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Abstract. Yen’s algorithm is a classical algorithm for ranking the K shortest loop-
less paths between a pair of nodes in a network. In this paper an implementation of
Yen’s algorithm is presented. Both the original algorithm and this implementation
present O(Kn(m + n log n)) computational complexity order when considering
a worst-case analysis. However, computational experiments are reported, which
allow to conclude that in practice this new implementation outperforms two other,
Perko’s implementation and a straightforward one.
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1 Introduction

The problem of determining the K shortest paths, or the ranking of the K shortest
paths between a pair of nodes in a network is due to Hoffman and Pavley (1959),
who proposed an algorithm for solving it. In this problem, for a given integer K ≥ 1,
is intended to determine successively the shortest path, the second shortest path,
…, until the K-th shortest path between the given pair of nodes.

Since 1959 numerous articles on this subject have been published, several of
them suggesting algorithms for solving the K shortest paths problem. We cite some

� Sadly, the author passed away in November, 2000.
�� The research of Marta Pascoal was developed within CISUC and partially supported by the Por-
tuguese Ministry of Science and Technology (MCT), under PRAXIS XXI Project of JNICT.

4OR Quarterly Journal of the Belgian, French
and Italian Operations Research Societies

© Springer-Verlag 2002



122 E.Q.V. Martins and M.M.B. Pascoal

of those articles (Dreyfus 1969; Eppstein 1998; Jiménez and Varó 1999; Martins
1984; Martins and Santos 2000; Martins et al. 1997, 2001; Shier 1976), and refer
a very complete K shortest paths bibliography, available online at:
http://liinwww.ira.uka.de/bibliography/Theory/k-path.html.

Solving this problem is important for several optimisation problems, and it is
often used ranking paths by non-decreasing order of their costs, until one or more
paths with small cost and satisfying some constraints are determined.

A related problem is the K shortest loopless paths problem, where it is intended
to enumerate only paths without repeated nodes, i.e., loopless paths. The additional
constraint imposed implies that this problem does not verify the Optimality Princi-
ple (Martins et al. 1999); therefore, although being similar to the general problem,
ranking loopless paths is significantly harder. Yet, algorithms for enumerating K

shortest loopless paths can be found in Carraresi and Sodini (1983); Katoh et al.
(1982); Martins et al. (1997); Yen (1971). The first of these algorithms was pre-
sented in 1971 by Yen (Lawler 1972; Yen 1971, 1975), and comparative analysis
of its practical performance with other approaches in the literature can be found in
Hadjiconstantinou and Christofides (1999); Martins et al. (1997); Perko (2000).

In this work an implementation of Yen’s ranking loopless paths algorithm is
presented. While the usual implementation follows straightforwardly the classical
version of this algorithm, the new one uses a different approach since the nodes
of each k-th shortest loopless path are analysed by reverse order. Although both
implementations have complexity O(Kn(m + n log n)), in a worst-case analysis,
the new one revealed a better performance in the computational experiments made
to estimate their behaviours in an average-case.

This paper is divided in five sections. In Sect. 2 some definitions, notation and
the formulation of the K shortest loopless paths problem are introduced. In Sect. 3
a class of algorithms for ranking paths and loopless paths is described. In the
following sectionYen’s algorithm is briefly described, being also presented its new
implementation. Finally, in Sect. 5, computational experiments are reported, testing
the behaviour of the variant presented against a straightforward implementation of
Yen’s algorithm and an implementation of the same algorithm due to Perko (1986).

2 Preliminaries

Let (N , A) denote a given network, where N = {v1, . . . , vn} is a finite set, the
elements of which are called nodes, and A = {a1, . . . , am} ⊂ N × N is a finite
set, the elements of which are called arcs, where each arc ak can be represented
by (vi, vj ), with vi �= vj . When (vi, vj ) is an ordered (unordered) pair for any
(vi, vj ) ∈ A, (N , A) is said to be a directed (undirected) network.

Let i and j be two nodes of (N , A).A path p from i to j in (N , A) is a sequence
of the form p = 〈v′1, a′1, v′2, . . . , a′�−1, v

′
�〉, such that:

– v′k ∈ N for any k ∈ {1, . . . , �};
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– a′k = (v′k, v′k+1) ∈ A for any k ∈ {1, . . . , �− 1};
– i = v′1 and j = v′�.

