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Abstract. Using on the one hand closure operators in the sense of Dikranjan and Giuli and on the
other hand left- and right-constant subcategories in the sense of Herrlich, Preuß, Arhangel’skiı̌ and
Wiegandt, we apply two categorical concepts of connectedness and separation/disconnectedness to
comma categories in order to introduce these notions for morphisms of a category and to study
their factorization behaviour. While at the object level in categories with enough points the first
approach exceeds the second considerably, as far as generality is concerned, the two approaches
become quite distinct at the morphism level. In fact, left- and right-constant subcategories lead
to a straight generalization of Collins’ concordant and dissonant maps in the category Top of
topological spaces. By contrast, closure operators are neither able to describe these types of maps
in Top, nor the more classical monotone and light maps of Eilenberg and Whyburn, although
they give all sorts of interesting and closely related types of maps. As a by-product we obtain a
negative solution to the ten-year-old problem whether the Giuli–Hušek Diagonal Theorem holds
true in every decent category, and exhibit a counter-example in the category of topological spaces
over the 1-sphere.
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Introduction

Ever since Eilenberg [16] and Whyburn [40] considered the factorization of a
continuous map f : X → Y of compact Hausdorff spaces into a monotone
quotient map (with connected fibres) followed by a light map (with hereditarily
disconnected fibres), there have been studies on decomposition of maps into two
maps whose fibres have opposite connectedness properties. Although Michael
[30] established (monotone-quotient, light)-factorizations for Y a T1-space and
X any topological space, the two classes of maps do not give a factorization sys-
tem in the category Top of topological spaces since the composite of monotone
quotient maps may not be monotone. This defect is not present in Collins’ [10]
factorization of f into a concordant quotient map (fibres are contained in com-
ponents of the domain) followed by a dissonant map (fibres meet components of
the domain in at most one point); see also [15, 11, 34] for closely related factor-
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374 MARIA MANUEL CLEMENTINO AND WALTER THOLEN

ization systems, and [20, 37, 4, 5] for (quite distinct) categorical generalizations
thereof.

In this paper we follow a different direction, by first establishing a general
notion of (dis)connectedness in an arbitrary category and then exploiting it in its
slices, i.e. in the comma categories X/Y of objects over the fixed object Y , so
that a ‘connected’ morphism f : X → Y in X is simply a ‘connected’ object in
X/Y . For the first part of this program, we offered two approaches in our recent
paper [9] and compared them with each other:

(1) In the category X with a closure operator c, define X to be c-connected
(c-separated) if δX : X → X × X is c-dense (c-closed) and obtain the
corresponding subcategories ∇(c) and ∆(c) of X .

(2) Follow the lead of Herrlich [20], Preuß [31] and Arhangels’kiı̌ and Wiegandt
[1] and define a Galois correspondence for full subcategories by

A
l(B) = {A | (∀B ∈ B)A||B}

r(A) = {B | (∀A ∈ A)A||B}

B,

-

�

where A||B means that every morphism A→ B is constant.

Under suitable conditions on X , every left constant subcategory l(B) is of the
form ∇(c), and every right constant subcategory r(A) is of the form ∆(c), for
suitable closure operators c (cf. [9], Theorems 7.6 and 7.7). In fact, approach (2)
is very restrictive (in Top, for instance, the class of pathwise connected spaces
fails to be left constant), while (1) is very general: the ‘Diagonal Theorem’ in
Top [18] and its generalizations of [19, 9] assert that every quotient-reflective
subcategory is of the form ∆(c).

The suitable conditions on X alluded to above involve the existence of
‘enough points’; for instance the assumption that the terminal object of X be
a generator, which is far too restrictive in the slices of X (where ‘points’ of f
are sections of f ). That is why, exploiting the notions (1), (2) for the comma cat-
egories X/Y and deriving a good ‘fibrewise theory’ from them is not a straight-
forward process. In fact, in the absence of enough points, the two approaches (1)
and (2) become quite distinct and independent of each other, despite their many
analogies and interconnections, as we show in this paper.

After a brief summary on the needed categorical tools in Section 1, we intro-
duce the classes Conn(c) and Sep(c) of c-connected and c-separated morphisms
as the ‘sliced’ versions of ∇(c) and ∆(c) in Section 2 and discuss the question
when they lead to a factorization system. Our summary result 3.10 gives two
necessary and sufficient conditions, which are not very restrictive in categories
of algebra but, not surprisingly, rarely found in topology. However, it is quite
common to have Sep(c) being part of a factorization system, with the class
WConn(c) of so-called weakly c-connected morphisms as its factorization com-
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panion, not the potentially smaller class of regular epimorphisms in Conn(c) (cf.
3.5).

A similar effect occurs when looking at the ‘sliced versions’ Conc(A) and
Diss(A) of l(r(A)) and r(A), for a given subcategory A of X : the class of
A-dissonant morphisms is often part of a factorization system, but its factor-
ization companion is not the class ofA-concordant regular epimorphisms but the
potentially smaller class SConc(A) of strongly A-concordant morphisms (see
4.4). Necessary and sufficient conditions for this system to allow for (Conc(A),
Diss(A))-factorizations are given in 4.8, where we also compare our approach
with others mentioned earlier.

Relations between the classes Conn(c), Sep(c) and Conc(A), Diss(A) are
discussed in Section 5. If ∆(c) = r(∇(c)) has ‘good’ reflexion morphisms, c-
separated morphisms are exactly the ∇(c)-dissonant morphisms, and similarly
for connected vis-a-vis concordant (see 5.6). However, in Section 6 we prove
two strikingly negative results for closure operators: even for A ={connected
spaces} in Top, there is no closure operator c such that the class of A-dissonant
maps (A-concordant quotient maps) is exactly the class of c-separated maps (c-
connected quotient maps, respectively); likewise, there is no closure operator
which describes the light maps (monotone quotient maps) as the c-separated
maps (c-connected quotient maps, respectively).

The first of the two main results of Section 6 leads to the solution of a problem
which has been open since the appearance of [19] and was explicitly formulated
in [14] (Problem 6.2): in a complete and cocomplete category X with a factor-
ization system, is every strongly epireflective subcategory B of the form ∆(c)
for some c? Taking for X the category Top/S1 (with S1 the 1-sphere), we solve
this problem negatively, taking in fact for B a right constant subcategory (cf.
7.1). The corresponding problem for left constant subcategories is also solved
negatively by Top/S1 (cf. 7.2).

1. Preliminaries on Factorization Systems and Closure Operators

1.1. Let M be a class of morphisms in a category X which contains all iso-
morphisms and is closed under composition with isomorphisms. As in [14] we
say that X has right M-factorizations if every morphism f of X factors as
f = mf · ef with mf ∈M such that every commutative solid-arrow diagram

· ·

· · ·

-
n?

u

-
ef

-
mf

?
v

�
�

�
���

w

(1)

with n ∈ M admits a unique dotted fill-in morphism w rendering both parts
commutative. Obviously, the factorization of f is unique up to isomorphism.
Furthermore, it is easy to check that M must be closed under the formation of

APCS248.tex; 21/07/1998; 14:59; v.7; p.3
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limits (in X 2), in particular be stable under (multiple) pullback; however, M
need not be closed under composition (see 1.4 below). The equivalence of the
following statements was established in [35] and [29] (see also [28, 41]):

(i) X has right M-factorizations;
(ii) M, considered as a full subcategory of X 2, is reflective;
(iii) (if X has pullbacks)M is stable under pullback, and for every object Y ∈ X ,

the full subcategoryM/Y of X/Y is reflective;
(iv) (if X has pullbacks)M is stable under pullback, and for every f : X → Y

in X , the inverse-image functor f−1(−) :M/Y →M/X has a left adjoint.

1.2. The left companion of M is the class M⊥ of all morphisms e in X
with e⊥n for all n ∈ M; here e⊥n means that every solid-arrow commutative
diagram

· ·

· ·

-
n?

u

-
e

?
v

�
�

�
���

w

(2)

admits a unique diagonal w as above (cf. [33, 17, 32]). It is well known that
M⊥ is closed under the formation of colimits and under composition. Further-
more, if X has rightM-factorizations, thenM⊥ = {f | mf is an isomorphism}
(cf. [14]).

1.3. In what follows the concepts dual to those of 1.1, 1.2 turn out to be equally
important. Hence, for a given class E of morphisms containing the isomorphisms
and being closed under composition with them, one says that X has left E-
factorizations if X op has right E-factorizations; this means that every morphism
f factors as f = mf · ef with ef ∈ E such that the diagonalization property
depicted by

·

··

· ·

-d ∈ E

?
u

-ef -mf ?
v

�
�

�
���

w

(3)

holds. The right companion of E is the class E⊥ of all morphisms m with e⊥m
for all e ∈ E , and one has E⊥ = {f | ef is an isomorphism} in case X has left
E-factorizations.

