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An algorithm for computing a stationary point of a quadratic program with box constraints
(BQP) is proposed. Each iteration of this procedure comprises a guessing strategy which
forecasts the active bounds at a stationary point, the determination of a descent direction by
means of solving a reduced strictly convex quadratic program with box constraints and an
exact line search. Global convergence is established in the sense that every accumulation
point is stationary. Moreover, it is shown that the algorithm terminates after a finite number
of iterations, if at least one iterate is sufficiently close to a stationary point which satisfies
a certain sufficient optimality condition. The algorithm can be easily implemented for sparse
large-scale BQPs. Furthermore, it simplifies for concave BQPs, as it is not required to solve
strictly convex quadratic programs in this case. Computational experience with large-scale
BQPs is included and shows the appropriateness of this type of methodology.
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1. Introduction
In this paper we consider the box constrained quadratic program (BQP)
f(x) :=g'x+ 3 x"Mx - min subjectto x 0K, 1)
whereg LR", M LJR"" is a symmetric matrix, the feasible set
K:={xUOR"li<sx<u,i I} withl:={1...,n}

is assumed to be nonempty, and all lower and upper bounds are finite. Finding a global
minimum of the program (1) is in general a very hard problem whienan indefinite

or negative semi-definite matrix. Enumerative approaches [2,10,14,20] have been
proposed for the solution of this problem. These procedures require good lower and
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upper bounds to alleviate the overall search for a global minimum. Algorithms
that are able to efficiently find local minima (or stationary points that are not local
maxima) are quite important in this context and have been proposed in the literature
[1,3-5,8,13,18]. In this paper, we suggest a new algorithm which combines ideas
from active set and Newton-type methods. The algorithm can be considered as an
application of the active set Newton’s method (ASN) suggested in [21] for general
nonlinear programs with box constraints to the case of quadratic programming. Both
algorithms generate only feasible iterates. However, there are some important dif-
ferences. The first is that the new algorithm employs an exact line search to determine
the stepsize and reduces the objective function in each step. In contrast to this, the
ASN method combines an Armijo-type line search with a nonmonotone stabilization
technique, i.e., the objective function does not necessarily decrease monotonously. In
order to generate subproblems with a strictly convex quadratic function, the ASN
method includes a technique for perturbing the occurring Hessians of the nonlinear
objective function. The algorithm to be presented in this paper avoids such pertur-
bations. The new algorithm is also able to exploit concave parts within the objective
function in order to reduce the size of the subproblem that has to be solved in
each iteration. In particular, concave BQPs (Meis negative semi-definite) can be
processed without the solution of strictly convex quadratic programs.

Starting with a feasible vectaf, each step of the new algorithm is of the general
form

xk*l=xk+gd%, k=01,....

The search directiod® is computed in two main steps. First, some components of

d¥ are set by means of a guessing technique which forecasts the active bounds at a
stationary point close t&X. Then the remaining components df are determined

by solving a strictly convex box-constrained quadratic program. The Hessian of the
objective function belonging to this latter program is a positive definite principal
submatrix ofM, and the constraints guarantee tkfat d¥ is feasible. The stepsizk

is determined by an exact line search which computes the minimum of the objective
functionf along the direction®. Sincef is quadratic, the numerical expense required

by this line search is very low in comparison with an inexact, e.g., Armijo-type line
search.

After describing the algorithm in section 2, global convergence to a stationary
point is established in section 3. The analysis is similar to the one employed in [21].
Section 4 presents a result concerning the finite termination of the algorithm. If an
iteratex® is sufficiently close to a stationary point which satisfies a sufficient opti-
mality condition, i.e., a second-order condition together with strict complementarity,
then we show that the algorithm yields this stationary point after a finite number of
iterations.