Nodes i and j are called the initial and terminal nodes of path p, respectively. To
simplify the notation paths will be represented only by their nodes. Each single
node is a degenerated path, having no arcs.

A cycle or loop in (N , A) is a path from one node to itself (i = j ) where all
nodes, except i and j , are different. Therefore a path is said to be loopless when it
does not have repeated nodes.

Pij will denote the set of paths in (N , A) from node i to node j . Given x and
y, two nodes of p ∈ Pij , then q ∈ Pxy is said to be a sub-path of p if it coincides
with p from x until y. Such a path will be denoted by subp(x, y).

Each arc (i, j) is associated with a real value, called the arc cost, and denoted
by cij . Let c be a function defined by

c :
⋃

i,j∈N
Pij −→ R

p −→ c(p) =
∑

(x,y)∈p
cxy

,

for any path p in (N , A); c(p) is known as the path p cost.
The concatenation of two paths, p ∈ Pij and q ∈ Pj�, is denoted by p 	 q and

it is the path from i to � formed by path p followed by q.
Let s and t be two different nodes of (N , A) named, respectively, the initial

and the terminal nodes in the network, and let P denote the set Pst .
Given a positive integer K , in the K shortest loopless paths problem a set

PK = {p1, . . . , pK} ⊆ P has to be determined, such that:

– pk is loopless, for any k ∈ {1, . . . , K};
– c(pk) ≤ c(pk+1), for any k ∈ {1, . . . , K − 1};
– c(pK) ≤ c(p), for any loopless path p ∈ P − PK ;
– pk is determined before pk+1, for any k ∈ {1, . . . , K − 1}.

In the following it will be assumed, with no loss of generality, that (N , A) is
a directed network and that Psi �= ∅, Pit �= ∅, for any i ∈ N . It will also be
assumed the existence of at least K loopless paths in (N , A) and that all cycles in
the network have non-negative cost.

3 Deviation algorithms

Some of the algorithms known in the literature for ranking the K shortest paths
between a pair of nodes are based on the construction of a “pseudo”-tree. In fact it
is not a tree as it is usually defined since it can contain repeated nodes. However,
it can be seen in such a way, since the same node is distinguished when belonging
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Fig. 1. Network (N , A)
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to different paths. This “pseudo”-tree (as well as the deviation node of a path) is
defined recursively in the following.

Given q1, . . . , qk ∈ P , the deviation node of path qk+1 ∈ P − {q1, . . . , qk},
denoted by d(qk+1), is the farthest node from the initial one (when concerning the
number of intermediate nodes), among those where qk+1 deviates from each path
q1, . . . , qk . By definition d(q1) = s.

A path q1 ∈ P forms a tree with only one path. Assume q1, . . . , qk ∈ P form a
“pseudo”-tree of k paths, and let qk+1 ∈ P−{q1, . . . , qk}. Then, the “pseudo”-tree
of k + 1 paths q1, . . . , qk+1 is defined by adding the branch subqk+1(d(qk+1), t) to
the “pseudo”-tree of k paths.

When a “pseudo”-tree is formed only by paths not containing cycles, it is said
to be a loopless paths “pseudo”-tree, or simply a loopless paths tree.

Figure 2 represents the tree of paths q1 = 〈1, 2, 5〉, q2 = 〈1, 3, 4, 5〉 and
q3 = 〈1, 2, 4, 5〉 from 1 to 5 in the network depicted in Fig. 1. The number close
to each node in the tree of Fig. 2 represents the cost of the tree path from s until
that node. It should be noticed that q1, q2 and q3 do not contain repeated nodes,
therefore they are loopless paths. Since these are the shortest loopless paths in that
network, the tree in Fig. 2 is the tree of the three shortest loopless paths from 1 to
5 in (N , A).

According to the previous definition, the deviation node of q1 is the initial node,
that is d(q1) = 1. Since q2 separates from q1 in node 1, d(q2) = 1. Moreover q3
coincides with q1 from node 1 until node 2, loopless path 〈1, 2〉, and it coincides
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with q2 only in the initial node, null loopless path 〈1〉. Therefore its deviation node
is d(q3) = 2.

One of the classes of algorithms for ranking shortest paths and shortest loopless
paths is known as the class of deviation algorithms (Martins et al. 1997). In the case
of the K shortest loopless paths problem, these algorithms construct the K shortest
loopless paths tree. However, most of the times, this implies the determination of
a “super”-tree of the K shortest loopless paths tree, i.e., a tree which contains the
K shortest loopless paths, but which may also contain other paths.

