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One of the most important results of the theory of uniform spaces states that any
uniform cover in a uniform space can be ‘approximated’ by a pseudometric (see,
for instance, [2]). Thus every uniformity on a set X gives rise to a family of pseudo-
metrics on X. Moreover, this family of pseudometrics can be used to recover the
original uniformity. From this it follows that uniform spaces can be described in
terms of those families of pseudometrics, usually called ‘gauge’ structures. Such
a description was given by Bourbaki in [1]. The efficiency of this tool can be
observed in [3]. This is one of the three well-known equivalent ways of describing
a uniformity on a set X: as a collection of relations on X (à la Weil [12]), as a
collection of covers of X (à la Tukey [11]), or as a collection of pseudometrics
on X (à la Bourbaki), where each of these collections satisfies a respective set
of axioms. The approaches of Weil and Tukey have already been considered in
the more general context of pointless spaces (frames) [4, 6, 7]. Owing to current
interest in uniform frames, it would seem desirable to complete the picture by
extending gauge structures to frames and by getting a characterization of frame
uniformities that is analogous to the spatial one given in terms of pseudometrics.

The main purpose of this note is to present such characterization. The classical
pseudometric is here replaced by the notion of metric diameter of Pultr [8].

1. Preliminaries

1.1. FRAMES

A frame (see [5] for details) is a complete lattice L satisfying the infinite distribu-
tion law x ∧ (

∨
S) = ∨{x ∧ s | s ∈ S} for all x ∈ L and S ⊆ L.

If L and M are frames, a mapping f : L → M is said to be a frame homo-
morphism if it preserves joins (including the zero 0) and finite meets (including the
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unit 1). The resulting category Frm is called the category of frames. K ⊆ L is a
subframe of L if {0, 1} ⊆ K and K is closed under finite meets and arbitrary joins.
Recall also the notation U · x := ∨{u | u ∈ U, u ∧ x �= 0}, for U ⊆ L and x ∈ L.

A cover of a frame L is a subset U ⊆ L such that
∨

U = 1. The set Cov L of
all covers of L can be preordered: a cover U refines a cover V , written U ≤ V , if
for each u ∈ U there is v ∈ V with u ≤ v. This is a preordered set with meets:
take for U ∧ V the cover {u ∧ v | u ∈ U, v ∈ V }, which is obviously a common
refinement of U and V .

1.2. METRIC FRAMES

The set of all non-negative reals augmented by +∞ will be denoted by R
+. A

prediameter on a frame L (cf. [8, 9, 10]) is a mapping d : L → R
+ such that

(D1) d(0) = 0,
(D2) d(x) ≤ d(y) if x ≤ y, and
(D3) d(x ∨ y) ≤ d(x) + d(y) if x ∧ y �= 0.

For any prediameter d on L and any ε > 0, let Ud
ε denote the set

{x ∈ L | d(x) < ε}.
A prediameter d on L is said to be compatible if

(D4) for each x ∈ L, x ≤ ∨{y ∈ L | y d
� x},

where y
d
� x means that Ud

ε · y ≤ x for some ε > 0.
A star-prediameter is a prediameter that satisfies

(∗) if S ⊆ L is strongly connected (i.e., x ∧ y �= 0 for every x, y ∈ S), then

d
( ∨

S
)

≤ 2 sup{d(x) | x ∈ S}.

A prediameter is metric if

(M) for any α < d(x) and ε > 0, there exist y, z ≤ x such that d(y), d(z) < ε

and α < d(y ∨ z).

