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Abstract Although iron is essential in maintaining the

function of the central nervous system, it is a potent source

of reactive oxygen species. Excessive iron accumulation

occurs in many neurodegenerative diseases including

Alzheimer disease (AD), Parkinson’s disease, and Creutz-

feldt-Jakob disease, raising the possibility that oxidative

stress is intimately involved in the neurodegenerative

process. AD in particular is associated with accumulation

of numerous markers of oxidative stress; moreover,

oxidative stress has been shown to precede hallmark

neuropathological lesions early in the disease process, and

such lesions, once present, further accumulate iron, among

other markers of oxidative stress. In this review, we discuss

the role of iron in the progression of AD.
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Introduction

As the incidence of Alzheimer disease (AD) continues to

grow exponentially, progress in treating this disease con-

tinues to stagnate. Indeed, the leading effective therapy

available today targets cholinergic deficits, i.e., the result of

the disease process rather than the cause [1]. It is therefore

not surprising that therapy provides some symptomatic

relief only, and fails to alter the progression of the disease

or outcome. This overall paucity of treatment options has

provided impetus for potential treatment based on more

fundamental pathogenic concepts (e.g., amyloid cascade

hypothesis). Such approaches can be considered ‘‘lesion-

centered’’ as they have as their foundation a specific

hallmark lesion of AD (e.g., the senile plaque). The prob-

lem with the lesion-centered approach is that the hallmark

lesions of AD also occur in ‘‘normal aging,’’ and from the

standpoint of the neuropathology of AD, such lesions are

more likely a consequence of the disease process rather

than a cause [2]. Therefore, not surprisingly, progress in

AD treatment based on lesion-centered hypotheses con-

tinues in a Brownian-like motion. A fundamental reorga-

nization of the concepts related to etiology, pathogenesis,

and treatment of AD seems warranted (e.g., [3]). In

this review, we discuss the role of iron in AD pathogenesis

as a potential therapeutic target. The relevance of iron

in AD pathogenesis is suggested by data showing that: (1)
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iron is associated with oxidative stress and neurotoxicity;

(2) iron accumulation and oxidative stress precede

AD-associated lesions; and (3) iron is more readily

treatable. We will outline the role of iron in cellular

metabolism and neurodegenerative disease, and hopefully

provide a stimulus to generate new ideas and new ap-

proaches for treating this devastating condition.

Iron uptake, transport, and interaction with oxidative

products

Much like oxygen, iron is both an essential element for

cellular metabolism, and a source of cytotoxicity when

metabolism is dysfunctional. Indeed, excessive iron depo-

sition is observed in the central nervous system (CNS) in a

number of neurodegenerative diseases [4–6]. Iron uptake in

the brain is tightly controlled by transferrin receptor in the

endothelial cells and choroid plexus cells [7], or lactoferrin

receptor on neurons [8, 9]. For the export of iron from

neurons or non-neuronal cells, a brain-specific ceruloplas-

min is suggested to play a role [10, 11]. The importance of

ceruloplasmin in brain iron metabolism is highlighted by

the extreme accumulations of iron in patients with hered-

itary aceruloplasminemia (R. J. Castellani, G. Perry, and

M. A. Smith, unpublished observations).

The CNS uses its own transferrin whose expression is

regulated by a CNS specific promoter [12, 13]. Regarding

iron storage, ferritin binds and stores intracellular iron in

most CNS cells, keeping it in a redox-inactive state [14]. In

the pars compacta region of the substantia nigra, neuro-

melanin is known to play a part in iron storage [15]. To

maintain iron homeostasis, iron regulatory protein-1 and -2

(IRP1 and IRP2) regulate the expression of ferritin and

transferrin receptor post-transcriptionally through iron re-

sponse element (IRE) [16]. Iron is involved in various

cellular metabolisms, in particular, mitochondrial iron is

incorporated into heme and cytochromes [17]. For the

regulation of heme metabolism, heme oxygenase plays an

important role in the CNS [18, 19].

During the reduction of molecular oxygen, mitochondria

produce superoxide (O2
�–). Enzymatic dismutation by

superoxide dismutase (SOD) in turn yields hydrogen per-

oxide (H2O2). Although O2
�– and H2O2 by themselves are

relatively non-toxic, H2O2, which is freely permeable in

tissues, may lead to the production of the highly toxic

hydroxyl radical (�OH) through a metal ion-catalyzed

Fenton reaction. This reaction is referred to as the super-

oxide-driven Fenton reaction or iron-catalyzed Haber-

Weiss reaction. Superoxide may also produce H2O2 non-

enzymatically. In its normal metabolic state, superoxide

favors the oxidation of Fe2+ to Fe3+. However, if the

intracellular concentration of superoxide is elevated, the

reaction favors the reduction of Fe3+ to Fe2+ and elabora-

tion of hydroxyl radicals.

