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Abstract. The goal of this paper is to organize some of the mathematical and algorithmic aspects of the space-
mapping technique for continuous optimization with expensive function evaluations. First, we consider the mapping
from the fine space to the coarse space when the models are vector-valued functions and when the space-mapping
(nonlinear) least-squares residual is nonzero. We show how the sensitivities of the space mapping can be used
to deal with space-mapping surrogates of the fine model. We derive a framework where it is possible to design
globally convergent trust-region methods to minimize such fine-model surrogates.

We consider also a different perspective of space mapping and apply it, for sake of simplicity, to the situation
where the models are scalar functions. The space mapping is defined in a way where it is reasonable to assume
that it is point-to-point. We prove that the surrogate model built by composition of the space mapping and the
coarse model is a regular function. We also discuss trust-region methods in this context.

Keywords: space mapping, surrogate-based optimization, trust-region methods, global convergence,
sensitivities

1. Introduction

New techniques have been recently developed to deal with optimization problems that
involve expensive function evaluations that may require long cpu calculations. Space map-
ping assumes the existence of two models for the same physical phenomenon: a fine model,
accurate and expensive, and a coarse model, significantly cheaper and considerably less
accurate. The idea behind space mapping is to construct a mapping between the fine-model
space of parameters or variables and the coarse-model space that allows to defer the mini-
mization process to the coarse model, where most function evaluations should take place.
Space-mapping techniques are typically iterative as the mapping is unknown a priori and it
is calculated for a sequence of points in the fine space.

The space-mapping technique was introduced first by Bandler et al. (1994). It has
been modified and enhanced by classical optimization methods for nonlinear optimization.
Bandler et al. (1995) proposed the use of Broyden’s method to construct linear approxi-
mations for the space mapping and Bakr et al. (1998) applied the trust-region technique to
globalize the minimization process. These and other approaches are reviewed in the paper
by Bakr et al. (2000) and in the masters thesis of Søndergaard (1999). Leary et al. (2000)
introduced space-mapping techniques for the treatment of models that appear as constraints.



160 VICENTE

New space-mapping applications are reported in the papers collected in the volume edited
by Nielsen (2000) (see also Dennis (2000)).

We address first in this paper the mapping from the fine space to the coarse space when
the models are vector-valued functions, as analyzed in the work by Bakr et al. (2002). We
show that the sensitivities of the space mapping P , defined in (1), can be calculated provided
first-order derivatives of the fine model f and first-order and second-order derivatives of
the coarse model c are given and some invertibility is assumed related with the size of the
space-mapping (nonlinear) least-squares residual. The sensitivities of the space mapping
P define the linearization P� of this mapping. Thus, we can use c ◦ P� to locally minimize
the surrogate c ◦ P that the space mapping P provides for the fine model f . An alternative
surrogate introduced by Bakr et al. (2002) is w(c ◦ P) + (1 − w) f app

� , where w ∈ [0, 1]
and f app

� is an approximation to the linearized model of the fine model f . In a similar
way, we can work with w(c ◦ P�) + (1 − w) f app

� to minimize w(c ◦ P) + (1 − w) f app
� . The

idea behind this linear combination is to introduce more accurate local information of the
fine model. We show how to develop trust-region methods that are globally convergent to
stationary points of these surrogates.

We address then a different situation where the fine and the coarse models are scalar
functions, denoted by g and ĝ, respectively. The shape of the surrogate ĝ ◦ P , defined by
the composition of the space mapping P and the coarse model ĝ, is investigated. Given
a point x in the fine space, the space-mapping image P(x) is defined in this context by
minimizing, in the coarse space, the distance to x subject to the matching of the coarse
model to the fine-model value g(x), see (21) and (22). It is possible to observe that such
definition of space mapping yields a point-to-point map in several instances where space
mapping based only on the matching of the models is point-to-set. When P is point-to-point,
it is proved that the surrogate ĝ ◦ P is a regular function, i.e., that it has always first-order
directional derivatives. The surrogate ĝ ◦ P coincides with the fine model except possibly
near minimizers of the coarse model where it may become flat. The transition can create
kinks, the source of non-differentiability. We also discuss trust-region methods to minimize
this type of surrogate models.

We have structured this paper in two main sections, corresponding to the two space-
mapping approaches mentioned above. At the end of each section, we draw some conclu-
sions and discuss possible extensions. Norms and inner products used in this paper are the
�2 ones.

