in the BCSS method
they are not subject to improvement.

The obtained solutions are put in a list of potentially non-dominated solutions,
X̃, if they are not dominated by any of the solutions of that list. If the solution
is inserted in X̃ then all the solutions that are dominated by it are removed. This
process is named Update X̃.

The pseudo-code of the combination method is presented below.

Procedure Combination_Method(x0, x1)
begin

F 0
1 ← {

j : x0
j �= x1

j , x
0
j = 1, j = 1, . . . , n

}
; {Items to be removed}

F 0
0 ← {

j : x0
j �= x1

j , x
0
j = 0, j = 1, . . . , n

}
; {Items to be inserted}

l ← 1;
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while (l � |F 0
1 |) do

begin
j ← element l of F 0

1 ;
for (k = 1 to 2) do {Number of criteria}
begin

t∗ ← arg max
t∈{1,...,n}\F 0

1

{
ck
t : A(x0 + et − ej ) � b

}
;

if (t∗ exists) then y ← x0+ et∗ − ej , Update X̃ with y;
end
l ← l + 1;

end
l ← 1;
while (l � |F 0

0 |) do
begin

j ← element l of F 0
0 ;

for (k = 1 to 2) do {Number of criteria}
begin

t∗ ← arg max
t∈{1,...,n}\F 0

0

{
ck
t : A(x0 + et − ej ) � b

}
;

if (t∗ exists) then y ← x0+ et∗ − ej , Update X̃ with y;
end
l ← l + 1;

end
end

In the above algorithm, ej is an n-dimensional vector with component j equal
to 1 and all the others equal to 0.

3.6. THE OVERALL SCATTER SEARCH METHOD

The approach, stated in the procedure below, starts by applying the surrogate mul-
tipliers procedure. A vector of surrogate multipliers is thus obtained, and then used
to transform the multi-constraint problem into a single constraint one. Considering
the linear relaxation of the surrogate problem, the bi-criteria simplex method with
bounded variables is applied to get the efficient extreme points, through a process of
efficient pivoting [12]. In this process a weighted-sum function of the two criteria is
used (λz1+(1−λ)z2, with λ ∈ ]0, 1[). Each extreme efficient solution is associated
with a range of weights. Adjacent ranges are associated with adjacent extreme
efficient solutions. The Improvement Method is applied to each extreme efficient
solution and the found (improved) solutions are added to the Initial_list, which are
used to update the set of the potentially efficient solution, X̃. The main loop of
the procedure below is composed of the Reference Set Update Method, the Subset
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Generation Method, and the Combination Method. It is repeated till the stopping
criterion is fulfilled.

From the Reference Set Update Method, it is obtained a reference set, R, from
which several subsets are built. Then the Combination Method is applied to each
subset if it was not already analyzed.

In order to avoid the repeated analysis of the same subset, the images (in the
criteria space) of the solutions contained in it, are stored in the Tabu_list, that is
searched before the Combination Method is applied.

Procedure Overall_Scatter_Search_MDKP
begin

Initialize X̃ ← ∅, Tabu_list ← ∅, Initial_list ← ∅;
{Transform the multi-constraint problem into a single constraint one}
Apply the procedure Surrogate_Multipliers;
Use the determined multipliers to aggregate the constraints;
Build the linear relaxation of the surrogate problem and maximize z2;
Let x0 be the found optimal solution;
Let β0 the index of the basic variable in x0;
Improvement_Method(x0, β0);
Update X̃ with the Initial_list;
k ← 0;
while (xk does not optimize z1) do
begin

Generate the efficient solution adjacent to xk ;
Let xk+1 be such a solution;
Let βk+1 denote the index of the basic variable in xk+1;
Improvement_Method(xk+1, βk+1);
k ← k + 1;

end
Terminate ← false;
while (Terminate = false) do
begin

Apply the Reference_Set_Update_Method;
Let R be the reference set obtained;
Apply the Subset_Generation_Method;
Let nsub be the number of created subsets;
k ← 1;
while (k � nsub) do
begin

