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ABSTRACT. Objectives. The prediction of protein structure and
the precise understanding of protein folding and unfolding pro-
cesses remains one of the greatest challenges in structural biology
and bioinformatics. Computer simulations based on molecular
dynamics (MD) are at the forefront of the effort to gain a deeper
understanding of these complex processes. Currently, these MD
simulations are usually on the order of tens of nanoseconds, gen-
erate a large amount of conformational data and are computation-
ally expensive. More and more groups run such simulations and
generate a myriad of data, which raises new challenges in man-
aging and analyzing these data. Because the vast range of proteins
researchers want to study and simulate, the computational effort
needed to generate data, the large data volumes involved, and the
different types of analyses scientists need to perform, it is desirable
to provide a public repository allowing researchers to pool and
share protein unfolding data. Methods. To adequately organize,
manage, and analyze the data generated by unfolding simulation
studies, we designed a data warehouse system that is embedded
in a grid environment to facilitate the seamless sharing of avail-
able computer resources and thus enable many groups to share
complex molecular dynamics simulations on a more regular basis.
Results. To gain insight into the conformational fluctuations and
stability of the monomeric forms of the amyloidogenic protein
transthyretin (TTR), molecular dynamics unfolding simulations
of the monomer of human TTR have been conducted. Trajec-
tory data and meta-data of the wild-type (WT) protein and the
highly amyloidogenic variant L55P-TTR represent the test case
for the data warehouse. Conclusions. Web and grid services,
especially pre-defined data mining services that can run on or
‘near’ the data repository of the data warehouse, are likely to play
a pivotal role in the analysis of molecular dynamics unfolding
data.

KEY WORDS. data warehousing, grid, molecular dynamics simula-
tion, data mining, protein unfolding, transthyretin.

1. INTRODUCTION

Probing ever deeper into living nature and devising in-
creasingly intricate artifacts, most endeavors in modern life
science and biotechnology are driven by the generation
and analysis of large and complex-structured data sets. Be-
sides the ever-growing mountain of information, more and
more life science investigations focus on holistic modeling
and understanding of entire life systems. Systems life sci-
ence or systems biology distinguishes itself from a more
traditional approach to biological research by an attempt
to view collections of interacting entities as a whole that is
as a system, rather than on studying individual interactions
in isolation. What exactly constitutes a system (collection
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of interacting entities) needs to be defined on a case-by-
case basis. Commonly, a system refers to a complex multi-
cellular ensemble, an intra-cellular network of chemical
reactions, collections of interacting proteins, networks of
mutually regulating genes, or control and signaling path-
way networks. In this paper we deviate somewhat from
the conventional notion of systems biology and chose to
view individual proteins as systems, with their constituent
amino acid residues as system components. In this view the
collective and dynamic interactions of the protein’s amino
acid residues lead to the formation of the native structure
of the protein. This leads to the well-known folding prob-
lem. Protein folding and unfolding has been at the center
stage in molecular biophysics in recent years due to their
involvement in issues so diverse as amyloid diseases and
protein structure prediction.

As a result of genomic projects already concluded or un-
der way worldwide, the amount of genome sequence data
has recently been growing exponentially. The inability of
experimental high-resolution techniques such as X-ray crys-
tallography or nuclear magnetic resonance (NMR) to keep up
with this explosion of new sequences and required resolu-
tion of corresponding three-dimensional protein structures
stresses the need of reliable modeling methods for pro-
tein structure prediction. Although significant progress has
been made in predicting protein structures among mem-
bers of the same structural family, much remains to be
done in structure prediction for proteins sharing low ho-
mology with known structures, or for new protein topolo-
gies. Some recent efforts using simplified lattice models have
been successful in predicting kinetic aspects of the protein
folding process, but require the prior knowledge of the
native protein structure [1]. Another approach attempts to
predict protein structure from basic physical-chemical in-
teractions by using molecular dynamics (MD) simulations. In
MD simulation studies of proteins, the time-dependent be-
havior of the molecular system is obtained by integrating
Newton’s equations of motion (classical mechanics) and
the potential energy function (a.k.a. force fields). The re-
sult of the simulation is a time series of conformations; this
is called a trajectory or the path followed by each atom in
accordance with Newton’s laws of motion. MD simula-
tions of protein folding have been successfully performed
for small proteins (less than 50 amino acid residues) and
require considerable computer resources [2, 3]. Thus, ap-
proaches that somehow reduce the computational burden
but are still based on basic physical-chemical interactions
are particularly interesting to explore in the area of protein
structure prediction. In addition, grid computing can play
its role by facilitating the seamless sharing of available com-
puter resources and thus enable many groups to perform
complex MD simulations on a more regular basis. Several

groups are already exploring this technology in this context
[4–6].