In light of the high levels of oxygen consumption in the

CNS, the generation of a high level of reactive oxygen

species (ROS) is expected, as well as anti-oxidant defenses

commensurate with the free radical production. Under

normal situations, oxidative balance is maintained and free

radicals are detoxified. In disease, various modifications of

macromolecules such as sugars, lipids, proteins, and nu-

cleic acids, come into play, and it is now well established

that neurodegenerative diseases are associated with oxi-

dative imbalance and its sequelae. In the case of AD, many

lines of evidence now indicate that ROS induced by redox-

active metals including iron play a pivotal role in pathogenesis

[20–29]. In the following sections, we will discuss the sug-

gested mechanisms of iron in the neuropathology of AD.

Iron deposition and senile plaques

Iron accumulation in AD has been shown to be particularly

abundant in brain regions vulnerable to AD, including the

hippocampal formation and association cerebral cortices

[25]. At the microscopic level, it has been demonstrated to

accumulate in senile plaques in AD [30]. Further, increases

in iron accumulation and oxidative stress in AD brains are

related with changes in the concentration of soluble and

deposited amyloid-b protein. Experimentally, such meta-

bolic stresses including hypoglycemia, ischemia, and trau-

matic brain injury all augment amyloid-b protein precursor

formation and/or its mRNA [31–36]. Likewise, suppression

of mitochondrial energy metabolism alters the processing of

amyloid-b protein precursor to produce amyloidogenic

derivatives [37, 38] such that several studies have shown

that oxidative stress increases the production of amyloid-b
[39–41], and that H2O2 affects increased intracellular [39,

42] and secreted amyloid-b in neuronal cell lines [40]. On

the other hand, amyloid-b itself has been suggested to have

an ability to generate ROS, driving a potential positive

feedback loop whereby increased generation of ROS gen-

erates increased amyloid-b, and vice versa.

The three histidine residues of amyloid-b at position 6,

13, and 14 and one tyrosine residue at position 10, all

located in the hydrophilic N-terminal part of the peptide

[43, 44], behave as iron binding sites. The iron bound to

these sites has been shown to generate H2O2 by the Fenton

reaction [45–47]. Not only production of ROS but also

binding of iron to these residues induces amyloid-b
aggregation. Substitution of the histidine residue signifi-

cantly decreases the aggregation by Fe3+ [44]. Whether or

not the aggregation of amyloid-b and formation of senile

plaques is important in neurotoxicity [23, 26, 48–50], it

appears likely that extracellular iron is a major source of
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free radicals in the oxidatively damaged brain and that any

deleterious effects of amyloid-b are mediated by adventi-

tiously bound iron [51]. Notably, the redox potential of iron

is significantly attenuated by amyloid-b suggesting a neu-

roprotective chelating role for amyloid-b in disease path-

ogenesis [51, 52].

Besides the suggested direct involvement of iron, plaque

formation also induces an activation of microglia or reac-

tive astrocytes [53]. Activation of microglia and macro-

phages synthesize and secrete various cytokines such as

interleukin (IL)-1, IL-6, and IL-8. Chronic production of

these cytokines consequently causes activation of macro-

phages that produce large amounts of ROS [54]. Activated

microglia also release iron from ferritin in a superoxide

dependent fashion and result in lipid oxidation in vivo [55].

In fact, elevated levels of IL-1 and IL-6 in AD brain have

been reported [56]. Whether such microglial activation,

like amyloid-b activation [51], is mediated by iron is un-

clear.

Iron in neurofibrillary tangles

Neurofibrillary tangles (NFT) are another hallmark lesion

of AD and, interestingly, are another site of iron accumu-

lation. The presence of redox metals in NFT has been

shown to induce oxidative stress via H2O2 [57]. Although

NFT possibly act as a redox center, we previously dem-

onstrated that neurons, which lack NFT also contain oxi-

dative modifications [21], suggesting that oxidative stress

precedes the formation of NFT.

Among the macromolecules modified by ROS, RNA is

suggested as an early target of oxidative damage in AD

brain [26]. Using 8-hydroxyguanosine (8OHG) as a marker

of nucleic acid oxidation, oxidative damage can be found

within the neuronal perikaryal cytoplasm. Moreover,

8OHG essentially disappears after treatment with RNase.

Since 8OHG is formed by an attack of the hydroxyl radical,

and cannot permeate through the plasma membrane, 8OHG

must be produced within the cytoplasm in the vicinity of

RNA. It is possible, therefore, that transition metals such as

iron play a pivotal role in oxidation of RNA. In fact, studies

show RNA oxidization is increased in AD brain [58] and

subsequent protein translation is impaired [59].

