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Abstract. In this paper, the filter technique of Fletcher and Leyffer (1997) is used to globalize the primal-dual
interior-point algorithm for nonlinear programming, avoiding the use of merit functions and the updating of
penalty parameters.

The new algorithm decomposes the primal-dual step obtained from the perturbed first-order necessary
conditions into a normal and a tangential step, whose sizes are controlled by a trust-region type parameter.
Each entry in the filter is a pair of coordinates: one resulting from feasibility and centrality, and associated
with the normal step; the other resulting from optimality (complementarity and duality), and related with the
tangential step.

Global convergence to first-order critical points is proved for the new primal-dual interior-point filter
algorithm.
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1. Introduction

In this paper we use the filter technique of Fletcher and Leyffer [14] to globalize the
primal-dual interior-point method for nonlinear optimization. This technique incorpo-
rates the concept of nondominance (borrowed from multi-criteria optimization) to build
a filter that is able to reject poor trial iterates and enforce global convergence from arbi-
trary starting points. The filter replaces the use of merit functions, avoiding therefore the
update of penalty parameters associated with the penalization of the constraints in merit
functions.

Since its first appearance in a 1997 paper by Fletcher and Leyffer [14], the filter
technique has been mostly applied, so far, to SLP (sequential linear programming) and
SQP (sequential quadratic programming) type methods [12, 14, 15]. Global conver-
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gence to first-order critical points has been proved for SLP by Fletcher, Leyffer, and
Toint [15] in 1998 and for SQP by Fletcher, Gould, Leyffer, Toint, and Wächter [12] in
1999. In the context of composite SQP for equality constrained optimization, Ulbrich
and Ulbrich [22] have also proposed, based on filter ideas, a nonmonotone trust-region
algorithm. Recently, Audet and Dennis [2] presented a pattern search filter method for
derivative-free nonlinear programming. The filter idea has proven to be very successful
numerically in the SLP/SQP framework [13], motivating its applications to interior-point
methods.

Interior-point methods, although quite well studied for linear and convex program-
ming, are still a very open topic of research in nonlinear programming. One of the issues
is guaranteeing global convergence because there seems to be no ideal merit function.
Several approaches for globalizing interior-point methods using different merit func-
tions have been proposed. See the references [5, 9, 11, 16, 17, 23]. On the other hand,
the local convergence properties of interior-point methods for nonlinear programming
are quite well studied in the literature [6, 8, 11, 19, 24, 31], although difficulties arise
when the limit point does not satisfy strict complementarity or linear independence of
the gradients of the active or binding constraints [18, 21, 25, 30]. Since the appearance
of this paper, two others have also appeared applying the filter technique to interior-point
methods (see [3] and [26, 28]).

The primal-dual interior-point method is based on the application of Newton’s me-
thod to a perturbed version of the first-order necessary conditions. The perturbation
incorporates the (numerically efficient) notion of centrality, forcing the iterates to stay
as much as possible away from the boundary of the feasible set. Our primal-dual inte-
rior-point filter method is partially motivated by the SQP-filter algorithm of Fletcher,
Gould, Leyffer, Toint, and Wächter [12]. We also split the primal-dual step into normal
and tangential steps and use a trust-region parameter to control the size of both steps.
The normal step points towards the quasi-central path, trying to achieve an improvement
in feasibility and centrality. The tangential step is designed to reduce the size of the
gradient of the Lagrangian function (and complementarity). The algorithm incorporates
also a restoration phase (proposed in [12, 14, 15] for SLP/SQP-filter) aimed to improve,
if necessary, feasibility and centrality.

This paper is organized as follows. A brief outline of the basic concept of filter
methods is given in Section 2. The primal-dual interior-point framework is presented in
Section 3, where a number of estimates are presented for the composite primal-dual step
(the proofs are postponed to an appendix). The filter mechanism and the primal-dual
interior-point filter method are described in Section 4. Section 5 contains the proof of
global convergence to first-order critical points. A restoration algorithm is proposed in
Section 6 and some final remarks and open questions are stated in Section 7.

We use ‖ · ‖ to denote the Euclidean norm of a vector as well as the induced matrix
norm. Given two vectors u ∈ R

p1 and v ∈ R
p2 , we use (u, v) to represent the vector

w = (uT , vT )T ∈ R
p1+p2 . Finally, we pose the nonlinear programming problem in the

general form

min f (x) s.t. h(x) = 0, x ≥ 0, (1)

where f : R
n −→ R and g : R

n −→ R
m are twice continuously differentiable functions

on an open set � ⊂ R
n.
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2. Basic concept of a filter method

We begin by outlining the main concepts of the filter method by Fletcher and Leyf-
fer [14], using the form analyzed by Fletcher, Gould, Leyffer, Toint, and Wächter [12].
This method is applicable to the general nonlinear programming problem. However,
since in our interior-point approach the nonnegativity constraints x ≥ 0 will be han-
dled by the interior-point step calculation, it is sufficient to sketch the basic algorithmic
framework of the original filter method for the simpler (equality constrained) problem

min f (x) s.t. h(x) = 0, (2)

where f : R
n −→ R and h : R

n −→ R
m are twice continuously differentiable functions

on an open set � ⊂ R
n.

The concept of NLP filter methods originates from the observation that the solution
of a nonlinear programming problem like (2) consists of the two competing aims of
minimizing a measure of feasibility θ(x), e.g. θ(x) = ‖h(x)‖, and of minimizing the
objective function f (x). Hence, (2) can be seen as a bi-criteria optimization problem
with the additional requirement that θ has some priority, since convergence to a feasible
point must be ensured. Instead of combining the two objectives by using a penalty func-
tion, Fletcher and Leyffer [14] proposed the use of a filter to build the efficient border of
the bi-criteria optimization problem of minimizing infeasibility and objective function
value. The definition of a filter takes into account the fact that we would like to reduce
both, θ(x) and f (x). A filter F is a finite set of tuples (θ(xj ), f (xj )) – pairs in this case
– that correspond to a collection of points xj , with the additional requirement that no
filter entry is dominated by any of the others. Hereby, following [14], a point x, or the
corresponding pair (θ(x), f (x)), is said to dominate a point x′, or the corresponding
pair (θ(x′), f (x′)), if

θ(x) ≤ θ(x′) and f (x) ≤ f (x′).

If x dominates x′, the latter is most probably of no real interest. A natural requirement for
a new iterate is, therefore, that it should not be dominated by previous iterates. The filter
serves the purpose of collecting information on selected previous iterates, and thus pro-
vides, in terms of dominance, a selection criteria for new iterates. However, it is obvious
that the acceptance of iterates whenever they are not dominated by the filter (i.e., by any
of the filter entries) does not exclude, for example, a clustering of iterates at an infeasible
point. To avoid the acceptance of pairs that are arbitrarily close to the efficient border
(i.e., to the boundary of the set of all pairs that are dominated by the filter), acceptability
of x to the filter is defined in [12] in a more stringent way by requiring that for all filter
entries (θ(xj ), f (xj )) ∈ F it holds that

max{θ(xj ) − θ(x), f (xj ) − f (x)} > γFθ(xj ),

where γF ∈ (0, 1/2) is fixed. The original concept of nondominance is still used to add
a point, or the corresponding pair (θ(x), f (x)), to the filter: If x is added to the filter,
then all entries that are dominated by x are removed from the filter.

In order to produce new iterates that are acceptable to the filter, Fletcher, Gould,
Leyffer, Toint, and Wächter [12] proposed the use of a trust-region framework and the
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decomposition of the step sk = sn
k + st

k into a normal step sn
k and a tangential step st

k .
The normal step sn

k is computed to yield linearized feasibility, i.e.,

h(xk) + ∇h(xk)
T sn

k = 0, ‖sn
k ‖ ≤ κ��k, (3)

where κ� ∈ (0, 1) is a constant. It is assumed that there exists a constant κn > 0 such
that ‖sn

k ‖ ≤ κnθ(xk) for all k. The tangential step is computed to satisfy

∇h(xk)
T st

k = 0, ‖sn
k + st

k‖ ≤ �k,

and provide a fraction of the Cauchy decrease for a quadratic model mk of f .
Problem (3) is infeasible if �k is too small in comparison to θ(xk). Therefore, it is

required in [12] that

‖sn
k ‖ ≤ κ��k min{1, κµ�

µ
k } (4)

with constants κµ > 0 and µ ∈ (0, 1). In particular, for small �k , the normal step
sn
k must be tiny compared to �k . If it is not possible to compute a normal step sat-

isfying (4), a restoration phase is entered with the goal of reducing the infeasibility,
measured by θ , as much as needed. Then the full normal step can always be taken,
and thus θ(xk + sk) = O(�2

k). Possibly after reducing �k (and reentering restoration
if necessary), the new trial iterate will be acceptable to the filter if all filter entries
(θj , fj ) satisfy θj > 0, which is ensured by the mechanism of selecting new filter
entries. If the filter test is passed, the decrease properties of the full step sk on the model
mk are checked. If the predicted decrease for f is not promising, more precisely if
mk(xk) − mk(xk + sk) < κθθ(xk)

2 with a constant κθ ∈ (0, 1), then the infeasibility
is considered to dominate the possible decrease in f . The new iterate is accepted and
xk is added to the filter. Otherwise, the f -decrease is required to satisfy the standard
trust-region acceptance criterion

f (xk) − f (xk + sk)

mk(xk) − mk(xk + sk)
≥ η

with preset η ∈ (0, 1). If the test fails, �k is reduced. Otherwise, the step is accepted
and �k is updated as in a standard trust-region algorithm. If the f -decrease is met, xk

is not added to the filter, since θ(xk) can be very small in this case and adding xk can
enforce small trust-region radii to get acceptable points in later iterations.

The interior-point filter method introduced in this paper is inspired by the SQP fil-
ter method described in [12]. Essentially, our application of the filter concept to the
globalization of interior-point methods has the following features:

– A primal-dual interior-point Newton step forms the basis for the trial step computa-
tion. The nonnegativity constraints are handled by a centering mechanism.

– We identify two objectives θ and θg , corresponding to feasibility and objective func-
tion value, such that an appropriate splitting of the step in “normal” and “tangential”
components guarantees decrease for linearized models of θ and θg , respectively.