2. Space mapping using vector-valued models

2.1. The space-mapping definition

Let us consider a physical phenomenon where the variables defining it belong to a subset
of R

n and the function values that define it belong to R
m . We follow the approach in Bakr

et al. (2002) and define space mapping by considering a fine model of this phenomenon
denoted by f with f : S( f ) → R

m , and a coarse model represented by c with c : S(c) → R
m ,

where S( f ), S(c) ⊂ R
n . The fine model f is expensive to evaluate but the coarse model c is

relatively cheap. It is assumed that m > n (the practical situation in mind is when m � n).
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The case m ≤ n requires a different, more general approach, gives rise to nondifferentiable
surrogates, and will be discussed in Section 2.5.

The performance of both models is measured by a merit function H : R
m → R. In several

engineering applications H is not differentiable as it may result from the use of the �∞ norm.
We will assume in this paper that H is quadratic: for instance the squared �2 norm in R

m ,
or other quadratic variants based on the squared �2 distance (as it is the case in several data
fitting and parameter estimation problems).

The goal is to minimize

H f
def= H ◦ f

by considering the surrogate

Hc
def= H ◦ c

and the composition of Hc with a mapping relating the models f and c.
The space mapping P : S( f ) → S(c) is based on the solution of a nonlinear least-squares

minimization problem, in the following way:

P(x)
def= argmin

x̂∈S(c)

1

2
‖c(x̂) − f (x)‖2. (1)

(We will assume in this paper that the minimal argument is always unique and therefore we
can consider the notation where argmin returns a point and not a singleton.)

Bakr et al. (2002) consider also a linear approximation p(x) for P(x) constructed by
Broyden’s method, looking then at the surrogate H ◦ c ◦ p that take values in the fine space
S( f ). The surrogate they work with is actually given by

H ((w)c(p(x)) + (1 − w)�(x)) (2)

where w ∈ [0, 1] is a weighted parameter and � is a linear approximation for f : S( f ) → R
m .

Their linear approximation � is computed using once again Broyden’s method and the term
(1 − w)� provides to the surrogate more local accurate information about the fine model.

2.2. Space-mapping sensitivities and adjoints

Assuming that P is well defined as a point-to-point map and assuming appropriate smooth-
ness for f and c, the space-mapping image P(x) is given by the first-order necessary
conditions for (1):

Jc(P(x))(c(P(x)) − f (x)) = 0, (3)

where Jc denotes the Jacobian of c. We will assume that S( f ) and S(c) are open domains and
that (3) is true for all x ∈ S( f ).
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2.2.1. Sensitivities of the space mapping. To compute the sensitivities of P , JP : S( f ) →
R

n×n , we now differentiate (3) with respect to x , yielding

m∑
i=1

[ci (P(x)) − fi (x)]∇2ci (P(x))JP (x) + Jc(P(x))(JP (x) Jc(P(x))

− J f (x)) = 0, (4)

where J f and Jc denote the Jacobians of f and c, respectively. Thus, JP (x) can be computed
from

G(x)JP (x) = Jc(P(x)) J f (x),

where

G(x)
def=

m∑
i=1

[ci (P(x)) − fi (x)]∇2ci (P(x)) + Jc(P(x)) Jc(P(x)).

Since G(x) is symmetric, we also have

JP (x)G(x) = J f (x) Jc(P(x)). (5)

Had we assumed that f (x) = c(P(x)) for all x ∈ S( f ), which is ideally the underlying
motivation, we would have obtained J f (x) = Jc(P(x))JP (x), consistently with (4, 5).

The calculation (5) of the sensitivities JP (x) requires the solution of n systems of linear
equations with the matrix G(x). It also requires the evaluation of first-order derivatives of
the fine model and the evaluation of first-order and second-order derivatives of the coarse
model. We will see later that it is not JP (x) but rather its action on appropriate vectors that
needs to be computed.

We will assume that G(x)−1 exists for all x in S( f ). The case where JP (x) and J f (x) are
approximated, say by J app

P (x) and J app
f (x), respectively, will be discussed later.

2.2.2. Gradient of the surrogate Hc(P). The space mapping provides a surrogate model
Hc(P)

def= H ◦ c ◦ P for the fine-model function H f . The next iteration involves solving

min
x∈S( f )

Hc(P)(x) = H (c(P(x))).