In order to determine this tree, deviation algorithms use a set X of (loopless)
paths, which are candidates to the next (loopless) path to be determined. The set of
candidate paths is initialized with the shortest (loopless) path from s to t in (N , A),
which may be determined by any shortest path algorithm.After that the element with
lower cost is repeatedly picked up from X and new (loopless) paths are generated,
and then stored in X. Throughout the algorithm the paths in X represent the several
paths in the tree which is being formed. This procedure is repeated until K paths
are determined, so that the (loopless) paths picked from X are p1, p2, . . . , pK .
Whenever pk is chosen, for any k ∈ {1, . . . , K}, new (loopless) paths, candidates
to pj with j > k, are computed. In order to prevent the recalculation of paths
only nodes in subpk

(d(pk), t) are analysed. Besides, when analysing d(pk) the
arcs starting in d(pk) which belong to other (loopless) paths already determined
should not be used.

4 Yen’s algorithm

Yen’s algorithm is a deviation algorithm where only loopless paths are deter-
mined. Considering that the k-th shortest loopless path is of the form pk = 〈s =
vk

1, vk
2, . . . , vk

�k
= t〉, for every node vk

i to analyse, the shortest loopless path p,

which deviates from pk in vk
i , is computed. Loopless path pk is said to be the parent

of p and node vk
i is its deviation node. In order to calculate only loopless paths,

nodes of subpk
(s, vk

i−1) should not be repeated. Therefore they are temporarily re-
moved from (N , A) and the shortest loopless path from vk

i to t in the resulting
modified network is determined.

In a straightforward implementation of Yen’s algorithm every node of pk from
d(pk) until vk

�k−1 is analysed. For each of those nodes, for instance vk
i , a specific

shortest loopless path p has to be computed. This loopless path should have the
form p = subpk

(s, vk
i ) 	 q, where q ∈ Pvk

i t , the first arc of which is not (vk
i , v

k
i+1),

and which hasn’t been computed yet. In order to calculate such path p, the network
has to be modified by removing the nodes in subpk

(s, vk
i−1), the arc (vk

i , v
k
i+1) and

all arcs starting in vk
i which have been deleted when pk was computed. After these

modifications, q is obtained by solving the shortest path problem from vk
i to t in

the resulting network. Finally the original network is restored.
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Although some of the modifications can be maintained from one analysed node
to the following one, each one implies the resolution of one new shortest path prob-
lem, which has O(m+ n log n) complexity when considering Dijkstra’s algorithm
(1959) (assuming that only non-negative arcs costs exist). Thus, considering the
worst-case for this algorithm, when each p1, . . . , pK demands the analysis of n

nodes, its theoretical complexity order is O(Kn(m+ n log n)) (Lawler 1972).
In the following sub-section a new implementation of Yen’s algorithm will be

described, which differs from the previous one by the order of analysis of the nodes
in pk .

4.1 An implementation of Yen’s algorithm

In the following the shortest tree rooted at x ∈ N will be denoted by Tx and the
loopless path from i ∈ N to x in Tx will be denoted by Tx(i). When x is the terminal
node, Tx represents the tree of the shortest paths from every node to t , otherwise it
represents the tree of the shortest path from x to every node. The cost of path Tt (i)

will be represented by πi and will be called node i’s label, for any i ∈ N .
The natural order for analysing the nodes of each pk seems to be from the

deviation node d(pk) until t , following its order in the path. This implies several
changes in the network and the resolution of shortest path problems (as many as the
nodes in subpk

(d(pk), v
k
�k−1). Although both the straightforward implementation

and the one which will now be described analyse exactly the same nodes for each
pk , in the last one the order of analysis is reversed. As it will be shown that allows us
to solve only one shortest path problem, and to replace the remaining resolutions of
shortest path problems by other operations, which, most of the times, are expected
to be less complex.

