
© J.C. Baltzer AG, Science Publishers

A block active set algorithm for large-scale
quadratic programming with box constraints

L. Fernandesa, A. Fischerb, J. Júdicec, C. Requejoc and J. Soaresc

aEscola Superior de Tecnologia de Tomar, 2300 Tomar, Portugal
bInstitut für Numerische Mathematik, Technische Universität Dresden,

D-01062 Dresden, Germany
cDepartamento de Matemática da Universidade de Coimbra,

3000 Coimbra, Portugal

An algorithm for computing a stationary point of a quadratic program with box constraints
(BQP) is proposed. Each iteration of this procedure comprises a guessing strategy which
forecasts the active bounds at a stationary point, the determination of a descent direction by
means of solving a reduced strictly convex quadratic program with box constraints and an
exact line search. Global convergence is established in the sense that every accumulation
point is stationary. Moreover, it is shown that the algorithm terminates after a finite number
of iterations, if at least one iterate is sufficiently close to a stationary point which satisfies
a certain sufficient optimality condition. The algorithm can be easily implemented for sparse
large-scale BQPs. Furthermore, it simplifies for concave BQPs, as it is not required to solve
strictly convex quadratic programs in this case. Computational experience with large-scale
BQPs is included and shows the appropriateness of this type of methodology.

Keywords: quadratic programming, box constraints, large-scale problems, sparse matrices

1. Introduction

In this paper we consider the box constrained quadratic program (BQP)

f x q x x M x x KT T() : min , ()= + → ∈1
2 1subject to

where q ∈Rn, M ∈Rn× n is a symmetric matrix, the feasible set

 K x R l x u i I I nn
i i i: { , } : { , , }= ≤ ≤ = …∈ ∈| with 1

is assumed to be nonempty, and all lower and upper bounds are finite. Finding a global
minimum of the program (1) is in general a very hard problem when M is an indefinite
or negative semi-definite matrix. Enumerative approaches [2, 10,14,20] have been
proposed for the solution of this problem. These procedures require good lower and

Annals of Operations Research 81(1998)75–95 75

upper bounds to alleviate the overall search for a global minimum. Algorithms
that are able to efficiently find local minima (or stationary points that are not local
maxima) are quite important in this context and have been proposed in the literature
[1,3–5, 8,13,18]. In this paper, we suggest a new algorithm which combines ideas
from active set and Newton-type methods. The algorithm can be considered as an
application of the active set Newton’s method (ASN) suggested in [21] for general
nonlinear programs with box constraints to the case of quadratic programming. Both
algorithms generate only feasible iterates. However, there are some important dif-
ferences. The first is that the new algorithm employs an exact line search to determine
the stepsize and reduces the objective function in each step. In contrast to this, the
ASN method combines an Armijo-type line search with a nonmonotone stabilization
technique, i.e., the objective function does not necessarily decrease monotonously. In
order to generate subproblems with a strictly convex quadratic function, the ASN
method includes a technique for perturbing the occurring Hessians of the nonlinear
objective function. The algorithm to be presented in this paper avoids such pertur-
bations. The new algorithm is also able to exploit concave parts within the objective
function in order to reduce the size of the subproblem that has to be solved in
each iteration. In particular, concave BQPs (i.e., M is negative semi-definite) can be
processed without the solution of strictly convex quadratic programs.

Starting with a feasible vector x0, each step of the new algorithm is of the general
form

L. Fernandes et al.y A BAS algorithm for large-scale BQP

x x d kk k
k

k+ = + = …1 0 1θ , , , .

The search direction dk is computed in two main steps. First, some components of
dk are set by means of a guessing technique which forecasts the active bounds at a
stationary point close to xk. Then the remaining components of dk are determined
by solving a strictly convex box-constrained quadratic program. The Hessian of the
objective function belonging to this latter program is a positive definite principal
submatrix of M, and the constraints guarantee that xk + dk is feasible. The stepsize θk

is determined by an exact line search which computes the minimum of the objective
function f along the direction dk. Since f is quadratic, the numerical expense required
by this line search is very low in comparison with an inexact, e.g., Armijo-type line
search.

After describing the algorithm in section 2, global convergence to a stationary
point is established in section 3. The analysis is similar to the one employed in [21].
Section 4 presents a result concerning the finite termination of the algorithm. If an
iterate xk is sufficiently close to a stationary point which satisfies a sufficient opti-
mality condition, i.e., a second-order condition together with strict complementarity,
then we show that the algorithm yields this stationary point after a finite number of
iterations.

In section 5, we will deal with the case when the matrix M occurring in the
objective function f is negative semi-definite. Then, no strictly convex quadratic

76

program has to be solved during the entire algorithm. As a consequence of this, some
additional simple rules for guessing the active bounds provide a reduction in the size
of the subproblems in the indefinite case. Section 6 reports the results of our compu-
tational experiments with the algorithm. As a first step, the quadratic programs with
box constraints contained in the CUTE collection [6] were tested. Since these problems
are convex, ten test matrices of different sizes (positive definite, negative definite and
indefinite) were used for generating test problems such that both the magnitude of the
bounds (maxi ∈I { ui – l i}) and the number of active bounds can be controlled. Moreover,
the same test problems were solved by the aformentioned ASN method [21] and two
further well-known codes, see [13,15,17]. The results of the experiments indicate
that the new algorithm is quite efficient for solving all the test problems. In particular,
it is a significant improvement in comparison with the ASN algorithm [21].

The following notation will be used throughout the paper. Let J, K # I be arbi-
trary index sets. If the matrix M has the elements mjk with j, k ∈I, then MJK denotes
the submatrix of M consisting of all mjk with j ∈J and k ∈K. In analogy to this, for
any x ∈Rn, the subvector xJ contains the elements xj with j ∈J. A superscript (k in
general) will be used as iteration index. Finally, ‖·‖ stands for the euclidean vector
norm or the corresponding subordinate matrix norm.