In section 5, we will deal with the case when the malttivoccurring in the
objective functionf is negative semi-definite. Then, no strictly convex quadratic
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program has to be solved during the entire algorithm. As a consequence of this, some
additional simple rules for guessing the active bounds provide a reduction in the size
of the subproblems in the indefinite case. Section 6 reports the results of our compu-
tational experiments with the algorithm. As a first step, the quadratic programs with
box constraints contained in the CUTE collection [6] were tested. Since these problems
are convex, ten test matrices of different sizes (positive definite, negative definite and
indefinite) were used for generating test problems such that both the magnitude of the
bounds (mayt {u; —1;}) and the number of active bounds can be controlled. Moreover,
the same test problems were solved by the aformentioned ASN method [21] and two
further well-known codes, see [13,15,17]. The results of the experiments indicate
that the new algorithm is quite efficient for solving all the test problems. In particular,
it is a significant improvement in comparison with the ASN algorithm [21].

The following notation will be used throughout the paper.1.& C | be arbi-
trary index sets. If the matrid has the elementsy with |, k LI, thenM,, denotes
the submatrix oM consisting of ally, with | [1J andk LIK. In analogy to this, for
any x LJR", the subvectok, contains the elements with j [1J. A superscriptK in
general) will be used as iteration index. Finallyl] stands for the euclidean vector
norm or the corresponding subordinate matrix norm.

2. The algorithm

The algorithm we are going to present in this paper aims at finding a stationary
point of the program (1) such that the first-order necessary conditions (2) for a local
minimum are satisfied. Let us recall that a vectdrlK is said to be a stationary
point of problem (1), if

Vi(x)20 fordliOLC:={i 01l =x},
Vi(x)=0 fordliOF:={i Ol <% <u}, )
Vix)<o fordliOU:={iO1% =ul,

whereVf is the gradient vector function bfStrict complementarity is said to hold at
X if Vf(x)>0foralli L andV f(X) <0 for all i JU. Additionally, if X is a
local minimum, then the following necessary condition holds:

Mg ¢ isapositive semi-definite matrix. (©))

Thus, for concave quadratic programs, thesehust be empty and this implies an
interesting property, namely all the components of any local minimum are equal to a
certain bound, oru;. For further discussion and consequences, see section 5. We now
describe the algorithm, starting with the definition of the search diredticat a
current feasible iterate. The directiord® is computed in two stages. At first, based

on the following forecasts of the setsand U,
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LX) :={i O1xK <1 +a(xX*)V f(x¥)},

UK o= O 2w+ b (XY ()}, “

the corresponding componentsdifare set as follows:
d<:= 1 = xK i OL(x9), (5)
d<:=u - xk i Ouk). (6)

The functionsg; andb; are required to be nonnegative, continuous and bounded above
on K such thatx; = I; or x; = u; implies a;(x) > 0 or b;(X) > 0, respectively. If strict
complementarity holds at a stationary pomtthe sets defined in (4) locally coincide
with L and U, respectively [21]. Otherwise, the guessing technique is, nevertheless,
a good forecast. To explain how the remaining comportnt$ the search direction
d¥ are determined, let us consider the following partition of the indef(s&j : =
I\ (L(X%) U UxK):

F(x¥) = FKu Lku uku zk, (7)

The index seEX has to be chosen as large as possible suctMthat is a positive
definite matrix. Then the remaining index sefsUX andz* are defined by

L= {i O(FMNF) W F(XK) > o},
UR:={i OFMNF) IV F(X) < -3},
Z%: =i O(FOMNFY IV F(xX)| < 8

for some positive scalal The seF¥ may be determined while performing B L"
Cholesky factorization of the matrMg g The standard way to implement the
Cholesky factorization is am-step process, which determines a diagonal element of
D and a column of at each step. When a diagonal elemem afayd;;, is found to

be not (sufficiently) positive, then that particular step of the factorization is ignored,
i.e., the row and columnof Mg are discarded. At the end of the process, the
LDLT factorization of a positive definite principal submathik«g« of MExk e 1S
obtakined. With regard to the partition (7)), we define the following components

of d*

a1 - xK i L, (8)
dk:=u — xK i Juk, 9)
d = proj (=¥ f(<), [ = %€, u - xK]) i Oz~ (10)

where proj(-, &, b]) is the one-dimensional projection into the intenzlt]. Finally,
the remaining pardf« of the search direction is defined as the unique solution of the
following reduced strictly convex quadratic program with box constraints:
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M(dex) = Ve F(X)Tdew + 3 dlMpwpidee — min
(11)
subjectto (I = x*) v < deie < (U = X9) i

Since this program is strictly convex, it can be solved by the Block Principal Pivoting
algorithm suggested in [16]. The numerical tests in that paper and elsewhere [12,21]
indicate that this algorithm is particularly effective for solving large-scale strictly
convex quadratic programs with box constraints.