Condition (M) implies (∗). In fact, (M) even implies the stronger property

(∗′) for each x ∈ L and each S ⊆ L such that x ∧ y �= 0 for all y ∈ S

d
(
x ∨

∨
S
)

≤ d(x) + sup{d(y) + d(z) | y, z ∈ S, y �= z}.
A prediameter which, moreover, satisfies

(D5) for each ε > 0, Ud
ε is a cover,

is called a diameter. Observe that when d is a compatible diameter the equality
holds in (D4).
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It should be noted that diameters generalize the usual notion of the diameter
of subsets of metric spaces and that they provide a pointfree expression of the
usual notion of metrizations of spaces: in any metrizable space X, the compatible
metric diameters d on its frame of open sets correspond exactly to the metriza-
tions ρ of X by the relations d(U) = sup{ρ(x, y) | x, y ∈ U } and ρ(x, y) =
inf{d(U) | x, y ∈ U } (see, e.g., [8, 9]).

A prediametric frame is a pair (L, d), where d is a compatible prediameter
on the frame L. A metric frame is a pair (L, d), where d is a compatible metric
diameter on L.

For prediametric frames (L1, d1), (L2, d2), a frame homomorphism f :L1 → L2

is called uniform if, for each ε > 0, there exists δ > 0 such that Ud2
δ ≤ [Ud1

ε ].
Prediametric frames and uniform maps form the category of prediametric frames.
Its full subcategory of metric frames will be denoted by MFrm.

For any star-diameter d on L, there is a unique metric diameter d̃, given by

d̃(x) = inf
ε>0

sup{d(y ∨ z) | y, z ≤ x, d(y), d(z) ≤ ε},

such that 1
2d ≤ d̃ ≤ d ([9, Proposition 3.4]). Moreover, Ud̃

ε · x = Ud
ε · x, for any

x ∈ L and ε > 0.

1.3. UNIFORM FRAMES

A non-void filter U of (CovL,≤) is said to be a uniformity ([4, 7]) provided that:

(U1) for each U ∈ U there is a V ∈ U such that V ∗ := {V · v | v ∈ V } ≤ U ;

(U2) for each x ∈ L, x = ∨{y ∈ L | y U
� x}, where y

U
� x means that U · y ≤ x

for some U ∈ U.

A uniformity basis is just a filter basis of (CovL,≤) satisfying (U1) and (U2).
A uniform frame is a pair (L,U), where U is a uniformity on the frame L.

For uniform frames (L1,U1), (L2,U2), a frame homomorphism f : L1 → L2 is
called uniform if, for every U ∈ U1, f [U ] ∈ U2. The resulting category will be
denoted by UFrm.

Let d be a compatible metric diameter on L. Since ε ≤ δ implies that Ud
ε ⊆ Ud

δ ,
(D4) and (D5) say that the Ud

ε generate a nearness, i.e., the Ud
ε form a filter basis

of (CovL,≤) satisfying (U2). This is actually a uniformity since Ud∗
ε ≤ Ud

3ε.
Conversely, any uniformity with a countable basis is obtained in this way from a
compatible metric diameter:

THEOREM (Pultr [8, Theorem 4.6]). U is a uniformity with a countable basis if
and only if there is a compatible metric diameter d such that U = {U ⊆ L | ∃ε >

0 : Ud
ε < U }.

We also need to recall the following proposition from (Pultr [10]):
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PROPOSITION. Let f : L → M be a surjective frame homomorphism and d a
metric diameter (resp. star diameter) on L. Then

◦
d(y) = inf{d(x) | x ∈ L, y ≤ f (x)}

defines a metric diameter (resp. star diameter) on M.

2. Frame Uniformities in the Sense of Bourbaki

In the sequel L will always denote a frame.

LEMMA 2.1. Let d1 and d2 be star-diameters on L. Then

d1 ∨ d2 : L → R
+

x �→ max(d1(x), d2(x))

is a star-diameter.
Proof. Conditions (D1), (D2), (D3) and the star-condition are trivially satisfied.

To check condition (D5) just observe that, for any ε > 0, Ud1∨d2
ε = Ud1

ε ∩ Ud2
ε =

Ud1
ε ∧ Ud2

ε . ✷
A word of warning: d = d1 ∨ d2 is not necessarily metric, even if d1 and d2 are

metric. Nevertheless, we can take the associated metric diameter d̃ that we shall
denote by d1 � d2.