1.4. The only reason for right M- or left E-factorizations not to constitute
an (orthogonal) factorization system for morphisms (as discussed in [17]) is
the potential failure of M or E to be closed under composition. In fact, the
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following equivalent conditions for the given classes E ,M characterize (E ,M)-
factorization systems:

(i) every f factors as f = mf · ef with ef ∈ E and mf ∈M, and e⊥m for all
e ∈ E and m ∈M;

(ii) X has right M-factorizations, and M is closed under composition;
(iii) X has left E-factorizations, and E is closed under composition.

1.5. Throughout the rest of the paper, X is a finitely complete category with
coequalizers of kernelpairs and a proper and stable (E ,M)-factorization system
for morphisms; hence, in addition to the properties 1.4,M is a class of monomor-
phisms of X and E is a class of epimorphisms of X stable under pullback. We
note that the mono-assumption on M forces E to contain all regular epimor-
phisms; with the existence of kernelpairs and their coequalizers, this makes X to
have (regular epi, mono)-factorizations, so that every strong epimorphism in X
must be regular (cf. [25]). However, X need not be regular (cf. [2]), as regular
epimorphisms are not assumed to be stable under pullback.

Since (E ,M) is kept fixed, we refer to morphisms m : M → X in M
as subobjects of X. With subX = M/X, every f : X → Y in X gives an
image-preimage adjunction

f(−) a f−1(−) : subY −→ subX.

We use the usual lattice-theoretic notations in the preordered classes subX.

1.6. (Cf. [13, 14].) A closure operator c of X w.r.t. (E ,M) is given by a
family of functions cX : subX → subX (X ∈ X ) such that m 6 cX(m),
cX(m) 6 cX(n) if m 6 n, and f(cX(m)) 6 cY (f(m)) for all m,n ∈ subX,
f : X → Y in X . For m : M → X in M, we often write cX(m) : cX(M)→ X,
and we let m

c(m)
denote the M-morphism M → cX(M) with c(m)· m

c(m)
= m.

As usual, m is c-closed if m

c(m)
is an isomorphism, and m is c-dense if c(m) is

an isomorphism; more generally, a morphism f : X → Y is c-dense if f(1X) is
c-dense (in Y ). The closure operator c is idempotent if c(m) is c-closed for all
m, and it is weakly hereditary if m

c(m)
is c-dense for all m.

1.7. For any closure operator c of X w.r.t. (E ,M), the class Mc of c-closed
subobjects is closed under limits (in X 2), and the class Ec of c-dense morphisms
is closed under colimits. With 1.4 one easily shows (cf. [14]):

(1) if c is idempotent, then X has right Mc-factorizations, hence Ec = (Mc)⊥

is closed under composition;
(2) if c is weakly hereditary, then X has left Ec-factorizations, hence Mc =

(Ec)⊥ is closed under composition;
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378 MARIA MANUEL CLEMENTINO AND WALTER THOLEN

(3) if c is idempotent (weakly hereditary) with Mc (Ec) closed under composi-
tion, then c is also weakly hereditary (idempotent, respectively).

1.8. For every closure operator c, a composite d · e belongs to Ec if d ∈ E and
e ∈ Ec, or if d ∈ Ec and e ∈ E ; conversely, d · e ∈ Ec always implies d ∈ Ec.
The cancellation rule

(1) d · e ∈ Ec, d ∈M ⇒ e ∈ Ec

holds if c is hereditary, that is: if cX(m) ∼= f−1(cY (f ·m)) holds for all m :
M → X and f : X → Y inM; in fact, c is hereditary if and only if c is weakly
hereditary and (1) holds (cf. [14]). If cX(f−1(n)) ∼= f−1(cY (n)) holds for all
morphisms f : X → Y in X and n ∈ subY , then c is modal; equivalently, c is
hereditary and

(2) Ec is stable under pullback.

Consequently, an idempotent closure operator c is modal if and only if (Ec,Mc)
is a stable factorization system of X (cf. [14]); such closure operators are called
universal (cf. [3]).

1.9. Closedness of Ec ∩ M under (finite) products is easier to achieve; one
just needs c to be (finitely) productive, that is: cX(

∏
i∈I mi) ∼=

∏
i∈I cXi(mi) for

all mi ∈ subXi with X =
∏
i∈I Xi in X (and I finite). In fact, for c weakly

hereditary, this is a necessary condition for Ec ∩M to be closed under (finite)
products (in X 2).

Certainly, since f × f = (f × 1)(1× f) is the composite of two pullbacks of
f , for a universal closure operator c the class Ec is closed under finite products.
However, in categories where products have ‘enough sections’ (including Top),
every idempotent closure operator is finitely productive (cf. [14] 4.10).

1.10. For every Z ∈ X , the comma category X/Z inherits any given factor-
ization structure from X . Specifically, for our (proper and stable) factorization
system (E ,M) of X , (EZ ,MZ) is a (proper and stable) factorization system of
X/Z, with EZ and MZ denoting the inverse images of E and M, respectively,
under the forgetful functor X/Z → X . Furthermore, a closure operator c of X
w.r.t. (E ,M) induces a closure operator cZ of X/Z w.r.t. (EZ ,MZ): for every
m : g → h in MZ with h : X → Z in X (hence g = h ·m), ch(m) : f → h in
MZ has underlying X -morphism cX(m) with f = h · cX(m). Obviously, cZ is
idempotent, (weakly) hereditary, or modal if the respective property holds for c.

2. Separated and Connected Morphisms

2.1. Let c be a closure operator w.r.t. (E ,M). An object X of X is c-separated
(or c-Hausdorff, cf. [8]) if δX = 〈1X , 1X〉 : X → X ×X is c-closed. (Note that
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SEPARATED AND CONNECTED MAPS 379

the split monomorphism δX belongs to M since E is a class of epimorphisms.)
X is c-connected (cf. [38, 9]) if δX is c-dense. A morphism f : X → Y of X is
c-separated (c-connected) if f is cY -separated (cY -connected, resp.) as an object
of X/Y (cf. 1.10); equivalently, if the morphism δf = 〈1X , 1X〉 : X → X×Y X
is c-closed (c-dense, resp.). We put rf := c(δf ) : Rf → X ×Y X and sf :=
δf

rf
: X → Rf , and we let f1, f2 : X ×Y X → X denote the projections of the

kernelpair of f . One easily checks that the following conditions are equivalent
(cf. [8]):

(i) f is c-separated;
(ii) f1 · rf = f2 · rf ;
(iii) for all u, v : Z → X and m ∈ subZ with u ·m = v ·m and f · u = f · v

one has u · cZ(m) = v · cZ(m).

We note that the monomorphisms of X , having trivial kernelpairs, are exactly
the morphisms which are both c-separated and c-connected.

2.2. Since Mc is closed under limits (in X 2), hence stable under (multiple)
pullback, the class Sep(c) of all c-separated morphisms in X has the same
properties (cf. [8]). Furthermore, for a composite morphism h = (X

f−→Y g−→Z)
one has a commutative diagram

X ×Y X X

X X ×Z X

?
δf

-
δh

��
��
�*t

-
f2

-
f1 ?

h1 ?
h2

(4)

where the unique arrow t with hi · t = fi is an equalizer of f · h1, f · h2. Hence
there is a pullback diagram

X ×Z X Y ×Z Y

YX ×Y X

-
f × f?

t

-
f · f1

?
δg

(5)

so that t is c-closed when g is c-separated. Composition-cancellation rules for
Mc therefore give:

(1) g · f ∈ Sep(c) implies f ∈ Sep(c);
(2) f, g ∈ Sep(c) implies g · f ∈ Sep(c) if any of the two factors is monic or

if c is weakly hereditary.
(1) gives in particular that every morphism with c-separated domain is c-separated,
since an object X is c-separated iff X → 1 with 1 terminal in X is c-separated.
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2.3. The class Conn(c) of c-connected morphisms in X behaves less smoothly.
Let h = g · f be as in 2.2, and in addition to diagrams (4), (5) consider

X ×Z X Y ×Z Y

YX

-
f × f?

δh

-
f

?
δg

(6)

With 1.8, 1.9 one derives:

(1) g · f ∈ Conn(c) implies f ∈ Conn(c) if c is hereditary;
(2) g · f ∈ Conn(c) implies g ∈ Conn(c) if f ∈ E , or if f ∈ Ec and if c is

universal;
(3) f, g ∈ Conn(c) implies g · f ∈ Conn(c) if c is universal;
(4) Conn(c) is closed under (finite) products in X 2 if c is (finitely) productive;
(5) for any pullback-stable class K of morphisms in X , Conn(c) is stable under

pullback along K-morphisms if Ec has this property.