Among the unanswered questions pertaining to the

role of iron in neurodegenerative disease is the precise

source of redox-active iron. Although mitochondria

possess various iron containing functional molecules,

such as heme, cytochrome, and aconitase, little 8OHG is

accumulated. On the other hand in situ hybridization and

ultrastructural observations reveal that mitochondrial

abnormalities exist in AD brain and many abnormal

mitochondria are targeted to lysosomes [60]. Since

lysosomes also accumulate iron, mitochondrial turnover

and lysosomal activity are a potential metabolic source of

iron within damaged cells.

Iron-containing compounds related to Alzheimer

disease

In spite of the importance of dysregulation of iron

homeostasis in AD and other neurodegenerative diseases,

relatively little is known about the resulting forms of iron,

which accumulate in the brain. Recently, studies have be-

gun to address this issue by using techniques such as

synchrotron X-ray absorption spectroscopy (XAS), elec-

tron tomographic imaging, and superconducting quantum

interference device (SQUID) magnetometry to character-

ize, locate and quantify specific iron compounds related to

AD, PD, and other neurodegenerative diseases.

The development of XAS as a technique for analyzing

and mapping iron and other metals related to tissue struc-

tures in avian brain tissue was first reported in 2005 [61].

Later that same year, Collingwood et al. [62, 63] demon-

strated the application of this technique to AD tissue sec-

tions. This work provided the first map of iron distribution

in AD tissue in which specific iron anomalies (areas of high

iron concentration) were not only located but characterized

with 5 lm spatial resolution. It was clear from this work

that the ‘‘normal’’ biological iron oxides, such as ferrihy-

drite and goethite-like hemosiderin, were not the only iron

compounds responsible for these anomalies. Biogenic

magnetite (a ferrimagnetic iron oxide—Fe3O4—which

contains both Fe2+ and Fe3+) was the primary component of

many of the regions of high iron concentration.

Biogenic magnetite has been reported in human brain

tissue from studies dating back to 1992 and is present as an

iron biomineral in many species [64–66]. However, in a

recent SQUID magnetometry study, Hautot et al. [67]

reported elevated levels of biogenic magnetite in female

AD subjects compared to both male and female controls.

The significance of these findings is that magnetite pro-

vides a potential source of ferrous iron, which is available

for oxidation and participation in Fenton chemistry (the

oxidation product of magnetite, maghemite—cFe2O3, has

also been found in AD tissue) and may potentiate free

radical formation in AD tissue via triplet state stabilization

[68–71].

These studies are beginning to highlight the importance

of understanding the specific biochemical pathways asso-

ciated with neurodegenerative diseases and the resulting

iron compounds, which are formed. This is particularly

important for the potential development of metal chelators

as therapeutic agents [72, 73] and this information may

also be exploited for non-invasive early detection of MRI
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based on the effects of magnetic iron compounds on proton

relaxation rates as suggested several years ago [68, 74, 75].

Treatment potential

To date, treatment of AD with chelating agents such as

desferroxamine and clioquinol, a Cu2+ chelator, has been

met with limited success [76, 77]. The reasons for this may

be multifactorial. First, brain penetrant chelators are

essential [78]. Second, as oxidative injury begins at a rel-

atively early stage in disease, removal of iron by chelation

therapy years later may simply be a case of too little too

late. Early intervention is critical since the effects of oxi-

dative stress are both cumulative and on-going. Moreover,

iron is not the only source of free radicals within the brain.

Other heavy metals (e.g., Cu, Hg, and Pb), reactive nitro-

gen species, soluble mediators of inflammation, among

other sources, may also play a role. In this respect, a

multifaceted approach to treatment that targets early

events, prior to the onset of neuropathology, makes more

mechanistic sense. Targeting end-stage lesions likewise

appears all the more naı̈ve as understanding of AD and its

relationship with the aging process continues to improve

[48, 50, 79, 80].

Conclusion

There is no doubt that oxidative stress plays a pivotal role

in pathophysiology of AD and in regards to ROS genera-

tion, iron would be a key molecule responsible for the

formation of highly reactive hydroxyl radical. Both extra-

cellular and intracellular events related to ROS generation

have a great impact on the fate of neurons. Suggested by

the successful reports of metal chelation therapy for

improving neuronal function and cell viability, redox-ac-

tive iron is an attractive target for treatment of neurode-

generative disease [81, 82]. Further investigation of iron

will more clearly define the role of this redox-active ele-

ment in the pathophysiology of AD.
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