– An adaptation of the filter framework of [12] for the pair (θ, θg) is proposed.
– The proposed method does not require the recomputation of the normal and tangen-

tial steps as the step bound � is reduced.
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3. Interior-point framework

We return to the nonlinear programming problem posed in the general form (1).

3.1. Step computation

Primal-dual interior-point methods are based on the idea of applying Newton’s method
to an appropriate perturbation of the first-order necessary optimality conditions (Ka-
rush-Kuhn-Tucker or KKT conditions). For the problem under consideration, the KKT
conditions can be written in the form

∇x�(x, y, z) = 0, (5)

h(x) = 0, (6)

Xz = 0, (7)

x ≥ 0, z ≥ 0, (8)

where y ∈ R
m and z ∈ R

n are the Lagrange multipliers, � denotes the Lagrange function

�(x, y, z) = f (x) + h(x)T y − xT z,

and X is the diagonal matrix of order n in which the i-th diagonal element is xi . Under a
constraint qualification the conditions (5)–(8) are necessary for x to be a local solution
of (1).

We now perturb block (7) of the KKT system (5)–(7) and write

Fµ̂(x, y, z)
def=




∇x�(x, y, z)

h(x)

Xz − µ̂e


 = 0,

where µ̂ > 0. Throughout, we will work with µ̂ = σµ, where σ ∈ (0, 1) is a centering
parameter, and

µ = xT z

n
. (9)

To abbreviate notation we set

w = (x, y, z) and �w = (�x, �y, �z).

The primal-dual Newton step �w is determined by the Newton equation for the perturbed
KKT system, i.e.,

F ′
σµ(x, y, z)�w = −Fσµ(x, y, z),

or, in detail, by



∇2
xx�(x, y, z) ∇h(x) −I

∇h(x)T 0 0
Z 0 X







�x

�y

�z


 = −




∇x�(x, y, z)

h(x)

Xz − σµe


 .
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The choice µ̂ = σµ with centering parameter σ ∈ (0, 1) and complementarity measure
µ according to (9) ensures that the primal-dual Newton direction �w is a descent direc-
tion for xT z/n and allows thus a dynamic reduction of µ. This choice is frequently used
in the context of linear programming and was also used in the nonlinear programming
algorithm of El-Bakry et al. [11].

To adapt the methodology of a filter as outlined in Section 2 to our interior-point
context, we have to specify the two quantities for the filter entries, the first component
corresponding to feasibility and the second corresponding to optimality. With this choice
of filter components, we have to find a corresponding decomposition of the trial step
into a normal step and a tangential step that yields a decrease of the feasibility- and
optimality-component, respectively.

To motivate our choice of the components in the filter and the step decomposition,
we rewrite the perturbed KKT-conditions in the form

Fσµ(x, y, z) =



0
h(x)

Xz − µe


 +




∇x�(x, y, z)

0
(1 − σ)µe


 = 0. (10)

The first term in the middle expression measures the proximity to the quasi-central path.
We recall that the quasi-central path, parameterized by µ (see [1]), is defined by

P q
µ = {(x, z) : h(x) = 0, Xz = µe} .

Therefore, in terms of our filter approach, it seems natural to let the quasi-central path
play the role of the feasible set {x : h(x) = 0} in Section 2 and to choose the measure
of quasi-centrality

θ(w) = ‖h(x)‖ + ‖Xz − (xT z)/ne‖
as the first component in the filter. In this context it is important to mention that the
central path for nonlinear programming

P c
µ = {w = (x, y, z) : ∇x�(w) = 0, h(x) = 0, Xz = µe} ,

parameterized by µ, is only guaranteed to exist (for sufficiently small µ) in the neigh-
borhood of a point (x, y, z) that satisfies the second-order sufficient conditions, strict
complementarity (max{xi, zi} > 0, i = 1, . . . , n), and linear independence of the gra-
dients of the active or binding constraints. (The linear independence assumption for the
existence of the central path can be weakened to the Mangasarian-Fromowitz constraint
qualification [30].)

The second term in the middle expression of (10) measures complementarity and
criticality. For the second filter component we choose therefore the optimality measure

θg(w) = xT z/n + ‖∇x�(w)‖2.

We are aware that this choice certainly allows some room for improvement, since the
fact that we are dealing with a minimization problem is not very well reflected by θg .
However, given that the investigation of filter methods is still in its beginnings, we think
that our choice of the optimality measure is appropriate for the purpose of this paper. We



A globally convergent primal-dual interior-point filter method 385

believe that our approach is also viable for other choices of θg , and return to this issue
in Section 7.

With this choice of filter components it remains to define corresponding tangential
and normal components of the trial step. We use the decomposition associated with the
splitting (10). For the normal step sn = (�xn, �yn, �zn) we thus choose

F ′
σµ(w)sn = −




0
h(x)

Xz − µe


 , (11)

whereas our tangential step st = (�xt , �yt , �zt ) is given by

F ′
σµ(w)st = −




∇x�(w)

0
(1 − σ)µe


 . (12)

Note that �w = sn + st . However, it will be crucial that we exploit the flexibility of the
step splitting to introduce different step sizes for sn and st in our trial step computation.

The adjectives normal and tangential are borrowed from the SQP context [4, 20] but
have a slightly different flavor here. The normal step can be seen as a step towards the
quasi-central path P

q
µ . The tangential step is the sum of a tangential component st

1

F ′
σµ(w)st

1 = −



∇x�(w)

0
0


 ,

which attempts to reduce ‖∇x�(w)‖, and a predictor component st
2

F ′
σµ(w)st

2 = −



0
0

(1 − σ)µe


 ,

which seeks the minimization of µ = xT z/n (see, for instance, [29]). Therefore, the
tangential step aims to reduce the optimality measure θg(w) = xT z/n + ‖∇x�(w)‖2.

We introduce � as the positive scalar that primarily controls the length of the step
taken along �w, forcing the damped components αn(�)sn and αt (�)st , to satisfy

‖αn(�)sn‖ ≤ �, ‖αt (�)st‖ ≤ �.

Having these bounds in mind, and requiring explicitly αt (�) ≤ αn(�), we define the
step sizes taken along the normal and tangential directions respectively as

αn(�) = min

{
1,

�

‖sn‖
}

, (13)

αt (�) = min

{
αn(�),

�

‖st‖
}

= min

{
1,

�

‖sn‖ ,
�

‖st‖
}

. (14)

Hereby, we use for � > 0 the natural definition αn(�) = 1 for ‖sn‖ = 0 by using the
convention min{1, ∞} = 1. We also say that αt (�) = αn(�) if ‖st‖ = 0, although
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our algorithm cannot generate tangential steps for which ‖st‖ = 0 since the right-hand-
side in (12) will never be zero if the iterates x and z are kept positive throughout. The
requirement αt (�) ≤ αn(�) is mainly necessary to enforce the iterates to stay in the
neighborhood N (γ, M) defined in (17), see Lemma 2.

Let also

w(�) = (x(�), y(�), z(�)) = w + αn(�)sn + αt (�)st , (15)

s(�) = (
sx(�), sy(�), sz(�)

) = w(�) − w = αn(�)sn + αt (�)st . (16)

Thus,

‖s(�)‖ ≤ 2�,

and � plays here a role comparable to the trust-region radius.
The scalars αn(�) and αt (�) will be such that positivity and some measure of

centrality of the new iterate w(�) are maintained. However, both αn(�) and αt (�)

depend on �, that in turn will be adjusted, not only to meet the purpose of positivity and
centrality, but also to enforce global convergence.

We introduce the notation

θh(w) = ‖h(x)‖, θc(w) =
∥∥∥∥Xz − xT z

n
e

∥∥∥∥ , θ�(w) = ‖∇x�(w)‖,

which allows us to write the filter components as

θ(w) = θc(w) + θh(w), θg(w) = xT z

n
+ ‖∇x�(w)‖2.

Since Xz might not be zero, a point w that satisfies θ(w) = θ�(w) = 0 and (x, z) ≥ 0,
might not be a KKT point. The definition of θg(w), however, guarantees that a point w

satisfying θ(w) = θg(w) = 0 and (x, z) ≥ 0, is indeed a KKT point.
With the purpose of achieving a reduction on the function θg , we introduce, at a

given point w, the quadratic model

m(w(�))

= xT z

n
+ (x(�) − x)T z + (z(�) − z)T x

n
+ ‖∇x�(w) + ∇2

wx�(w)(w(�) − w)‖2

= x(�)T z(�) − (x(�) − x)T (z(�) − z)

n
+ ‖∇x�(w) + ∇2

wx�(w)(w(�) − w)‖2,

by adding to the linearization of xT z/n the squared norm of the linearization of ∇x�(w).
To simplify the notation we also define

µ(�) = x(�)T z(�)

n
.

In order to prevent (x(�), z(�)) from approaching the boundary of the positive
orthant too rapidly we will keep the iteration in the neighborhood

N (γ, M) =
{
w : (x, z) > 0, Xz ≥ γ

xT z

n
, θh(w) + θ�(w) ≤ M

xT z

n

}
(17)



A globally convergent primal-dual interior-point filter method 387

with fixed γ ∈ (0, 1) and M > 0. This is a frequently used centrality condition in
infeasible interior-point methods for linear and convex quadratic programming, cf. [29]
and the references therein, and has also proven its efficiency in the context of nonlin-
ear programming [11]. We will see in the next subsection that w ∈ N (γ, M) implies
w(�) ∈ N (γ, M) whenever � ∈ (0, �min] for a given constant �min > 0.

3.2. Step estimates

The following lemma provides upper bounds for θh, θc, θ�, and θg at the new point w(�)

in terms of � and of the corresponding values at the previous point w. It also provides a
lower bound for the decrease produced on the quadratic model m by the step w(�)−w.