Assertion (4) follows from δf ∼=
∏
i∈I δfi for f =

∏
i fi. For (5), one considers

the diagram

X X ×Y X X Y

U U ×V U U V

1 2 3

-
δf

-
- -

f

-
δf ′

-
- -

f ′

?k′ ?
k′×kk′ ?k

′
?
k

(7)

and notes that with 3 also 2 & 3 and 1 are pullback diagrams.

2.4. Let ∆(c) be the full subcategory of c-separated objects in X ; it is closed
under mono-sources in X , hence regularly epireflective whenever X has products
and is E-cowellpowered (cf. [14], [9]). The (existing) ∆(c)-reflexions decide
whether the class

Conn∗(c) := Conn(c) ∩ Epi∗(X )

(with Epi∗(X ) = Mono(X )⊥ the class of strong, hence regular epimorphisms of
X ) is the left companion of Sep(c):

PROPOSITION. Let c be hereditary in X and ∆(c) be reflective in X . Then
Conn∗(c) = Sep(c)⊥ if and only if all ∆(c)-reflexions are c-connected mor-
phisms.

Proof. One always has Conn∗(c) ⊆ Sep(c)⊥ (as is shown more generally in
3.3 below). Furthermore, since Mono(X ) ⊆ Sep(c), any f : X → Y in Sep(c)⊥
must belong to Epi∗(X ). For the ∆(c)-reflexion e : X → X ′ of X, the morphism
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X ′ → 1 belongs to Sep(c). Hence, the diagonalization property makes e factor
through f :

X ′ 1

X Y

-

-
f

?
e

?

�
�

�
���

g

(8)

Assuming e to belong to Conn(c), we obtain f ∈ Conn(c) with 2.3(1).
Conversely, having Conn∗(c) = Sep(c)⊥ we must show e ∈ Sep(c)⊥. But

for the solid-arrow commutative diagram (2), e factors through the pullback ñ
of n along v as

e = (X
t−→ P

ñ−→ X ′).

As the composite of two c-separated morphisms, P → X ′ → 1 is c-separated,
hence P ∈ ∆(c). By the reflexion property, t factors as t = s · e. Hence the
needed diagonal w of (2) is obtained as the composite of s with the pullback ṽ
of v along n. 2

COROLLARY 2.5. Let c be hereditary and ∆(c) be reflective with c-connected
reflexions. Then Conn∗(c) is closed under composition and under the formation
of colimits in X 2. Furthermore, Conn∗(c) is stable under pullback along M-
morphisms if Epi∗(X ) is, and for c (finitely) productive Conn∗(c) is closed under
(finite) products in X 2 if Epi∗(X ) is.

Connectedness of the ∆(c)-reflexions comes by no means automatically. Even
closedness under composition of Conn∗(c) imposes a considerable restriction on
c, as we shall show next.

EXAMPLES 2.6.

(1) In the category Top of topological spaces with its (surjective, embedding)-
factorization system, consider the usual (Kuratowski) closure c = k. A map
f : X → Y is k-separated if and only if X is fibrewise Hausdorff over Y (cf.
[23]), that is: if any pair of distinct points in a fibre of f can be separated
by disjoint open sets in X; and it is k-connected if and only if any two open
sets in X must meet if there is a fibre which meets each of the open sets.
∆(k) is the category of Hausdorff spaces. ∆(k)-reflexions need not be k-
connected, as is shown by the following space X. Its underlying set is
([0, 1]×N)∪{∞}, and a neighbourhood U of x in X is required to contain
for some δ > 0 the set

– ]a− δ, a + δ[×{n} in case x = (a, n) with a ∈]0, 1],
– ]0, δ[×{n, n + 1} in case x = (0, n),
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382 MARIA MANUEL CLEMENTINO AND WALTER THOLEN

– ]0, δ[×{n} for infinitely many n ∈ N in case x =∞.

Since every neighbourhood of (0, n) meets every neighbourhood of (0, n+
1), the Hausdorff reflexion e : X → X ′ of X satisfies e(0, n) = e(0, n+ 1)
for all n ∈ N, hence e(0, n) = y ∈ X ′ is constant for all n ∈ N. But also
e(∞) = y. In fact, for every neighbourhood V of y and every δ > 0 and n ∈
N, e−1(V ) ∩ (]0, δ[×{n}) 6= ∅, hence e−1(V ) meets every neighbourhood
of ∞; consequently, for every neighbourhood W of e(∞), e−1(W ) meets
e−1(V ), hence V ∩W 6= ∅.
It is now easy to check that X ′ can be taken as the set (]0, 1] × N) ∪ {0}
provided with the quotient topology by e : X → X ′ with e(x) = x for
x ∈]0, 1]×N and e(x) = 0 otherwise. The (k-)closure of δe in X ×X′ X is
easily identified as the set

δe = δe ∪ {((0, n), (0,m)) | |n−m| = 1} 6= X ×X′ X

so that δe fails to be (k-)dense.
(2) For x ∈ X ∈ Top, let compX(x) denote the connected component of x in

X. For M ⊆ X, compX(M) =
⋃
x∈M compX(x) defines an idempotent and

weakly hereditary but non-hereditary closure operator of Top. The ∇(comp)
is the subcategory of connected spaces, and ∆(comp) is the subcategory of
hereditarily disconnected spaces (i.e. compX(x) = {x} for all x ∈ X). A
map f : X → Y is comp-connected (comp-separated) iff for all x, y ∈ X
with f(x) = f(y), compZ(x, y) meets the diagonal of Z := X ×Y X
(compZ(x, y) meets the diagonal of Z only if x = y, resp.); in terms of the
reflector C : Top → ∆(comp), this means equivalently that the embedding
Cδf : CX → CZ is a homeomorphism (that p−1

Z (CX) is X, when embed-
ded into Z via δf ; here pZ : Z → CZ is the projection).
For a quotient map f one has the implications

f monotone ⇒ f comp-connected ⇒ f concordant,

where f concordant means equivalently that Cf is a homeomorphism. Nei-
ther of these two implications is reversible, not even if we restrict ourselves
to the category of compact Hausdorff spaces: the map f : I → I with
f(x) = 2x for x 6 1

2 and f(x) = 2(1 − x) for x > 1
2 is a non-monotone

(in fact: light) comp-connected quotient map, and the map g : I → I
with g(x) = 1

2 (3x + 1) for x 6 1
3 , g(x) = 2 − 3x for 1

3 6 x 6 2
3 and

g(x) = 1
2(3x − 2) for x > 2

3 is a concordant (and light) quotient map, but
not comp-connected. The map g appears first in [24] where it was presented
as the composite of two comp-connected maps. Hence, unlike Sep(comp),
the class Conn(comp) fails to be closed under composition. This also shows
that Conn(comp) is not the orthogonal complement of Sep(comp); since the
projections pX are comp-connected, we see in particular that the assumption
of hereditariness is essential for 2.4.
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(3) It was shown in [9] that by taking for cX(M) the set of those points x ∈ X
for which there is a path in X originating in M ⊆ X and ending at x, one
defines a weakly hereditary but non-hereditary closure operator c of Top
with ∇(c) the category of path-connected spaces and ∆(c) the category of
hereditarily path-disconnected spaces. A map f : X → Y is c-connected iff
for all x, y ∈ X with f(x) = f(y) there is a path p : I → X with

p(0) = x, p(1) = y,

f(p(t)) = f(p(1− t)) for all t ∈ [0, 1].
(∧)

The symmetry condition in (∧) is essential: mere existence of a path in
X connecting any two points of the same fibre of f does not guarantee
c-connectedness of f . In fact, the map f : I → S1, x 7→ (cos 2πx, sin 2πx),
winding the unit-interval around the 1-sphere is not c-connected, since I×S1I
contains two isolated points outside the diagonal.
f is c-separated iff for all x, y ∈ X with f(x) = f(y) a path p with (∧)
exists only if x = y. Sep(c) is closed under composition (by 2.2(2)), but
Conn∗(c) is not: just consider the quotient maps X → S → 1 with X
the Topologist’s Sine Curve and S the Sierpinski space, both of which are
c-connected while X → 1 is not.

2.7. The true reason for failure of Conn∗(c) to be closed under composition in
the previous example is explained more generally by:

PROPOSITION. For a closure operator c of Top (or of any category with
suitable behaviour of points, cf. [9]), let Conn∗(c) be closed under composition.
Then∇(c) is q-reversible, i.e., for every quotient map f : X → Y with Y ∈ ∇(c)
and f−1(y) ∈ ∇(c) for all y ∈ Y , also X ∈ ∇(c).