The sensitivities of P provide the gradient for the surrogate Hc(P):

∇ Hc(P)(x) = JP (x) Jc(P(x))∇ H (c(P(x))),

where ∇ H (c(P(x))) is the gradient of H at c(P(x)). One can see that the gradient ∇ Hc(P)(x)
can be also computed by an adjoint-type calculation (note that G(x) is symmetric):

∇ Hc(P)(x) = J f (x) Jc(P(x))G(x)−1 Jc(P(x))∇ H (c(P(x))),

requiring the solution of a single system of linear equations with G(x).
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2.3. Trust-region methods for minimizing the surrogate Hc(P)

2.3.1. A quadratic model for the surrogate Hc(P). Given the sensitivities JP (x), one can
consider a local linear model P�(x + ·) for P(x) near x :

P�(x + s)
def= P(x) + JP (x)s. (6)

The minimization of the surrogate Hc(P) can be carried out by a trust-region approach.
To compute a step s from x , we introduce a trust-region subproblem of the type

min
‖s‖≤�

Hc�(P�)(x + s)
def= (H ◦ c� ◦ P�)(x + s), (7)

where � > 0 is the trust radius. Here c�(P(x) + ·) denotes a local linear model of the coarse
model near P(x) with exact first-order information, i.e., a linear model of the form

c�(P(x) + ŝ)
def= c(P(x)) + Jc(P(x)) ŝ. (8)

At this point it is important to remark that we are using c� instead of c. Since the coarse
model c is cheap to evaluate, it is reasonable to expect that c could be used directly instead
of being approximated, as happens in Bakr et al. (2002). The algorithmic approaches that
we develop next could be carried out in that way, with Hc�(P�) replaced by Hc(P�). However,
we remark that for global convergence purposes, the surrogate Hc(P�) would be required to
yield a condition of the type (11) and it is not clear that that would hold for every coarse
model c. We will return to this point later.

Since Hc�(P�) = H ◦ c� ◦ P� has been defined by the composition of two linear models
(6, 8) holding exact first-order information with the quadratic H , we obtain that Hc�(P�) is
itself a quadratic model, of the form

Hc�(P�)(x + s) = a(x) + 〈b(x), s〉 + 1

2
〈s, B(x)s〉,

where

a(x) = Hc(P)(x),

b(x) = ∇ Hc(P)(x) = JP (x) Jc(P(x))∇ H (c(P(x))),

B(x) = JP (x) Jc(P(x))∇2 H Jc(P(x))JP (x),

∇ H (c(P(x))) is the gradient of H at c(P(x)), and ∇2 H is the Hessian of the quadratic H .

2.3.2. Cauchy decrease. The step s can be required to satisfy a fraction of Cauchy decrease:

Hc�(P�)(x) − Hc�(P�)(x + s) ≥ κ
(
Hc�(P�)(x) − Hc�(P�)(x + sC )

)
, (9)
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where κ ∈ (0, 1]. Here sC is the Cauchy step defined by sC = −αC∇ Hc(P)(x), with αC

given by the solution of the one-dimensional problem:

αC = argmin
α>0,‖−α∇ Hc(P)(x)‖≤�

Hc�(P�)
(
x − α∇ Hc(P)(x)

)
.

There are several algorithms that produce steps satisfying the fraction of Cauchy decrease
condition (9); see Conn et al. (2000).

Since Hc�(P�) is quadratic, a result due to Powell (1975, Theorem 4; see also Conn et al.
(2000), Section 6.3, (Moré (1983), Lemma 4.8)) implies

Hc�(P�)(x) − Hc�(P�)(x + sC ) ≥ 1

2

∥∥∇ Hc(P)(x)
∥∥ min

{
�,

∥∥∇ Hc(P)(x)
∥∥

‖B(x)‖
}
. (10)

where B(x) is the Hessian of the quadratic model Hc�(P�) of the surrogate Hc(P) as defined
before. The Hessian B(x), or a symmetric approximation thereof, will be assumed uniformly
bounded across all iterations of the trust-region methods. The lower bound (10) for the
decrease obtained in Hc�(P�) by sC , together with the fraction of Cauchy decrease condition
(9) imply

Hc�(P�)(x) − Hc�(P�)(x + s) ≥ κ

2

∥∥∇ Hc(P)(x)
∥∥ min

{
�,

∥∥∇ Hc(P)(x)
∥∥

‖B(x)‖
}
. (11)

This estimate is key to prove global convergence of trust-region methods to stationary points
of Hc(P).

One can replace c� by c and still retain global convergence provided (11), or alternatively
(9) and (10), is valid for c instead of c�. More elaborated model managing techniques (see
Alexandrov et al., 1998) could be applied to enforce (11) with c� replaced by c.