Lemma 1. There exist positive constants Mh, Mc, and M�, depending on an upper
bound for θ� and on the Lipschitz constants of ∇h and ∇2

xw�, such that, for all � > 0,

θh(w(�)) ≤ (1 − αn(�))θh(w) + Mh�
2, (18)

θc(w(�)) ≤ (1 − αn(�))θc(w) + Mc�
2, (19)

θ�(w(�)) ≤ (1 − αt (�))θ�(w) + M��
2. (20)

Given an upper bound �ub > 0 for �, it also holds

θg(w(�)) ≤ (
1 − αt (�)(1 − σ)

)
θg(w) + Mg�

2, (21)

for 0 < � ≤ �ub and for some positive constant Mg .
Finally, for any � > 0, we also have

m(w) − m(w(�)) ≥ αt (�)(1 − σ)θg(w). (22)

Now we state a result that says that if the current point w = (x, y, z) satisfies the
centrality requirement Xz ≥ γµe, so does the next point w(�) = (x(�), y(�), z(�)),
provided � is sufficiently small. A similar property is also stated for the inequalities
θh(w) + θ�(w) ≤ Mµ and (x, z) > 0.

Lemma 2. Let ‖F ′
σµ(w)−1‖ ≤ C and, for γ ∈ (0, 1) and M > 0, assume that

Xz ≥ γµe, θh(w) + θ�(w) ≤ Mµ.

There exists a constant �min such that, if 0 < � ≤ �min, then

X(�)z(�) ≥ γµ(�)e, (23)

θh(w(�)) + θ�(w(�)) ≤ Mµ(�). (24)

Furthermore, if (x, z) > 0, then, for all � in (0, �min],

(x(�), z(�)) > 0. (25)

Thus, w ∈ N (γ, M) implies w(�) ∈ N (γ, M) for all � ∈ (0, �min].

The proofs of these results are quite technical and are left for an appendix of this
paper.
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4. The interior-point filter method

Our definition of a filter takes into account the fact that we would like to reduce both
θ(w) = θc(w) + θh(w) and θg(w). Hence, we choose θ and θg to form a filter entry,
where θ measures feasibility and θg measures optimality. We thus replace the objec-
tive function value by the criticality measure θg . Since we introduced the filter concept
already in Section 2, we give here only formal definitions to set the notations for the rest
of the paper.

Definition 1 (Dominance). A point w, or the corresponding pair (θ(w), θg(w)), is said
to dominate a point w′, or the corresponding pair (θ(w′), θg(w

′)), if

θ(w) ≤ θ(w′) and θg(w) ≤ θg(w
′),

or, equivalently, if the following inequality is violated:

max{θ(w) − θ(w′), θg(w) − θg(w
′)} > 0.

Definition 2 (Filter). A filter is a finite subset F ⊂ R
2 consisting of pairs (θf , θ

f
g ), with

θf def= θ
f
h + θ

f
c , such that no pair can dominate any of the others.

As pointed out in Section 2, the mere requirement that a new iterate is not dominated
by any of the filter entries is too weak as an acceptance criterion. Instead, we require:

Definition 3. Let γF ∈ (0, 1/2) be fixed. The point w is acceptable to the filter F if, for
all (θf , θ

f
g ) ∈ F , it holds

max{θf − θ(w), θ
f
g − θg(w)} > γFθf .

In the course of the algorithm, we will add selected new points to the filter. This
procedure is done in the following way:

Definition 4. By adding w to the filter F we mean the following operation:

F 
→ F ={(θ(w), θg(w))} ∪
{
(θf , θ

f
g ) ∈ F : min{θf − θ(w), θ

f
g − θg(w)} < 0

}
.

Remark 1. Therefore, if w is added to the filter, all old entries that are dominated by the
new entry are removed. �

Our primal-dual interior-point filter method generates iterateswk+1 = wk(�k) �= wk

that are acceptable to the filter, but not all new iterates wk+1 are added to the filter.
In general, the primal-dual interior-point filter method imposes a sufficient reduction

criterion relating the actual reduction in θg with the reduction predicted by its model mk:

ρk ≥ η

where

ρk
def= θg(wk) − θg(wk(�k))

mk(wk) − mk(wk(�k))

and η ∈ (0, 1) is a preset constant.
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However, the test of this condition is skipped if

mk(wk) − mk(wk(�k)) < κθ(wk)
2,

where κ ∈ (0, 1) is a preset constant. In other words, the sufficient reduction criterion
ρk ≥ η is only imposed when the reduction in the model mk is sufficiently good compared
with θ(wk)

2. In the situation where ρk < η and mk(wk)−mk(wk(�k)) < κθ(wk)
2, the

new iterate wk+1 = wk(�k) is accepted and the previous point wk is added to the filter
(guaranteeing that this new filter entry satisfies θ(wk) > 0). This criterion for adding
points wk to the filter prevents us from building up a filter for which the computation of
acceptable points would require too small trust-region radii.

If ρk ≥ η and mk(wk) − mk(wk(�k)) ≥ κθ(wk)
2, the iterate wk is not added to the

filter. This situation is the only one where a new iterate wk+1 = wk(�k) is computed
and the previous one, wk , is not added to the filter.

If θ(wk) is too large compared to �k (or an appropriate power of �k), the algorithm
enters a restoration phase with the purpose of reducing θ . More precisely, a restoration
algorithm is called if

θ(wk) > �k min{γ1, γ2�
β
k },

where γ1, γ2, and β are preset positive constants. The restoration algorithm must pro-
duce a new iterate wk+1 that is not only acceptable to the filter but also satisfies
θ(wk+1) ≤ �k min{γ1, γ2�

β
k }. In this situation, the previous iterate wk is added to

the filter (guaranteeing also that this new filter entry satisfies θ(wk) > 0). In Section 6,
we propose a restoration algorithm, based on the primal-dual interior-point framework
of this paper, that verifies the requirements of the restoration phase.

The primal-dual interior-point filter method satisfying the above features is now pre-
sented. Note that step 5 guarantees that the potentially new iterate wk(�k) is always
acceptable to the filter.

Notation. In the following algorithm, the current iterate in iteration k is denoted by wk

and the normal and tangential trial steps are denoted by st
k and sn

k , respectively. Further,
the step sizes αn

k (�) and αt
k(�) are defined according to (13) and (14), respectively,

with sn = sn
k and st = st

k . Similarly, wk(�) and sk(�) are defined by (15) and (16),

respectively, with w = wk , sn/t = s
n/t
k , and αn/t (�) = α

n/t
k (�).

Algorithm 1 (Primal-dual interior-point filter method).

0. Choose σ ∈ (0, 1), ν ∈ (0, 1) γ1, γ2 > 0, 0 < β, η, κ < 1, and γF ∈ (0, 1/2). Set
F := ∅. Choose (x0, z0) > 0 and y0, and determine γ ∈ (0, 1) such that X0z0 ≥
γµ0 with µ0 = xT

0 z0/n. Further, choose M > 0 such that θh(w0)+θ�(w0) ≤ Mµ0.
Choose �in

0 > 0 and set k := 0.
1. Set µk := xT

k zk/n and compute sn
k and st

k by solving the linear systems (11) and
(12), respectively, with (w, µ) = (wk, µk).

2. Compute �′
k ∈ [0, �in

k ] such that

xk(�) > 0, zk(�) > 0, Xk(�)zk(�) ≥ γµk(�)e for all � ∈ [0, �′
k]

and such that �′
k is not smaller than the largest νr�in

k , r = 0, 1, . . ., having this
property.
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3. Compute the largest �′′
k = νj�′

k , j = 0, 1, . . ., such that

θh(wk(�
′′
k)) + θ�(wk(�

′′
k)) ≤ Mµk(�

′′
k).

Set �k := �′′
k .

4. If θ(wk) ≤ �k min{γ1, γ2�
β
k } then continue in step 5. Otherwise add wk to the

filter and use a restoration algorithm to produce a point wk+1 such that:
wk+1 ∈ N (γ, M) with µk+1 = xT

k+1zk+1/n;
wk+1 is acceptable to the filter;
θ(wk+1) ≤ �k+1 min{γ1, γ2�

β
k+1} with �k+1 = �k .

Set �in
k+1 := �k , k := k + 1, and go to step 1.

5. If wk(�k) is not acceptable to the filter (with wk considered in the filter if mk(wk)−
mk(wk(�k)) < κθ(wk)

2), then go to step 11.
6. If mk(wk) − mk(wk(�k)) = 0, then set ρk := 0. Otherwise, compute

ρk = θg(wk) − θg(wk(�k))

mk(wk) − mk(wk(�k))
.

7. If ρk < η and mk(wk) − mk(wk(�k)) ≥ κθ(wk)
2 then go to step 11.

8. If mk(wk) − mk(wk(�k)) < κθ(wk)
2 then add wk to the filter.

9. Choose �in
k+1 ≥ �k .

10. Set wk+1 := wk(�k), k := k + 1, and go to step 1.
11. Set wk+1 := wk , sn

k+1 := sn
k , st

k+1 := st
k , �′

k+1 := �k/2. Set k := k + 1 and go to
step 3.

In practice, step 2 would be implemented as �′
k = τk�̂

′
k , where �̂′

k is the larg-
est value of � such that (xk(�), zk(�)) ≥ 0 and Xk(�)zk(�) ≥ γµk(�)e and τk is
a parameter in (ν, 1) to enforce (xk(�), zk(�)) > 0. The adjustment of τk would be
important to achieve a rapid rate of local convergence. We point out that the calculation
of �k is split in steps 2 and 3 for good reasons. In fact, in step 2 it is possible to determine
explicitly �′

k (more precisely �̂′
k). However, because of the nonlinearity of θh and θ�,

that is not the case in step 3, where we know from Lemma 2 that although there exists a
sufficiently small �′′

k satisfying θh(wk(�
′′
k)) + θ�(wk(�

′′
k)) ≤ Mµk(�

′′
k), it cannot be

determined explicitly.
In practice step 1 of the algorithm would start by checking the satisfaction of a stop-

ping criterion of the form θ(wk) + θg(wk) ≤ ε, for small ε > 0. To be able to analyze
the asymptotic global convergence properties of the algorithm we did not include any
stopping criterion.

5. Global convergence to first-order critical points

For the rest of this paper we assume that {wk} is a sequence of iterates generated by the
primal-dual interior-point filter method (Algorithm 1). We will also impose the following
assumptions.
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Assumption 1.

(A1) The sequence {(xk, yk, zk)} is bounded.
(A2) The derivatives ∇h and ∇2

xw� exist and are Lipschitz continuous in an open set
containing all the iterates (xk, yk, zk) and the line segments [wk, wk + sk(�k)].