2. The algorithm

The algorithm we are going to present in this paper aims at finding a stationary
point of the program (1) such that the first-order necessary conditions (2) for a local
minimum are satisfied. Let us recall that a vectorx K∈ is said to be a stationary
point of problem (1), if

where ∇f is the gradient vector function of f. Strict complementarity is said to hold at
x if ∇i f x() > 0 for all i L∈ and ∇i f x() < 0 for all i U∈ . Additionally, if x is a
local minimum, then the following necessary condition holds:

(2)

MF F is a positive semi-definite matrix. (3)

Thus, for concave quadratic programs, the setF must be empty and this implies an
interesting property, namely all the components of any local minimum are equal to a
certain bound l i or ui . For further discussion and consequences, see section 5. We now
describe the algorithm, starting with the definition of the search direction dk at a
current feasible iterate xk. The direction dk is computed in two stages. At first, based
on the following forecasts of the setsL and U ,

∇ |
∇ |
∇ |

i i i

i i i i

i i i

f x i L i I l x

f x i F i I l x u

f x i U i I x u

() : { },

() : { },

() : { },

≥ = =

= = < <

= =

∈ ∈
∈ ∈
∈ ∈≤

0

0

0

for all

for all

for all

L. Fernandes et al.y A BAS algorithm for large-scale BQP 77

the corresponding components of dk are set as follows:

(4)

(5)

(6)

The functions ai and bi are required to be nonnegative, continuous and bounded above
on K such that xi = l i or xi = ui implies ai (x) > 0 or bi (x) > 0, respectively. If strict
complementarity holds at a stationary pointx , the sets defined in (4) locally coincide
with L and U , respectively [21]. Otherwise, the guessing technique is, nevertheless,
a good forecast. To explain how the remaining components di

k of the search direction
dk are determined, let us consider the following partition of the index set F(xk) :=
I \(L(xk) < U(xk)):

 F x F L U Zk k k k k() . ()= ∪ ∪ ∪ 7

The index set Fk has to be chosen as large as possible such that MFkFk is a positive
definite matrix. Then the remaining index sets Lk, U k and Zk are defined by

for some positive scalar δ. The set Fk may be determined while performing an LDLT

Cholesky factorization of the matrix MF(xk)F(xk). The standard way to implement the
Cholesky factorization is an n-step process, which determines a diagonal element of
D and a column of L at each step. When a diagonal element of D, say dii , is found to
be not (sufficiently) positive, then that particular step of the factorization is ignored,
i.e., the row and column i of MF(xk)F(xk) are discarded. At the end of the process, the
LDLT factorization of a positive definite principal submatrix MFkFk of MF(xk)F(xk) is
obtained. With regard to the partition (7) of F(xk), we define the following components
of dk:

(8)

(9)

(10)

where proj(· , [a, b]) is the one-dimensional projection into the interval [a, b]. Finally,
the remaining part dk

Fk of the search direction is defined as the unique solution of the
following reduced strictly convex quadratic program with box constraints:

d l x i L x

d u x i U x

i
k

i i
k k

i
k

i i
k k

: (),

: ().

= −

= −

∈

∈

L x i I x l a x f x

U x i I x u b x f x

k
i
k

i i
k

i
k

k
i
k

i i
k

i
k

() : { () ()},

() : { () ()},

= ≤ +

= ≥ +

∈

∈

| ∇
| ∇

L i F x F f x

U i F x F f x

Z i F x F f x

k k k
i

k

k k k
i

k

k k k
i

k

: { (()) () },

: { (()) () },

: { (()) () }

= >

= < −

= ≤

∈

∈

∈

\ |∇
\ |∇
\ ||∇ |

δ

δ

δ

d l x i L

d u x i U

d f x l x u x i Z

i
k

i i
k k

i
k

i i
k k

i
k

i
k

i i
k

i i
k k

: ,

: ,

: ((), [,]) .

= −

= −

= − − −

∈

∈

∈proj ∇

L. Fernandes et al.y A BAS algorithm for large-scale BQP78

Since this program is strictly convex, it can be solved by the Block Principal Pivoting
algorithm suggested in [16]. The numerical tests in that paper and elsewhere [12,21]
indicate that this algorithm is particularly effective for solving large-scale strictly
convex quadratic programs with box constraints.

It will be shown in lemma 1 that the direction dk is a descent direction. Therefore,
the stepsize θk defined as the global solution of the following one-dimensional mini-
mization problem

(11)

ϕ θ θ θ() : () min [,] ()= + → ∈f x dk k subject to 0 1 12

is positive. Since the objective function ϕ is quadratic, the solution θk can easily be
computed by

Based on these considerations, we get the following algorithm BAS for solving
the box constrained quadratic program (1).

Block Active Set algorithm (BAS)

Data: Choose x0 ∈K and ∆0 ≥ 0, β ∈(0, 1), δ > 0.
Define the functions ai and bi for i ∈I.

Initialization: Set k = 0 and j = 0.

Iteration:

Step 1. Compute dk according to (5), (6), (8)– (10) and (11).
If dk = 0, then stop.

Step 2. If (‖dk‖ < ∆j) and f (xk + dk) < f (xk),
then set θk = 1, ∆j +1 = β∆j and j = j + 1.
Otherwise, compute the stepsize θk according to (13).

Step 3. Set xk+1 = xk + θkdk and k = k + 1. Go to step 1.

3. Global convergence

Lemma 1 states some properties of the algorithm BAS, in particular that every
search direction dk turns out to be a descent direction of the objective function f if
and only if xk is not a stationary point.

θk

k k

k T k

k T k
k k

d Md
f x d

d Md
d Md

T

T=
≤

−

>

1 0

1 0
13

if

if

,

min ,
()

()
.

()∇

m d f x d d M d

l x d u x

F F
k T

F F
T

F F F

k
F F

k
F

k k k k k k k

k k k

() () min

() () .

= + →

− ≤ ≤ −

∇ 1
2

subject to

L. Fernandes et al.y A BAS algorithm for large-scale BQP 79

Lemma 1. Let {xk} be any sequence generated by the algorithm BAS. Then, for all
k = 0, 1,… :

(1) xk ∈K,

(2) ∇f (xk)Tdk ≤ –γ‖dk‖2 for some fixed positive scalar γ,

(3) dk = 0 if and only if xk is a stationary point.

Proof. (1) By the definition of the direction dk, we have

() () ,

() () ,

[,] ,

() [,] .

x d l i L x L

x d u i U x U

d l x u x i Z

x d l u i Z

k k
i i

k k

k k
i i

k k

i
k

i i
k

i i
k k

k k
i i i

k

+ =

+ =

∈ − −

+ ∈

∈

∈

∈

∈

∪
∪

Hence, xk + dk ∈K for all k. Now, since x0 ∈K and x1 = x0 + θ0d0 for some θ0 ∈[0, 1],
we have that x1 ∈K. By induction, we can conclude that xk ∈K for all k.