We say that a non-empty collection G of metric diameters on L is a gauge
structure on L if it satisfies the following conditions:

(G1) d1 � d2 ∈ G whenever d1, d2 ∈ G;
(G2) if d is a metric diameter and

∀ε > 0 ∃δ > 0 ∃d ′ ∈ G : Ud ′
δ ⊆ Uδ

ε ,

then d ∈ G,

(G3) for every x ∈ L, x = ∨{y ∈ L | y G
� x}, where y

G
� x means that there is

d ∈ G such that y
d
� x.

A collection G satisfying only (G2) and (G3) is a basis for the gauge obtained
by taking all possible metric diameters d1 � · · · � dn, where d1, . . . , dn ∈ G. Any
collection of metric diameters on L is contained in a smallest possible gauge, called
the gauge generated by G.

PROPOSITION 2.2. Let U be a uniformity on L. The family ψ(U) := {dα | α ∈ �}
of all metric diameters such that, for every α ∈ � and ε > 0, Udα

ε ∈ U, is a gauge
structure on L.

Proof. (G1) Let α, β ∈ � and ε > 0. Since Udα
ε ∧ U

dβ
ε ≤ U

dα�dβ
ε , U

dα�dβ
ε ∈ U.

Hence dα � dβ ∈ ψ(U).
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(G2) Assume d is a metric diameter such that

∀ε > 0 ∃δ > 0 ∃dα ∈ ψ(U) : Udα
δ ⊆ Ud

ε .

Then Ud
ε ∈ U for any ε > 0, i.e., d ∈ ψ(U).

(G3) Let x ∈ L. By hypothesis, x = ∨{y ∈ L | y U
� x}. It suffices to show

that y
U
� x implies y

ψ(U)

� x. So consider U ∈ U such that U · y ≤ x and
take inductively U1, U2, . . . , Un, . . . such that U1 = U,U ∗

n+1 ≤ Un. The family
{U1, U2, . . . , Un, . . .} generates a uniformity with a countable basis. So, according
to Theorem 1.3, there is a metric diameter d in ψ(U) such that Ud

ε ⊆ U for some
ε > 0. Hence Ud

ε · y ≤ U · y ≤ x. ✷
We call ψ(U) the gauge of the uniformity U. Note that the converse

y
ψ(U)

� x implies y
U
� x

is obviously true.

PROPOSITION 2.3. Let G be a gauge structure on L. The family BG :=
{Ud

ε | d ∈ G, ε > 0} is a basis for a uniformity φ(G) on L.
Proof. For ε, δ > 0 and d1, d2 ∈ G take γ = min( ε2 ,

δ
2). Immediately,

Ud1�d2
γ ⊆ Ud1

ε ∩ U
d2
δ = Ud1

ε ∧ U
d2
δ

and Ud1�d2
γ ∈ BG so BG is a filter basis.

Let us now show properties (U1) and (U2).
(U1) We prove (U1) by showing that, for any d ∈ G and ε > 0, Ud∗

ε
3

≤ Ud
ε .

Consider x ∈ Ud
ε
3

and choose y0 ∈ Ud
ε
3

such that y0 ∧ x �= 0. The set S =
{y ∨ y0 | y ∈ Ud

ε
3
, y ∧ x �= 0} is strongly connected and Ud

ε
3
· x = ∨

S. Thus

d(Ud
ε
3
· x) ≤ 2 sup{d(x) | x ∈ S} < ε, so Ud

ε
3
· x ∈ Ud

ε .

(U2) It is obvious that x
G
� y if and only if x

φ(G)
� y. ✷

In other words, φ(G) = {U ∈ L | ∃d ∈ G ∃ε > 0 : Ud
ε ≤ U } is a uniformity

on L.

THEOREM 2.4. There is a one-to-one correspondence between the class of uni-
formities on L and the class of gauge structures on L.