Let x0 and x1 be two solutions of subset k;
if (((z1(x

0), z2(x
0)), (z1(x

1), z2(x
1))) /∈ Tabu_list) then

begin
Combination_Method(x0, x1);
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Insert ((z1(x
0), z2(x

0)), (z1(x
1), z2(x

1))) in Tabu_list;
end
k ← k + 1;

end
if (Stopping Condition verified) then Terminate ← true;

end
end

In the computational experiments (Section 4) it is used a maximum number of
iterations as the stopping condition.

3.7. GRAPHICAL EXAMPLE

Let us illustrate graphically the behavior of the proposed BCSS method with an
instance of the bi-criteria MDKP with 100 items and 10 constraints. The method
starts by determining the surrogate frontier for the original problem (the line in
Figure 3). All the extreme points of that frontier (in general non-integer points) are
manipulated, giving rise to integer solutions. In the criteria space this solutions are
placed below the frontier if the critical item is removed from the solution, or are
placed above if the critical item is included in the solution (Figure 3). Using the
procedure Improvement Method (Section 3.2) the integer points are projected into
the feasible region of the original problem (Figure 4). This procedure pushes the
initial points to the interior of the convex hull of the feasible space. Through suc-
cessive iterations of BCSS new solutions are created from the initial ones. The new
solutions reduce the gap between the upper frontier and the initial points (Figure 5).
Figure 6 shows all the process.

Figure 3. Surrogate frontier and initial solutions.
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Figure 4. Improvement of the initial solutions.

Figure 5. PNDS after several iterations.

Figure 6. Integrated view.
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4. Computational Experiments and Results

This section presents the computational experiments and the results obtained with
the BCSS. The method is compared with other well-known multiple criteria meta-
heuristics proposed by Zitzler and Thiele [31] and Jaszkiewicz [16], using their
instances. Additional experiments are performed upon more complex instances.
The quality of the results is evaluated taking into account two measures: proximity
and diversity [30, 4, 2].

The computational experiments were performed on a Pentium 4 processor with
256 MB RAM and 40 GB hard disk. BCSS was implemented in Borland Delphi 4.

4.1. COMPARISON WITH OTHER META-HEURISTIC APPROACHES

Zitzler and Thiele [31] introduced a method named Strength Pareto Evolution-
ary Algorithm (SPEA). SPEA combines three techniques common to other meta-
heuristics: (1) storage of all the non-dominated individuals (solutions) in an ex-
ternal set, (2) assignment of the scalar fitness according to the concept of the
Pareto dominance, and (3) use of clustering to reduce the number of individuals
in the external set. The fitness of a population member is determined only from
the individuals in the external set. The latter is also used to select individuals for
combination. The diversity of the population is enhanced by the use of a new Pareto
based niching method.

Jaszkiewicz [16] proposed a multiple objective genetic local search algorithm
(MOGLS). The algorithm is based on the fact that all the non-dominated solu-
tions can be obtained by optimizing weighted Tchebycheff functions. Through
the iterations of the algorithm several weighted Tchebycheff functions are built
at random and the solutions (obtained by combination using a uniform crossover)
are modified in order to improve these functions. The selection is based on the
value of the solutions in the built random function. The solutions are selected from
a set composed of the best ones according to the random function.

Both SPEA and MOGLS were applied to instances with a number of items up
to 750 with 2, 3 and 4 objective functions and an equal number of constraints.
Jaszkiewicz [16] showed that the developed MOGLS performed better than the
procedures presented in Zitzler and Thiele [31], even with the SPEA.

Below are presented the results obtained with SPEA, MOGLS and BCSS using
three bi-criteria instances (available at http://www.tik.ee.ethz.ch/∼zitzler/testdata.
html) employed by Zitzler and Thiele [31] and tested by Jaszkiewicz [16]. The
results refer only to the first run of the above mentioned methods.