(2) With regard to the definition of F k, all occurring matrices MF kF k are positive
definite. Since the set of the principal submatrices of M which are positive definite is
finite, there exists a positive scalar ρ such that, for k = 0, 1,… ,

 ρ‖ ‖ | |z z M z zT
F F

F
k k

k2 14≤ ∈ . ()R

Now, as MF kF k is positive definite, the subvector dk
F k is the optimal solution of (11) if

and only if, for i ∈F k,

(15)

Since xk ∈K, i.e., l i – xi
k ≤ 0 and ui – xi

k ≥ 0 for all i ∈I, relations (15) yield

Hence, with (14) it follows that

(16)

Now we prove that a positive scalar γ exists such that

 ∇ ‖ ‖F
k T

F
k

F
k

k k kf x d d() .≤ − ρ 2

∇ ∇
∇

F
k T

F
k

F
k T

F F F
k

F
k T

F
k

F
k T

F F F
k

F
k

F F F
k T

F
k

k k k k k k k k k k k k

k k k k k

f x d d M d f x d d M d

f x M d d

() ()

(())

.

+ ≤ +

≤ +

≤

1
2

0

l x d f x M d

l x d u x f x M d

d u x f x M d

i i
k

i
k

F
k

F F F
k

i

i i
k

i
k

i i
k

F
k

F F F
k

i

i
k

i i
k

F
k

F F F
k

i

k k k k

k k k k

k k k k

− = ⇒ + ≥

− < < − ⇒ + =

= − ⇒ + ≤

(()) ,

(()) ,

(()) .

∇
∇
∇

0

0

0

L. Fernandes et al.y A BAS algorithm for large-scale BQP80

for all i ∈I \Fk. If di
k = 0, the inequality holds trivially. Therefore, we always assume

that di
k ≠ 0.

If i ∈L(xk), then xk ∈K and di
k ≠ 0 imply di

k = l i – xi
k < 0. Thus, the definition of

the set L(xk) yields

Consequently,

Taking into account that the functions ai and bi are assumed to be bounded above on
K, there is γ 0 > 0 such that

0 00 0≤ ≤ ≤ ≤ ∈ ∈a x b x x K i Ii i() , () , .γ γ

Hence (17) is valid forγ γ∈ (,]0 1
0

and i ∈L(xk). The proof for i ∈U(xk) is similar.
If i ∈Lk, the definition of Lk yields ∇i f (xk) > δ > 0. Hence,

Setting γ1 = δy(ui – l i), we get ∇i f (xk) > –γ1di . Multiplying this inequality by di
k =

l i – xi
k < 0, relation (17) follows with γ ∈(0, γ1] for all i ∈Lk. As can easily be seen,

the same holds for i ∈U k. Finally, the case when i ∈Zk yields di
k = proj(–∇i f (xk),

[l i – xi
k, ui – xi

k]). This leads to ∇i f (xk)di
k ≤ –(di

k)2. Thus, (17) is satisfied for γ ∈(0, 1]
and i ∈Zk. Therefore, setting γ ρ γγ= min{ , , , },1

10
1 relation (17) follows for all i ∈I\Fk.

Moreover, keeping (16) and (17) in mind, we obtain

(3) Let dk = 0 be satisfied. Then we prove that xk must fulfil the first-order
necessary optimality conditions (2). Consider an arbitrary index i ∈L(xk). Then 0 =di

k =
l i – xi

k. This implies xi
k = l i . Hence,

follows. Therefore, ∇i f (xk) ≥ 0 for i ∈L(xk). By analogous arguments, we have
∇i f (xk) ≤ 0 for i ∈U(xk). This means that the first or the third relation in (2) is valid
for i ∈L(xk) < U(xk) = I \F(xk).

 ∇f x d d ki
k

i
k

i
k() () , , , ()≤ − = …γ 2 0 1 2 17

 a x f x di
k

i
k

i
k() () . ()∇ ≥ − > 0 18

∇f x d

a x
di

k
i
k

i
k i

k()
()

() .≤ −
1 2

∇ ∇ ∇

‖ ‖

\
f x d f x d f x d

d

d

k T k
F

k T
F
k

i I F
i

k
i
k

i
k

i

n

k

k k

k

() () ()

()

.

= +

≤ −

≤ −

∈

=

∑

∑γ

γ

2

1

2

∇i

k

i
k

i i
k

i i i

f x

x l x l u l
()

.
−

>
−

≥
−

δ δ

 0 0= − ≤ >d a x f x a xi
k

i
k

i
k

i
k() (), ()∇

L. Fernandes et al.y A BAS algorithm for large-scale BQP 81

Now, we examine the case when i ∈F(xk). If ∇i f (xk) = 0, then i ∈F(xk) =
I \(L(xk) < U(xk)) implies l i < xi

k < ui. Thus, the second relation in (2) holds. There-
fore, we will assume that ∇i f (xk) ≠ 0. For i ∈Lk, we have 0 =di

k = l i – xi
k and

∇i f (xk) > δ > 0, i.e., the first relation in (2) is satisfied. Analogously, for i ∈U k we
obtain that the third relation holds. If i ∈Zk, then di

k = proj(–∇i f (xk), [l i – xi
k, ui – xi

k]).
Because di

k = 0 and ∇i f (xk) ≠ 0, it follows that either di
k = ui – xi

k or di
k = l i – xi

k. In
the first case, we have xi

k = l i and ∇i f (xk) > 0 from the definition of di
k. In the latter

case, a similar reasoning provides xi
k = ui and ∇i f (xk) < 0. Therefore, if i ∈Zk, the

first or the third relation in (2) is fulfilled.
Finally, let us consider i ∈Fk. Suppose that xi

k = l i . Then ∇i f (xk) < 0 because
i ∉L(xk). Now, definedFk by

()

{},
d

j F i

j i
F j

k

k =
=

∈0 if

if

\
ε

for some small enough ε > 0 such thatdFk is feasible with respect to the reduced
quadratic program (11). Since the objective function of this program is strictly convex
and mk(dFk) =∇i f (xk)ε + 1y2ε 2mii , the scalar ε > 0 can be chosen as small as neces-
sary such that mk(dFk) < 0. This is a contradiction because dk

F k = 0 is the optimal
solution and mk(dk

F k) = 0 is the corresponding optimal function value of the quadratic
program (11). Consequently, l i < xi

k must be valid for all i ∈Fk. Similarly, xi
k < ui can

be shown for all i ∈Fk. Therefore, having in mind that 0 =dk
F k satisfies the first-order

necessary conditions of the quadratic program (11), ∇F k f (xk) + MF kF kdk
F k =∇F k f (xk)

= 0 follows, i.e., the second relation in (2) is satisfied for all i ∈Fk. Thus, dk = 0
implies that xk is a stationary point of problem (1).

Conversely, let xk be a stationary point. Using (2), it can easily be seen that

is valid for any feasible direction d with xk +d ∈K. Then dk = 0 by statement (2) of
this lemma. u

To prove the main result of this section, we need the following property.