The data generated in MD simulations is massive. For
example, to record the coordinates of the Cα atoms of a
protein with 127 residues over 8,000 time frames (repre-
senting 8 ns) for a single simulation run is 32 MB (stor-
age in a flat ASCII text file). Given 5-15 heavy atoms per
residue, the data volume capturing the coordinates of all
involved atoms is in the order of 300 MB. This data vol-
ume requires adequate management by means of database
technology. Sharing such data and facilitating their analysis
among globally dispersed research groups is a considerable
challenge. This work is part of a more comprehensive ef-
fort to create a repository for MD unfolding simulation
data of biological macromolecules. Eventually, this reposi-
tory should serve interested research groups worldwide by
facilitating the pooling and analysis of related MD unfold-
ing data. Another aspect of the overall project is to develop
suitable data mining techniques to analyze large sets of un-
folding data. Because different types of data mining require
the data to be formatted or pre-processed in different ways,
data warehousing is adopted as a methodology to imple-
ment the shared repository. Key for the data warehouse
and the data mining is to implement some of the most
common analysis methods as part of the repositories. This
is needed because the expected data volumes will be too
high to transfer large subsets of the full trajectory data to
remote sites. This project explores grid as a technology
to meet the requirements arising from the MD unfolding
simulation data management, warehousing, and mining.

2. METHODS AND RESULTS

The goal of organizing and managing data on a shared,
grid-enabled data warehouse is to gain insight into the
structure, stability, and other properties of the underlying
proteins. To achieve this goal the data will need to be ana-
lyzed by different data mining techniques. In the following
subsections we describe the underlying experimental setup
and the data mining objectives.

2.1. Experimental setup

In order to gain insight into the conformational fluctuations
and stability of the monomeric forms of the amyloidogenic
protein transthyretin (TTR), Rodrigues and Brito [7, 19]
have conducted molecular dynamics (MD) unfolding sim-
ulations of the monomer of human TTR. The starting
point for the simulations were the X-ray coordinates of
the wild-type (WT) protein and the highly amyloidogenic
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variant L55P-TTR (with a Proline replacing a Leucine in
position 55). Among the numerous pathogenic variants,
L55P-TTR is the most amyloidogenic, and V30M-TTR
is one of the most prevalent [8].

Water molecules and NaCl ions were added to the pro-
tein to produce a system of more than 45,000 atoms. All
MD procedures were performed with the program NAMD
[9]. Several 8 to 10 ns MD trajectories were run for each
one of the WT- and L55P-TTR monomers. Protein un-
folding was induced by high temperature, running the sim-
ulations at 500 K [3, 7, 19]. The simulations were per-
formed using Charm27 as the force field with all atoms
explicitly represented. The molecular systems were first
equilibrated at 500 K with 50 ps of Langevin dynamics at
constant pressure and with protein movements restrained,
followed by 20 ps of free classical MD at constant vol-
ume. The production runs were started at this point and
coordinates for the whole system were saved every 1 ps.
The integration time step was 2 fs, which means that every
500 steps (2 fs × 500 = 1,000 fs = 1 ps) the data were
recorded.

Hydrogen-heavy atom bond lengths were constrained
with the SHAKE algorithm. The simulations were car-
ried out using periodic boundary conditions. Long-range
electrostatic interactions were computed at every step us-
ing the Particle Mesh Ewald method. The only difference
in the setup of each run resides in the assignment of ini-
tial atomic velocities. Figure 1A shows a schematic view
of the WT-TTR subunit; Figure 1B depicts the all-atom
representation of the molecule in the simulation system.

Fig. 1. (A) Schematic representation of the WT-TTR subunit showing the β-sandwich topology and the identification of the β-strands. (B) All-atom
representation of the solvated L55P-TTR system used in the MD simulations, comprising a total of 44,394 atoms. Water molecules are displayed as grey V
shapes, Na+ and Cl− ions as grey spheres, protein heavy atoms (C, N, O, S) as black spheres and protein H atoms as white spheres.