The BCSS runs 50 iterations of the procedure presented in Section 2 to deter-
mine the surrogate multipliers. The time spent is included is the total CPU time
presented in Table I and the number of solutions in the reference set was fixed
at 50.
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Figure 7. n = 250; m = 2.

Figure 8. n = 500; m = 2.

Figure 9. n = 750; m = 2.
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Table I. PNDS and running times

n (m = 2) SPEA MOGLS BCSS CPU (s) -BCSS

250 60 105 153 1.1

PNDS 500 37 140 295 3.63

750 41 182 404 8.02

All the solutions obtained with SPEA and MOGLS are dominated by the ones
computed with BCSS. Empirically it can also be seen that the solutions of BCSS
are well dispersed along the upper frontier.

The solutions obtained with BCSS are extremely close to the surrogate frontier,
which represent the theoretical limit of their existence. The number of potentially
non-dominated solutions is also larger giving an higher characterization of the set
of the non-dominated solutions set (Table I).

4.2. RESULTS FOR LARGE SIZE INSTANCES

The above instances are very simple because the number of items is small and
the number of constraints is only two. Large size instances are now considered.
The limit of an hour of computation was fixed. This limit of time was enough to
“solve” instances with a number of items between 1,000 and 3,000 with a number
of the constraints from 10 to 100 (for n = 1000, 2000). The coefficients are integer
numbers randomly and uniformly generated within the range [1, 100] and each
knapsack constraint capacity is 50% of the sum of their weights. For each problem
size, 15 instances were generated. For each instance, the BCSS ran 30 iterations.
The optimal surrogate multipliers were determined in 50 iterations of the procedure
presented in Section 2, and the number of solutions in the reference set was fixed
at 30.

The quality of the approximation is evaluated taking into account two features:
proximity and diversity. Considering the first feature, the L∞ metric is used to
determine the nearest point, (z∗

1, z
∗
2), in the surrogate upper frontier of each PNDS,

(z+
1 , z+

2 ). These two points are then used to derive the gradient of a weighted sum
function: f (z) = π1z1 + π2z2, with z = (z1, z2), π1 = z∗

1 − z+
1 and π2 = z∗

2 − z+
2 .

The percentage gap between points z+ and z∗ is calculated using f (z):

f (z∗) − f (z+)

f (z∗)
× 100. (12)

Diversity is evaluated based on two measures: (1) the standard deviation of the
Euclidean distances between consecutive PNDS in the criteria space, and is similar
to the proposed by Schott [24] the standard deviation of the number of solutions
per region: the surrogate upper frontier is used to divide the criteria space into
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Figure 10. CPU (s) per PNDS.

Figure 11. Applicationof BCSS to an instance with n = 2000 and m = 20.

regions. To do this, the range of criterion z1 was divided in 20 equal size intervals,
that projected into the space z1z2 give rise to 20 regions. The expected number
of solutions per region was computed and the standard deviation of the number of
solutions per region was considered. The lower this value the greater the dispersion
of the obtained solutions along the upper frontier.

Table II shows the results concerning the 165 instances. Column 1 refers to
the number of items and constraints; column 2 concerns the computational time
in seconds; column 3 shows the number of potentially non-dominated solutions;
columns 4, 5, 6 and 7 refer to the L∞ metric; column 8 presents the standard
deviation of the number of solutions per region, and column 9 is the standard
deviation of the Euclidean distance between consecutive PNDS. In order to better
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Table II. Results for large size instances