Proof. Since with Y also Y → 1 is c-connected, it suffices to prove that
f : X → Y is c-connected, in order to conclude that then (X → Y → 1) and
therefore X is c-connected. But the family of diagrams

f−1(y)× f−1(y)

f−1(y)

X ×Y X

X

?
δf−1(y)

?
δf�� -

�� -

shows that δf is c-dense if all δf−1(y) (y ∈ Y ) are c-dense. 2

3. The Connected-Separated Factorization

3.1. From 2.2 one obtains with well-known Adjoint-Functor-Theorem methods
the existence of right Sep(c)-factorizations. With 1.4 and 2.4 this gives:
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THEOREM. Let X be complete and E-cowellpowered and c be a closure oper-
ator w.r.t. (E ,M). Then X has right Sep(c)-factorizations, and these give an
orthogonal factorization system if c is weakly hereditary. For c hereditary, these
are (Conn∗(c),Sep(c))-factorizations if and only if every ∆(c)-reflexion is c-
connected.

Proof (sketch). For f : X → Y , fix a representative system EX of E-
morphisms with domain X and form the intersection t : T → Y of all si : Si → Y
in Sep(c) for which there is ei ∈ EX with f = si ·ei. Let m·p = g be an (E ,M)-
factorization of the morphism g : X → T induced by the ei; then f = (t ·m) · p
is the desired right Sep(c)-factorization of f . 2

3.2. Our next goal is to establish connected-separated factorizations more con-
structively, without resorting to Adjoint-Functor-Theorem methods. We assume
X to have all coequalizers and, using the notation of 2.1, let qf : X → Qf be the
coequalizer of f1 · rf , f2 · rf and hf : Qf → Y the morphism with hf · qf = f .

X X ×Y X X Y

Rf Qf

-
δf

-
f2

-
f1

-
f

�
�
�>sf Z

ZZ~

rf

�
�
�>qf Z

Z
Z~

hf

(9)

We observe that qf is an isomorphism iff f1 · rf = f2 · rf , that is: exactly if f
is c-separated. Let us call f weakly c-connected if hf is an isomorphism, that
is: if f is a coequalizer of f1 · rf , f2 · rf . For the class WConn(c) of all weakly
c-connected morphisms, one trivially has

Conn∗(c) ⊆ WConn(c);

for the reverse inclusion, see 3.6 below.
We first prove that the factorization f = hf · qf is functorial (in the sense of

[27]).

LEMMA 3.3. For v · f = g · u in X there is a uniquely determined morphism
w rendering the diagram

U Qg V

X Qf Y

-
qg

-
hg

-
qf

-
hf

?
u

?
v

?
w

(10)

commutative.
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Proof. Since taking c-closures is functorial (cf. [14]), there is a unique mor-
phism z rendering the diagram

U Rg U ×V U U

X Rf X ×Y X X

-
sg

-
g2

-
g1

-
rg

-
sf

-
f2

-
f1

-
rf

?
u

?
z ?

u×v u
?
u

(11)

commutative. w is induced by z. 2

LEMMA 3.4. If c is weakly hereditary, qf is weakly c-connected for every f .
Proof. Let q = qf and h = hf . Since f = h · q, as in (4) one has an arrow t

producing the outer commutative diagram

X Rf X ×Y X

X Rq X ×Qf X

-
sf

-
rf

-
sq

-
rq

?
1

?
t

?t (12)

which then induces the fill-in arrow t. Since q · f1 · rf = q · f2 · rf , there is
also a canonical morphism r : Rf → X ×Qf X which satisfies t · r = rf and
r · sf = δq. Since c is weakly hereditary, so that sf is c-dense, the latter identity
gives a morphism s : Rf → Rq with s · sf = sq and rq · s = r, and s turns out
to be inverse to t. Consequently, q being the coequalizer of f1 · rf , f2 · rf is also
the coequalizer of q1 · rq, q2 · rq. 2

THEOREM 3.5. Let X have coequalizers and c be weakly hereditary. Then X
has left WConn(c)-factorizations, and these are (WConn(c),Sep(c))-factori-
zations if and only ifWConn(c) is closed under composition. In this case, ∆(c)-
reflexions exist and belong to WConn(c).

Proof. The first statement follows from 3.3 and 3.4, while for the second
and third assertion one employs in addition 1.4 and 1.1, respectively, with the
observation that Sep(c)/1 is isomorphic to ∆(c). 2

COROLLARY 3.6. Let X have coequalizers and c be hereditary. Then the fol-
lowing statements are equivalent:

(i) X has (Conn∗(c),Sep(c))-factorizations;
(ii) ∆(c)-reflexions exist and belong to Conn∗(c);
(iii) WConn(c) = Conn∗(c) is closed under composition.

Proof. (i) ⇒ (ii) follows from 1.1. (ii) ⇒ (iii) From 3.2, 3.3 and 2.4 one has

WConn(c) ⊆ Sep(c)⊥ = Conn∗(c) ⊆ WConn(c),

with Sep(c)⊥ being closed under composition. (iii) ⇒ (i) follows from 3.5. 2
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EXAMPLES 3.7.
(1) The b-closure bX(M) of M ⊆ X ∈ Top contains those points x ∈ X with
{x} ∩M ∩U 6= ∅ for every neighbourhood U of x in X. b is a well-known
hereditary closure operator of Top with ∆(b) the subcategory of T0-spaces.
Trivially, condition 3.6(ii) is satisfied, hence Top has (Conn∗(b),Sep(b))-
factorizations: every map f : X → Y factors through the quotient space
given by (x ∼ y ⇔ f(x) = f(y) & {x} = {y}). Hence f is b-separated
iff this relation is discrete, and f is b-connected iff ∼ coincides with the
equivalence relation induced by f .

(2) Example 2.6(1) shows that condition (ii) of 3.6 does not hold in case X =
Top and c = k. Actually, in this case the (existing) ∆(c)-reflexions may
even fail to belong to WConn(c), so that the (existing) left WConn(c)-
factorizations fail to constitute a (WConn(c),Sep(c))-factorization system.
In fact, in the notation of 2.6, the WConn(c)-factor of the ∆(c)-reflexion
e : X → (]0, 1] × N) ∪ {0} can be taken to be the quotient map q = qe :
X −→ (]0, 1]×N) ∪ {0,∞}, with q(x) = x for x ∈]0, 1]×N, q(x) = 0 for
x ∈ {0} × N and q(∞) =∞.

(3) For the closure operator c = comp, the map g of 2.6(2) was used in [24]
to show that weakly c-connected maps need not be c-connected. Weakly c-
connected maps are concordant quotient maps (see [24]), but not conversely:
the map f : I → S1 of Example 2.6(3) is concordant and it is not weakly
comp-connected.

(4) Also, for c = p as in 2.6(3), WConn(c) 6= Conn∗(c). (For the space X =
{x, y, z, a, b} with a subbase of open sets given by {x, a}, {y, a, b} {z, b},
consider the quotient map identifying the points x, y, z.) Furthermore, not
only Conn∗(c) but alsoWConn(c) fails to be closed under composition (for
the same reason as given in 2.6(3)).

(5) In general, closedness of WConn(c) under composition does not imply
WConn(c) = Conn∗(c):
In the category SGph of spatial graphs (= sets with reflexive relations, maps
preserve the relations) with its (surjective, embedding)-factorization struc-
ture, the up-closure

↑X M = {x ∈ X | (∃y ∈M) y → x}
of M ⊆ X defines a hereditary closure operator ↑ with ∆(↑) the category of
discrete graphs. A morphism f : X → Y is ↑-separated iff for all x← z → y
in X with f(x) = f(y) one has x = y, and it is ↑-connected iff for all
x, y ∈ X with f(x) = f(y) there is z ∈ X with x ← z → y. Now, the
(constant) ∆(↑)-reflexion of X = {· → · ← ·} is obviously not ↑-connected,
hence (Conn∗(↑),Sep(↑))-factorizations fail to exist in general. However,
SGph has (WConn(↑),Sep(↑))-factorizations which can be constructed as
in 3.2: the equivalence relation ∼ generated by Rf on X is described by
x ∼ y iff there is a finite zig-zag
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·

·

·

·

·

· ·

·
x = x1 x2 x3 xn = y

· · ·@
@I

�
��

@
@I

�
��

@
@I

�
��

(13)

with all xi belonging to the same fibre of f ; the quotient map X → X/∼
is weakly ↑-connected by definition, and the induced map X/∼→ Y is
↑-separated.