2.3.3. Minimization of the surrogate Hc(P) using surrogate function values. If the goal
is only to minimize the surrogate Hc(P), then we have all the ingredients we need to identify
a class of trust-region methods that are able to converge to stationary points of Hc(P).

In fact, all it takes is to require the step s to satisfy the fraction of Cauchy decrease
condition (9) and to accept the step s and possibly increase � if

ared(x, s)

pred(x, s)
def= Hc(P)(x) − Hc(P)(x + s)

Hc�(P�)(x) − Hc�(P�)(x + s)
≥ η1 (12)

and, otherwise, to reject the step s (reducing � to γ1� and recomputing a new step s yielding
(9)). The constants γ1 and η1 must belong to (0, 1) and be fixed across all iterations. We
describe next this family of trust-region methods.

Algorithm 2.1. Trust-region methods for the minimization of Hc(P) using surrogate func-
tion values. Let x0 ∈ R

n, �0 > 0, and γ1, η1 ∈ (0, 1) be given.
For k = 0, 1, 2, . . .

• Compute a step sk from the trust-region subproblem (7) that satisfies (9), for x = xk.
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• Let

ρk = ared(xk, sk)

pred(xk, sk)
= Hc(P)(xk) − Hc(P)(xk + sk)

Hc�(P�)(xk) − Hc�(P�)(xk + sk)
.

• If ρk ≥ η1 then xk+1 = xk + sk and �k+1 is chosen so that �k+1 ≥ �k .
• If ρk < η1 then xk+1 = xk and �k+1 = γ1�k .
end

The rules to update the trust radius �k are in practice more sophisticated. What we have
just described enables the method to achieve global convergence and it is verified by most
implementations.

Any such trust-region method generates a sequence of iterates {xk} that verifies an asymp-
totic result of the following form (Conn et al. (2000), Section 6.4):

Theorem 2.1. Let Hc(P) be a continuously differentiable function with uniformly contin-
uous gradient in S( f ). Consider a sequence {xk} generated by a trust-region method of the
form of Algorithm 2.1. Let also Hc(P) be bounded below on

L(x0) = {x ∈ S( f ) : Hc(P)(x) ≤ Hc(P)(x0)}.

Finally, let {B(xk)} be a bounded sequence. Then

lim
k→+∞

‖∇ Hc(P)(xk)‖ = 0. (13)

The assumptions of Theorem 2.1 are posed in terms of the surrogate Hc(P). Those as-
sumptions are satisfied provided:

Conditions 2.1.

• S( f ) and S(c) are open domains;
• the Jacobian of f is uniformly continuous in S( f );
• the Hessians of ci , i = 1, . . . , m, are uniformly continuous in S(c);
• P : S( f ) → S(c) is a well defined point-to-point map, Hc(P) = H ◦c◦ P is bounded below

on S( f ) (which is trivially satisfied when H is the squared �2 norm), (3) is true for all
x ∈ S( f ), and G(·)−1 exists in S( f ).

The strongest assumptions concern the well-definiteness and the smoothness of the map-
ping P . Assuming that P : S( f ) → S(c) is a well defined point-to-point map and that G(·)−1

exists in S( f ) is reasonable when m � n. It is difficult to establish scenarios under which
these assumptions are verified, as the situation is highly problem dependent. It is reasonable
to say that the chances of satisfying such assumptions increase as m becomes bigger and
bigger than n, as the contribution of the semi-positive definite term J

c Jc in G becomes
more and more relevant.
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2.3.4. Minimization of the surrogate Hc(P) using fine-model function values. Since we
need to evaluate the fine model f to compute Hc(P)(x) and Hc(P)(x + s), we could think of
replacing the actual reduction

Hc(P)(x) − Hc(P)(x + s)

given in (12), by

H f (x) − H f (x + s).

Since we are inexactly approximating Hc(P) by H f in this algorithmic context, we need
to impose the following conditions:

∣∣H f (x) − Hc(P)(x)
∣∣ ≤ η0 pred(x, s),

(14)∣∣H f (x + s) − Hc(P)(x + s)
∣∣ ≤ η0 pred(x, s),

where 0 < η0 < 1
2η1.

It is proved in (Conn et al. (2000), Section 10.6) that the limit result (13) is retained if
conditions (14) are satisfied. However, the satisfaction of these conditions might be prob-
lematic and expensive. They can be expensive because they may force the recomputation
of H f or Hc(P) at x or x + s more accurately (see Conn et al. (2000), Section 10.6). But,
more importantly, they can be problematic because there is no guarantee that the surrogate
Hc(P) agrees with the fine model H f .