(A3) There exists C > 0 such that for all k it holds ‖F ′
σµk

(wk)
−1‖ ≤ C.

Remark 2. (A3) holds in a neighborhood of a regular point w∗ satisfying the second-
order sufficient conditions and strict complementarity, see for instance [11]. Moreover,
conditions are given in [11] under which (A1) and (A3) are ensured if the iterates wk

are kept in N (γ, M) and only the boundedness of {xk} is assumed.
As we will see, these assumptions allow us to prove global convergence to KKT

points. Since KKT points are feasible, we are restricting the analysis to problems that
are not infeasible. It is the uniform boundedness of the inverse of the Jacobian given in
Assumption (A3) that rules out infeasibility. �
The following simple result is a direct consequence of these assumptions and of Lemmas
1 and 2.

Lemma 3. The following hold:

i) The sequences {θh(wk)}, {θc(wk)}, {µk}, and {θg(wk)} are bounded.
ii) The constants Mh, Mc, M�, Mg in Lemma 1 are bounded for all k.

iii) There exists �min > 0 such that the conditions in steps 2 and 3 are satisfied for all
�′

k, �
′′
k ∈ [0, �min]. Thus, steps 2 and 3 leave �in

k unchanged for 0 ≤ �in
k ≤ �min

and we have �k = �in
k .

iv) It holds that max{‖sn
k ‖, ‖st

k‖} ≤ C(M + (n2 − n + 1)1/2)µk for all k.

For the result iv) we use that ‖Xz − µe‖ ≤ (n2 − n)1/2µ and ‖(1 − σ)µe‖ ≤ n1/2µ.
Given the fact that {(xk, yk, zk)} is bounded, the boundedness of the sequence {s(�k)}

follows from Lemma 3. (Note that ‖sn
k ‖ and ‖st

k‖ are bounded by iv) and αn
k and αt

k do
not exceed one.)

We point out that all filter entries (θf , θ
f
g ) obey θf > 0. This fact is stated in the

following lemma without proof and follows directly from the structure of the algorithm.

Lemma 4. If wk is added to the filter, then θ(wk) > 0.

Proof. An iterate wk is added to the filter either in step 4 or in step 8. In the first case
(step 4), we see that θ(wk) > �k min{γ1, γ2�

β
k } > 0. In the second case (step 8), we

conclude from Lemma 1, (22) that

θ(wk)
2 >

1

κ
(mk(wk) − mk(wk(�k)) ≥ 0.

Thus, in both cases, θ(wk) > 0. �
We show in the next lemma that new iterates are always acceptable to the filter. The

proof of this result requires no analysis and follows directly from the structure of the
algorithm.

Lemma 5. In all iterations k ≥ 0, the current iterate wk is acceptable to the filter.
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Proof. The proof is by induction. Since F is empty in iteration k = 0, the initial iterate
w0 is certainly acceptable to the filter. Now let k ≥ 0 and assume that wk is acceptable
to the filter. The iterate wk+1 is either generated in step 4, or in step 10, or in step 11.
If wk+1 is obtained in step 4, then wk is added to the filter and a restoration algorithm
is called that returns a point wk+1 that is acceptable to the filter. If wk+1 is obtained in
step 10, then the new iterate wk+1 = wk(�k) passed the filter acceptance test in step 5
(with wk considered in the filter in the case where wk is added in step 8). Finally, if wk+1
results from step 11, then wk+1 = wk and wk is not added to the filter. By the induction
hypothesis, wk is acceptable to the filter. Since the filter is not changed, the same holds
true for wk+1 = wk . �

The next three lemmas provide technical results needed to establish global conver-
gence to first-order critical points. The first of these lemmas provides a crucial inequality
showing that feasibility and centrality at wk(�k) are of the order of �2

k .

Lemma 6. There exists a �r > 0 such that, if �k ≤ �r in step 5, it holds that

θ(wk(�k)) ≤ (Mh + Mc)�
2
k.

Proof. If step 5 is reached, then

θ(wk) ≤ γ2�
1+β
k .

Thus, by (A3) and (11), we have ‖sn
k ‖ ≤ Cγ2�

1+β
k . In the case ‖sn

k ‖ = 0 we get for
all �k > 0 that αn

k = min{1, �k/‖sn
k ‖} = 1 by our natural convention min{1, ∞} = 1.

Otherwise, we have

�k

‖sn
k ‖ ≥ 1

Cγ2�
β
k

.

We see then that αn
k = 1 whenever

�k ≤ �r
def=

(
1

Cγ2

) 1
β

.

Thus, we have in both cases αn
k = 1 for �k ≤ �r . But then, by Lemma 1,

θ(wk(�k)) ≤ (Mh + Mc)�
2
k. �

Remark 3. We stress that Lemma 6 as well as the next two Lemmas 7 and 8 make asser-
tions on the situation in step 5 of the algorithm. Step 5 is preceded by step 4, and thus,
in step 5 it always holds that

θ(wk) ≤ �k min{γ1, γ2�
β
k }, (26)

since otherwise step 4 calls restoration instead of step 5. As we have already seen in
Lemma 6, (26) makes it possible to show θ(wk(�k)) = O(�2

k) for sufficiently small
�k , which would be impossible without (26) holding. �
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The next two lemmas deal also with step 5 of the primal-dual interior-point filter method.
They provide sufficient conditions on the value of �k for w(�k) to be acceptable to the
filter in step 5. In both lemmas we analyze the acceptability of w(�k) to the filter by
considering that the filter contains wk if mk(wk)−mk(wk(�k)) < κθ(wk)

2, despite the
fact that, in this situation, wk will possibly be added to the filter only in step 8. Firstly
we consider the case where wk is bounded away from a KKT point and the filter has a
finite number of entries.

Lemma 7. Suppose that θ(wk) + θg(wk) ≥ ε > 0 for all k. There exists �a > 0
depending only on ε and on the values of the filter entries, such that, if

0 < �k ≤ �a,

then w(�k) is in step 5 acceptable to the filter (with wk considered in the filter when
mk(wk) − mk(wk(�k)) < κθ(wk)

2).

Proof. Since 0 < γF < 1/2 < 1, we have from Lemma 4 that

θF = min
F

(1 − γF )θf > 0.

Consider first the case where θ(wk) ≥ ε/2. Then wk(�k) is acceptable to the filter
(with wk considered in the filter when mk(wk) − mk(wk(�k)) < κθ(wk)

2) if

θ(wk(�k)) ≤ 1

2
min{θF , (1 − γF )ε/2} < min{θF , (1 − γF )ε/2}. (27)

We also know from Lemma 6 that

θ(wk(�k)) ≤ (Mh + Mc)�
2
k

holds for �k ≤ �r . Thus, (27) is satisfied for �k ≤ �
(1)
a with �

(1)
a > 0 depending only

on θF , ε, Mh, Mc, γF , and �r .
Otherwise we have θg(wk) ≥ ε/2. If wk is not considered in the filter in step 5, then

a similar argument, with θ(wk(�k)) ≤ 1
2θF instead of (27), shows that if �k ≤ �

(1)
a

then wk(�k) is acceptable to the filter. Moreover wk(�k) is also acceptable, with wk

considered in the filter when mk(wk) − mk(wk(�k)) < κθ(wk)
2, if, in addition,

θg(wk(�k)) − θg(wk) < −γFθ(wk). (28)

In the rest of the proof we show how this bound can be achieved for sufficiently small
�k . Since step 5 is reached, we know that

θ(wk) ≤ γ2�
1+β
k .

On the other hand, we obtain from θg(wk) ≥ ε/2 and Lemma 1 with 0 < �k ≤ �ub

that

θg(wk(�k)) − θg(wk) ≤ −(1 − σ)αt
kε/2 + Mg�

2
k.

Hence we need to show that

−(1 − σ)αt
kε/2 + Mg�

2
k < −γFγ2�

1+β
k .
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Since ‖sn
k ‖ and ‖st

k‖ are bounded by a constant Ms and αt
k = min{1,

�k

‖sn
k ‖ ,

�k

‖st
k‖

}, we

have for all �k ≤ Ms , that αt
k ≥ �k/Ms . Thus (28) holds if

Mg�k + γFγ2�
β
k ≤ (1 − σ)ε

4Ms

<
(1 − σ)ε

2Ms

,

which in turn holds for all �k ≤ �
(2)
a with �

(2)
a > 0 depending only on ε, Mg , γF , γ2,

β, σ , Ms , and �ub. Taking �a = min{�(1)
a , �

(2)
a } concludes the proof. �

Secondly we look at the case where only the measure of optimality is bounded away
from zero, but where we impose a condition relating θ(wk) and �k .

Lemma 8. Suppose that for given ε > 0

θg(wk) ≥ ε and θ(wk) >
�k

2
min{γ1, γ2(�k/2)β}. (29)

Then there exists �f > 0 such that, if

0 < �k ≤ �f ,

then w(�k) is in step 5 acceptable to the filter (with wk considered in the filter when
mk(wk) − mk(wk(�k)) < κθ(wk)

2).

Proof. Since, by Lemma 5, wk is acceptable to the filter, wk(�k) is acceptable to the
filter (with wk considered in the filter when mk(wk) − mk(wk(�k)) < κθ(wk)

2) if

θ(wk(�k)) ≤ θ(wk)

and

θg(wk(�k)) < θg(wk) − γFθ(wk). (30)

We know from Lemma 6 that, if �k ≤ �r ,

θ(wk(�k)) ≤ (Mh + Mc)�
2
k.

Hence, θ(wk(�k)) ≤ θ(wk) is ensured by the second inequality in (29) if in addition

(Mh + Mc)�k ≤ 1

2
min{γ1, γ2(�k/2)β}. (31)

Moreover, when 0 < �k ≤ �ub, we have by Lemma 1 and the first inequality in (29)
that

θg(wk(�k)) − θg(wk) ≤ −αt
k(1 − σ)ε + Mg�

2
k.