Proof. We first show that ψφ(G) = G, for any gauge structure G. If d ∈ ψφ(G)
then Ud

ε ∈ φ(G), for every ε > 0, i.e., for every ε > 0 there is a δ > 0 and a d ′ ∈ G

such that Ud ′
δ ⊆ Ud

ε . Hence d ∈ G. The reverse inclusion is trivial.
On the other hand, for any uniformity U, the inclusion φψ(U) ⊆ U is obvious.

The reverse inclusion is a consequence of Theorem 1.3: for U ∈ U take inductively
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U1, U2, . . . , Un, . . . such that U1 = U,U ∗
n+1 ≤ Un and, according to Theorem 1.3,

the metric diameter d in ψ(U) such that Ud
ε ⊆ U for some ε > 0. Hence U ∈

φψ(U). ✷
In conclusion, we can treat uniformities as gauge structures. Naming the pairs

(L,G), where L is a frame and G is a gauge structure on L, as gauge frames we
have a bijective correspondence between uniform frames and gauge frames. Under
this correspondence, uniform homomorphisms correspond precisely to the gauge
homomorphisms, i.e., to the frame maps f : L1 → L2 between gauge frames
(L1,G1) and (L2,G2) such that, for every ε > 0 and d1 ∈ G1, there exist δ > 0 and
d2 ∈ G2 satisfying U

d2
δ ≤ f [Ud1

ε ]. Therefore, the category UFrm is isomorphic to
the category of gauge frames and gauge homomorphisms.

Gauge frames are the exact pointfree translation of the gauge spaces of [2].
We remark that gauge structures could be defined as collections of star-diameters

satisfying axioms (G2), (G3) and

(G1′) d1 ∨ d2 ∈ G whenever d1, d2 ∈ G (2.1)

because it can be proved, in a similar way, that these collections of star diameters
on L are also in one-to-one correspondence to the uniformities on L.

3. Some Consequences

Gauge structures make clear the nature of the generalization from metric frames to
uniform frames: a metric frame is a uniform frame whose gauge is generated by a
single diameter.

Moreover, metric frames generate all gauge frames, in the sense that each gauge
frame is a quotient of a coproduct of metric frames. To conclude this we need first
to show some facts about metric and gauge frames.

For any diameter d on L let Ld denote the subframe
{
x ∈ L | x =

∨
{y ∈ L | y d

� x}
}

of L. Note that, for any x ∈ L,
∨{y ∈ L | y

d
� x} ∈ Ld . Indeed, denoting∨{y ∈ L | y

d
� x} by xd we have that xd = ∨{y ∈ L | y

d
� xd} because if

y
d
� x, i.e., if there is ε > 0 with Ud

ε · y ≤ x then Ud
ε
2
· (Ud

ε
2
· y) ≤ Ud

ε · y ≤ x, that is,

Ud
ε
2
· y d

� x and so Ud
ε
2
· y ≤ xd .

Therefore we may consider the map fd : L → Ld given by fd(x) = xd which is
a surjective frame homomorphism. By Proposition 1.3, d(y) = inf{d(x) | y ≤ xd}
defines a metric diameter on Ld whenever d is a metric diameter on L. Note that,

because of the particular definitions of Ld and fd ,
◦
d is the restriction of d to Ld .

Moreover, we have:
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PROPOSITION 3.1. Let d be a metric diameter on L. Then (Ld,
◦
d) is a metric

frame.

Proof. It remains to prove the compatibility of
◦
d. Let x ∈ Ld . Then x =∨{y ∈ L | y d

� x} and, since x = fd(x), we have x = fd(
∨{y ∈ L | y d

� x}),
that is,

x =
∨

{fd(y) | y ∈ L, y
d
� x} ≤

∨
{fd(y) | y ∈ L, fd(y)

d
� x}

=
∨

{z ∈ Ld | z d
� x}.