It will be shown in lemma 1 that the directidhis a descent direction. Therefore,
the stepsizé), defined as the global solution of the following one-dimensional mini-
mization problem

¢(0) := f(x¥ +6d¥) — min subjectto 6 J[0,1] (12)

is positive. Since the objective functignis quadratic, the solutiof, can easily be

computed by
Dl it d<'MdX <0,
O = \ATES 1 hIE (13)
m n if d* Md* > 0.
|:| g" (dk)T dk E

Based on these considerations, we get the following algorithm BAS for solving
the box constrained quadratic program (1).

Block Active Set algorithm (BAS)

Data: Choosex® K andA, = 0, g [I(0, 1), 6> 0.
Define the functions; andb; fori [I.

Initialization: Setk =0 andj = 0.

Iteration:

Step 1 Computed® according to (5), (6), (8)—(10) and (11).
If d, =0, then stop.

Step 2 If (Ild"|| < 4;) andf (x* + d¥) < f (x¥),
then setg, = 1, A+ = BAjandj = + 1.
Otherwise, compute the stepsi@gaccording to (13).

Step 3 Setxk*1=x*+ g.d*andk=k+ 1. Go to step 1.

3. Global convergence

Lemma 1 states some properties of the algorithm BAS, in particular that every
search directiom turns out to be a descent direction of the objective fundtiin
and only ifx* is not a stationary point.
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Lemma L Let {x} be any sequence generated by the algorithm BAS. Then, for all
k=0,1,...:

(1) xkOK,
(2) Vix¥Td"< —y||d¥||? for some fixed positive scalar
(3) d*=0if and only ifx is a stationary point.

Proof. (1) By the definition of the directiod, we have
(X< + d¥); = |, i OL(x*) u LK,
(X< +d¥) = u, i Ju(x¥) u Uk,
d<O[l - x5 u - xK] i Oz,
<+ d) O, u ] i Odzk.

Hencex + d* [JK for allk. Now, sincex® [IK andx! = x° + ,d° for somef, [J[0, 1],
we have thak! [JK. By induction, we can conclude thdt K for all k.

(2) With regard to the definition df¥, all occurring matriceMg«g« are positive
definite. Since the set of the principal submatricel afhich are positive definite is
finite, there exists a positive scajasuch that, fork=0, 1,...

pllzl?< 2 Mz z ORIFY (14)

Now, asMeg«« is positive definite, the subvectdf« is the optimal solution of (11) if
and only if, fori OFX,

= xf=df O (Vo F(X¥) + Moepedfo) = 0,
= xK<df<uy - x 0 (Vo f(X¥) + Modi)i =0, (15)
d¥ =t — X O (Vo F(X) + Momedfe ) < 0.
SincexX K, i.e.,l; —xf < 0 andu; —x¥ = 0 for alli [JI, relations (15) yield
Ve FOC) T + L dE Mepedbe < Vo FOX) TR + a8 Moipde
< (Ve F(XK) + Mipidbi) TdE,

< 0.
Hence, with (14) it follows that

ka f(Xk)Tdék < —pHdEk”z (16)

Now we prove that a positive scalaexists such that
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VHE(X)d < -y (d)? k=012,... (17)

for alli 01 \FX If dX= 0, the inequality holds trivially. Therefore, we always assume
thatd* # 0.
If i OL(xX), thenx® OOK anddX # 0 imply d¥ = I, —xX < 0. Thus, the definition of
the setL(x¥) yields
a (xX*)Vf(x*) = —dk > 0. (18)
Consequently,

VEi(x)d < - (d)?.

a (x*)
Taking into account that the functioasandb; are assumed to be bounded above on
K, there isyp > 0 such that

0<a(X)<y, O0<shb(x)<y, xUK,ill.