2.2. Experimental results

From the data generated by the simulation process, two
types of protein properties can be derived:

• Local molecular properties, referring to the 127 individual
amino acids (residues), and

• Global molecular properties, referring to the conforma-
tional state of the protein.

2.2.1. Local molecular properties

Both mutant and WT proteins are comprised by 127
residues, consisting of 5 to 15 heavy atoms each. For each
atom, the xyz-coordinates are recorded for tens of thou-
sands of time frames representing tens of nanoseconds. To
address some questions such as the general fold of the pro-
tein backbone, the coordinates of the Cα atoms may be
sufficient. By comparing for example the trajectories of
the Cα atoms of some residues in the WT and mutant
proteins, we observe different behaviors. But local prop-
erties may also be studied using full atom representations.
For example, analysis of the relative solvent accessible sur-
face area (SASA) of individual residues reveals patterns of
similar behavior among some of these residues, allowing
the definition of classes or groups of residues [3]. Using
data mining techniques, the objective is to discover more
complex patterns of local properties across the simulation
time frame.
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2.2.2. Global molecular properties

A very important global property of the protein in the un-
folding process is the loss of native contacts as a function of
time. A native contact may be defined as an inter-atomic
distance smaller than a threshold, for example 4.2 Å, be-
tween two non-adjacent amino acid residues observed in
the protein’s native state. The absolute number of native
contacts is expected to decrease over time. By plotting the
loss of native contacts over time we can observe different
patterns between the WT and mutant proteins. Figure 2
shows the number of native contacts in (A) the WT and
(B) the mutant as a function of time for two simulation
runs (both at 500 K).

The root mean square deviation (RMSD) is the most
commonly used similarity measure for protein structures
and may be used as a measure for the progression of the
unfolding process. Let ra i and rb i be the coordinate vector

Fig. 2. Loss of native contacts as a function of time in (A) the WT and (B) the mutant (for two simulation runs each, at 500 K).

Fig. 3. Root mean square deviation from the initial structure as a function of time in (A) the WT and (B) the mutant (for two simulation runs each, at
500 K).

of atom i of structure a and structure b , and let n be the
total number of atoms per structure. The root mean square
deviation between the two structures is then defined as
follows.

RMSD =
√
√
√
√

1
n

n∑

i=1

(ra i − rb i )2 (1)

Loosely speaking, the larger the RMSD, the more the pro-
tein structure deviates from its initial stage. By plotting var-
ious RMSD profiles, we observe, for example, that L55P-
TTR shows slightly larger RMSD values than WT-TTR
and, in general, deviates from the crystal structure earlier
in the simulation. While the final RMSD value for several
L55P-TTR runs are of comparable magnitude, the final
RMSD values for WT-TTR show a greater diversity (see
Figure 3A and B).
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Fig. 4. Solvent accessible surface area of the non-polar residues as a function of time in (A) the WT and (B) the mutant (for two simulation runs each, at
500 K).

The solvent accessible surface area (SASA) is calculated as
the protein surface accessible to a spherical probe of 1.4 Å
in radius. The global SASA of the protein is expected to
increase as protein unfolding progresses and less compact
conformational states are reached. Additionally, local SASA
(the relative solvent accessible surface area for each amino
acid residue) is also a very interesting property to explore
because it may reveal patterns of coordinated movements
of different classes of amino acids). The global SASA may
even be decomposed into the SASA of polar and non-
polar residues. The following figure depicts the SASA of
the non-polar residues as a function of time for the WT
and the mutant protein for two simulation runs.

In the mutant, the SASA of the non-polar residues in-
creases faster than the corresponding SASA in the WT.
Loosely speaking, this implies that in the mutant, the
unfolding process exposes more non-polar residues more
quickly to the solvent than in the WT. In contrast, the
SASA of the polar residues seems to be comparable in both
the WT and the mutant.

2.3. Scientific questions and data mining tasks

As illustrated above and in more detail by Brito et al. [3],
some of the data generated by MD unfolding simulations
may be interpreted using simple visualization techniques.
However, this method has severe limitations (a) once large
data volumes need to be analyzed, and (b) in terms of pro-
ducing quantitative results. Therefore, the aim is to develop
data mining methods that are geared towards the require-
ments arising from MD unfolding simulations. Essentially,
the analytical tasks that need to be tackled are (1) pattern
detection, (2) clustering, and (3) classification. These are illus-
trated below on the basis of the thermally-induced protein
unfolding simulations of transthyretin.