Lemma 2. Let {xk} be any sequence generated by the algorithm BAS. If, for some
subsequence {xk} k∈K ,

lim , lim , ()
k

k

k

kx x d
∈ ∈

= =
K K

0 19

then x is a stationary point of the program (1).

Proof. Because the set I contains a finite number of elements, index sets L, U, Z, F # I
and some infinite set M # K exist such that L < U < Z < F = I and

 L L x L U U x U Z Z x F Fk k k k k k= = = =() , () , (), ∪ ∪

 ∇ f x dk T() ≥ 0

L. Fernandes et al.y A BAS algorithm for large-scale BQP82

for all k ∈M. Taking into account the definition of the index sets which depend on k,
it follows from (19) that

Consider i ∈Z. Since di
k = proj(–5i f (xk), [l i – xi

k, ui – xi
k]), one of the following three

conditions is fulfilled:

(21)

For the remaining index set F, we recall that dk
F is the solution of the reduced quadratic

program (11). Having (19) in mind, (11) can be regarded (for k ∈M) as a perturbation
of

(22)

Since the feasible set of the latter program has an interior point, theorem 4.4 in [7] can
be applied and, with regard to (19), we obtain that the zero vector is the unique solution
of (22). By using arguments similar to those used for proving statement (3) of lemma 1,
we get ∇F f (x) = 0. Moreover, the constraints in (22) imply lF ≤ xF ≤ uF . These facts
together with (20) and (21) show thatx satisfies the relations (2), i.e.,x is a stationary
point of the program (1). u

We are now in position to establish the following result concerning the global
convergence of the algorithm BAS.

Lemma 1. Let {xk} be any sequence generated by the algorithm BAS. Each accumu-
lation point of {xk} is a stationary point of the program (1).

Proof. As {xk} remains in a compact set, it has at least one accumulation point. Let
x = limk∈Kxk denote such a point, where K # N is a suitable infinite set. We prove,
by contradiction, that limk∈Kdk = 0. The desired result then follows from lemma 2.
Suppose that there is an infinite set N # K such that

lim . ()

k

kd d
∈

= ≠
N

0 23

By lemma 1 and the continuous differentiability of f, there is η > 0 such that

This means that the test in step 2 of algorithm BAS can be satisfied only finitely often
for all k ∈N. Otherwise, limj →∞ ∆j = 0. This would imply that {dk} k∈N contains a

 x l f x x u f xL L L U U U= ≥ = ≤, () , , () . ()∇ ∇0 0 20

∇F

T
F F

T
FF F

F F F

f x d d M d

l x d u x

() min

() () .

+ →

− ≤ ≤ −

1
2

subject to

lim () () . ()

k

k T k Tf x d f x d
∈

= = − <
N
∇ ∇ η 0 24

l x u f x

x l f x

x u f x

i i i i

i i i

i i i

< < =

= ≥

= ≤

, () ,

, () ,

, () .

∇
∇
∇

0

0

0

L. Fernandes et al.y A BAS algorithm for large-scale BQP 83

subsequence converging to zero, which contradicts (23). Hence, for all k ∈N suffi-
ciently large, the stepsize θk is defined as the optimal solution of the one-dimensional
quadratic problem (12). Because {f (xk)} is a decreasing and bounded sequence, it
converges. Thus,

lim () () ,()

k

k kf x f x
∈

+ − =
N

1 0
or equivalently,

The definition of θk in (13) and statement (2) of lemma 1 imply, for all sufficiently
large k ∈N,

Therefore, it follows that

and

The definition of θk in (13) together with (23) and (24) yields, for all sufficiently large
k ∈N,

θ
η

k Td Md
≥

>min , .1
2

0

This, (24) and (25) imply

lim inf () .

k
k

k T kd Md
∈

>
N

θ 0

Hence, (26) contradicts (25). Therefore, (23) cannot hold and limk∈Kdk = 0 follows.
u

4. Local analysis

In this section, we establish the finite termination of algorithm BAS if some
iterate is close enough to a point where a certain sufficient optimality condition holds.
Let the index set B I# and the vector b ∈Rn be defined by

Taking into account that the set F k contains as much as possible indices such that
MF kF k is positive definite, the following lemma can be derived from theorem 3 in
Soares et al. [21].

Lemma. Let the vectorx be a stationary point of (1) which satisfies the second-
order condition

B L U

b l i L b u i U b i I Bi i i i i

=

= = =∈ ∈ ∈
∪

\
,

 , , .0

MF F is positive definite (27)

lim () () . ()

k
k

k T k
k

k T kf x d d Md
∈

+() =
N

∇θ θ1
2

2 0 25

 θk
k T k k T kd Md f x d() () .≤ −∇

 θ θk
k T k

k
k T kf x d d Md∇ () ()+ ≤2 0

 θ θ θk
k T k

k
k T k

k
k T kf x d d Md d Md∇ () () () . ()+ ≤ −1

2
2 1

2
2 26

L. Fernandes et al.y A BAS algorithm for large-scale BQP84

and the strict complementarity condition

Then there is ε1 > 0 such that

for all x x x x xk n∈ ∈= − ≤B | ‖ ‖(,) { }.ε ε1 1R

To prove the finite termination of algorithm BAS, we first show that the unit
stepsize is accepted in a sufficiently small neighbourhood ofx .

Lemma 4. Let the assumptions of lemma 3 be satisfied. Then there is ε2 ∈(0, ε1]
such that x xk ∈B(,)ε2 implies θk = 1.

Proof. As in [21], we consider the following additional perturbed problem:

where

x
x

x
k B

F
k=

.

(29)

By (27), the program (29) has a unique solution which is denoted bydF
k . Incidentally,

lemma 3 justifies to say that (29) is a perturbation of (11). Since ∇F f x() = 0 and
() ,x x k

B− = 0 it follows that

(30)

The Karush– Kuhn–Tucker conditions for problem (29) read as follows:

(31)

Since the objective function in (29) is strictly convex, these conditions are necessary
and sufficient fordF

k to be the (unique) optimal solution. Therefore, with regard to
(30) and

∇F
k

F F
T

FF F

k
F F

k
F

f x d d M d

l x d u x

() min

() () ,

+ →

− ≤ ≤ −

1
2

subject to

∇F
k

FF F

k
F F

k
F

T
F

k
F

T
F

k
F

f x M d w

l x d u x w

d u x w d l x

() ,

() () , , ,

(()) , (()) .