Hence (17) is valid foy [J(0, ;=] andi OL(x*). The proof fori OJU(x¥) is similar.
If i L%, the definition ofL¥ yields V; f(x) > 6> 0. Hence,

V(x5 ) )
> = .
X< = 1; -1 ou-

Settingy, = &/(u; = 1;), we getV; f(x*) > —y,d;. Multiplying this inequality byd) =

l; —x* < 0, relation (17) follows withy [J(0, y;] for all i (JLX. As can easily be seen,
the same holds far(JUX. Finally, the case whein[JZ yields d¥ = proj(-V; f(x¥),

[I; =X, u; —xX]). This leads tov; f(x*)d¥ < —(df)2. Thus, (17) is satisfied for (0, 1]
andi Jz*. Therefore, setting = min{p, 7=, y;, %, relation (17) follows for ail Il \F¥.
Moreover, keeping (16) and (17) in mind, we obtain

VE)TdY = VL f(xX)TdE + Z Vv, f(x)dk
N i ONEX
< _VZ(dik)Z
i=1
< —ylld4=

(3) LetdX=0 be satisfied. Then we prove thdt must fulfil the first-order
necessary optimality conditions (2). Consider an arbiiratgxi CIL(x*). Then 0 0¥ =
I, —xX. This impliesx* = I;. Hence,

0=-df<a(x )V f(x), a(x*)>0

follows. Therefore,V; f(x¥) = 0 for i ODL(x¥). By analogous arguments, we have
Vi f(x¥) < 0 fori JU(x"). This means that the first or the third relation in (2) is valid
for i OL(x*) U U(xK) = 1 \F(xX).
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Now, we examine the case whehlF(x¥). If V; f(x¥) =0, theni OF(x¥) =
I\ (L(x¥) U U(x¥)) impliesl; < xX < u;. Thus, the second relation in (2) holds. There-
fore, we will assume thaV, f(x¥) #0. Fori OL¥, we have 0 =*=1,-x* and
Vi f(x¥) > 8> 0, i.e., the first relation in (2) is satisfied. Analogously,ifatU* we
obtain that the third relation holdsilEJZ¥, thend* = proj(=V; f (x"), [l = x*, u, — xX]).
Becausal =0 andV, f(x¥) # 0, it follows that eithedX = u —xX or d*=1, —xX. In
the first case, we hawe‘ = |, and V; f(x¥) > 0 from the definition ofi¥. In the latter
case, a similar reasoning provide'ss u, and V, f(x*) < 0. Therefore, ifi 0z, the
first or the third relation in (2) is fulfilled.

Finally, let us consider OF¥. Suppose that*=1;. ThenV, f(x*) < 0 because
i OL(x¥). Now, defined_. by

_ Ho if j OFK(i},
d k)i =
(0ee); %e if =i

for some small enough> 0 such thaﬁFk is feasible with respect to the reduced
guadratic program (11). Since the objective function of this program is strictly convex
andmk(d_Fk) =V fQ(k)s + 1/2&°my, the scalae > 0 can be chosen as small as neces-
sary such thatn(d.«) <0. This is a contradiction becaudf = 0 is the optimal
solution andn (d¥) = 0 is the corresponding optimal function value of the quadratic
program (11). Consequently< x* must be valid for ali JF. Similarly, x*< u; can
be shown for ali CJFX. Therefore, having in mind that Odg« satisfies the first-order
necessary conditions of the quadratic program (&) f (x*) + Mexprdfc = Vi £ (x9)
=0 follows, i.e., the second relation in (2) is satisfied fori &lIF¥. Thus,d=0
implies thatxX is a stationary point of problem (1).

Conversely, lekX be a stationary point. Using (2), it can easily be seen that

Vix¥)Td =0

is valid for any feasible directiod with x*+d (K. Thend* = 0 by statement (2) of
this lemma. O

To prove the main result of this section, we need the following property.

Lemma 2 Let {x} be any sequence generated by the algorithm BAS. If, for some

subsequencex{} o,
Kox lim x<= %, lim d* = 0, (19)
kOX kOX

then X is a stationary point of the program (1).