2.3.1. Pattern detection

A local pattern is an unexpected event in a single time series
(e.g., the trajectory of a single residue). It may be defined as
an event with a statistically significant ‘surprise’, expressed
in terms of the reciprocal of the likelihood, for instance.
For example, a sharp peak in a time series might be a local
pattern.

A global pattern is a property that is characteristic for the
time series of a number of simulation runs of the same pro-
tein. In the unfolding simulations mentioned above, sev-
eral runs were carried out for the wild-type (WT) and
mutant transthyretin. For example, the time series of the
global SASA of the WT might exhibit a specific charac-
teristic/property (e.g., upwards trend), which can be con-
sidered a global pattern of the time series of the WT. In
contrast to the local pattern, the global pattern might not
necessarily need to be statistically significant. The global
pattern refers to a property that the time series of a protein
share. For example, the relative slow upwards trend of the
global SASA of the WT is observed in all time series of the
WT, which hence can be considered a global pattern.

2.3.2. Clustering

Generally, ‘unsupervised’ grouping or clustering is a form of
learning from observations that have not been pre-classified
(by a supervisor). The goal is to determine similarities or
associations among the set of observed entities, E, and group
them into n groups or clusters, C ⊂ E, such that the entities
in one group are similar to one another and dissimilar from
entities in any other group. In contrast to classification (see
below), clustering seeks a convenient and valid organization
of data and not to establish rules for separating future data
into categories [10].



312 Journal of Clinical Monitoring and Computing Vol 19 Nos 4–5 2005

Here it is interesting to investigate groups of local and
global properties derived from the unfolding trajectories
of a set of MD simulations. For example, it is possible to
identify collections of residues ‘moving’ in an orchestrated
way within a single simulation run. These may be residues
that are close or far apart in the sequential structure of the
protein. It is also of potential interest to detect outliers,
i.e. residue trajectories within a single run that are com-
pletely different to those of most other trajectories. Sim-
ilarly, groupings of trajectories of global properties across
different experimental conditions (e.g., wild-type versus
mutant, normal versus disease) may be of interest. Again,
given large amounts of simulations, properties and con-
ditions investigated, and the temporal nature of the data
involved will make it necessary to employ automated meth-
ods for discovery of such groupings.

2.3.3. Classification

Classification is a form of learning from pre-classified exam-
ples or entities. Generally, given a collection of entities, E,
and a set of pre-defined classes, C, classification refers to the
process of approximating an unknown target function, φ:
E × C → {true, false} (describing how the entities ought
to be classified) by means of an estimated function, f : E ×
C → {true, false}, called the classifier. If, for x = (e , c ) ∈
E × C, the function φ(x) = true then e is called a posi-
tive example of c , and if φ (x) = false then e is a negative
example of c .

In this application, classification is useful, for example, to
relate local and global protein unfolding trajectory features
and characteristics among different mutant proteins and
disease states (e.g. disease, no disease). Exploring the data
in this way will eventually lead to insights into the critical
features of the unfolding process and thus provide hints on
the underlying biochemical mechanisms.

2.4. Data warehousing of molecular dynamics
unfolding simulation data

Running protein unfolding simulations is computationally
expensive and finding ways to enhance performance is a
grid issue on its own [11]. It is expected that more and
more groups will run such simulations and generate a huge
amount of data, which raises new challenges in manag-
ing and analyzing these data [3]. Because the vast range
of proteins researchers wish to simulate, the computational
effort needed to generate data, the large data volumes and
the different types of analyses scientists need to perform,
it is desirable to provide (a) a public repository allowing
researchers to pool and share protein unfolding data, (b)

cached computations, in particular typical pre-processing
of the data, (c) commonly used analyses as web or grid ser-
vice. This leads to the notion of a grid-enabled data warehouse
for molecular dynamics protein unfolding simulation data. Below
we discuss the details of this approach.

2.4.1. Systems requirements

To address the information needs of the molecular dynam-
ics community, the overall aim of this project is to cre-
ate a public repository that will enable researchers around
the globe to share and analyze data from protein unfold-
ing simulation studies. This would allow the community
to mutually create unfolding trajectories of a wide variety
of proteins under a large range of experimental conditions
(mutations, diseases, tissues, species, etc.) and compare and
contrast these data. The two main functional requirements
have two key implications.

• Sharing of the actual unfolding data means that users
around the world can contribute (i.e. upload and store)
unfolding data from their MD simulations to the shared
repository or database and they can access, select and re-
trieve unfolding data from the repository. Such a shared
repository would have immense advantages for the
community.