+ + − =

− ≤ ≤ − ≤ ≤

− − = − − =

υ

υ

υ

0

0 0

0 0

0 = + −

= + −

= + −

∇
∇
∇

F
k k

F
k

FI
k

F
k

FF
k

F

f x x x

f x M x x

f x M x x

(())

() ()

() () .

 ∇i f x i B() . ()≠ ∈0 28

F F L L x U U xk k k= = =, (), ()

L. Fernandes et al.y A BAS algorithm for large-scale BQP 85

the solution (, ,)d wF
k k k n n nυ ∈ × ×R R R of the system (31) is uniquely determined

by

() () () ,l x x x u xk
F

k
F

k
F− ≤ − ≤ −

d x x x x wF
k k

F
k

F
k k= − = − = =() () , ()υ 0 32

with n F= | |. Now, let us consider the search direction dk used in algorithm BAS.
From a classical stability result concerning strictly convex quadratic programs [7], it
follows that there is c1 > 0 such that

 ‖ ‖ ‖ ‖ Bd d c x x x xF
k

F
k k k k− ≤ − ∈1 2 33 (,) ()ε̃

with ˜ (,]ε ε2 10∈ sufficiently small. Using the Taylor formula, we get

and

Subtracting both equations yields

Since, in view of lemma 3,
d x xB

k k
B= −() , ()35

it follows with (32) that

M x x Md M d x x

Md M d x x

Md M d d

k k k k

k
IF

k k
F

k
IF F

k
F
k

() ()

()

().

− = − + + −

= − + + −

= − + −
Consequently, we get from (34)

Moreover, using (35), (33) and (32), we have

‖ ‖ ‖ ‖ ‖ ‖
‖ ‖ ‖ ‖ ‖ ‖
‖ ‖ ‖ ‖ ‖ ‖

‖ ‖

d d d

x x d d d

x x c x x x x

c x x

k
B
k

F
k

k
B F

k
F
k

F
k

k k k k

k

≤ +

≤ − + − +

≤ − + − + −

≤ + −

()

() .

1

12

(37)

If we set c2 = c1(2 + c1)‖M‖, then (36), (33) and the last inequality yield

 f x d f x f x d d Md d M d dk k k T k k T k k T
IF F

k
F
k() () () () () (). ()+ − ≤ − + −∇ 1

2 36

 f x d f x f x d d Md d M x xk k k T k k T k k T k() () () () () (). ()+ − = + + −∇ 1
2 34

 f x f x f x x x x x M x xk T k k T k() () () () () ().= + − + − −∇ 1
2

 f x d f x f x x d x x d x M x d xk k T k k k k T k k() () () () () ()− = + + − + + − + −∇ 1
2

L. Fernandes et al.y A BAS algorithm for large-scale BQP86

for all x xk ∈B(,).ε̃2 With regard to lemma 3 and to the definitions of the index
sets B, F , L(xk), U(xk), we obtain

 f x d f x f x d d Md c x x x xk k k T k k T k k k k() () () () ()+ − ≤ − + − −∇ ‖ ‖‖ ‖1
2 2 38

for some c3 > 0. This and (38) imply

f x d f x d Md x x c x x c

d Md

k k k k T k k k k k

k T k

() () () ()

()

+ − ≤ − + − − −

≤ −

1
2 2 3

1
2

‖ ‖ ‖ ‖
(39)

for all xk ∈B(x, ε2) with ε2 ∈(0, ˜]ε2 sufficiently small. Thus, using the Taylor formula,
we have

 f x d f x f x d d Md d Mdk k k k T k k T k k T k() () () () () .+ − = + ≤ −∇ 1
2

1
2

Therefore,
 ∇ f x d d Mdk T k k T k() ()+ ≤ 0

for all xk ∈B(x, ε2). This means that θk = 1 for all the iterates xk in this neighbourhood
of x. u

We are now able to prove the main result of this section.

Theorem 2. Let the assumptions of lemma 3 be satisfied. Then there is ε > 0 such
that xk ∈B(x, ε) implies the termination of algorithm BAS with a local minimizer
of the quadratic programming problem (1) after a finite number of steps.

Proof. Without loss of generality, we can assume that the algorithm does not stop
with dk = 0 or dk+1 = 0. Consider ε ∈(0, ε2], where ε2 is the positive value used in
the previous lemma. Then it follows from lemma 4 that xk ∈B(x, ε) yields θk = 1.
Moreover, using (37), we get

∇ ∇

∇

|∇ | | |

‖ ‖
‖ ‖

∪
f x d f x d

f x b x

f x b x

c b x

c x x

T k

i B F
i i

k

i
i B

i i
k

i B
i i i

k

i B

k
B

k k

() ()

()()

min{ () }

()

=

= −

≤ − −

≤ − −

≤ − −

∈

∈

∈ ∈

∑

∑

∑

3

3

L. Fernandes et al.y A BAS algorithm for large-scale BQP 87

Setting ε : = (3 + c1)
–1ε2, we obtain ε ≤ ε2 andxk+1 ∈B(x, ε2). The latter yields

θk+1 = 1, owing to lemma 4. With regard to lemma 3, we have

 ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖x x x d x x x d c ck k k k k+ − = + − ≤ − + ≤ + + = +1
1 12 3ε ε ε() () .

Thus,
x x d b x x x

B
k k k

B B B
k k+ + += + = = =1 1 1() , .

d d d x x xk k
B
k

B
k

B
k

B
+ + + + += = = =1 1 1 2 10, ,

follows. Using (32) for k + 1 instead of k, we get

x x d x
F
k k k

F F
+ + += + =2 1 1() .

Hence,x xk + =2 and, by lemma 1, algorithm BAS stops with dk+2 = 0. Finally, note
that under conditions (28) and (29) the stationary pointx is a local minimizer of
problem (1). u

5. Concave programs

Consider the case when matrix M in program (1) is negative semi-definite, i.e.
xTMx ≤ 0 for all x ∈Rn. Then all the diagonal entries mii of M with i ∈I must be
negative or zero. Furthermore, if mii = 0 for some i ∈I, then all elements in the i th
row and the i th column of M must be zero, see, e.g., [19]. Therefore, the variable xi

can be set equal to one of the bounds l i or ui depending on the sign of qi . If qi > 0,
then xi has to be equal to l i . Otherwise, we set xi = ui . Hence, we can assume without
loss of generality that all the diagonal elements of M are negative. Then, according to
the definition of the index set F k, this set must be empty for each iteration. So the
algorithm only uses extreme points of the constraint set K of the quadratic program
(1), that is, each iterate xk satisfies

x l x u i ni
k

i i
k

i= = = …or for all , , .1

Each iteration k of the algorithm can be stated in a very simple form. To do this,
consider the active sets associated with the iterate xk,

 AL x i I x l AU x i I x uk
i
k

i
k

i
k

i() {) }, () { },= = =∈ ∈| |
and let

L i I x l f x

U i I x u f x

k
i
k

i i
k

k
i
k

i i
k

= = <

= = >

∈

∈

{ () },

{ () }.

| ∇
| ∇

and

and

0

0

Now two cases may occur:

(i) If Lk < U k = ∅, then xk is the desired stationary point.