But, for any z ∈ Ld and ε > 0, U
◦
d
ε · z ≤ Ud

ε · z so

z
d
� x ⇒ z

◦
d
� x (z, x ∈ Ld)

and, consequently, x ≤ ∨{z ∈ Ld | z
◦
d
� x} ≤ x. ✷

PROPOSITION 3.2. Let d be a metric diameter on L. For each x ∈ L and ε > 0,
there exists y ∈ Ld such that x ≤ y and d(y) < d(x) + ε.

Proof. For any x ∈ L and ε > 0, since
◦
d is a diameter on Ld , we have that

x = x ∧
∨{

a ∈ Ld | ◦
d(a) <

ε

2

}

=
∨{

x ∧ a | a ∈ Ld, x ∧ a �= 0,
◦
d(a) <

ε

2

}

≤
∨{

a ∈ Ld | x ∧ a �= 0,
◦
d(a) <

ε

2

}
.

Then
∨{a ∈ Ld | x ∧ a �= 0,

◦
d(a) < ε

2} ∈ Ld is the required element y. In
fact, using property (∗′), d(y) = d(x ∨ y) ≤ d(x) + sup{d(a1) + d(a2) | a1, a2 ∈
Ld, a1 �= a2, a1 ∧ x �= 0, a2 ∧ x �= 0,

◦
d(a1),

◦
d(a2) <

ε
2 } < d(x) + ε. ✷

It follows from Proposition 3.2 that the relation

◦
d
� is the restriction of

d
� to Ld .

On the other hand, we also have:

PROPOSITION 3.3. Let M be a subframe of L. If d is a star diameter on M then

d̄(x) = inf{d(y) | y ∈ M,x ≤ y}
defines a star diameter on L.
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Proof. The proof that d̄ is a diameter is straightforward. Let us verify the star
property. Let S ⊆ L be strongly connected. For any ε > 0 and s ∈ S there is an
ys ∈ M with d(ys) < d̄(s) + ε and s ≤ ys . Clearly SM = {ys | s ∈ S} is strongly
connected thus

d̄
( ∨

S
)

≤ d
( ∨

SM

)
≤ 2 sup{d(ys) | s ∈ S} < 2 sup{d̄(s) | s ∈ S} + ε.

Hence d̄(
∨

S) ≤ 2 sup{d̄(s) | s ∈ S}. ✷
However, d̄ is not necessarily metric, even if d is. Nevertheless, there is, as

before, a unique metric diameter d̃ on L such that 1
2 d̄ ≤ d̃ ≤ d̄ and Ud̃

ε · x = Ud̄
ε · x

for every x ∈ L and ε > 0. Also Ld̄ = Ld̃ .

PROPOSITION 3.4. Let M be a subframe of L. For any compatible metric dia-
meter d on M, Ld̄ = Ld̃ = M.

Proof. Consider x ∈ Ld̃ . Let us start by proving that, for any y ∈ L such that

y
d̃
� x, there exists a z ∈ M satisfying y ≤ z

d̃
� x.

By hypothesis, there is some ε > 0 with Ud̃
ε · y ≤ x. Also

y = y ∧
∨{

z′ ∈ M | d(z′) <
ε

2

}

≤
∨{

z′ ∈ M | z′ ∧ y �= 0, d(z′) <
ε

2

}
∈ M.

The element z := ∨{z′ ∈ M | z′ ∧ y �= 0, d(z′) ≤ ε
2 } is the element in M we are

looking for. In fact, Ud̃
ε
2

≤ Ud̃
ε · y.

Consider w ∈ L with w ∧ z �= 0 and d̃(w) < ε
2 . Then there exists z′ ∈ M such

that z′ ∧w �= 0, z′ ∧ y �= 0 and d(z′) < ε
2 . Therefore w ≤ z′ ∨w, (z′ ∨w)∧ y �= 0

and d̃(z′ ∨ w) ≤ d̃(z′) + d̃(w) = d(z′) + d̃(w) < ε. Hence Ud̃
ε
2
· z ≤ Ud̃

ε · y ≤ x,

i.e., y ≤ z
d̃
� x.