• Analyzing protein unfolding data stored in the shared
repository requires that users can apply a large set of
different pre-processing and data analysis tasks (classifi-
cation, clustering, time-series modeling, etc.) to the data
needed to answer their scientific questions.

These two main requirements would be relatively easy to
fulfill if the data volumes were small or moderate. In such
a case, the system architecture would have (a) a central
database as physical repository running on some publicly
accessible server. Based on (b) a common data exchange
format (e.g., an XML realization for the protein unfolding
data) users would (c) upload their unfolding experiment
data to the server, (d) select and download onto some local
machine (or a dedicated analysis server, local or remote)
subsets of the data for analysis, (e) pre-process the data
on this machine, and (f) then run their favorite analytical
method or algorithm on the prepared data.

However, because of the sheer size of the data involved
this simple scheme is not practical as transfer times for re-
trieval of subsets of the repository would be too long for
most practical investigations. Therefore, the systems archi-
tecture we propose is based on the following considerations
(see Figure 5).

A data warehouse [12] is used to provide (a) the stor-
age, access, and retrieval functionality for the ‘raw’ protein
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Fig. 5. Grid-enabled MD simulation data warehouse.

unfolding simulations data, (b) many different ‘views’ of
the same ‘raw’ data to facilitate fast access of this data, (c)
many different pre-processed versions of the ‘raw’ data;
these versions of the data would provide cleansed, nor-
malized, standardized, summarized, and enriched ‘views’
to facilitate subsequent analyses, and (d) a meta-data fa-
cility allowing users to navigate and understand the con-
tent and structure of the data warehouse and its different
‘views’. While being extremely redundant in terms of the
data storage usage, the users will benefit enormously by
being able to access pre-processed data that is much closer
to their analysis needs and likely to be much smaller in vol-
ume. The advantage of locating typical analysis methods
close to the data source is that many users will not need to
download data to their local environments, but run those
methods against the subsets of data they have selected. In
the long run it is still likely that a large number of users
will want to access and transfer considerable quantities of
data to their local environments relatively frequently. This
gives rise to an approach that provides the data part as grid
data services and uses grid technology to address access la-
tency and bandwidth consumption issues. Relevant grid
technologies include data replication services [13], caching and
mapping [14]. Currently, we do not envisage replication im-
plementations but consider Open Grid Services Architec-
ture – Data Access and Integration (OGSA-DAI) [15] tools
as a middleware to assist with access and integration of the
data warehouse via the grid. OGSA-DAI provides efficient
grid-enabled middleware implementation of interfaces and
services (also known as portTypes) to expose, access, and
control physical data sources and sinks (currently relational
and XML database management systems) and to represent
client access points for these resources. OGSA-DAI’s basic
primitives, interfaces, and services may be used by higher-

level services to provide greater transparency and facilitate
easy integration within OGSA-compliant systems. Thus, it
is possible to construct sophisticated higher-level services
that allow data federation and distributed queries to take
place within virtual organizations. Key motivations for the
OGSA-DAI project include:

• Controlled exposure of physical data source to the grid;
• Support for accessing heterogeneous physical data re-

sources through a common interface;
• Base services that allow higher-level data integration ser-

vices to be constructed, for example, distributed query
processing and data federation services;

• Leverage of emerging grid infrastructure for security,
management, accounting, and so on;

• Standardization of data access interfaces as pursued by
the Global Grid Forum’s Database Access and Integra-
tion Services (DAIS) Working Group [16] (data descrip-
tion, access, factory, and management);

• Provision of a reference implementation of the DAIS
specification.

A set of data mining algorithms is implemented on or ‘near’
the data warehouse server to facilitate commonly needed
data analysis tasks such as classification, clustering, associ-
ation and correlation tasks. Such a setup would minimize
costly data transfers. This approach requires mechanisms
that allow users to select subsets of the data in the data
warehouse and associate them with the analysis algorithms
and then to execute the algorithms. By providing grid or
web interfaces for the data mining algorithms we will be
able to provide these algorithms as grid or web services
and thus be able to easily integrate them with the data
grid/web services of the data warehouse and indeed with
other grid/web services.