L. Fernandes et al.y A BAS algorithm for large-scale BQP88

(ii) Otherwise, set

AL x AL x U

AU x AU x L

k k k

k k k

() () ,

() () ,

+

+

=

=

1

1

∪
∪

and

x
l i AL x

u i AU x
i
k i

k

i
k

+
+

+
=

∈
∈

1
1

1
40

if

if

(),

().
()

It is interesting to note that then the algorithm BAS becomes the block algorithm that
was introduced in [11] for the solution of a general linear complementarity problem
with box constraints. Therefore, if the quadratic function is concave, then no strictly
convex subproblem has to be solved during the whole procedure, and each iteration
simply amounts to moving some variables from one bound to another according to the
rules presented above. It is also possible to exploit these simple ideas in the general
case of an indefinite matrix M. To do this, let G # I be the set defined by

 G i I mii: { }.= <∈ | 0

Then again G > F k = ∅ for each iteration k. The algorithm BAS realizes this fact
when performing the Cholesky factorization of MF(xk)F(xk). However, the computational
effort can be substantially reduced if these indices i ∈G do not come to F(xk), but
instead the corresponding variables xi

k stay in one of the bounds according to the
value of the component i of the gradient ∇f (xk). So, we propose the following simple
modification in the definitions of the index sets L(xk) and U(xk):

L x i I x l a x f x

i G x l f x

i G x u f x

k
i
k

i i
k

i
k

i
k

i i
k

i
k

i i
k

() { () ()}

{ , () }

{ , () },

= ≤ +

= ≥

= >

∈

∈

∈

| ∇ ∪
| ∇ ∪
| ∇

δ

δ

U x i I x u b x f x

i G x l f x

i G x u f x

k
i
k

i i
k

i
k

i
k

i i
k

i
k

i i
k

() { () ()}

{ , () }

{ , () }.

= ≥ +

= < −

= ≤

∈

∈

∈

| ∇ ∪
| ∇ ∪
| ∇

δ

δ

(41)

It can easily be seen that this redefinition of the index sets L(xk) and U(xk) does not
modify the search direction dk. Therefore, algorithm BAS with this modification main-
tains the convergence properties proved in the two previous sections.

6. Computational experience

In this section we describe some experiments with algorithm BAS. This
method was implemented in FORTRAN 77 using double precision arithmetic. All the

L. Fernandes et al.y A BAS algorithm for large-scale BQP 89

computations were done on a SUN SPARCstation 10 (48 MHz, 64Mb RAM). The
parameters β and δ and the function ai (x) and bi (x), i = 1,…,n, were set to β = 10–7,
δ = 10–7, ai (x) = 10–10, bi (x) = 10–10 for all i = 1,…,n. Furthermore, for solving the
strictly convex subproblem in each iteration of the BAS algorithm, we used the code
of the block pivoting algorithm (see [12,21], with parameter p = 10). The stopping
criterion for the BAS algorithm employs the projected gradient P(∇f (xk)), where

P f x

f x x l

f x x l u

f x x u

i
k

i
k

i i

i
k

i i i

i
k

i i

(())

min(, ()) ,

() (,),

max(, ()) .

()∇
∇

∇
∇

=

=

=

∈
0

0

42

if

if

if

The algorithm terminates when ‖P(∇f (xk))‖ ≤ 10–10. However, we also stopped the
method if ‖dk‖ ≤ 10–10. This second stopping criterion could be useful for highly
degenerate problems and is justified by the property of the method that if ‖dk‖ = 0,
then xk is a stationary point.

For the sake of comparison, we solved all the test problems by the algorithm
ASN, that was implemented as described in [21]. We note that this latter procedure
also includes the same code for the block pivoting method [21]. As discussed before,
algorithm ASN was developed for general nonlinear programs with box constraints,
but can also deal with quadratic programs without computing the Hessian of the
objective function. Moreover, we tested the well-known code LANCELOT [17] and
an efficient implementation [15] of the Fletcher – Jackson active-set method [13]
ACTSET for each one of the test problems.

In the first experiments, we applied the four codes BAS, ASN, ACTSET and
LANCELOT to all large-scale BQPs of the CUTE collection [6]. These problems
are convex, that is, matrix M is positive semi-definite. The results are presented in
table 1 and show that both algorithms ASN and BAS perform extremely well for these
problems. With regard to the number of iterations, there is no clear winner between
the two algorithms. However, algorithm BAS always needs less CPU time. This is
essentially due to the fact that no perturbation technique is used in the BAS algo-
rithm, whence the dimension of the strictly convex subproblem is always smaller for
this algorithm. Another interesting fact that can be found in table 1 is the extremely
low total number of inner iterations required by the block pivoting method for both
algorithms. In many cases, the block algorithm required exactly one iteration for each
of the subproblems. Actually, this type of behaviour also occurs for general nonlinear
programs with box constraints [21]. It follows from the description of algorithm BAS
that the number of function evaluations is equal to the number of the iterations plus
one because each exact line search requires exactly one function evaluation. In contrast
to this, the ASN method incorporates a nonmonotone Armijo-type criterion which,
in general, increases the overall amount of function evaluations. This is another
advantage of the BAS algorithm over the ASN method.