We have pointed out before that αt
k ≥ �k/Ms for all �k ≤ Ms , see the end of the proof

of Lemma 7. So,

θg(wk(�k)) − θg(wk) ≤ �k

(
− (1 − σ)ε

Ms

+ Mg�k

)
.
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Since we are concerned with step 5 of the algorithm, we know that θ(wk) ≤ γ2�
1+β
k ,

see Remark 3, (26). Hence, we obtain (30) whenever

Mg�k + γFγ2�
β
k ≤ (1 − σ)ε

2Ms

<
(1 − σ)ε

Ms

. (32)

The requirements 0 < �k ≤ min{�r, �ub}, (31) and (32) on �k are obviously satisfied
if 0 < �k ≤ �f with some constant �f > 0. �

Now we are ready to derive asymptotic results. We appeal first to a commonly used
argument in filter convergence proofs to show that lim infk→∞ θ(wk) = 0 when infi-
nitely many iterates are added to the filter.

Lemma 9. From the moment that wk is added to the filter, the filter always contains an
entry that dominates wk .

Proof. Since wk dominates wk , the assertion is trivial as long as wk remains in the fil-
ter. If wk is removed from the filter then it is replaced by an iterate wk′ , k′ > k, that
dominates wk . Thus, the assertion remains true as long as wk′ stays in the filter. If wk′ is
removed from the filter then it is replaced by an iterate wk′′ , k′′ > k′, that dominates wk′
and thus also dominates wk by the transitivity of dominance. Thus, the result follows
inductively. �
Lemma 10. Suppose there are infinitely many points added to the filter. Then there exists
a subsequence {ki} such that wki

is added to the filter and

lim
i→∞

θ(wki
) = 0. (33)

Proof. Let infinitely many points be added to the filter and set

A = {k : wk is added to the filter}.
Assume (for deriving a contradiction) that the assertion is wrong. Since by Lemma 4
holds θ(wk) > 0 for all k ∈ A, we then find ε > 0 with θ(wk) ≥ ε for all k ∈ A.

For k ∈ A, define the square

Sk = [θ(wk) − γFε, θ(wk)] × [θg(wk) − γFε, θg(wk)].

We prove that for all k, l ∈ A with k > l it holds

Sk ∩ Sl = ∅. (34)

In fact, at the time where wk is added to the filter, the filter contains an entry wl′ that
dominates wl according to Lemma 9. In addition, wk is acceptable to the filter by Lemma
5, so that at least one of the following inequalities (35) or (36) holds:

θ(wk) < θ(wl′) − γFθ(wl′) ≤ θ(wl) − γFε (35)

or θg(wk) < θg(wl′) − γFθ(wl′) ≤ θg(wl) − γFε. (36)

In either case, this implies (34). Therefore, all these infinitely many squares Sk , k ∈ A,
with area (γFε)2 are disjoint. Since the sequence {θ(wk), θg(wk)} is bounded, we obtain
the desired contradiction. �
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Remark 4. Note that Lemma 10 asserts (33) only for some particular subsequence {wki
}

of iterates added to the filter and not for any such subsequence. The reason is that accept-
ability of a pair does not imply acceptability of a dominated pair. In fact, let P1 = (1, 1)

and P2 = (1/2, 1). Then P2 is acceptable to P1 and dominates P1; nevertheless, all
points in the set [1 − γF , ∞) × [1 − γF , 1 − γF/2) are acceptable to P2, but are not
acceptable to P1. Therefore, if P1 is in the filter and P2 enters the filter, then, by dom-
inance, P1 is removed, and this can result in points that are acceptable to the updated
filter, but were not acceptable to the filter before the update.

If required, this effect can be circumvented in several ways. The easiest approach is
to never remove dominated entries from the filter. Then the above proof can be easily
modified to establish that (33) holds for any infinite subsequence of iterates that are
added to the filter. An alternative to derive this stronger result, if one wishes to remove
dominated filter entries, can also be obtained by slightly modifying the filter acceptance
test, see [7] and [10, §15.5]. In fact, if we require

either θf − θ(w) > γFθf or θ
f
g − θg(w) > γFθ(w),

then acceptability to a pair implies acceptability to all dominated pairs and it is straight-
forward to prove that (33) holds for any infinite subsequence of iterates added to the
filter, see [10, Lem. 15.5.2]. �
Our next step is to show that in the case where infinitely many iterates are added to the
filter there exists a subsequence of iterates that converges to a KKT-point. In fact, our pre-
vious result lim infk→∞ θ(wk) = 0 can be extended to lim infk→∞ θ(wk)+θg(wk) = 0.
Since iterates are added to the filter only if restoration is invoked or in step 8, the sequence
{ki} of Lemma 10 must contain either a subsequence where restoration is invoked, or a
subsequence where the iterates are added to the filter in step 8. We start with the first
case.

Lemma 11. Suppose that there exists an infinite sequence {ki} of iterations at which
restoration is invoked and for which holds that

lim
i→∞

θ(wki
) = 0.

Then {ki} contains a subsequence {k′
j } with

lim
j→∞

θ(wk′
j
) = 0, lim

j→∞
θg(wk′

j
) = 0.

Proof. Let ki be a subsequence where restoration is invoked for every ki (and thus wki

is added to the filter) such that limi→∞ θ(wki
) = 0. Since the restoration is invoked it

must hold that

θki
> �ki

min{γ1, γ2�
β
ki

}. (37)

Therefore, we have

0 = lim
i→∞

θki
= lim

i→∞
�ki
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and thus can find K0 > 0 such that �ki
< ν�min for all ki ≥ K0 with �min from

Lemma 3.iii, with ν ∈ (0, 1). We show next that �ki−1 ≤ 2�ki
for all ki ≥ K0 which

then yields

0 = lim
i→∞

θki
= lim

i→∞
�ki

= lim
i→∞

�ki−1. (38)

In fact, �ki
< ν�min for ki ≥ K0 shows that �ki

= �in
ki

for ki ≥ K0, since, by Lemma

3.iii, step 2 and step 3 yield only �ki
�= �in

ki
if �in

ki
> �min. But then the result of step

2 and step 3 would be a radius �ki
> ν�min, which is not the case for ki ≥ K0. Thus,

we have �ki
= �in

ki
for ki ≥ K0 and conclude that �ki

≥ �ki−1/2 for all ki ≥ K0.
Thus, (38) holds.

By (38) and Lemma 3.iii we know that for large enough i step 2 and step 3 do not
change �in

ki−1 and �in
ki

. Thus, we find K1 ≥ K0 with

�ki−1 = �in
ki−1, �ki

= �in
ki

for all ki − 1 ≥ K1. (39)

We show next that step 5 is reached in all iterations ki − 1 ≥ K1. In fact, otherwise
the restoration procedure is called in iteration ki − 1. Thus, we have �in

ki
= �ki−1 and

consequently �ki
= �ki−1 by (39). Since by our assumption the restoration is invoked

in iteration ki − 1, by using �ki
= �ki−1 the outcome of the restoration is an iterate wki

with

θki
≤ �ki−1 min{γ1, γ2�

β
ki−1} = �ki

min{γ1, γ2�
β
ki

},
which contradicts (37). Hence, step 5 is reached for all ki −1 ≥ K1 and thus in particular

θki−1 ≤ �ki−1 min{γ1, γ2�
β
ki−1}.

For the purpose of deriving a contradiction, suppose that θg(wki
) ≥ ε > 0 for

ki ≥ K2 with some sufficiently large K2 ≥ K1. We show next that then there exists
K3 ≥ K2 such that

θg(wki−1) ≥ ε/2 for all ki ≥ K3. (40)

In fact, we have either wki
= wki−1 or wki

= wki−1(�ki−1). In the first case (40) is obvi-
ous since then θg(wki−1) = θg(wki

) ≥ ε for all ki ≥ K2. In the casewki
= wki−1(�ki−1)

it follows from Lemma 1 that for 0 < �ki−1 ≤ �ub

θg(wki
) = θg(wki−1(�ki−1)) ≤ (1 − αt

ki−1(1 − σ))θg(wki−1) + Mg�
2
ki−1,

and thus for ki ≥ K2

ε ≤ θg(wki
) ≤ θg(wki−1) + Mg�

2
ki−1.

We can therefore conclude from (38) that (40) holds for K3 ≥ K2 large enough.
Next, we show that step 7 must be reached for all iterations ki − 1 with ki − 1 ≥ K4

and K4 ≥ K3 large enough. In fact, let �f be the bound of Lemma 8 corresponding
to ε/2 instead of ε. By (38) we can find K4 ≥ K3 such that �ki−1 ≤ �f holds for all
ki − 1 ≥ K4. Now assume that step 7 is not reached in iteration ki − 1 ≥ K4. Then step
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5 is followed by step 11 and thus θki
= θki−1, and, using (39), �ki

= �in
ki

= �ki−1/2.
Therefore, by (37),

θki−1 >
�ki−1

2
min{γ1, γ2(�ki−1/2)β}.

Hence, we obtain from Lemma 8 that wki−1(�ki−1) was acceptable to the filter in step
5, since ki − 1 ≥ K4 ensures �ki−1 ≤ �f . Therefore, step 5 would not have branched
to step 11 as assumed. Hence, step 7 is always reached in all iterations ki − 1 ≥ K4.

We conclude the proof by showing the existence of K5 ≥ K4 such that step 9 is
reached for all iterations ki −1 with ki −1 ≥ K5. This assertion leads to a contradiction:
by (39) and steps 9, 10 we have �ki

= �in
ki

≥ �ki−1, wki
= wki−1(�ki−1). Thus, we

obtain by Lemma 6 for all �ki−1 ≤ �r (which holds by (38) for all i large enough)

θki
= θ(wki−1(�ki−1)) ≤ (Mh + Mc)�

2
ki−1 ≤ (Mh + Mc)�

2
ki

.

This contradicts (37) and (38).
It remains to show that step 9 is eventually reached in all iterations ki − 1 with

ki − 1 ≥ K5, K5 ≥ K4 large enough. We note that by (40) and Lemma 1 for all ki ≥ K4

mki−1(wki−1) − mki−1(wki−1(�ki−1)) ≥ αt
ki−1(1 − σ)

ε

2
≥ �ki−1(1 − σ)

ε

2Ms

.

Hereby, we use again the fact that αt
ki−1 ≥ �ki−1/Ms if �ki−1 ≤ Ms , which holds by

(38) possibly after increasing K4. On the other hand, we have

|mki−1(wki−1) − mki−1(wki−1(�ki−1)) − θg(wki−1) + θg(wki−1(�ki−1))|
= O(�2

ki−1).