Let vk
�k−1 be the first node to analyse in pk; then a loopless path with the form

p = subpk
(s, vk

�k−1) 	 q has to be computed, where q is the shortest loopless path

from vk
�k−1 until t , without nodes in subpk

(s, vk
�k−2) and (vk

�k−1, t). Thus, the nodes
and arcs mentioned are deleted from (N , A), and (loopless) path q is determined.
If a labeling algorithm is applied to obtain q, a shortest tree is computed and two
options may be considered. One is to use the forward star form and construct the tree
of the shortest paths from vk

�k−1 to every node in the network (then q = Tvk
�k−1

(t));

while the other is to use an adaptation of the usual shortest path algorithm and the
reverse star form, and build the tree of the shortest paths from every node to t (and
q = Tt (v

k
�k−1)). Recalling that the next node to analyse is vk

�k−2, it can be noticed
that, as in the straightforward implementation, the first option implies the complete
construction of Tvk

�k−2
, which means that a new shortest path problem would have

to be solved. On the other hand, with the second option, analysing vk
�k−2 consists

in suitably changing Tt , according to the reinsertion of that node.
Letvk

i �= d(pk)be a node to analyse inpk , and let us assume that subpk
(s, vk

i+1)	
Tt (v

k
i+1) has been determined, where Tt refers to a network obtained from (N , A)
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by deleting the nodes in the loopless path subpk
(s, vk

i ) and the arc (vk
i+1, v

k
i+2). In

order to analyse vk
i , a similar tree has to be computed which is slightly different

from the previous one, since it may contain both the arc (vk
i+1, v

k
i+2) and the node

vk
i . This may force some nodes’ labels in Tt to change.

Let us first consider the reinsertion of (vk
i+1, v

k
i+2) in the network. This rein-

sertion implies correcting the tree Tt since this is the solution of a similar problem
but subject to less restrictions, which means that the label of some nodes may be
improved. Thus, after restoring (vk

i+1, v
k
i+2), all nodes x in the modified network,

such that there is at least one loopless path from x to vk
i+1 in that network, have to

be analysed again.
Let us now consider reinserting node vk

i in the network which is being used.
Since this node has been deleted, all arcs in the network starting in vk

i should be
analysed. If such arcs exist, then the label of vk

i can be calculated. This new label may
allow other labels to be improved and therefore the process used when (vk

i+1, v
k
i+2)

was reinserted should be repeated, once again in order to analyse nodes x in the
network, such that there is at least one loopless path from x to vk

i . If, after these
two phases, πvk

i
is finite, then Tt (v

k
i ) is defined and the new loopless path generated

as candidate to future shortest loopless path should be p = subk(s, v
k
i ) 	 Tt (v

k
i );

otherwise i hasn’t been labeled and no path p exists under the imposed restrictions.
It should be noticed that when vk

i = d(pk) the same procedure should be used,
but keeping in mind that besides (d(pk), v

k
i+1), also all the arcs in the network

deleted when pk was generated have to be, once again, deleted from the network.
Concerning the data structure used to represent the network (N , A), it should

be noticed that given i ∈ N , the arcs (i, j) and (j, i) of the network, with j ∈ N ,
have to be analysed. Therefore, both the forward star form (for knowing all the arcs
of the first type) and the backward star form (for the second type) should be used
to represent (N , A), (Dial et al. 1979). On this concrete aspect the former imple-
mentation outperforms this one since it only demands representing the network in
the forward star form.

Schematic descriptions of the proposed implementation and of the procedures
used when labeling and correcting labels of the nodes in Tt are presented in the
following Algorithm and in Procedures 1 and 2.

Algorithm – New implementation of Yen’s algorithm
p←− shortest (loopless) path from s to t in (N , A); d(p)←− s;
X←− {p}; k←− 0;
While (X �= ∅ and k < K) Do

k←− k + 1;
pk ←− shortest loopless path in X;
X←− X − {pk};
πi ←− +∞, for any i ∈ N ;
Remove loopless path pk , except node t , from the network;



128 E.Q.V. Martins and M.M.B. Pascoal

Remove arcs (d(pk), i), i ∈ N , of p1, . . . , pk−1 from the network;
Tt ←− shortest tree rooted at t in the network;
For (vk

i ∈ {vk
�k−1, . . . , d(pk)}) Do

Restore node vk
i in the network;

Calculate πvk
i

using forward star form; /* Calculate label of vk
i */

If (πvk
i

is defined) Then

Correct labels of vk
i successors using backward star form;

p←− subpk
(s, vk

i ) 	 Tt (v
k
i ); d(p)←− vk

i ; X←− X ∪ {p};
EndIf
Restore (vk

i , v
k
i+1) in the network;

If (πvk
i

> πvk
i+1
+ cvk

i vk
i+1

) Then
πvk

i
←− πvk

i+1
+ cvk

i vk
i+1

;