L. Fernandes et al.y A BAS algorithm for large-scale BQP90

1024 7 7 7 664 0.97 2.49 1.63 3.48 7 7 8 15

1024 3 3 3 570 0.37 1.49 2.23 2.46 3 3 4 11

1024 9 9 9 1185 1.49 3.24 2.17 8.73 9 9 10 17

1024 3 2 3 1020 1.2 2.33 15.54 8.73 11 15 4 6

1024 7 7 7 1020 0.54 2.07 1.3 8.82 7 7 8 15

1024 5 5 5 1083 0.98 3.27 2.55 9.17 16 15 6 10

1024 1 3 3 1083 0.62 1.38 2.32 8.22 6 4 2 9

1024 6 5 6 1083 0.62 1.76 1.33 8.34 10 6 7 10

1024 9 9 9 1332 0.79 2.54 1.51 9.68 9 9 10 17

1024 1 8 4 1332 0.77 2.51 2.1 9.62 10 8 2 16

1024 4 4 4 1644 0.15 1.39 0.87 6.62 4 4 5 12

1024 1 3 4 1664 0.56 1.49 0.94 6.68 7 13 2 8

1024 2 2 2 1676 0.05 1.01 0.61 4.48 2 2 3 10

1024 1 2 3 1676 0.51 1.21 0.8 4.51 5 5 2 6

1024 10 4 5 664 1.39 1.91 1.3 3.49 12 4 11 8

1024 7 3 3 602 0.85 1.56 1.01 2.77 7 3 8 7

1024 9 9 9 1300 0.81 3.02 1.64 9.54 9 9 10 17

1024 1 8 5 1300 0.75 2.65 2.53 9.58 7 8 2 16

1024 4 4 4 1628 0.15 1.56 0.81 6.79 4 4 5 12

1024 1 3 4 1628 0.37 1.63 0.95 6.96 6 13 2 8

1024 2 2 2 1748 0.04 1.12 0.61 4.68 2 2 3 10

1024 1 2 3 1748 0.5 3.49 0.75 4.46 5 5 2 6

inner
iterations

function
evaluations

BAS ASN LANC ACTSET BAS ASN LANC ACTSET BAS ASN BAS ASNn

iterations CPU time

JNLBRNGA

JNLBRNGB

NOBNDTOR

OBSTCLAE

OBSTCLAL

OBSTCLBL

OBSTCLBM

OBSTCLBU

TORSION1

TORSION2

TORSION3

TORSION4

TORSION5

TORSION6

JNLBRNG1

JNLBRNG2

TORSIONA

TORSIONB

TORSIONC

TORSIOND

TORSIONE

TORSIONF

Table 1

CUTE quadratic programs.

As stated before, to gain a better impression of algorithm BAS (and ASN), we
solved all the test problems with LANCELOT and an active-set method ACTSET.
The results show that algorithm BAS always performs better than LANCELOT. How-
ever, it is important to note that LANCELOT has others variants [17] which can be
more efficient for solving some of the test problems.

The number of iterations of the ACTSET method is quite large, since this method
changes exactly one active constraint in each iteration. This is reflected in the CPU
time and makes this code not too competitive in comparison with algorithm BAS.
However, it is interesting to note that the efficiency of the implementation described
in [16] as the difference in the number of iterations is in no way comparable with the
gap in the CPU time (for instance, in problem TORSIONF, 2 iterations of ASN take
3.49 seconds, while 1748 iterations of ACTSET only need 4.46 seconds).

Since all the CUTE problems are convex and simple to solve, we decided to
generate some nonconvex (M is indefinite) and concave problems. For the nonconvex

L. Fernandes et al.y A BAS algorithm for large-scale BQP 91

case, we chose some indefinite matrices from the HARWELL-BOEING collection [9].
The matrices M of the concave problems have been obtained by multiplying by (–1)
all the entries of some positive semi-definite matrices of the same collection. We
employed a quite simple technique for generating the vector q in such a way that at
least a stationary point is known. Let M, the matrix of the quadratic program, be given.
First we determine the largest positive definite submatrix MFF . Then all the lower
bounds l i are set equal to zero. Furthermore, the upper bounds (ui) are randomly
generated real numbers uniformly distributed on (0,Scal], where Scal is a positive
integer. Then a subsetF of F and sets L and U are chosen such that

 F L U n∪ ∪ = …{ , , }1
and

 F L F U L U> > >= = = ∅.
Then we set

(43)

Finally, the vector q is constructed so thatz is a stationary point, i.e., q has to satisfy
the following conditions:

() ,

() ,

() .

q Mz i L

q Mz i F

q Mz i U

i

i

i

+ ≥

+ =

+ ≤

∈
∈
∈

0

0

0

if

if

if

(44)

Since the problems are not strictly convex, they can have more than one stationary
point. Thus, we note that the algorithm could converge to a stationary point that is
distinct from the one generated above.

We studied the effects caused by the size of the upper bounds as well as by the
dimension of the active-set ()n F− | | at the generated stationary point. If we compare
the results displayed in tables 2, 3 and 4, we immediately come to the conclusion
that these two characteristics have no effect in algorithm BAS and a very small one
in method ASN. On the other hand, the ACTSET method evidently depends on the
number of active constraints of the stationary point obtained by the algorithm, but the
size of the upper bound does not influence the efficiency of the method. In contrast to
this, LANCELOT seems to perform worse when the size of the upper bounds is large.
However, the number of active constraints at the stationary point obtained by the
method does not seem to be an important factor for the efficiency of the LANCELOT
code.

The results shown in tables 1–4 confirm that algorithm BAS is the most efficient
procedure for solving all the test problems. The concave problems bc2103 and bctm15

z i L

z l u i F

z u i

i

i i i

i i U

=

=

∈
∈ ∈

∈

0 if

if

if

,

(,) ,

.

L. Fernandes et al.y A BAS algorithm for large-scale BQP92

3600 5 99 5 1552 3.02 112.2 27.25 14.86 8 124 6 483

3600 8 145 8 1406 2.51 141.4 30 9.57 13 177 9 677

3600 5 5 5 828 0.14 14.91 2.47 2.96 0 22 6 9

2003 2 2 3 1297 2.43 8.99 67.23 3.95 7 7 3 6

1473 3 3 4 771 0.12 6.25 81.24 1.26 10 19 4 7

1473 3 4 4 370 0.07 6.68 10.49 0.6 5 22 4 8

1473 3 3 3 149 0.06 5.11 0.99 0.22 0 17 4 7

3000 3 3 3 1523 0.63 5.73 1.84 9.3 3 3 4 7

1919 3 3 3 1030 1.02 24.63 4.14 2.92 9 9 4 7

1086 3 40 3 676 1.42 63.65 2.41 3.38 6 74 4 151

inner
iterations

function
evaluations

BAS ASN LANC ACTSET BAS ASN LANC ACTSET BAS ASN BAS ASNn

iterations CPU time

pplat1

rr1031

bc2101

bc2102

bc2103

bcss13

bctm13

bctm14

bctm15

oop210

3600 5 100 10 1552 3.02 116.1 70.77 15.37 8 125 6 483

3600 8 146 13 1406 2.5 143.4 17.28 9.6 13 178 9 676

3600 5 5 10 828 0.15 14.67 4.05 2.95 0 22 6 8

2003 2 2 9 1297 2.41 9.2 79.56 4.04 7 7 3 5

1473 3 3 11 771 0.13 6.17 7.44 1.24 10 19 4 6

1473 3 4 8 370 0.07 5.99 2.55 0.62 5 21 4 7

1473 3 3 8 149 0.05 5.01 1.57 0.21 0 17 4 6

3000 3 3 7 1523 0.62 5.69 3.27 9.18 3 3 4 6

1919 3 3 9 1030 1 11.69 5.83 2.99 9 9 4 6

1086 3 40 7 676 1.42 62.49 11.73 3.39 6 74 4 150

inner
iterations

function
evaluations

BAS ASN LANC ACTSET BAS ASN LANC ACTSET BAS ASN BAS ASNn

iterations CPU time

pplat1

rr1031

bc2101

bc2102

bc2103

bcss13

bctm13

bctm14

bctm15

oop210

Table 2

Test problems from generator with | | | |F F= y2 and Scal= 1.