Proof. Because the sétontains a finite number of elements, index ket$, Z, F C |
and some infinite seM C X exist such that U UU ZU F=1 and

L=L(xX) ULk, U=Ux)UUK, Z=2(x%, F=Fk
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for all k LJ2M. Taking into account the definition of the index sets which deperig on
it follows from (19) that

)_(L:IL'VL f()_()ZO, )_(U:UU’VU f()_()SO (20)

Consideri 0Z. Sinced® = proj(—V; f (xX), [I; = x¥, u; — xX]), one of the following three
conditions is fulfilled:
<X <y, Vif(X)=0,

X =1, Vi f(X) = 0, (21)
X =, Vi f(X) £ 0.

For the remaining index s&t we recall thatl¥ is the solution of the reduced quadratic
program (11). Having (19) in mind, (11) can be regardeck(fdm) as a perturbation

of
Vef(X)Tde + LdIMerde - min
Ff(X) de + 5 dF MeedE (22)
subjectto (I = X)g < dg < (U - X)E.

Since the feasible set of the latter program has an interior point, theorem 4.4 in [7] can
be applied and, with regard to (19), we obtain that the zero vector is the unique solution
of (22). By using arguments similar to those used for proving statement (3) of lemma 1,
we getVe f(X) = 0. Moreover, the constraints in (22) imply< X < ug. These facts
together with (20) and (21) show thatsatisfies the relations (2), i.€X, is a stationary

point of the program (1). O

We are now in position to establish the following result concerning the global
convergence of the algorithm BAS.

Lemma 1 Let {x¥} be any sequence generated by the algorithm BAS. Each accumu-
lation point of {*} is a stationary point of the program (1).

Proof. As {x¥} remains in a compact set, it has at least one accumulation point. Let
X = limgx XX denote such a point, whefé C N is a suitable infinite set. We prove,

by contradiction, that lig«d* = 0. The desired result then follows from lemma 2.
Suppose that there is an infinite $1C K such that

lim dk=d # 0. (23)
k ON

By lemma 1 and the continuous differentiabilityfpthere isn > 0 such that
lim Vf(x*)Tdk=Vf(x)"d =-n<o. (24)
kON

This means that the test in step 2 of algorithm BAS can be satisfied only finitely often
for all k L2V, Otherwise, lim_ .4 = 0. This would imply that @}« contains a
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subsequence converging to zero, which contradicts (23). Hence, forlall suffi-
ciently large, the stepsiz® is defined as the optimal solution of the one-dimensional
quadratic problem (12). Becausé (&)} is a decreasing and bounded sequence, it

converges. Thus,
lim (f(x**1) - £(x)) =0,
. kON
or equivalently,
lim (6,1 (x)Td* + £ 62(d¥)"Md¥) = 0. (25)
kON

The definition off, in (13) and statement (2) of lemma 1 imply, for all sufficiently
largek LI,

B (d)TMdK < =V (x<)Tdk.
Therefore, it follows that

B VF(x*)Tdk + 2(dX)TMdk < 0
and
GV (x*)Tdk + 1 62(d*)TMd¥ < -1 62(d*)" MdX. (26)

The definition ofg in (13) together with (23) and (24) yields, for all sufficiently large

k Lo,
. n O
6> minl, o —1>0
k=MNE S3T™maH
This, (24) and (25) imply
liminf 6(d%)"Md* > 0.
k ON

Hence, (26) contradicts (25). Therefore, (23) cannot hold ang4iat = 0 follows.
]

4. Local analysis

In this section, we establish the finite termination of algorithm BAS if some
iterate is close enough to a point where a certain sufficient optimality condition holds.
Let the index seB C | and the vectob LIR" be defined by

B=LuUU,
b=l iL, b=y iU, =0 ilINB.
Taking into account that the se contains as much as possible indices such that

Mewex is positive definite, the following lemma can be derived from theorem 3 in
Soares et al. [21].

Lemma. Let the vectorx be a stationary point of (1) which satisfies the second-
order condition
Mg is positive definite (27)
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and the strict complementarity condition
Vif(x)#0 i [B. (28)
Then there i€; > 0 such that
F=FK L=L(xX), U=U(xX
for all XK OB(X, &) ={x OR"| || X - x|| < &}.