Correct labels of vk
i successors using backward star form;

EndIf
EndFor
Restore nodes and arcs of path pk from s to d(pk) in the network;
Restore arcs (d(pk), i), i ∈ N , of p1, . . . , pk−1 in the network;

EndWhile

Procedure 1 – Calculate πi using forward star form
For ((i, j) ∈ A) Do

If (πi > πj + cij ) Then πi ←− πj + cij ;
EndFor

Procedure 2 – Correct labels of x successors using backward star form
list ←− {x};
Repeat

i ←− element of list ; list ←− list − {i};
For ((j, i) ∈ A) Do

If (πj > πi + cji) Then
πj ←− πi + cji ;
list ←− list ∪ {j};

EndIf
EndFor

Until (list = ∅);
Let us consider again the network represented in Fig. 1. Yen’s algorithm begins

by determining p1 = 〈1, 2, 5〉. When this path is chosen in X, all nodes and arcs of
p1, except node t = 5, are removed from (N , A) and then the shortest tree rooted
at 5 is computed, Fig. 3a.

After that, nodes v1
2 = 2 and d(p1) = v1

1 = 1 are analysed. The first one to
be analysed is v1

2 = 2 and it is intended to know the shortest path from 2 to 5. It
should be noticed that arc (2, 5) can not be used in the new path, so it is maintained
deleted from (N , A). Then, using the forward star form, arcs starting in 2 are
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Fig. 3. Steps of the new implementation of Yen’s algorithm

analysed and 2 is labeled from 4, with π2 = π4 + c2,4. Using the backward star
form the arcs incident in 2 are analysed and their labels are improved, if possible.
The resulting shortest tree rooted at 5 is represented in Fig. 3(b). Since 2 has been
labeled, the shortest loopless path which deviates from p1 in 2, 〈1, 2, 4, 5〉, is stored
in X because it is candidate to pj , for some j ≥ 2.

The next node to be analysed is 1, but before that arc (2, 5) has to be restored in
(N , A). Reinserting this arc implies correcting the label of node 2, and eventually
others, using the backward star form. Figure 3(c) represents the shortest tree after
this correction. Finally, node 1 is restored and analysed. The obtained tree, Fig. 3(d),
allows to conclude that 〈1, 3, 4, 5〉 is the shortest path deviating from p1 in 1, so this
path is also stored in X. In the following step X = {〈1, 2, 4, 5〉, 〈1, 3, 4, 5〉}, and
the shortest loopless path is picked from X. Therefore, p2 = 〈1, 3, 4, 5〉, and the
algorithm continues until enough loopless paths (depending on K) are determined.

When using a straightforward implementation of Yen’s algorithm, both paths
〈1, 3, 4, 5〉 and 〈1, 2, 4, 5〉 are still computed, but resulting from two independent
resolutions of shortest path problems.

For storing the loopless paths generated throughout the algorithm, both imple-
mentations use a data structure based on the tree formed by those loopless paths,
noticing that loopless path p can be characterized simply by its deviation node d(p),
the loopless path subp(d(p), t) and its parent loopless path. It is not necessary to
store the initial part of p, subp(s, d(p)), nor the entire path p, once they can be
known recursively. More details about this structure can be found in Martins et al.
(1999).
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Fig. 4. Random Networks, 5000 nodes. a 7500 arcs. b 100000 arcs

In this implementation, the deletion of nodes and arcs of pk from the network
is replaced by its reinsertion. This allows to replace each resolution of a shortest
loopless path problem by labeling and correcting labels of some nodes. In general,
this number of nodes is expected to be smaller than the total number of nodes
in the network when labels are corrected, therefore it is also expected to achieve
better results using the new implementation. This conclusion seems to be confirmed
by the computational tests we made, presented in the next section. However, in
a worst-case scenario, all nodes are relabeled, thus in that case the number of
operations performed by the new implementation is still O(Kn(m + n log n)) as
for the straightforward one (considering, once again, that Dijkstra’s algorithm is
used).

5 Computational experiments

In this section experimental results are reported, where the practical performance
of three implementations of Yen’s ranking loopless paths algorithm is compared,
namely: a straightforward implementation where nodes in pk are analysed by the
usual order (from d(pk) to t), SIYA, an implementation proposed by Perko (1986),
PIYA, and the new implementation, presented in Sect. 4.1, NIYA.