Table 3

Test problems from generator with | | | |F F= y2 and Scal= 100.

have been solved without any inner iteration, since we have implemented the improve-
ments presented in section 5. The gap between algorithms BAS and ASN is quite
large for three problems, not only with respect to the CPU time, but also in terms of
iterations. It is also interesting to notice that the behaviour of the active-set method
for some test problems is better than algorithms ASN and LANCELOT. As a final
conclusion of this study, we recommend algorithm BAS for computing a stationary

L. Fernandes et al.y A BAS algorithm for large-scale BQP 93

point of large-scale nonconvex and concave quadratic programs with box constraints.
We believe that this algorithm can be quite useful if it is incorporated in a code for
finding global minima for this type of quadratic programs. This is certainly one of the
main areas for our future research.

References

[1] D.P. Bertsekas, Constrained Optimization and Lagrange Multipliers Methods, Academic Press,
New York, 1982.

[2] E.M. Bomze and G. Danninger, A finite algorithm for solving general quadratic problems, Journal
of Global Optimization 4(1994)1–16.

[3] T. Coleman and L. Hulbert, A direct active set algorithm for large sparse quadratic programs with
bounds, Mathematical Programming 45(1989)373– 406.

[4] T. Coleman and Y. Li, A reflective Newton method for minimizing a quadratic function subject to
bounds on some of the variables, Technical Report TR 92-1315, Department of Computer Science,
Cornell University, USA, 1992.

[5] A. Conn, N. Gould and Ph. Toint, Global convergence of a class of trust regions algorithm for
optimization with simple bounds, SIAM Journal on Numerical Analysis 25(1988)433– 460.

[6] I. Bongartz, A. Conn, N. Gould and Ph. Toint, CUTE: Constrained and unconstrained testing
environment, Technical Report 93/10, Department of Mathematics, Faculté Universitaires ND de
la Paix, Namur, Belgium, 1993.

[7] J.W. Daniel, Stability of the solution of definite quadratic programs, Mathematical Programming
5(1973)41– 53.

[8] R. Dembo and U. Tulowitzski, On the minimization of quadratic functions subject to box constraints,
Technical Report, Department of Computer Science, Yale University, USA, 1983.

[9] I.S. Duff, R.G. Grimes and J.G. Lewis, Sparse matrix test problems, ACM Transactions on Mathe-
matical Software 15(1989)1– 14.

3600 5 112 5 1599 3.13 132.9 28.79 16.38 6 138 6 556

3600 8 120 9 1380 2.57 125.3 30.63 9.9 12 176 9 536

3600 5 5 5 828 0.14 14.84 2.6 2.96 0 22 6 9

2003 2 2 2 1593 5.67 13.94 39.3 16.07 3 4 3 6

1473 4 3 6 798 0.18 6.42 84.27 1.41 11 20 5 7

1473 3 4 4 369 0.06 6.05 12.35 0.59 5 22 4 8

1473 3 3 3 149 0.04 5.14 0.94 0.21 0 17 4 7

3000 3 3 3 1666 0.72 5.75 1.92 10.55 3 3 4 8

1919 3 3 3 1134 2.75 14.3 5.31 8.98 8 8 4 7

1086 3 27 3 681 1.27 43.52 2.24 3.51 5 50 4 96

inner
iterations

function
evaluations

BAS ASN LANC ACTSET BAS ASN LANC ACTSET BAS ASN BAS ASNn

iterations CPU time

pplat1

rr1031

bc2101

bc2102

bc2103

bcss13

bctm13

bctm14

bctm15

oop210

Table 4

Test problems from generator with | | | |F F= and Scal= 1.

L. Fernandes et al.y A BAS algorithm for large-scale BQP94

[10] A. Faustino and J. Júdice, Minimization of a concave quadratic function subject to box constraints,
Investigacion Operativa 4(1994)49– 68.

[11] A. Faustino and J. Júdice, Principal pivoting algorithms for a concave generalized linear comple-
mentarity problem, Investigaça~o Operacional 14(1994)133– 146.

[12] L. Fernandes, J. Júdice and J. Patricio, An investigation of the interior-point and block pivoting
algorithms for large-scale symmetric monotone linear complementarity problems, Computational
Optimization and Applications 5(1996)49– 77.

[13] R. Fletcher and M. Jackson, Minimization of a quadratic function subject only to upper and lower
bounds, Journal of Mathematics and Applications 14(1974)159– 174.

[14] P. Hansen, B. Jaumard, M. Ruiz and J. Xiong, Global minimization of indefinite quadratic functions
subject to box constraints, Naval Research Logistics 40(1993)373–392.

[15] J. Júdice and M. Pires, Direct methods for convex quadratic programs subject to box constraints,
Investigaça~o Operacional 9(1989)23–56.

[16] J. Júdice and F. Pires, A block principal pivoting algorithm for large-scale strictly monotone linear
complementarity problems, Computers and Operations Research 21(1994)587–596.

[17] A. Conn, N. Gould and Ph. Toint, LANCELOT – A Fortran Package for Large-Scale Nonlinear
Optimization, Springer, 1992.

[18] J. Moré and G. Toraldo, Algorithms for bound constrained quadratic programming problems,
Numerische Mathematik 55(1989)377–400.

[19] K. Murty, Linear Complementarity, Linear and Nonlinear Programming, Heldermann, Berlin, 1988.
[20] P.M. Pardalos and G.P. Rodgers, A branch-and-bound algorithm for the maximum clique problem,

Computers and Operations Research 19(1992)363– 375.
[21] J. Soares, J. Júdice, and F. Facchinei, An active set Newton method for large-scale nonlinear

programs with box constraints, to appear in SIAM Journal on Optimization.

L. Fernandes et al.y A BAS algorithm for large-scale BQP 95