Failure of rf = c(δf ) to be an equivalence relation on X in this example
turns out to be the true reason for the inclusion Conn∗(c) ⊂ WConn(c) to be
proper, as we show next.

3.8. Recall that r ∈ sub(X×X) is an equivalence relation on X if r is reflexive
(δX 6 r), symmetric (r∗ 6 r, with r∗ = 〈p2 · r, p1 · r〉 and p1, p2 : X ×X → X
the projections), and transitive (r ◦ r 6 r, with r ◦ r given by the M-part of an
(E ,M)-factorization of 〈p1 · r ·π1, p2 · r ·π2〉 and π1, π2 the pullback projections
of (14)).

R X

R×X R R

-
p2 · r?

π1

-
π2

?
p1 · r

(14)

The equivalence relation r is effective if (p1 · r, p2 · r) is the kernelpair of some
morphism.

In the context of 3.2 we say that rf is an effective equivalence relation on X
if 〈f1 · rf , f2 · rf 〉 : Rf → X ×X is one; this simply means that (f1 · rf , f2 · rf )
is the kernelpair of its coequalizer qf .

PROPOSITION. If X has coequalizers and c is weakly hereditary, the following
statements are equivalent:

(i) WConn(c) = Conn∗(c);
(ii) for every morphism f , rf is an effective equivalence relation.

Proof. (i)⇒ (ii) We use the notation of the proof of Lemma 3.4 which, under
condition (i), gives q ∈ Conn∗(c), so that rq and then r = rq ·s are isomorphisms.
But the latter fact means that (f1 ·rf , f2 ·rf ) ∼= (q1, q2) is a kernelpair, as desired.

(ii) ⇒ (i) Every f ∈ WConn(c) is the coequalizer of (f1 · rf , f2 · rf ) which,
under condition (ii), is the kernelpair of f , hence isomorphic to (f1, f2). This is
possible only if rf is an isomorphism, that is: if f ∈ Conn∗(c). 2

3.9. The following proposition goes back to Barr [3] and has been proved as
stated here in [14] 9.4:
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PROPOSITION. For a universal closure operator c, rX = cX×X(δX) is an
equivalence relation on X for every X ∈ X .

Since the proposition may be applied to the sliced category X/Y , this shows
that for a universal closure operator the equivalent conditions of Proposition 3.8
are satisfied, if equivalence relations in X are effective.

3.10. The following theorem follows with 3.6 and 3.8, and its corollary with 3.9:

THEOREM. Let X have coequalizers and let c be hereditary. Then X has
(Conn∗(c),Sep(c))-factorizations if and only if

(a) ∆(c)-reflexions exist and are weakly c-connected, and
(b) for every morphism f , rf is an effective equivalence relation.

COROLLARY. Let X have coequalizers of equivalence relations, and let these
be effective. Then, for a universal closure operator c, X has (Conn∗(c),Sep(c))-
factorizations.

EXAMPLE 3.11. For a unitary ring R, let r be a preradical of R-modules. Hence,
for every X ∈ ModR, one has a submodule r(X) such that f(r(X)) ⊆ r(Y )
for every f : X → Y in ModR. Associated with r is the maximal closure
operator maxr, defined by maxrX(M) = π−1(r(X/M)) for all M 6 X, with π
the projection onto X/M . The operator maxr is idempotent iff r is a radical (so
that r(X/r(X)) = 0 for all X), and maxr is weakly hereditary iff r is idempotent
(so that r(r(X)) = r(X) for all X); cf. [14]. Since X ×Y X/∆X

∼= ker f , the
morphism f : X → Y is maxr-connected iff ker f is r-torsion (i.e., r(ker f) =
ker f ), and it is maxr-separated iff ker f is r-torsionfree (i.e., r(ker f) = 0).
Following the construction 3.2, one may factor f as

X
q−→X/r(ker f)

h−→Y.

If r is idempotent, q is maxr-connected, and if r is a radical, h is maxr-separated;
in fact,

r(ker f) = r(ker f/r(ker f)) = 0.

The conditions on r are in fact necessary: consider any (Conn∗(maxr),
Sep(maxr))-factorization of X → 0, given by

X
q−→X/M

h−→ 0

with M ⊆ X. Then r(M) = M , and r(X) ⊆ M since the projection q maps
r(X) into r(X/M) = 0. Since trivially r(M) ⊆ r(X), this shows M = r(X),
as desired. One therefore has:
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For a preradical r, ModR has (Conn∗(maxr),Sep(maxr))-factorizations if
and only if r is an idempotent radical.

This condition on r is equivalent to maxr being idempotent and weakly hered-
itary. We note that if maxr is hereditary, maxr is actually already modal, and
this is the case exactly if r is hereditary (i.e., if r(M) = r(X) ∩ M for all
M 6 X ∈ModR); cf. [14], 9.3.

4. Dissonant and Concordant Morphisms

4.1. (Cf. [9].) Recall that an object P ∈ X is preterminal if for all X ∈ X there
is at most one morphism X → P . A morphism h with (E ,M)-factorization

h = (X
e−→P

m−→Y )

is constant if P is preterminal. Writing X||Y iff every morphism X → Y is
constant, one associates to full subcategories A, B of X the right- and left-
constant subcategories

r(A) = {B | (∀A ∈ A)A||B}, l(B) = {A | (∀B ∈ B)A||B},
respectively.

We now exploit these notions in the ‘slices’ of X . A preterminal object in
the comma category X/Z is simply a monomorphism in X with codomain Z.
A morphism in X/Z given by the commutative triangle

X Y

Z

Z
Z
Z~p

�
�
�= q

-
h

(15)

is constant in X/Z if q ·m is monic in X , with m belonging to the (E ,M)-factor-
ization of f . For a full subcategory A of X , let A/Z denote the full subcategory
of X/Z containing every p : X → Z with X ∈ A. One can now form the
full subcategories r(A/Z) and l(r(A/Z)) of X/Z. A morphism q : Y → Z
in X is called A-dissonant if q ∈ r(A/Z); equivalently, if for every morphism
h : X → Y in X with X ∈ A and h = m · e its (E ,M)-factorization one has
q ·m monic. p : X → Z is called A-concordant if p ∈ l(r(A/Z)); equivalently,
if in every factorization p = q · h with q A-dissonant one has q ·m monic (with
m as above). By Diss(A) and Conc(A) we denote the class of all A-dissonant
and of all A-concordant morphisms, respectively, and we put

Conc∗(A) := Conc(A) ∩ Epi∗(X )

(cf. 2.4). With 1 denoting the terminal object, one has the following easily estab-
lished object-morphism relations (see also 4.6(1) below):

LEMMA. For every X ∈ X :
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(1) X ∈ r(A) ⇔ (X → 1) ∈ Diss(A),
(2) X ∈ l(r(A)) ⇔ (X → 1) ∈ Conc(A). 2

4.2. In what follows, we always consider a full subcategory A of X which is
closed under E-images, so that for e : X → Y in E and X ∈ A also Y ∈ A.
The class Diss(A) is easily seen to contain all monomorphisms of X and to be
stable under pullback; furthermore, for m monic and q ∈ Diss(A), also q ·m ∈
Diss(A). These easily established properties are used to identify Conc∗(A) as
the left companion of Diss(A):

PROPOSITION. Conc∗(A) = (Diss(A))⊥.
Proof. Given the solid-arrow diagram (2) with e ∈ Conc∗(A) and n ∈

Diss(A), e factors through the pullback n′ of n along v as e = n′ · t. Since
n′ ∈ Diss(A), n′ ·k is monic, where k is theM-part of t, and since e ∈ Epi∗(X ),
n′·k must actually be an isomorphism. Hence w = v′·(n′·k)−1 is the desired diag-
onal for (2). This shows Conc∗(A) ⊆ Diss(A)⊥. For ‘⊇’, consider p = q ·h with
p ∈ Diss(A)⊥ and q ∈ Diss(A), and let h = m · e be an (E ,M)-factorization.
Since q ·m is A-dissonant, there is d with q ·m ·d = 1 and d ·p = e epic. Hence
d and q ·m must be isomorphisms. 2

4.3. Our next goal is to establish (Conc∗(A),Diss(A))-factorizations. Let us
assume that X has generalized coequalizers, i.e., simultaneous coequalizers of
arbitrary families of parallel pairs of morphisms with common codomain. Given
f : X → Y , we may then form the coequalizer pf of all pairs (a·u1, a·u2), where
a : A→ X is any morphism with domain in A and (u1, u2) is the kernelpair of
u = f · a; then f factors as f = df · pf :

A×Y A A X Y

Pf

-
u2

-
u1

-
a

-
f�

�
�>pf Z

Z
Z~

df

(16)

We observe that pf is an isomorphism iff f is A-dissonant. Let us call f strongly
A-concordant if df is an isomorphism. For the class SConc(A) of all strongly
A-concordant morphisms, one has:

LEMMA. SConc(A) ⊆ Conc∗(A).
Proof. Given p = q · h with p ∈ SConc(A) and q ∈ Diss(A), it suffices

to show e · a · u1 = e · a · u2 for h = m · e with e ∈ E , m ∈ M and a, ui as
above. With h · a = m′ · e′ an (E ,M)-factorization, one has q ·m′ monic, hence
e′ ·u1 = e′ ·u2 and then h · a · u1 = h · a ·u2. But since m is monic, this implies
the desired equation, and one concludes the proof similarly to 4.2. 2

THEOREM 4.4. Let X have generalized coequalizers, and let the full subcat-
egory A be closed under E-images. Then X has left SConc(A)-factorizations,
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and these are (SConc(A), Diss(A))-factorizations if and only if SConc(A) =
Conc∗(A).