2.4. Trust-region methods for minimizing a surrogate based on c ◦ P
and on the fine model f

Based on the work by Bakr et al. (2002), in particular in what has been developed for their
surrogate (2), we consider now the surrogate

Hw
def= H{(w)c ◦ P + (1 − w) f },

with w ∈ [0, 1], and the corresponding quadratic model

qw
def= H{(w)c� ◦ P� + (1 − w) f�},

where f�(x + ·) is a local linear model of the fine model f . (The brackets are used to easy
notation. H{ f } represents H ◦ f .)

We will assume now that both JP (x) and J f (x) are computed inexactly, and consider a
local linear model of the fine model f with inexact first-order information, of the form

f app
� (x + s) = f (x) + J app

f (x)s,
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using an approximation J app
f (x) for the Jacobian J f (x) of the fine model, and a local linear

model of the space mapping with inexact first-order information, of the form

Papp
� (x + s) = P(x) + J app

P (x)s,

using an approximation J app
P (x) for the sensitivities JP (x).

Thus, we get

qapp
w (x + s) = aw(x) + 〈bw(x), s〉 + 1

2
〈s, Bw(x)s〉,

where

bw(x) = ∇s H
{
(w)c� ◦ Papp

� + (1 − w) f app
�

}
(x + s)

= (
(w)J app

P (x) Jc(P(x)) + (1 − w)J app
f (x)

)∇ H ((w)c(P(x))

+ (1 − w) f (x)),

and ∇ H ((w)c(P(x))+ (1−w) f (x)) is the gradient of H at (w)c(P(x))+ (1−w) f (x). The
Hessian Bw(x), or a symmetric approximation thereof, is assumed to be uniformly bounded
across all iterations of the trust-region methods.

We consider now a trust-region subproblem of the type

min
‖s‖≤�

qapp
w (x + s), (15)

with � > 0, and require the step s to satisfy the following fraction of Cauchy decrease
condition:

qapp
w (x) − qapp

w (x + s) ≥ κw

(
qapp

w (x) − qapp
w

(
x + sC

w

))
, (16)

where κw ∈ (0, 1]. Here sC
w is the Cauchy step defined by sC

w = −αC
wbw(x), with αC

w given
by the solution of the one-dimensional problem:

αc
w = argmin

α>0,‖−αbw(x)‖≤�

qapp
w (x − αbw(x)).

The step s is accepted and � is possibly increased if

ared(x, s; w)

pred(x, s; w)
def= Hw(x) − Hw(x + s)

qapp
w (x) − qapp

w (x + s)
≥ η1.

Otherwise, the step s is rejected and � is reduced to γ1�. The constants γ1 and η1 must
belong to (0, 1) and be fixed across all iterations.

The gradient of Hw at x is given by

∇ Hw(x) = ((w)JP (x) Jc(P(x)) + (1 − w)J f (x))∇ H ((w)c(P(x))

+ (1 − w) f (x)).
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Since the term bw(x) used in qapp
w (x + s) is not exactly the gradient ∇ Hw(x), we need

to impose the following condition (Carter (1991), Conn et al. (2000), Section 8.4) on this
first-order approximation:

‖∇ Hw(x) − bw(x)‖
‖bw(x)‖ ≤ κw(1 − η1)

2
. (17)

One can see that the term bw(x) is different from ∇ Hw(x) because of the approximations
J app

f (x) for J f (x) and J app
P (x) for JP (x). The approximation J app

f (x) for J f (x) is used
explicitly in the formula for bw(x) and in the computation of J app

P (x). The sensitivities JP (x)
can be inexact just because of the inexactness of J app

f (x). But even when exact first-order
derivatives are available for the fine model f , the sensitivities computation can be inexact
(e.g., it might result of the application of iterative linear solvers or of Broyden’s method).
Thus, condition (17) is controlling both the quality of the approximation of the first-order
derivatives of the fine model f and the quality of the approximation of the sensitivities of
P . We describe next this family of trust-region methods, this time for the surrogate Hw.

Algorithm 2.2. Trust-region methods for the minimization of Hw

Let x0 ∈ R
n, �0 > 0, and γ1, η1 ∈ (0, 1) be given.

For k = 0, 1, 2, . . .