The last two inequalities show that ρki−1 → 1 and hence there exists K5 ≥ K4 such
that step 9 is reached in all iterations ki − 1 with ki − 1 ≥ K5.

As we have already seen, this leads to a contradiction with θg(wki
) ≥ ε for all

ki ≥ K2. The proof is therefore completed since there exists a subsequence {k′
j } ⊂ {ki}

for which limj→∞ θ(wk′
j
) = limj→∞ θg(wk′

j
) = 0. �

The other situation is where the sequence {ki} of Lemma 10 contains a subsequence,
where the iterates are added to the filter in step 8. As in the previous Lemma we have
the following result.

Lemma 12. Suppose that there exists an infinite sequence {ki} of iterations for which
wki

is added to the filter in step 8 and, in addition, limi→∞ θ(wki
) = 0. Then {ki}

contains a subsequence {k′
j } such that

lim
j→∞

θ(wk′
j
) = 0, lim

j→∞
θg(wk′

j
) = 0.

Proof. Let {ki} be a sequence of iterations such that wki
is added to the filter in step 8

and limi→∞ θ(wki
) = 0. Suppose now that θg(wki

) ≥ ε > 0 for all ki ≥ K0 for some
K0 ≥ 0. By Lemma 1 and since wki

is added to the filter in step 8 we have

αt
ki

(1 − σ)ε ≤ mki
(wki

) − mki
(wki

(�ki
)) < κθ(wki

)2.
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Thus, we obtain αt
ki

→ 0 and consequently �ki
→ 0. In particular, αt

ki
≥ �ki

/Ms

for large enough i, and since the restoration procedure is not called, we have θ(wki
) ≤

γ2�
1+β
ki

and conclude that

�ki
(1 − σ)ε/Ms ≤ mki

(wki
) − mki

(wki
(�ki

)) < κ(γ2�
1+β
ki

)2

which is a contradiction to �ki
→ 0. �

We summarize both situations in the next theorem.

Theorem 1. Suppose that infinitely many iterates are added to the filter. Then there
exists a subsequence {kj } such that

lim
j→∞

θ(wkj
) = 0, lim

j→∞
θg(wkj

) = 0.

Proof. By Lemma 10 there exists a sequence {ki} of iterates such that wki
is added to

the filter and limi→∞ θ(wki
) = 0. As we have already observed there exists either a

subsequence {k′
j } of {ki} such that wk′

j
are added to the filter in the restoration or a

subsequence {k′
j } of {ki} such that wk′

j
are added to the filter in step 8. In the first case

the assertion follows from Lemma 11; in the second case from Lemma 12. �
It remains to consider the case where the algorithm runs infinitely but the filter is

left with a finite number of entries.

Theorem 2. Suppose that the algorithm runs infinitely and only finitely many iterates
are added to the filter. Then

lim
k→∞

θ(wk) = 0, lim inf
k→∞

θg(wk) = 0.

Proof. The assumption says that for k ≥ K , with K large enough, no further filter entry
is added. Hence, the filter contains for all k ≥ K the same finitely many entries, and the
restoration is never invoked. Thus, all new iterates wk+1 �= wk are computed in step 10.
We now show that step 10 is reached infinitely many times.

In fact, step 5 is reached in each iteration, and, by Lemma 7, step 7 is reached after
finitely many reductions of �k in step 11. Again, step 8 is reached after finitely many
reductions of �k . In fact, if θ(wk) > 0 then clearly

mk(wk) − mk(wk(�k)) < κθ(wk)
2

for �k sufficiently small and step 8 is reached. Otherwise, θ(wk) = 0 and θg(wk) > 0
and therefore ρk ≥ η for all �k small enough (we may apply exactly the same arguments
as at the end of the proof of Lemma 12). So, step 10 is always reached after finitely many
reductions of �k , producing always new iterates.

Since no further entry is added to the filter we know, cf. step 8, that in step 10 it
always holds that

θg(wk) − θg(wk+1) ≥ η(mk(wk) − mk(wk(�k))) ≥ ηκθ(wk)
2.
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Since this holds for all successful steps and {θg(wk)} is bounded, we conclude that

lim
k→∞

θ(wk) = 0.

Now assume that θg(wk) ≥ ε > 0 for all k ≥ K and some ε > 0. Since the filter entries
do not change for k ≥ K , the test in step 5 is passed whenever �k ≤ �a (cf. Lemma
7). Also, since θg(wk) ≥ ε > 0, we obtain as before that ρk ≥ η whenever �k ≤ �′ for
some �′ > 0. Finally, we know by Lemma 3.iii that for �in

k ≤ �min steps 2 and 3 yield
�k = �in

k . Hence, we see that �k ≥ δ
def= min{�a/2, �′/2, ν�min} > 0 for k ≥ K .

Thus, step 10 is reached for all successful steps with �k ≥ δ > 0 and we have, as above,

θg(wk) − θg(wk+1) ≥ η(mk(wk) − mk(wk(�k))) ≥ η(1 − σ)εαt
k

≥ η(1 − σ)ε min

{
δ

Ms

, 1

}

where Ms is as before a uniform upper bound on max{‖st
k‖, ‖sn

k ‖}. This is again a
contradiction to the boundedness of θg(wk) and the proof is complete. �

The main result is obtained by combining Theorems 1 and 2:

Corollary 1. Under Assumption 1, the sequence of iterates {wk} generated by the pri-
mal-dual interior-point method (Algorithm 1) satisfies

lim inf
k→∞

θ(wk) + θg(wk) = 0.

6. A restoration algorithm

In this section we present restoration algorithms that can be used in step 4 of the primal-
dual interior-point filter method (Algorithm 1). The purpose of a restoration algorithm
is to find a point wk+1 ∈ N (γ, M) acceptable to the filter and such that θ(wk+1) ≤
�k+1 min{γ1, γ2�

β
k+1} with �k+1 = �k . Thus, the purpose of a restoration algorithm

is to decrease the value of θ(w) = θh(w) + θc(w). To achieve this goal we introduce
the function

θ2(w)
def= 1

2

(
θh(w)2 + θc(w)2

)
= 1

2

(
‖h(x)‖2 + ‖Xz − µe‖2

)
.

6.1. A Restoration Algorithm based on the KKT-Newton-System

The normal step sn computed from (11) is a descent direction for θ2(w). In fact,

∇θ2(w)T sn = (Xz − µe)T (Z�xn + X�zn) + h(x)T ∇h(x)T �xn

= −(Xz − µe)T (Xz − µe) − h(x)T h(x).

Thus, ∇θ2(w)T sn = −2θ2(w), and sn is, in fact, a descent direction for θ2(w). One can
also show using

(Xz − µe)T (1 − σ)µe = (1 − σ)µ(nµ − nµ) = 0
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that the tangential step (12) yields ∇θ2(w)T st = 0. We summarize these two properties
for future reference:

∇θ2(w)T sn = −2θ2(w), ∇θ2(w)T st = 0. (41)

The restoration algorithm presented here works with the step framework w(�) =
w + αn(�)sn + αt (�)st , where αn(�), sn, αt (�), and st are given by (13), (11), (14),
and (12), respectively. Several other restoration algorithms are plausible but we chose
the following one because it is consistent with the step calculation of our primal-dual
interior-point filter method.

Algorithm 2 (Restoration algorithm).

0. Choose ξ, ν ∈ (0, 1). Set w0
k := wk , �0

k := �k , j := 0 and start with step 4.

1. If θ(w
j
k ) ≤ �k min{γ1, γ2�

β
k } and w

j
k is acceptable to the filter then set wk+1 := w

j
k

and stop restoration.
2. Set µ

j
k := (x

j
k )T z

j
k/n and compute the steps s

n,j
k and s

t,j
k by solving the linear

systems (11) and (12), respectively, with (w, µ) = (w
j
k , µ

j
k).

3. Compute �
j
k ∈ (0, �

in,j
k ] such that

x
j
k (�) > 0, z

j
k (�) > 0, X

j
k (�)z

j
k (�) ≥ γµ

j
k(�)e for all � ∈ [0, �

j
k ] (42)

and such that �
j
k is not smaller than the largest value νr�

in,j
k , r = 0, 1, . . ., having

this property.
4. If

θ2(w
j
k ) − θ2(w

j
k (�

j
k)) ≥ −ξ∇θ2(w

j
k )T s

j
k (�

j
k), (43)

θh(w
j
k (�

j
k)) + θ�(w

j
k (�

j
k)) ≤ Mµ

j
k(�

j
k), (44)

then choose �
in,j+1
k ≥ �

j
k , set w

j+1
k := w

j
k (�

j
k), j := j + 1, and return to step 1.

Otherwise set �
j+1
k = �

j
k/2, j := j + 1, and repeat step 4.

This restoration algorithm terminates successfully in a finite number of iterations as
we prove in our final theorem. In analogy to Assumption 1 we require

Assumption 2. Assumption 1 holds for wk , sk(�k), µk replaced by w
j
k , s

j
k (�

j
k), µ

j
k ,

respectively.

Theorem 3. Under Assumption 2, the restoration algorithm 2 terminates in a finite
number of iterations.

Proof. Let us first consider the well-definedness of the algorithm. Hereby, the only
critical issues are the computation of the trial steps s

n,j
k and s

t,j
k , which is possible by

Assumption 2 (A3), and the computation of �
j
k in step 3, which is possible by Lemma

2. Thus, the algorithm is well-defined.
For the rest of the proof, assume that the restoration algorithm does not terminate

finitely. Let
θF = min

F
(1 − γF )θf .
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Since γF ∈ (0, 1/2), we have from Lemma 4 that θF > 0, and w
j
k is acceptable

to the filter if θ(w
j
k ) ≤ 2

√
θ2(w

j
k ) ≤ θF/2 < θF . This condition and θ(w

j
k ) ≤

�k min{γ1, γ2�
β
k } are eventually satisfied if

lim inf
j→∞

θ2(w
j
k ) = 0. (45)

Hence, if the restoration does not terminate finitely, then there exists an ε > 0 with
θ2(w

j
k ) ≥ ε for all j . We show that this uniform bound will lead to a contradiction. In

fact, from (41), we have

∇θ2(w
j
k )T s

j
k (�) = α

n,j
k (�)∇θ2(w

j
k )T s

n,j
k + α

t,j
k (�)∇θ2(w

j
k )T s

t,j
k

= −2α
n,j
k (�)θ2(w

j
k ).