Proof. Given f : X → Y as in 4.3, for every A → X with A ∈ A one has
A×Y A ∼= A×Pf A, which shows pf ∈ SConc(A). Furthermore, as in 3.3, one
easily shows that the factorization f = df ·pf is functorial. Consequently, one has
left SConc(A)-factorizations, and these form an orthogonal factorization system
if and only if SConc(A) is closed under composition; in this case SConc(A)⊥ =
Diss(A) by 1.3 and SConc(A) = Diss(A)⊥ = Conc∗(A) by 4.2. Conversely,
if the latter equations hold, SConc(A) must be closed under composition since
Diss(A)⊥ has this property. 2

We note that the inclusion SConc(A) ⊆ Conc∗(A) may be proper (see 4.9(2)).
In what follows we try to provide sufficient conditions for the existence of

(Conc(A), Diss(A))-factorizations as well as handy descriptions for these class-
es of morphisms.

4.5. We call f : X → Y A-concordant in the sense of Collins [10] if for every
a : A → Y in M with A ∈ A, the pullback f−1(a) : f−1(A) → X factors
through an object of A. This defines the class of morphisms CConc(A), and we
put CConc∗(A) = CConc(A) ∩ Epi∗(X ). Recall that A is a generating class of
X if for every X ∈ X the family of all morphisms A → X with A ∈ A is
jointly epic in X .

LEMMA. If A is generating, then CConc∗(A) ⊆ SConc(A).
Proof. Since f ∈ CConc∗(A) is a regular epimorphism and A is generating,

it suffices to show that f · u = f · v with u, v : A → X and A ∈ A implies
pf ·u = pf ·v. Let a′ : A′ → Y be the E-image of f ·u = f ·v; then u and v factor
through the pullback f−1(a′) which in turn factors through a morphism Ã→ X
with Ã ∈ A. Consequently, u and v factor through the kernelpair Ã×Y Ã, which
shows pf · u = pf · v. 2

4.6. Recall that r(A) is always closed under monosources in X (cf. [9]); hence it
is strongly epireflective if X has products and is E-cowellpowered. It is therefore
not very restrictive to assume that every X ∈ X has an r(A)-reflexion %X : X →
RX.

PROPOSITION.

(1) A morphism q : Y → Z with Y ∈ r(A) is A-dissonant. Conversely, if q is
A-dissonant and Z ∈ r(A), then also Y ∈ r(A).

(2) Every r(A)-reflexion is A-concordant.

Proof. (1) Every morphism a : A → Y with A ∈ A and Y ∈ r(A) is
constant. If, without loss of generality, we assume a ∈ M, A must therefore be
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preterminal, and q · a is monic. Conversely, if q ∈ Diss(A) and Z ∈ r(A), for
every a : A → Y with A ∈ A we have q · a monic and constant, so that A is
preterminal and a is constant.

(2) If %X = q · h with q A-dissonant and h = m · e an (E ,M)-factorization,
one has q ·m : B → RX A-dissonant. Hence B ∈ r(A) by (1), and the reflection
property gives a morphism d with q ·m · d = 1 and d · p = e, which gives q ·m
iso (as in 4.2). 2

4.7. Let r(A) be reflective in X . A morphism f : X → Y is called A-
concentrated or A-concordant in the sense of Herrlich, Salicrup and Vázquez
[21] if the r(A)-reflexion %X : X → RX factors through f as %X = g · f with
Rf · g = %Y (cf. [35], 4.1). This defines the class of morphisms HConc(A), and
we put HConc∗(A) = HConc(A)∩Epi∗(X ). Note that HConc(A) depends only
on r(A), not on A; hence HConc(A) = HConc(lr(A)).

PROPOSITION.

(1) Conc∗(A) ⊆ HConc∗(A).
(2) HConc∗(A) ⊆ CConc∗(A) holds if and only if all r(A)-reflexions lie in
CConc(A).

(3) If A contains all preterminal objects and if r(A)-reflexions lie in CConc(A),
then A = l(r(A)) is left constant.

Proof. (1) For f ∈ Conc∗(A) and %X the r(A)-reflexion of X one obtains
with 4.1 and 4.2 the commutative diagram

RX 1

X Y

-
?

%X

-
f

?

�
�

�
���

w

(17)

(2) By (1) and 4.6(2), the condition %X ∈ CConc(A) for all X is certainly
necessary for HConc∗(A) ⊆ CConc(A). For its sufficiency, assume w · f = %X ,
and consider a : A → Y in M with A ∈ A. Since f−1(a) 6 %−1

X (w(a)), the
morphism f−1(a) factors through an object of A whenever %−1

X (w(a)) has this
property.

(3) For X ∈ l(r(A)), the E-morphism %X : X → RX is constant, hence
RX is preterminal. Consequently, by hypothesis, RX ∈ A, and 1X ∼= %−1

X (1RX)
factors through an A-object, which forces X to lie in A. 2

THEOREM 4.8. Let X have generalized coequalizers, and let A be closed under
E-images and r(A) reflective in X . Then X has (SConc(A),Diss(A))-factori-
zations with

SConc(A) = Conc∗(A) ⊆ HConc∗(A) ⊆ CConc∗(A) (∗)
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if and only if all r(A)-reflexions lie in CConc(A). In this case, for A generating
in X , all four morphism classes of (∗) coincide.

Proof. With 4.4 and 4.7, in the factorization f = df · pf of 4.3 one has pf ∈
SConc(A) ⊆ Conc∗(A) ⊆ HConc∗(A) ⊆ CConc∗(A) when %X ∈ CConc∗(A).
In order to show df ∈ Diss(A), consider a : A → Pf in M with A ∈ A.
Since pf ∈ CConc∗(A), the pullback b = f−1(a) : B → X factors through an
A-object. From the construction of pf one has pf ·b ·v1 = pf ·b ·v2, with v = f ·b
and (v1, v2) its kernelpair.

A×Y A A Pf Y

B ×Y B B X

-
u2

-
u1

-
v2

-
v1

?
e× e

?
e

?
pf

-
a

-
df

-
b

HHHHHHj

f

(18)

Hence a ·u1 · (e× e) = a ·u2 · (e× e), with (u1, u2) the kernelpair of u := df · a
and e the pullback of pf . Since (e× e) = (e× 1)(1× e) is epic and a is monic,
this shows u1 = u2, whence df · a is monic.

Since r(A)-reflexions lie in Conc∗(A), the necessity of the condition %X ∈
CConc∗(A) for all X is trivial. Furthermore, equality of the classes in (∗) in case
A is generating follows with 4.5. 2

EXAMPLES 4.9.
(1) For X = Top and A = {connected spaces}, Theorem 4.8 is fully applicable;

in particular, the four classes of (∗) coincide and describe the concordant
quotient maps as defined in the Introduction. (Note that Collins [10] uses
quasi-components instead of components when defining concordant maps.)

(2) Consider X = Top and A = {path-connected spaces}; with X the Topolo-
gist’s Sine Curve, one has f = (X → 1) ∈ Conc∗(A) since X ∈ lr(A) =
{connected spaces}, but f 6∈ SConc(A) since Pf is the Sierpinski space.
Hence, by Theorem 4.4, Top does not have (Conc∗(A),Diss(A))-factoriza-
tions.