• Compute bw(xk) such that

‖∇ Hw(xk) − bw(xk)‖
‖bw(xk)‖ ≤ κw(1 − η1)

2
.

• Compute a step sk from the trust-region subproblem (15) that satisfies (16), for x = xk.
• Let

ρk = ared(xk, sk)

pred(xk, sk)
= Hw(xk) − Hw(xk + sk)

qapp
w (xk) − qapp

w (xk + sk)
.

• If ρk ≥ η1 then xk+1 = xk + sk and �k+1 is chosen so that �k+1 ≥ �k .
• If ρk < η1 then xk+1 = xk and �k+1 = γ1�k .
end

The comment about the trust radius �k made after Algorithm 2.1 also applies here.
The global convergence result (Carter (1991), Conn et al. (2000), Section 8.4) for any

trust-region method in this family is summarized in the next theorem.

Theorem 2.2. Let Hw be a continuously differentiable function with uniformly continuous
gradient in S( f ). Consider a sequence {xk} generated by a trust-region method of the form
of Algorithm 2.2. Let also Hw be bounded below on

Lw(x0) = {
x ∈ S( f ) : Hw(x) ≤ Hw(x0)

}
.
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Finally, let {Bw(xk)} be a bounded sequence. Then

lim
k→+∞

‖∇ Hw(xk)‖ = 0.

The assumptions of Theorem 2.2 are posed in terms of the surrogate Hw. Those assump-
tions are satisfied provided Conditions 2.1 hold.

By tuning the parameter w iteratively, replacing w by wk in Algorithm 2.2, and by forcing
wk to converge to zero, we get an asymptotic result for the fine model:

Corollary 2.1. Under the assumptions of the previous theorem, if limk→+∞ wk = 0 then

lim
k→+∞

‖∇ H f (xk)‖ = 0.

2.5. Discussion and extensions

Results describing global convergence to points satisfying second-order necessary con-
ditions could also be proved for modified versions of Algorithms 2.1 and 2.2, but such
modifications are less realistic from a practical point of view since they would require,
among other things, one more order of differentiability for f and c. Several other algorith-
mic enhancements could be considered. One could, for instance, use line-search techniques
instead of the trust-region approach, developing algorithms also globally convergent. Quasi-
Newton methods, such as the BFGS or SR1, or their limited memory versions, could be
applied to improve the numerical behavior related with local convergence, without requiring
more differentiability.

When m ≤ n, the definition of the space mapping given by (1) gives easily rise to a
point-to-set map, as it is expected that the system c(x̂) = f (x), for fixed x , has nonunique
solutions in S(c). In this case, one could instead define P(x) by looking at the problem

min
x̂∈S(c)

1

2
‖x̂ − x‖2

s.t. c(x̂) = f (x) .
(18)

If S(x)
def= {x̂ ∈ S(c) : ĉ(x̂) = f (x)} �= ∅, one could define P(x) as the (uniquely assumed)

solution of (18). Otherwise, P(x) would be the (uniquely assumed) least-squares solution
of the constraints in (18), already defined in (1). Such definition does not lead to a smooth
mapping, even when the models f and c are smooth. In the next section, we will discuss space
mapping using scalar-valued models, where we will consider a space mapping given by a
problem of the form (18) with only one constraint. It will become clear from the context of the
next section what type of nondifferentiability arises when space mapping is based on (18).

3. Space mapping using scalar-valued models

Let us consider a coarse model ĝ : X̂ ⊂ R
n → R of a fine model g : X ⊂ R

n → R. A
parallel to the previous notation can be drawn by considering ĝ = Hc = H ◦ c, S(c) = X̂ ,
g = H f = H ◦ f , and S( f ) = X . The goal is to minimize the fine model g(x) in X .
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3.1. The space-mapping definition

Let us assume that X and X̂ are open sets of R
n . If

S(x)
def= {x̂ ∈ X̂ : ĝ(x̂) = g(x)} �= ∅ (19)

then, assuming that the problem

min
x̂∈X̂

1

2
‖x̂ − x‖2

s.t. ĝ(x̂) = g(x)
(20)

has an unique solution, we define P(x) as

P(x)
def= argmin

x̂∈X̂

1

2
‖x̂ − x‖2 s.t. ĝ(x̂) = g(x). (21)

If the set S(x) given in (19) is empty then P(x) is given by the solution, assumed unique,
of the unconstrained problem that consists of the minimization of the least-squares norm of
the constraint ĝ(x̂) = g(x):

P(x)
def= argmin

x̂∈X̂

1

2
(ĝ(x̂) − g(x))2. (22)

3.2. The surrogate gP

The space mapping provides a surrogate model gP
def= ĝ ◦ P for the fine model. The next

step involves solving

min
x∈X

gP (x) = ĝ(P(x)).