Now, returning to the proof of the inclusion Ld̃ ⊆ M we have immediately that,
for any x ∈ Ld̃ ,

x =
∨

{y ∈ L | y d̃
� x} ≤

∨
{z ∈ M | z d̃

� x} ≤ x,

that is,

x =
∨

{z ∈ M | z d̃
� x} ∈ M.

Conversely, consider x ∈ M. Since x = ∨{y ∈ M | y d
� x}, we only need

to check that y
d
� x implies y

d̃
� x in order to conclude that x ∈ Ld̃ . So, assume
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that Ud
ε · y ≤ x for some ε > 0. Then Ud̃

ε
4
· y ≤ x because Ud̃

ε
4
· y ≤ Ud

ε · y: for any

z ∈ L such that z ∧ y �= 0 and d̃(z) < ε
4 there exists, by Proposition 3.2, w ∈ Ld̃

such that z ≤ w and d̃(w) < d̃(z) + ε
4 < ε

2 . We have already proved that Ld̃ ⊆ M

so w ∈ M. On the other hand, w ∧ y �= 0 and 1
2d(w) = 1

2

◦
d(w)d̃(w) < ε

2 , i.e.,
w ≤ Ud

ε · y. ✷
Clearly,

◦
d̄ =

◦
d̃ = d.

COROLLARY 3.5. Let d be a metric diameter on L. Then
◦
d = ◦

d
∼

= d.

Proof. For each x ∈ L,
◦
d(x) = inf{ ◦

d(y) | y ∈ Ld, x ≤ y}, thus
◦
d ≥ d(x). The

equality
◦
d(x) = d(x) follows immediately from Proposition 3.2. Then, trivially,

◦
d
∼

= d(x). ✷
COROLLARY 3.6. Let G be a gauge structure on L. For any d ∈ G, the inclusion

(Ld,
◦
d) ↪→ (L,G) is a uniform homomorphism.

Proof. Let us show that, for any ε > 0 and d ∈ G, Ud̄
ε ∈ G. For this, it suffices

to check that Ud
ε
2

≤ Ud̄
ε .

Assume x ∈ L is such that d(x) < ε
2 . By Proposition 3.2 there exists y ∈ Ld

satisfying d̄(y) = d(y) < d(x) + ε
2 < ε and x ≤ y. Hence x ≤ y ∈ Ud̄

ε . ✷
Notice that, for any gauge structure G on L, (L,

⊔
d∈G d) is a metric frame and

the identity (L,G) → (L,
⊔

d∈G d) is uniform. Thus the inclusion (Ld,
◦
d) ↪→

(L,
⊔

d∈G d) is a uniform homomorphisrn of metric frames.
Now let (L,G) be a gauge frame. For each d ∈ G consider the metric frame

(Ld,
◦
d) of 3.1 and the coproduct

⊕
d∈G(Ld,

◦
d). Then the sink

σG := ((Ld,
◦
d) ↪→ (L,G))d∈G

given by 3.6, induces a unique f making the following diagram commutative:

Since condition (G2) is clearly equivalent to L = ∨
d∈G Ld , the sink σG is ex-

tremal epimorphic, which implies that f is a uniform surjection. Thus each gauge
frame is a quotient of a coproduct of metric frames.
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By the results above we may also describe gauge structures in a more categorical
way, as sinks

σ = (mi : (Li, di) ↪→ (L, d))i∈I

of subobjects mi of a metric frame (L, d), satisfying the following conditions (we
use the usual lattice-theoretic notation in the partially ordered set Sub(L, d) of all
subobjects of (L, d)):

(S1) for every mi,mj ∈ σ , mi ∨ mj ∈ σ ;
(S2) if d is a metric diameter on L and

∀ε > 0 ∃δ > 0 ∃i ∈ I : Udi
δ ⊆ Ud

ε̄ ,

then (Ld,
◦
d) ↪→ (L, d) belongs to σ ;

(S3) every σ is an extremal epi-sink.
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