(3) In the category SGph, let A = ∇(↑) be the subcategory of graphs X such
that for all x, y ∈ X there is z ∈ X with x← z → y (cf. 3.7(5)). A fails to
be left-constant, since r(A) is the subcategory of discrete graphs and l(r(A))
is the subcategory of all graphs in which any two points can be connected by
an undirected path. Diss(A) coincides with the class Sep(↑) of 3.7(5), and
Conc∗(A) =WConn(↑). Hence SGph has (SConc(A),Diss(A))-factoriza-
tions with SConc(A) = Conc∗(A). But r(A)-reflexions may fail to be
in CConc(A) (for the same reason as ∆(↑)-reflexions may fail to be ↑-
connected); consequently, the inclusion CConc∗(A) ⊂ Conc∗(A) is proper.
It is interesting to note, however, that r(A)-reflexions do belong to
CConc∗(lr(A)), so that SGph has (SConc(lr(A)),Diss(lr(A)))-factoriza-
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tions, with SConc(lr(A)) = Conc∗(lr(A)) = HConc∗(lr(A)) = HConc∗(A).
This shows in particular properness of the inclusion Conc∗(A) ⊂ HConc∗(A).

REMARKS 4.10.
(1) For A with r(A) reflective, one easily shows HConc(A) = {f |Rf iso},

where R denotes the reflector.
(2) Without any further conditions, every morphism in X can be factored into

an HConc∗(A)-morphism followed by a Diss(A)-morphism

Y

X

Z

W

RY

RX

@
@
@
@
@
@@R

f

HHHj
e

HHHj
m

?
d

-

-
%Y

?
Rf

%X
XXXXXXXXXXXXXXz

(19)

Since Rf ∈ Diss(A) (cf. 4.6(1)), also its pullback d along %Y lies in
Diss(A). Let w = m · e be the (regular epi, mono)-factorization of the
induced morphism w : X → Z. Then f = (d ·m) · e, with e ∈ HConc∗(A)
and d ·m ∈ Diss(A) (cf. 4.2).
However, since Diss(A)⊥ = Conc∗(A) may be properly contained in
HConc∗(A), in general (HConc∗(A),Diss(A)) is not an orthogonal factor-
ization system.

(3) As outlined in [7], an (HConc(A),HConc(A)⊥)-factorization of f may be
constructed by taking (in the terminology of (2)) for m the intersection of
all those strong subobjects of Z which lie in (HConc(A))⊥ and through
which w factors, and for e the induced morphism. Then again f = (d ·m) ·e
is the desired factorization. But note specifically that the first factor of this
factorization system is not HConc∗(A) but HConc(A).

(4) (HConc∗(A), (HConc∗(A))⊥)-factorizations can be constructed à la Her-
rlich–Salicrup–Vázquez [21], as follows: for f : X → Y , let m·e = 〈f, %X〉 :
X → Y ×RX be a (regular epi, mono)-factorization, and f = (d·m)·e with
d the projection constitutes a left HConc∗(A)-factorization. This gives an
orthogonal factorization system since HConc∗(A) = {f |Rf iso}∩Epi∗(X )
is closed under composition. But in general (HConc∗(A))⊥ 6= Diss(A)
since otherwise HConc∗(A) = Conc∗(A).

5. Separated versus Dissonant, Connected versus Concordant

PROPOSITION 5.1. For a closure operator c w.r.t. (E ,M), consider the condi-
tions

(i) c is hereditary,

APCS248.tex; 21/07/1998; 14:59; v.7; p.22



SEPARATED AND CONNECTED MAPS 395

(ii) every morphism p : A→ X with A ∈ ∇(c) is c-connected,
(iii) every regular epimorphism p : A→ X with A ∈ ∇(c) is c-connected.

Then (i)⇒ (ii)⇒ (iii), and Conc∗(∇(c)) ⊆ Conn∗(c) ⇒ (iii) ⇒ Sep(c) ⊆
Diss(∇(c)).

Proof. (i)⇒ (ii) With 2.3(1), c-connectedness of p follows from c-connected-
ness of (A → X → 1). (ii) ⇒ (iii) is trivial. That (iii) is a necessary condition
for the inclusion Conc∗(∇(c)) ⊆ Conn∗(c) follows from the immediate fact that
a regular epimorphism p : A → X with A ∈ A = ∇(c) is A-concordant. (Note
that because of pullback stability of E , A is in fact closed under E-images; cf.
[9], 4.1.)

Sufficiency of (iii) for the inclusion Sep(c) ⊆ Diss(∇(c)) is shown, as fol-
lows. For f : X → Y c-separated, consider h : A → X with A ∈ ∇(c); without
loss of generality, we may assume h ∈ M. In the (regular epi, mono)-factor-
ization f · h = n · p, the regular epimorphism p is c-connected, by hypothesis.
Since Sep(c) ⊆ Conn(c)⊥ one obtains a morphism t with t ·p = h and f · t = n.
The first equation forces p to be monic, hence an isomorphism, so that the second
equation makes f · h ∼= n monic. Consequently, f is ∇(c)-dissonant. 2

5.2. In what follows we wish to derive sufficient conditions for the inclusion
Conn∗(∇(c)) ⊆ Conn∗(c). But first we observe with 3.2 and 4.3 that this inclu-
sion necessarily implies SConc(∇(c)) ⊆ WConn(c). Furthermore:

PROPOSITION. If X has generalized coequalizers, condition (ii) of 5.1 implies

SConc(∇(c)) ⊆ WConn(c).

Proof. Let us compare the factorizations hf ·qf = f = df ·pf : X → Y of 3.2
and 4.3. By hypothesis, for every a : A→ X with A ∈ ∇(c), the morphism f ·a
is c-connected, hence δf ·a is c-dense. Hence there is, for every a, a morphism ta
rendering the diagram

X

A×Y AA

Rf X ×Y X

-
δf ·a

?
a

-
sf

-
rf

?
a× a

�
�

�
���

ta

(20)

commutative. But then there must be a morphism t : Pf → Qf with t · pf = qf
and hf · t = df , and t must be epic. Consequently, if df is an isomorphism, so
is hf . 2

5.3. Recall that both ∆(c) and r(∇(c)) are closed under mono-sources in X ,
hence reflective if X has products and is E-cowellpowered. Trivially one has the
inclusion ∆(c) ⊆ r(∇(c)). Furthermore:
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PROPOSITION. Let c be weakly hereditary and assume Diss(∇(c)) ⊆ Sep(c).
Then ∆(c) = r(∇(c)) if ∆(c) is reflective in X .

Proof. The ∆(c)-reflexion e : X → X ′ of X ∈ r(∇(c)) is r(∇(c))-dissonant
by 4.6(1), hence c-separated by hypothesis. With 2.2(2), the composite (X →
X ′ → 1) is c-separated, hence X ∈ ∆(c). 2

THEOREM 5.4. Let c be hereditary and assume that ∆(c) = r(∇(c)) is reflec-
tive in X . Then Conc∗(∇(c)) ⊆ Conn∗(c) if and only if Sep(c) ⊆ Diss(∇(c))
and ∆(c)-reflexions are c-connected.

Proof. The ‘only if’ part follows from 5.1 and 4.6(2). Conversely, Sep(c) ⊆
Diss(∇(c)) implies with 4.2 Conc∗(∇(c)) ⊆ (Sep(c))⊥, which gives
Conc∗(∇(c)) ⊆ Conn∗(c) with 2.4 under the given hypotheses. 2

5.5. Recall that, for a full subcategory B of X , the B-regular closure of m ∈
subX is defined by

regBX(m) =
∧
{ equalizer(u, v) | u, v : X → B, B ∈ B, u ·m = v ·m},

where the multiple pullback defining the meet is assumed to exist in X .

THEOREM. Let the full subcategoryA of X be closed under E-images and gen-
erating (cf. 4.5), and assume r(A) to be reflective with all reflexions in CConc(A).
Then

Diss(A) ⊆ Sep(regr(A)) and Conn∗(regr(A)) ⊆ Conc∗(A).

Proof. Let f : X → Y be A-dissonant, and let e : X → X ′ be the r(A)-
reflexion of X. We form the equalizer m : M → X ×Y X of (e · f1, e · f2) and
obtain a morphism t : X → M with m · t = δf . For every a : A → M with
A ∈ A, let u = a′ ·e′ be an (E ,M)-factorization of u = e ·f1 ·m ·a. For i = 1, 2,
there are morphisms ti rendering the diagram

X

A

e−1(A′)

X ′

A′

@
@
@
@
@
@@R

fi ·m · a

HHHHHHj
ti

?
e−1(a′)

-

-
e

?
a′

e′
XXXXXXXXXXXXXXz

(21)

commutative. By hypothesis on A and e, one has A′ ∈ A, so that e−1(a′) factors
as e−1(a′) = ã · s with the codomain of ã belonging to A. Consequently, f · ã is
monic, and

f · ã · s · t1 = f · f1 ·m · a = f · f2 ·m · a = f · ã · s · t2
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gives s · t1 = s · t2. Hence, f1 · m · a = f2 · m · a for all a, and therefore
f1 · m = f2 · m since A is generating. But now m must factor through the
equalizer δf of (f1, f2), so that t must be an isomorphism. Therefore δf is the
equalizer of (e · f1, e · f2). Since the codomain X ′ of e belongs to r(A), this
shows that f is regr(A)-separated.