We analyze now the differentiability properties of the surrogate gP . We show first that gP

is a regular function, i.e., that it has directional (or Gâteaux) derivatives along any direction
and at any point in X . The proof of the next theorem is itself an introduction to the shape
of the surrogate gP .

For a better understanding of the proof let us first introduce a simple example. Let
X = X̂ = R, g(x) = x2, and ĝ(x̂) = (x̂ − 1)2 + 1. In this example, P(x) = 1 and
gP (x) = ĝ(P(x)) = 1 for x ∈ [−1, 1]. Outside [−1, 1], the fine model g and the surrogate
gP = ĝ ◦ P coincide. This example is depicted in figure 1 (left).

Theorem 3.1. Let g and ĝ be continuously differentiable functions in X and X̂ , respec-
tively. Let us assume also that P is a well defined point-to-point map from X to X̂ .

Then gP is regular.
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Figure 1. The surrogate gP = ĝ ◦ P is the same in both examples.

Proof: We will show that gP has directional derivatives for every x in X . The proof is
divided in three parts: in the first part we deal with the case where gP coincides with g; in
the second we will look at the case where gP is flat; the last part analyzes the kinks.

Part 1. In a neighborhood N1 of X where for all x ∈ N1 one has S(x) �= ∅ and ∇ ĝ(P(x)) �=
0, P(x) must satisfy the first-order necessary conditions for (20):

P(x) − x + λ(x)∇ ĝ(P(x)) = 0, (23)

ĝ(P(x)) = g(x), (24)

where λ(x) is the multiplier corresponding to the constraint ĝ(x̂) = g(x). The fact that
∇ ĝ(P(x)) �= 0 acts like the constraint qualification needed for the necessary conditions.
Thus, in N1, gP coincides with g, and gP is differentiable with a gradient given by

∇gP (y) = ∇g(y).

Part 2. If for a given x we have that S(x) = ∅, then P(x) must verify the first-order
necessary conditions for (22):

[ĝ(P(x)) − g(x)]∇ ĝ(P(x)) = 0.

Since ĝ(P(x)) �= g(x) we obtain

∇ ĝ(P(x)) = 0,

i.e., P(x) is a stationary point for the coarse model ĝ. Moreover, we can easily prove
by contradiction that P(x) is either a local minimizer of ĝ (when ĝ(P(x)) > g(x)) or a
local maximizer of ĝ (when ĝ(P(x)) < g(x)). A continuity argument shows that there
exists a neighborhood N2 of x where S(y) = ∅, P(y) = P(x), and ∇ ĝ(P(y)) = 0 for
all y ∈ N2. Thus, P and gP are constant in N2. As a consequence, gP is differentiable
in N2, and its gradient is given by

∇gP (y) = 0.



172 VICENTE

Part 3. We are left with situations characterized by the existence of points z ∈ X where
one has

∇ ĝ(P(z)) = 0, (25)

ĝ(P(z)) = g(z). (26)

In this situation one cannot appeal to (23)–(24) due to the apparent absence of a con-
straint qualification. Two cases can occur here and we analyze them separately.

The first case is when S(·) is still nonempty in a neighborhood of z. In this case we
fall in the N1-neighborhood situation described above, where g and gP coincide, with the
particularity that ∇g(z) = 0, i.e., z is a stationary point for the fine model g.

The second case is when there is no neighborhood of z where the set S(·) is nonempty.
One can also show here by contradiction that P(z) is either a local minimizer or a local
maximizer of ĝ. Furthermore, for any direction d either

g′
P (z; d) = 〈∇g(z), d〉

(when 〈∇g(z), d〉 ≥ 0 and P(z) is a local minimizer of ĝ or when 〈∇g(z), d〉 < 0 and P(z)
is a local maximizer of ĝ), or

g′
P (z; d) = 0

(when 〈∇g(z), d〉 < 0 and P(z) is a local minimizer of ĝ or when 〈∇g(z), d〉 ≥ 0 and P(z)
is a local maximizer of ĝ). We conclude that the directional derivative g′

P (z; d) exists for
all directions d . We remark that when P(z) is a local minimizer of ĝ, we have

0 ∈ ∂gP (z)
def= {r ∈ R

n : 〈r, d〉 ≤ g′
P (z; d) for all d ∈ R

n},

i.e., z is a stationary point for the surrogate function gP . It can be proved here that z is a
local minimizer of gP , although not unique, since gP is flat along directions d for which
〈∇g(z), d〉 < 0.