(1a) (1b) (2) (3) (4) (5) (6) (7) (8) (9)

n m CPU PNDS Average Max. Min. STD STD-C STD-D

1000 10 Average 167.06 931.93 0.8335 1.3229 0.5206 0.0015 3.63 40.06

Max 202.23 1011.00 1.2580 1.8454 0.7927 0.0030 4.29 51.48

Min 150.28 894.00 0.4484 0.8559 0.2066 0.0006 2.97 25.76

STD 14.82 33.39 0.2222 0.2895 0.1563 0.0005 0.32 5.91

20 Average 242.44 1033.07 1.2710 1.8202 0.9445 0.0019 3.86 38.12

Max 260.79 1111.00 1.7257 2.2639 1.3698 0.0034 4.64 51.24

Min 214.93 932.00 0.7616 1.4641 0.5042 0.0010 3.37 29.02

STD 13.32 49.04 0.2849 0.2075 0.2835 0.0006 0.32 5.59

30 Average 304.58 1163.73 1.6818 2.2547 1.3067 0.0021 4.06 33.00

Max 339.50 1289.00 1.9985 2.8797 1.6717 0.0047 4.64 41.52

Min 280.45 1098.00 1.3889 1.9099 0.9285 0.0010 3.36 21.64

STD 15.03 55.91 0.1963 0.2972 0.2242 0.0011 0.36 5.78

50 Average 468.19 1300.87 2.0030 2.4987 1.6063 0.0019 4.23 28.66

Max 545.69 1420.00 2.4149 2.9557 1.9769 0.0023 4.78 39.85

Min 433.09 1165.00 1.8100 2.1639 1.3393 0.0013 3.94 20.19

STD 33.67 74.71 0.1443 0.2126 0.1522 0.0004 0.26 5.84

100 Average 819.74 1422.67 2.5125 2.9744 2.1349 0.0016 4.36 28.93

Max 916.46 1605.00 2.8910 3.3407 2.4587 0.0029 5.16 41.57

Min 734.95 1282.00 2.1762 2.5500 1.9341 0.0008 3.56 23.15

STD 51.36 86.67 0.2004 0.2508 0.1458 0.0006 0.46 5.66

2000 10 Average 567.02 1536.00 0.6488 1.0253 0.3529 0.0022 4.68 55.07

Max 639.06 1667.00 1.0293 1.4752 0.6591 0.0130 5.18 73.31

Min 517.40 1234.00 0.4115 0.6745 0.1922 0.0007 4.07 41.45

STD 32.51 109.62 0.1673 0.1771 0.1218 0.0029 0.25 8.01

20 Average 870.51 1762.20 1.0719 1.4989 0.7213 0.0017 4.77 48.44

Max 946.81 1885.00 1.3278 1.7572 0.9566 0.0032 5.47 60.51

Min 735.40 1630.00 0.8412 1.0483 0.4835 0.0009 3.49 38.01

STD 53.00 64.09 0.1556 0.1885 0.1364 0.0006 0.44 5.43

30 Average 1108.44 1970.87 1.2209 1.6759 0.8928 0.0017 5.14 44.34

Max 1369.13 2146.00 1.7023 2.5905 1.0973 0.0041 5.73 55.16

Min 967.29 1753.00 1.0386 1.4058 0.6505 0.0008 4.45 36.07

STD 100.16 101.79 0.1774 0.2915 0.1114 0.0008 0.37 5.06



A SCATTER SEARCH METHOD FOR BI-CRITERIA KNAPSACK PROBLEM 205

Table II. (Continued)

(1a) (1b) (2) (3) (4) (5) (6) (7) (8) (9)