Moreover, there exists a constant M2 > 0 such that

θ2(w
j
k ) − θ2(w

j
k (�)) = −∇θ2(w

j
k )T s

j
k (�) − M2‖sj

k (�)‖2,

which in turn, appealing to α
t,j
k (�) ≤ α

n,j
k (�), implies

θ2(w
j
k ) − θ2(w

j
k (�)) ≥ −∇θ2(w

j
k )T s

j
k (�) − 2M2α

n,j
k (�)2(‖sn,j

k ‖2 + ‖st,j
k ‖2).

Hence, (43) holds for all α
n,j
k (�) such that

2(1 − ξ)α
n,j
k (�)θ2(w

j
k ) ≥ 2M2α

n,j
k (�)2(‖sn,j

k ‖2 + ‖st,j
k ‖2),

i.e., for all α
n,j
k (�) such that

α
n,j
k (�) ≤ ᾱ

n,j
k

def= min

{
1,

(1 − ξ)θ2(w
j
k )

M2(‖sn,j
k ‖2 + ‖st,j

k ‖2)

}
.

From Lemmas 2 and 3.iii, we see finally that (42), (43), and (44) are satisfied for all �
j
k

such that

0 < �
j
k ≤ min

{
�min, ᾱ

n,j
k ‖sn,j

k ‖
}

,

showing that all these conditions are satisfied after finitely many reductions of �
j
k in

step 4.
Now, if θ2(w

j
k ) ≥ ε > 0 holds for all j , then, since max{‖sn,j

k ‖, ‖st,j
k ‖} ≤ Ms ,

α
n,j
k (�

j
k) ≥ 1

2
min

{
�min

‖sn,j
k ‖

, ᾱ
n,j
k

}
≥ ᾱ > 0

for some ᾱ > 0, and we conclude that

θ2(w
j
k ) − θ2(w

j
k (�

j
k)) ≥ 2ξ ᾱε,

which yields a contradiction. Hence, we have (45) and the finite termination is proved.
�
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6.2. Other restoration procedures and the Wächter-Biegler example

The restoration algorithm 2 uses the same step computation as the interior-point filter
method. Global convergence is attained as long as Assumptions 1 and 2 hold. In practice
it may happen that Assumption (A3) is violated, affecting not only Algorithm 1, but also
the restoration algorithm 2. We will briefly discuss here the main issues related with this
situation and leave a more detailed study for a forthcoming paper.

For the purpose of this discussion, let us consider the problem proposed by Wächter
and Biegler in [27], which takes the following form:

min
x∈R3

f (x) s.t. x2
1 − x2 + a = 0, x1 − x3 − b = 0, x2, x3 ≥ 0, (46)

with a ∈ R and b ≥ 0. The particular form of the (sufficiently smooth) objective is not
relevant since the interesting properties of the problem are generated by the constraints.
For brevity, we set h1(x) = x2

1 − x2 + a and h2(x) = x1 − x3 − b. The problem is non-
degenerate, because ∇h(x) has full rank and its condition number is uniformly bounded
on sets where x1 is bounded. Nevertheless, it was shown in [27] that for every initial

point x0 ∈ (−∞, 0) × (0, ∞)2 with r := h1(x
0)

|h2(x0)| ≥ 0 and a − rb ≤ min{0, −a/2} any

method fails to converge if it computes the new primal iterate xk+1 from the old point
xk ∈ R × (0, ∞)2 by a step of the following form:

xk+1 = xk + σks
k ∈ R × (0, ∞)2, σk ∈ (0, 1],

where sk satisfies h(xk) + ∇h(xk)T sk = 0. (47)

Both Algorithms 1 and 2 can be easily adapted to allow for x1 as a free variable.
It is straightforward to see that Algorithm 1, when no restoration is called or when

the restoration algorithm is of the form described in Section 6.1, is contained in the class
of algorithms described in the previous paragraph. In fact we have run this problem
using our Matlab implementation of Algorithm 1, combined with Algorithm 2 for the
restoration, and we have observed bad numerical behavior. We have seen that the iterates
approached a point where Assumption (A3) is violated and that this was the cause for
such bad numerical performance.

This situation may be avoided by using a restoration algorithm that terminates suc-
cessfully even if assumption (A3) is violated. To illustrate this point, we have considered
a restoration procedure that does not belong to the class (47). This alternative is based
on the optimization problem in the variables x and z

min
1

2

(‖h(x)‖2 + ‖Xz − µce‖2) s.t. x ≥ 0, z ≥ 0, (48)

where µc def= µk denotes the value of µ when restoration is entered. Analogously, we
denote by wc = (xc, yc, zc)

def= (xk, yk, zk) the iterate for which restoration is entered.
Note that if there exists a strictly feasible point of (46), i.e., a point x such that h(x) = 0
and x > 0, then we can choose z = µcX−1e and obtain a global minimizer of (48).
Conversely, if there exists a strictly feasible point then any global minimizer (x, z) sat-
isfies h(x) = 0, x, z > 0, and Xz − µce = 0. Therefore, any solver that is able to find
a global minimizer (x̄, z̄) of (48) for which, in addition,

θh(x̄, yc, z̄) + θ�(x̄, yc, z̄) ≤ Mµc (49)
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holds, provides a valid restoration procedure (withwk+1 = (x̄, yc, z̄)). In order to include
a device to enforce (49) we tried (among many other possible options) to augment the
objective function in (48) by the penalization term ρ1

2 ‖∇x�(x, yc, z)‖2. In addition, it
can be advantagous to add the regularization term ρ2

2 ‖(x, z) − (xc, zc)‖2 to make the
Hessian of the restoration problem positive definite. Both parameters ρ1, ρ2 are chosen
small, i.e., 0 ≤ ρi � 1. Since these modifications may lead to non-interior solutions,
i.e., xi = 0 or zi = 0 for some i, we move the nonnegativity constraints slightly. The
resulting problem is

min
1

2

(‖h(x)‖2 + ‖Xz − µce‖2 + ρ1‖∇x�(x, yc, z)‖2 + ρ2‖(x, z) − (xc, zc)‖2)

s.t. x, z ≥ δ,

where δ > 0 is very small and should be chosen, e.g., depending on the value of µc. If
required, the value of ρ2 can be adjusted during the minimization process. The value of
ρ1 is kept small, but large enough to ensure (49). We applied Bertsekas’ projected New-
ton method to solve this problem in the context of (46). We have numerically observed
that Algorithm 1 using this alternative restoration procedure (adapted to the case where
x1 is unrestricted) was able to successfully solve problem (46).

The use of new alternatives for the restoration procedure, including the one presented
above, is subject of ongoing research. Another alternative is for instance the use of the
restoration algorithm 2 but with a suitable regularization for the matrix F ′

σµ(w). One
should also consider a modification of the Algorithm 1 so that restoration is also called
if ‖F ′

σµk
(wk)

−1‖ exceeds a prescribed, very large bound C′ – larger than we expect
or wish the constant C to be in assumption (A3). If the restoration procedure is able
to find a new point wk+1 at which, besides the requirements of step 4 in Algorithm 1,
F ′

σµk+1
(wk+1) satisfies (A3) with a reasonable value of C < C′, then the chances of

satisfying assumption (A3) will be improved so that the interior-point filter method can
continue successfully.

7. Concluding remarks

The filter mechanism has been used for the first time to globalize primal-dual interior-
point methods. Global convergence to first-order critical points has been proved, and
the main result has been reported in Corollary 1.

The combination of interior-point and filter ideas led to a new class of algorithms.
We have already tested our primal-dual interior-point filter method in Matlab for QP
problems and small-scale NLP problems. The results are encouraging but there is still
some work ahead. We are currently working on a fortran 90 implementation of our pri-
mal-dual interior-point filter method and we plan to report numerical results in a future
paper.

This paper is hopefully a first step in this challenging topic. Several issues need to
be addressed and better understood, and among them we highlight the following.

The new primal-dual interior-point algorithm uses a 2D filter: one dimension for fea-
sibility and centrality combined and the other for the size of gradient of the Lagrangian
(with complementarity added). An open question is the use of 3D filters. In a 3D filter,
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one uses the first dimension for feasibility, the second for centrality, and the third for the
size of the gradient of the Lagrangian.

As we have mentioned in the introduction, the rate of local convergence is well stud-
ied in the literature for primal-dual interior-point methods under the standard assump-
tions, and even in cases where some of these standard assumptions do not hold. The
open issue in interior-point filter methods is whether the globalization scheme (where
the filter plays an important role) becomes locally inactive to allow fast convergence
rates.

Another interesting topic for future research is the choice of alternatives for the
components used in the filter. As already mentioned, it would be desirable to replace
the optimality measure θg by a function that reflects better the goal of minimizing f .
Essentially, an appropriate candidate should be a function for which the tangential step
st yields a fraction of Cauchy decrease close to the quasi-central path.

Appendix

The following lemma measures the decrease on complementarity obtained by the new
iterate w(�) and is needed to prove Lemmas 1 and 2.

Lemma 13. For all � > 0 and all i = 1, . . . , n it holds

xi(�)zi(�) ≤ (1 − αn(�))xizi + (
αn(�) − αt (�)(1 − σ)

)
µ + 4�2, (50)

xi(�)zi(�) ≥ (1 − αn(�))xizi + (
αn(�) − αt (�)(1 − σ)

)
µ − 4�2, (51)

µ(�) ≤ (
1 − αt (�)(1 − σ)

)
µ + 4�2,

µ(�) ≥ (
1 − αt (�)(1 − σ)

)
µ − 4�2. (52)

Proof. By the definition of sn and st , we have

xi(�)zi(�) = (xi + αn(�)�xn
i + αt (�)�xt

i )(zi + αn(�)�zn
i + αt (�)�zt

i )

= xizi + αn(�)(zi�xn
i + xi�zn

i ) + αt (�)(zi�xt
i + xi�zt

i )

+ (αn(�)�xn
i + αt (�)�xt

i )(α
n(�)�zn

i + αt (�)�zt
i )

= xizi − αn(�)(xizi − µ) − αt (�)(1 − σ)µ

+ (xi(�) − xi)(zi(�) − zi).