All the implementations were coded in C language and the tests were carried
out on a AMD Athlon 1.3 GHz computer with 512 megabytes of RAM, running
over Suse Linux 7.3. The plots are result of the average CPU running times for
solving 15 problems generated with the same parameters, except for a seed value.
In SIYA and NIYA a label correcting algorithm was used, where the list of nodes
to be scanned is manipulated as a FIFO for solving the shortest path problem and
labeling additional nodes, while inPIYA a special representation of that list is used,
avoiding several initializations (for further details consult Perko 1986).
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Fig. 5. Random networks, 10000 nodes. a 15000 arcs. b 200000 arcs
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Fig. 6. Complete networks. a 100 nodes. b 500 nodes

In these tests, K = 1000 loopless paths were ranked in random networks with
5000 and 10000 nodes, and densities of 1.5, 2, 15 and 20, where the density or
average degree of a network is d = m/n. Complete networks were also used,
considering 100 and 500 nodes. The cost of each arc is randomly calculated and it
is uniformly distributed in [0, 1000].

Tables 1 and 2 show the running times obtained by the three implementations,
when considering random networks with 5000 and 10000 nodes, respectively, vary-
ing the density in {1.5, 2, 15, 20}, and computing K = 10 (Tables 1a and 2a) and
K = 1000 (Tables 1b and 2b) loopless paths. These tables also present the ratios
obtained when comparing the straightforward and Perko’s implementation with
the implementation ofYen’s algorithm described in the last section. Based on those
results one can see that the CPU times increase with d and with n. It can also be
noticed that for small as well as for large values of K , the new implementation
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Table 1. Running times (in seconds) for random networks, 5000 nodes and a K = 10, b K = 1000

d = 1.5 d = 2 d = 15 d = 20
SIYA 1.3120 1.6700 15.5013 19.3973
PIYA 0.5507 0.6233 6.1093 8.6107
NIYA 0.2153 0.3600 6.0633 8.5600
SIYA
NIYA 6.0938 4.6389 2.5566 2.2660
PIYA
NIYA 2.5578 1.7313 1.0076 1.0059

a

d = 1.5 d = 2 d = 15 d = 20
SIYA 13.5033 16.7647 159.7660 203.9327
PIYA 5.5173 6.4347 64.3440 90.9207
NIYA 2.1727 3.6467 63.8980 92.2740
SIYA
NIYA 6.2150 4.5972 2.5003 2.2101
PIYA
NIYA 2.5394 1.7645 1.0070 0.9853

b

Table 2. Running times (in seconds) for random networks, 10000 nodes and a K = 10, b K = 1000

d = 1.5 d = 2 d = 15 d = 20
SIYA 15.0233 13.8620 51.3047 63.0060
PIYA 8.9753 4.7927 18.2660 29.7540
NIYA 1.8180 2.6820 20.6487 28.4273
SIYA
NIYA 8.2636 5.1685 2.4846 2.2164
PIYA
NIYA 4.9370 1.1787 0.8846 1.0467

a

d = 1.5 d = 2 d = 15 d = 20
SIYA 151.8560 140.3507 540.8880 661.8706
PIYA 90.9720 48.7987 191.7907 314.9373
NIYA 18.3840 27.2840 225.0020 316.1820
SIYA
NIYA 8.2602 5.1441 2.4039 2.0933
PIYA
NIYA 4.9484 1.7885 0.8524 0.9961

b

outperforms the classical and the one suggested by Perko, being the classical the
one with the worst running times. However, the difference in the average running
times seems to be less evident when the density of the network is higher. In this
last case (higher density values) the results presented by PIYA and NIYA are very
similar, and PIYA even shows a better performance in some of the problems.

Figures 4 and 5 represent the CPU times variation with the number of ranked
loopless paths, from K = 1 until K = 1000, in small (d = 1.5) and higher
(d = 20) density random networks with n ∈ {5000, 10000}, while the times in
Fig. 6 refer to complete networks with n ∈ {100, 500}. From these figures it is
notorious the linear dependence of the running times on the value of K , for all
the implementations. Once again one can see that the classical implementation
presented the worst results, followed by Perko’s and then the new implementation,
although PIYA and NIYA had close running times for higher density values (as
already seen in Tables 1 and 2). In complete networks the results are analogous,
though depending on the number of nodes. Thus, NIYA has the best CPU times for
networks with less nodes, and the times are similar for the three implementations
when that number increases.
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