In the example where X = X̂ = R, g(x) = x2, and ĝ(x̂) = (x̂ − 1)2 + 1, there are two
kinks, −1 and 1. We have that P(−1) = 1 and the gradient of ĝ at P(−1) is zero: there is no
Lagrange multiplier λ(−1) that solves (23). At the other kink, we observe that P(1) = 1, but
the gradient of ĝ at P(1) is also zero. Despite the lack of the linear independence constraint
qualification, any real multiplier λ(1) solves condition (23).

The proof provides significant insight about the surrogate gP . There is however one point
that has not been analyzed explicitely in the proof and that is relevant for the numerical
minimization of gP . Consider a sequence of points in a N1-neighborhood that is converging
to a kink point z ∈ cl(N1), where z satisfies (25)–(26). We have that

lim
k→+∞

‖∇ ĝ(P(yk))‖ = 0.
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In such a situation, two cases can happen. The first case is when

lim
k→+∞

‖P(yk) − yk‖ = 0,

and in this case the behavior of λ(yk) is not relevant, provided

lim
k→+∞

λ(yk)∇ ĝ(P(yk)) = 0.

(In the example analyzed in this section this case corresponds to z = 1.) The second case
corresponds to

lim
k→+∞

‖P(yk) − yk‖ �= 0, (27)

where we must have

lim
k→+∞

λ(yk) = +∞.

(In the example analyzed in this section this case corresponds to z = −1.)
Thus, the sizes of the multiplier λ(yk) and of the distance ‖P(yk) − yk‖ are an indication

of the convergence to a kink point z, where 0 ∈ ∂gP (z) and z is a local minimizer of gP or
where 0 ∈ −∂gP (z) and z is a local maximizer of gP .

In the example that we have been considering, if we change the coarse model to ĝ(x̂) =
(x̂ −2)2 +1 then we can see that P(x) = 2 for x ∈ [−1, 1] but gP = ĝ ◦ P does not change.
The kinks −1 and 1 are now both of the second case (27). There is now a point x = 5/4
in a N1-neighborhood for which P(5/4) = 5/4, ∇ ĝ(P(5/4)) �= 0, and λ(5/4) = 0. This
example is depicted in figure 1 (right). We illustrate also, in figure 2, a situation where the
fine model has no minimizer but where the surrogate gP can be successfully minimized.

Another relevant aspect is that condition (23) provides a local linear model for P around
x :

Papp
� (y) = y − λ(x)∇ ĝ(P(x)),

that might be useful to build a new (local) surrogate ĝ ◦ Papp
� .

Figure 2. The surrogate gP = ĝ ◦ P is bounded below despite the fact that the fine model g is unbounded.
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3.3. Discussion and extensions

The results of Section 3 can be generalized in various ways. The approach is not restricted
to R

n and could be easily developed in infinite dimensional spaces (Banach reflexive or
Hilbert), by requiring Fréchet differentiability of the models g and ĝ and by assuming
the same type of well-definiteness for the space mapping. The norm used in (21) should
be smooth to allow differentiability. The approach described here for R

n also works with
ellipsoidal norms of the form ‖x‖ = ‖Q1/2x‖, where Q is a symmetric positive definite
matrix.

Assuming that P : X → X̂ is point-to-point is certainly strong, problem dependent, and
only guaranteed under special convexity assumptions. But such assumption allowed us to
study the main properties of gP = ĝ ◦ P (see the last paragraph in this section) whose flavor
is also present when P : X → X̂ is point-to-set.

The regularity of gP allows the application of the approach and global convergence results
of Dennis et al. (1995). This paper considers a trust-region step that is an optimal solution
of the trust-region subproblem. Conn et al. (2000, Chap. 11) generalized their approach for
the case where the trust-region steps satisfy only a fraction of Cauchy decrease condition.

The analysis of Section 3 for scalar-valued models has shown that the surrogate gP = ĝ◦P
may be flat when the image of P is close to a minimizer of ĝ. Thus, space-mapping
techniques solely based on the minimization of gP should be applied with caution and
abandoned when flatness is encountered. The same comment applies to space-mapping
techniques for vector-valued models when m ≤ n, as discussed in Section 2.5.
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