n m CPU PNDS Average Max. Min. STD STD-C STD-D

50 Average 1796.97 2283.00 1.5407 1.9478 1.2680 0.0014 5.50 38.27

Max 2173.62 2487.00 1.7340 2.5385 1.4740 0.0038 6.24 45.80

Min 1542.31 2147.00 1.2199 1.6880 1.0170 0.0008 4.47 32.29

STD 166.52 90.05 0.1390 0.1944 0.1381 0.0007 0.41 3.52

100 Average 3110.64 2649.79 1.7660 2.1329 1.4918 0.0013 6.18 34.96

Max 3395.82 2883.00 1.9974 2.5412 1.6809 0.0020 7.09 42.83

Min 2749.45 2441.00 1.5075 1.7533 1.3270 0.0008 5.33 25.25

STD 205.27 130.01 0.1424 0.2246 0.1113 0.0004 0.46 5.07

3000 10 Average 3113.83 2182.73 0.5421 0.8846 0.2841 0.0012 5.46 64.82

Max 3580.70 2404.00 0.7524 1.2123 0.5140 0.0021 6.34 80.75

Min 1944.80 1896.00 0.2568 0.6258 0.1011 0.0009 4.43 51.13

STD 450.13 160.99 0.1341 0.1506 0.1090 0.0004 0.47 10.10

understand the results, see for instance the meaning of the value 1.3229 (first line,
fifth column). It means the average (concerning 15 instances) of the maximal L∞
distances.

Results show that the average percentage gap is less than 2.6% (column 4),
which is quite satisfactory attending to the fact that the comparisons are made
with the surrogate upper frontier which is above the one derived from the linear
relaxation. The percentage gap tends to raise, for a given number of items, with
the increase of the number of the constraints. This is because the surrogate up-
per frontier is less tight. Given a number of constraints an inverse relationship is
observed between the percentage gap and the number of items. Concerning di-
versity, the solutions are well dispersed along the criteria space (column 8) and
the standard deviation of the Euclidean distance between consecutive solutions
is also small (column 9). The average CPU time is an increasing function with
the number of constraints and items (column 2). A more interesting observation
concerns the computational time required for determining each PNDS. Figure 10
shows that it is almost a linear function of the number of constraints, and the rate of
its increase is higher in instances with a greater number of items. This is essentially
due to the greater number of comparisons required by the BCSS, particularly in the
procedures for recovering the feasibility and in the improvement of the solutions.

The number of PNDS generated by the BCSS increases with the number of
constraints, for a given number of items (Table II). This is mainly justified by the
design of the combination method, which explores the dissimilarity of the solu-
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tions in the decision space. So, as an higher number of constraints induces more
dissimilar solutions, the combination method generates more solutions, increasing
the probability of obtaining an higher number of PNDS.

Figure 11 presents an example of the result of the application of BCSS method
to an instance with 20 constraints and 2,000 items. This figure illustrates the prox-
imity of the surrogate upper frontier and the set of the potentially non-dominated
solutions.

5. Conclusions and Future Research

In this paper we proposed a scatter search based method to deal with the bi-criteria
MDKP. In the diversification component the surrogate relaxation was used to con-
vert the multi-constraint problem into a single constraint one. This is a new aspect
in the context of other meta-heuristics applied to the multiple criteria MDKP. The
critical part was the determination of the surrogate multipliers which reflect the
correct combination of all the constraint resources of the problem. This is asso-
ciated with a non-trivial problem. A subgradient-like procedure was developed to
solve it. The BCSS method was organized according to the basic structure of the
scatter search method. Specific procedures were built for each component, but a
great influence can be identified from our previous work with the single constraint
knapsack [13].

Comparisons with the MOGLS and SPEA meta-heuristics were made using the
same instances. The BCSS showed to be superior since all the solutions dominate
the ones obtained with the MOGLS and SPEA. Motivated by the results of the
comparison, the BCSS was also tested in more complex instances. The results
proved to be of high quality concerning proximity and diversity. We believe that
the quality of the initial solutions was determinant in this result.

Nevertheless, several aspects can be improved: (1) the procedure for deter-
mining the surrogate multipliers was based on the minimization of the sum of
the maximum values of each criterion. An alternative objective function could be
developed. Additional experiments with a flexible stopping criterion may also be
interesting; (2) the combination method uses a very strong structure for searching
for new solutions. This is particularly adequate to keep the computational time
low, but several interesting solutions were, for this reason, not determined. In this
sense, a broader scope of the search in the combination of solutions can also be
considered.
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