In a data-intensive application like this it would be highly
economic to ship computation to data in the warehouse (i.e.,
implemented data analysis algorithms in the form of ex-
ecutable programs), run the analysis where the data re-
sides (or at least close to the data on a dedicated compute
server) to avoid transfer of large data volumes, and return
the results to the user. However, while the grid provides
mechanisms to (install and) execute programs on remote
processors, many issues arise if the program to be executed
interacts with data and database management systems at the
remote location. In particular in science, the computations
to be executed correspond to scientific models whose re-
quirements for selecting, linking and processing data go
far beyond what is currently permitted by database man-
agement systems. For example, such programs often need
highly repetitive, iterative access to the same data, create
large intermediate results, place high computational loads
on processors, and remote executions typically need to be
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observed, controlled, monitored, and managed (sometimes
highly interactively) by the user. These complex require-
ments are currently difficult to handle in a general way and
are subject of ongoing grid research. Based on the data and
analysis service, we will provide a web portal and web client
access to the data warehouse and its analysis components.

With the above main requirements and considerations in
mind, we can now state the requirement for this application
in a more detailed fashion.

(i) Provide a public, globally accessible, shared reposi-
tory for efficient storage and retrieval of MD un-
folding simulation data and meta-data. Implement
web/grid services facilitating above access. However,
bulk download of large quantities of data will initially
need to be restricted for performance reasons. Later
versions of the repository foresee replication services.

(ii) Provide methods (implemented on or ‘near’ ware-
house storage server) that automatically pre-process
the ‘incoming’ data to provide cleansed, normalized
and enriched data in multiple formats important for
subsequent analysis (this, basically, provides ‘cached’
computations frequently needed for data mining – this
is the main purpose of a data warehouse).

(iii) Provide methods (implemented on or ‘near’ ware-
house storage server) that implement commonly
needed data mining algorithms to be run on user-
selected subsets of the warehouse. Provide these op-
erations as web/grid services.

(iv) Provide user-friendly web portals and clients for web-
enabled access to the grid/web services defined above.

The requirements related to storing and accessing data
can be addressed by means of conventional database tech-
nology such as a relational database management system
like Postgres or Oracle. The administrative aspects of user
access, the management of computational resources, and
the seamless integration of the data warehouse components
into a possibly distributed analysis process are much more
challenging issues. This project incorporates key concepts
of grid technologies such as Open Grid Service Architecture
(OGSA) into the basic design and rationale of a data ware-
house.

Currently, we are focusing on the design of the actual
MD unfolding simulation data warehouse. The design is
subdivided into three parts:

(i) Conceptual model. The data warehouse’s conceptual de-
sign describes on a high level the conceptual entities
and their relationships. It is independent of the actual
database model. The conceptual design is concerned
with the identification of the entities and their rela-
tionships (a.k.a. the ‘miniworld’).

(ii) Logical data model. Defines the mapping of the con-
ceptual model to a specific data or database model.
Typically, entity-relationship modeling and object def-
inition languages such as the Unified Modeling Lan-
guage (UML) are used here [17]. The logical design
specifies the entities, their attributes and attribute do-
mains, and how the relationships between the entities
are realized. The logical design depends on the actual
database model; for example, if a relational database
is chosen, then the relationships between the entities
are realized via the referential key concept. Further-
more, the logical data model specifies the data tables,
the meta-data tables, and dictionary tables.

(iii) Physical data model. Refers to the collection of files,
indices, and other storage structures that make up
the final database on a specific software and hardware
platform.

2.4.2. Conceptual data model

We can distinguish between three levels of data:

(i) Folding/unfolding simulation trajectory data,
(ii) Simulation parameter data, and
(iii) Property analysis data.

The trajectory data have a spatial and a temporal com-
ponent. Each molecule in a MD simulation consists of a
number of residues, which are made up of a number of
atoms. For each atom, the Cartesian coordinates and the
velocities are captured over a series of time points. Adopting
the notation of Murdock et al. [18], each MD simulation
is accompanied by meta-data, describing the experimen-
tal parameter settings, information on the software used,
who conducted the experiment, where, when, etc. Finally,
property analysis data refer to derived data, such as RMSD,
SASA and other molecular properties.

Figure 6 depicts the entity-relationship model of the in-
volved conceptual entities and their relationships.

For example, an experimentator is conducting none,
one, or many MD simulation experiments. One specific
simulation, on the other hand, is carried out by exactly
one experimentator. One specific MD experiment is car-
ried out with a set of clearly defined parameter settings,
and the same experimental settings may apply to multiple
simulations.