So, inequalities (50) and (51) follow from this derivation and

|xi(�) − xi ||zi(�) − zi | ≤ (2�)2.

Summing (50) and (51) over all i, dividing the result by n, and using µ = xT z/n,
µ(�) = x(�)T z(�)/n, yield (52). �

We can now prove Lemmas 1 and 2.
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Proof of Lemma 1

Proof. Denote by B� an upper bound for θ�, and by Ch and C�′ > 1 Lipschitz constants
for ∇h and ∇2

xw�, respectively. We will prove Lemma 1 with

Mh = 2Ch, Mc = 8
√

n,

M� = 2C�′ , Mg = 4(1 + B�C�′) + 4C2
�′�2

ub.

We note that ∇h(x)T sx(�) = −αn(�)h(x), and thus

θh(w(�)) = ‖h(x(�))‖ =
∥∥∥∥h(x) +

∫ 1

0
∇h(x + tsx(�))T sx(�)dt

∥∥∥∥

=
∥∥∥∥(1 − αn(�))h(x) +

∫ 1

0

(∇h(x + tsx(�)) − ∇h(x)
)T

sx(�)dt

∥∥∥∥

≤ (1 − αn(�))θh(w) + Ch‖sx(�)‖2
∫ 1

0
tdt,

which proves (18).
Similarly, we have ∇2

xw�(w)T s(�) = −αt (�)∇x�(w) and, as above, we get

θ�(w(�)) ≤ (1 − αt (�))θ�(w) +
∫ 1

0
‖∇2

xw�(w + ts(�)) − ∇2
xw�(w)‖‖s(�)‖dt,

which yields (20).
The estimate (19) follows from Lemma 13:

±(
xi(�)zi(�) − µ(�)

) ≤ ±
(
(1 − αn(�))xizi + (

αn(�) − αt (�)(1 − σ)
)
µ

)
+ 4�2

∓ (
1 − αt (�)(1 − σ)

)
µ + 4�2

= ±(1 − αn(�))(xizi − µ) + 8�2.

Inequality (21) is derived by appealing to Lemma 13 and to the previously established
inequality (20):

θg(w(�)) = µ(�) + θ�(w(�))2

≤ (
1 − αt (�)(1 − σ)

)
µ + 4�2 + (

(1 − αt (�))θ�(w) + 2C�′�2)2

≤ (
1 − αt (�)(1 − σ)

)
θg(w) + (

4 + 4(1 − αt (�))θ�(w)
)
C�′�2 + 4C2

�′�4.

Finally, we have

m(w) − m(w(�)) = µ − µ(�) + (x(�) − x)T (z(�) − z)/n

+ (1 − (1 − αt (�))2)‖∇x�(w)‖2

= αt (�)(1 − σ)µ + (1 − (1 − αt (�))2)‖∇x�(w)‖2

≥ αt (�)(1 − σ)θg(w),

and the proof is therefore completed. �
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Proof of Lemma 2

Proof. We will prove Lemma 2 with

�min =
{

σ(1 − γ )

4(1 + γ )C(M + n)
,

σM

(Mh + M� + 4M)C(M + n)

}
. (53)

1. We first show that (23) holds for all � ∈ (0, �min] with �min satisfying (53).
From Lemma 13 we obtain

X(�)z(�) ≥ (
γ + (1 − γ )αn(�) − αt (�)(1 − σ)

)
µe − 4�2e. (54)

On the other hand, Lemma 13 also yields

γµ(�) ≤ γµ − γαt (�)(1 − σ)µ + 4γ�2.

Hence, X(�)z(�) ≥ γµ(�)e holds whenever

4�2 ≤ (1 − γ )(αn(�) − αt (�)(1 − σ))µ

1 + γ
. (55)

Since αt (�) ≤ αn(�), a sufficient condition for this inequality to hold is

�2 ≤ αn(�)σ(1 − γ )µ

4(1 + γ )
,

which, by (13), is implied by

� ≤ min

{√
σ(1 − γ )µ

4(1 + γ )
,

σ (1 − γ )µ

4(1 + γ )‖sn‖

}
,

which in turn is true if

� ≤ min

{√
σ(1 − γ )µ

4(1 + γ )
,

σ (1 − γ )

4(1 + γ )C(M + n)

}
def= δ1(µ),

since ‖sn‖ ≤ C(M + (n2 − n)1/2)µ ≤ C(M + n)µ.
On the other hand, we can also deduce that ‖st‖ ≤ C(M + n1/2)µ ≤ C(M + n)µ,

and therefore

δ
def= max{‖sn‖, ‖st‖} ≤ C(M + n)µ. (56)

We consider now two possible cases in order to show that (23) holds whenever

min(�, δ) ≤ δ1(µ). (57)

In the first case � ≤ δ we use that, as we have just shown, (23) holds provided � ≤ δ1(µ).
Since � ≤ δ in this case, the inequality � ≤ δ1(µ) is equivalent to (57). In the case
δ < �, we know that αn(�) = αt (�) = 1, w(�) = w(δ), and s(�) = s(δ). Thus, (23)
is the same as X(δ)z(δ) ≥ γµ(δ). One can apply the same algebraic arguments used
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in the first paragraph of the proof to show that X(δ)z(δ) ≥ γµ(δ) holds if δ ≤ δ1(µ).
Now, since δ < �, we have that δ ≤ δ1(µ) is also equivalent to (57).

Hence, it remains to show (57) for � ∈ [0, �min] with �min according to (53). Let

µ1
crit

def= σ(1 − γ )

4(1 + γ )C2(M + n)2 .

If µ ≤ µ1
crit , then δ1(µ) is given by its first expression, and (57) follows directly from

(56), since by the definition of µ1
crit for µ ≤ µ1

crit with (56) holds

δ ≤ C(M + n)µ ≤
√

C2(M + n)2µ1
critµ =

√
σ(1 − γ )µ

4(1 + γ )
= δ1(µ).

If µ > µ1
crit , then δ1(µ) is given by its second expression, and (57) holds if

min(�, δ) ≤ δ1(µ) = δ1(µ
1
crit)

which is true if

� ≤ δ1(µ
1
crit) = σ(1 − γ )

4(1 + γ )C(M + n)
.

2. We prove now that (24) holds for all � ∈ (0, �min] with �min satisfying (53).
From Lemma 1 and αt (�) ≤ αn(�) we derive

θ�(w(�)) ≤ (1 − αt (�))θ�(w) + M��
2,

θh(w(�)) ≤ (1 − αt (�))θh(w) + Mh�
2.

Using θh(w) + θ�(w) ≤ Mµ we get

θh(w(�)) + θ�(w(�)) ≤ (1 − αt (�))Mµ + (Mh + M�)�
2.

On the other hand, by Lemma 13

Mµ(�) ≥ (1 − αt (�))Mµ + σαt (�)Mµ − 4M�2.

Therefore, (24) holds whenever

(Mh + M� + 4M)�2 ≤ σαt (�)Mµ,

which, by (14), is implied by

� ≤ min

{√
σMµ

Mh + M� + 4M
,

σMµ

(Mh + M� + 4M) max{‖sn‖, ‖st‖}

}
,

which in turn is true, by (56), if

� ≤ min

{√
σMµ

Mh + M� + 4M
,

σM

(Mh + M� + 4M)C(M + n)

}
def= δ2(µ).
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From now on, this part of the proof follows exactly the same steps of part 1, with

µ2
crit

def= σM

(Mh + M� + 4M)C2(M + n)2 ,

replacing the role of µ1
crit , and

0 < � ≤ δ2(µ
2
crit) = σM

(Mh + M� + 4M)C(M + n)
.

3. Finally we prove that (25) holds for all � such that (53) is satisfied. We know
from part 1 that (54) and (55) are verified if � ∈ (0, �min] with �min satisfying (53). It
follows from (55) that

4�2 <
(
αn(�) − αt (�)(1 − σ)

)
µ

So, from (54), we get

X(�)z(�) > γ
(
1 − αn(�)

)
µe ≥ 0,

for all � for which (53) is satisfied, and assertion (25) follows trivially. �
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98/13, Département de Mathématique, FUNDP, Namur, 1998

16. Forsgren, A., Gill, P.E.: Primal-dual interior methods for nonconvex nonlinear programming. SIAM J.
Optim. 8, 1132–1152 (1998)

17. Gay, D.M., Overton, M.L., Wright, M.H.: A primal-dual interior method for nonconvex nonlinear pro-
gramming. In: Proceedings of the 1996 International Conference on Nonlinear Programming, Beijing,
China, Y. Yuan, (ed.), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 31–56

18. Heinkenschloss, M., Ulbrich, M., Ulbrich, S.: Superlinear and quadratic convergence of affine-scaling
interior-point Newton methods for problems with simple bounds without strict complementarity assump-
tion. Math. Program. 86, 615–635 (1999)

19. Martinez, H.J., Parada, Z., Tapia, R.A.: On the characterization of q-superlinear convergence of quasi-
Newton interior-point methods for nonlinear programming. Boletin de la Sociedad Matematica Mexicana
1, 1–12 (1995)

20. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer–Verlag, Berlin, 1999
21. Tseng,P.: Error bounds and superlinear convergence analysis of some Newton-type methods in optimi-

zation. In: Nonlinear Optimization and Applications, Vol. 2, Kluwer Academic Publishers B.V., 1998
22. Ulbrich, M., Ulbrich, S.: Nonmonotone trust region methods for nonlinear equality constrained optimi-

zation without a penalty function. Math. Program. 95, 103–135 (2003)
23. Vanderbei, R.J., Shanno, D.F.: An interior-point algorithm for nonconvex nonlinear programming. Com-

put. Optim. Appl. 13, 231–252 (1999)
24. Vicente, L.N.: Local convergence of the affine-scaling interior-point algorithm for nonlinear program-

ming. Comput. Optim. Appl. 17, 23–35 (2000)
25. Vicente, L.N., Wright, S.J.: Local convergence of a primal-dual method for degenerate nonlinear pro-

gramming. Comput. Optim. Appl. 22, 311–328 (2002)
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