The second inclusion follows formally with 4.2 and 2.4:

Conn∗(regr(A)) ⊆ Sep(regr(A))⊥ ⊆ Diss(A)⊥ = Conc∗(A). 2

5.6. Combining 5.1–5.5 in the case A = ∇(c) we obtain:

COROLLARY. Let c be hereditary, with ∇(c) generating and ∆(c) reflective in
X such that all reflexions belong to Conn(c) ∩ CConc(∇(c)). Then

Sep(c) = Diss(∇(c)) and Conn∗(c) = Conc∗(∇(c))

if and only if ∆(c) = r(∇(c)).

Proof. Since c 6 reg∆(c) for every closure operator c, in case ∆(c) = r(∇(c))
one has the inclusions

Sep(c) ⊆ Diss(∇(c)) ⊆ Sep(regr(∇(c))) = Sep(reg∆(c)) ⊆ Sep(c),
Conc∗(∇(c)) ⊆ Conn∗(c) ⊆ Conn∗(reg∆(c))

= Conn∗(regr(∇(c))) ⊆ Conc∗(∇(c)).

Necessity of the condition ∆(c) = r(∇(c)) was shown in 5.3. 2

EXAMPLE 5.7. For the b-closure as in 3.7(1), ∇(b) is the subcategory of indis-
crete spaces, which is also the right-constant subcategory of ∆(b). Since T0-
reflexions satisfy the condition of 5.6, this corollary therefore gives coincidence
of ∇(b)-concordant quotient maps and ∇(b)-dissonant maps with b-connected
quotient maps and b-separated maps, respectively.

The conditions in the Corollary are quite restrictive. Further to Theorem 5.5,
the question remains whether the stated inclusions may be proper and, more
generally, whether Diss(A) is of the form Sep(c) for any closure operator c;
similarly for Conc∗(A). The answer follows.

6. Failure of Closure Operators for Monotone-Light and
Concordant-Dissonant

6.1. ForA the subcategory of connected spaces of Top, the prefix inA-dissonant
and A-concordant is omitted.

PROPOSITION. There is no closure operator c of Top such that Sep(c) is
exactly the class of dissonant maps.
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Proof. Assume Diss(A) = Sep(c) for some closure operator c. Since X ∈
∆(c) iff (X → 1) ∈ Sep(c) and X ∈ r(A) iff (X → 1) ∈ Diss(A), we must
have r(A) = ∆(c), hence c 6 regr(A). This implies Sep(regr(A)) ⊆ Sep(c) =
Diss(A). Hence, in order to complete the proof, it suffices to exhibit a regr(A)-
separated map which is not dissonant. For this we employ again the map

f : I → S1, x 7→ (cos 2πx, sin 2πx)

of 2.6(2), which is not dissonant (since it is not monic although its domain
is connected). However, f is regr(A)-separated since δf : I → I ×S1 I is the
equalizer of two maps with hereditarily disconnected codomain D; in fact, one
may take D to be the 3-point discrete space and define two continuous maps
I ×S1 I → D which leave the diagonal fixed and interchange the two isolated
points of I ×S1 I. 2

PROPOSITION 6.2. There is no closure operator c of Top such that Conn∗(c)
is exactly the class of concordant quotient maps.

Proof. Assume Conc∗(A) = Conn∗(c). With the same argumentation as in
6.1, this implies ∇(c) = A. The map f : I → S1 is concordant, hence c-
connected, so that δf must be c-dense. There is a commutative diagram

D D ×D

I I ×S1 I

-
δD?

u

-
δf

?
v

(22)

with D = {0, 1} discrete, u the map constant 0, and v mapping the two iso-
lated points to (1, 0) and (0, 1). By c-continuity of v, {(0, 0), (1, 0), (0, 1)} =
v(c(δf )) ⊆ c(v(δf )) ⊆ c(δD). Since trivially (1, 1) ∈ c(δD), this implies that
D ∈ ∇(c) is connected – a contradiction. 2

PROPOSITION 6.3. There is no closure operator c of Top such that Conn∗(c)
is exactly the class of monotone quotient maps.

Proof. Assume that Conn∗(c) is the class of monotone quotient maps for
some closure operator c. Then ∇(c) = A since X → 1 is monotone iff X is
connected; hence c > coregA. The map g : I → I of 2.6(2) is coregA-connected,
because it is coregA

′
-connected, for A′ the subcategory of path-connected spaces,

and coregA
′ 6 coregA since A′ ⊂ A. Hence g is c-connected but not monotone

(in fact, g is light) – a contradiction. 2

PROPOSITION 6.4. There is no closure operator c of Top such that Sep(c) is
exactly the class of light maps.

Proof. Assume that there is a closure operator c such that Sep(c) is the class
of light maps. The map g : I → I of 2.6(2) is light. Now, for all x 6= y in I there
is a continuous map h(x,y) : I × I → I ×I I keeping the diagonal δI fixed and
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mapping (x, y) to a point outside the diagonal δg . Hence (x, y) 6∈ c(δI) since
h(x,y)(c(δI)) 6 c(h(δI )) = c(δg) = δg , that is: δI is c-closed. But this implies
that I is c-separated so that the map I → 1 must be light: contradiction. 2

7. Failure of the (Co-)Diagonal Theorem in the Absence of Enough Points

7.1. It was shown in [19] that any strongly epireflective subcategory B in the
category X in which the terminal object is a generator must be of the form
∆(c) for some closure operator c. This Diagonal Theorem was generalized in
[9], where we assumed B to be closed under monosources, with the latter being
detected by quasipoints (so that (mi : X → Yi)i is monic if mi · x = mi · y for
all x, y : TX → X, with TX appearing in the (E ,M)-factorization of X → 1).
Now we show that the condition on X (having enough points, or at least enough
quasipoints) is essential for the Diagonal Theorem to hold:

THEOREM. The category Top/S1 contains a right constant strongly epireflec-
tive full subcategory which is not presentable in the form ∆(c) for any closure
operator c of Top/S1 w.r.t. its (surjective, embedding)-factorization structure.

Proof. Let B be the full subcategory of Top/S1 given by the dissonant maps
with codomain S1. Since Top has (concordant quotient, dissonant)-factorizations
(cf. 4.8), B is strongly epireflective in Top/S1 (cf. 1.1). If we had B = ∆(c) in
Top/S1, necessarily B = ∆(regB), with regB the B-regular closure operator on
Top/S1. But an easy modification of the proof given in 6.1 shows that the map
f : I → S1 belongs to ∆(regB), although it is not dissonant. In fact, δf is the
equalizer of two maps over S1 with dissonant codomain q, as follows:

I I ×S1 I S1 +D

S1

-
δf -u

-
vZ

Z
Z
Z
Z
Z
ZZ~

f
?

f · f1

�
�
�
�
�
�
��=

q

(23)

HereD = {a, b} = q−1{f(0) = f(1)}∩D = u{(0, 1), (1, 0)} = v{(0, 1), (1, 0)}
is discrete. 2

7.2. In [9], Theorem 3.4, we gave a sufficient condition for a full subcategory
A of the category X to be of the form ∇(c), assuming X to have enough
quasipoints. Again, good behaviour of (quasi-)points turns out to be crucial for
the Co-Diagonal Theorem to hold.

THEOREM. The category Top/S1 contains a left constant full subcategory
which is not presentable in the form ∇(c) for any closure operator c of Top/S1.
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Proof. Let A be the full subcategory of Top/S1 given by all concordant maps
with codomain S1, and assume A = ∇(c). Again, we consider the concordant
map f : I → S1 as well as the non-concordant map g := f · f1 : I ×S1 I → S1.
Our proof is complete once we have shown that with f also g must belong to
∇(c).

In fact, since Y = I ×S1 I ∼= I + D with D a 2-point discrete space, the
kernelpair W = Y ×S1 Y of g is of the form Y +E with E a 12-point discrete
space. One has commutative diagrams over S1

Y W

I Y

-
δg?

δf

-
δf

?
v

(24)

with v mapping I identically and D to E. Considering various maps v, as in 6.2
one shows c(δg) = W , hence g ∈ ∇(c). 2

REMARK 7.3. The terminal object of Top/S1 fails to be a generator, but its
preterminal objects are generating. In fact, the maps 1→ S1 form a generator of
Top/S1, which shows that in the (Co-)Diagonal Theorem as formulated in [9],
quasipoints may not be traded for prepoints.
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