2.4.3. Logical data model

The logical data model consists of a mapping (or realization)
of the conceptual data model to a specific data model – in
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Fig. 6. The conceptual data model of the data warehouse.

this case the relational data model used in relational database
management systems. In this phase of the design pro-
cess, all relevant attributes of the entities are identified.
Furthermore, the key integrity constraints, domain in-
tegrity constraints, and semantic integrity constraints are
defined. To warrant the first constraints, surrogate pri-
mary keys are introduced for each relation. The consistency
among the relations is maintained by the referential in-
tegrity constraint (foreign key concept). Domain integrity
constraints specify the domains (value ranges) of attributes.
For each attribute, the valid values have to be defined.
For example, the domain of the attribute X of the en-
tity Coordinate is float. Figure 7 shows the logical data
model including the referential and domain integrity con-
straints (due to space limitation, the tables are not shown
completely).

The first prototype of the data warehouse data model
is implemented based on the PostgreSQL database man-
agement system. The database scheme reflects the entity-
relationship as shown in Figure 7 and the logical data
model as depicted in Figure 6. Semantic integrity is war-
ranted by means of standard database concepts such as
triggers, integrity constraints (e.g., uniqueness constraints
on data records such as ResidueSASAID, ResidueID, and
FrameID in the table RESIDUESASA), and domain integrity
constraints.

For each simulation, there exist a number of clearly
defined, unique experimental parameters such as details
concerning the simulation program being used, the hard-
ware platform on which the simulation program is ex-
ecuted, the number of processors, the solvent, the force
field settings, etc. These data are stored in the table
SIMULATIONMETA.

The central table in the data model is SIMULATION,
bringing together the data and the meta-data. Each MD
simulation experiment is carried out by an experimentator,
whose details are managed in the table EXPERIMENTATOR.
For each time frame, the relative SASA of the residues can
be computed and stored in the table RESIDUESASA. This ta-
ble is linked to the table RESIDUE, which contains an entry
for each residue of the molecule. transthyretin, for exam-
ple, consists of 127 residues, some of which comprising
the same amino acid. Therefore, the table RESIDUE con-
tains the attribute SerialNumber to identify the amino acids
within the molecule. For example, the attribute Residue-
Code may be PRO and the associated attribute SerialNumber
may be 1. The table RESIDUE is linked to the dictionary ta-
ble RESIDUEDICT, which contains details about the residues.
For example, the residue identified by ResidueCode = PRO
has the attribute Name = Proline.

For each frame, the xyz-coordinates of all atoms are
stored in the table COORDINATE. This table is linked to the
table ATOM, which in turn is linked to the table RESIDUE via
the foreign key ResidueID. The table ATOMDICT is a dic-
tionary table for the table ATOM. For example, one entry
in the table ATOM may be {101, 9, C, 2}, referring to the
second carbon atom in the residue with the identification
number 9. The associated entry in the table ATOMDICT is
{C, carbon, 6}.

From the trajectory data, various measures can be com-
puted, describing the structural changes over time, e.g.,
the root mean square deviation from the initial molecular
structure, the radius of gyration, the number of native con-
tacts, and the global solvent accessible surface area of the
molecule. These structural changes are stored in the data
table PROPERTYANALYSIS.
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Fig. 7. The logical data model of the data warehouse.

3. CONCLUSIONS

This paper presents ongoing work on the development of a
public grid-enabled data warehouse for protein unfolding
data. We outlined the issues involved – in particular, issues
in providing the warehouse as a grid-enabled facility. Par-
ticular challenges include (a) the data volume, especially if
users want to access large subsets of future versions of the
warehouse, (b) the type of data analysis to be performed
on unfolding simulation data (currently, the authors are ex-
ploring this aspect in a separate project), (c) the provision
of grid-enabled data access and analysis. With regard to (c)
we are currently investigating OGSA-DAI as a technology
to provide data access and future data mining functionality
as web/grid services (especially pre-defined data mining
services that can run on or ‘near’ the data repository of
the data warehouse). However, provision of mechanisms
that facilitate the shipping of data mining computations
or algorithms to the data warehouse is still an open issue,
as the interactions of such algorithms with the data in a

data warehouse are complex. The first version of the data
model for the data warehouse has been implemented. Fu-
ture work includes the completion of the data warehouse
(including multiple ‘views’ of the data content relevant to
the molecular dynamics community), implementation of
pre-processing function and data analysis web/grid ser-
vices, and access to the warehouse via grid-enabled web
clients and portals.
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