To prove the finite termination of algorithm BAS, we first show that the unit
stepsize is accepted in a sufficiently small neighbourhoad. of

Lemma 4. Let the assumptions of lemma 3 be satisfied. Then thesgliKO, &;]
such thatxk O B(X, ,) implies 6, = 1.

Proof. As in [21], we consider the following additional perturbed problem:
V- f(x4)dz +1dIM=zd= — min
F F T 29 VIFFYF (29)

subjectto (I = x¥)= < d= < (U - x¥)=,
where d ( e < de=( )e

1l
By (27), the program (29) has a unique solution which is denoteﬂ#bmcidentally,

lemma 3 justifies to say that (29) is a perturbation of (11). SWeHX) = 0 and
(x - x¥)5 = 0, it follows that

0 = V& f(x* + (x - x¥))

k —

00X
XK =
X

Tix

= V= £(R4) + Mg, (X - %¥) (30)
= V= £(XK) + Me(X - X))z
The Karush—Kuhn—Tucker conditions for problem (29) read as follows:
Ve f(X*) + Mggdz +u-w =0,
(I-x)esdz <uU-x¥)z 0<u, O<w, (31)
oT(de —(U-x=)=0 wi(d= - (1 -xz) =0

Since the objective function in (29) is strictly convex, these conditions are necessary
and sufficient fordé‘ to be the (unique) optimal solution. Therefore, with regard to
(30) and
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(I =Xz < (X = x)z < (u-x9g,

the solution(dX, wX, v¥) OR" x R"™ x R" of the system (31) is uniquely determined

by _
dﬁk =(X - )‘(k)ﬁ =(X - xk)ﬁ, wk=0k=0 (32)

with i =|F|. Now, let us consider the search directibhused in algorithm BAS.
From a classical stability result concerning strictly convex quadratic programs [7], it
follows that there i€; > 0 such that

ldE - dEll < cll X = x| x* OB(x, &) (33)
with &, [1(0, &] sufficiently small. Using the Taylor formula, we get
f(x¥ = d¥) = £(x) + VE(R)T (X + d* = x) +  (x* + d* = x)TM(x* + d* - x)

and
f(xK) = f(x) + VE(R)T(X* = %) + 1 (x* = x)TM(x - x).

Subtracting both equations yields
f(x* +d¥) = £(x) = VI(x)Td* + 1 (d)TMd* + (d)TM(x* - x).  (34)

Since, in view of lemma 3,
dk = (x - x)g, (35)
it follows with (32) that
M(xX = %) = = Md* + M(d¥ + xk - %)
= - Md* + Mz (d* + xk - )=
= -Md* + Mz (dE - d¥).
Consequently, we get from (34)

f(x* +d*) - £(x) < Vi(x)Td* - 1 ()" Md* + (d*)T Mz (dE - d¥). (36)
Moreover, using (35), (33) and (32), we have
¥l < [ dgll + I gl
<[I(x = x)gll + 1 dE — d&ll + 11 d&|

(37)
<1 = XM+ el = XM+ s = XN
< 2+ c)llx = X4l

If we setc, =¢4(2 +¢;)||[M|], then (36), (33) and the last inequality yield
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f(x¥ +d*) = £(x) < Vi(x)Td* = 1 ()T Md* + coll x = x¥[lIIx% = x| (38)

for all x* OB(X, £,). With regard to lemma 3 and to the definitions of the index
setsB, F, L(xX), U(xX), we obtain

Vi) Tdk = z V; f(X)df
iOBUF

PRI XK)

1B

—mi . X — xk
< ?%lg{lv.f(x)l}iélh x|
< -cdl(b - x*)gl

< —cd| X = x|
for somec; > 0. This and (38) imply

Fxk+ dk) = F(x¥) < =2 (d)T Mk + [ x5 = x| (cll R = X¥|| - c3) (39)
< -1(d")"md*

for all xX OB( X, &) with &, [J(0, £,] sufficiently small Thus, using the Taylor formula,
we have

f(x¥+d¥) = f(x) = Vi) Td* + 1 (d)"Md* < -1 (d)TmdX.
Therefore,
VE(xX)Tdk + (d¥)TMdk< 0

for all xX OB( X, &,). This means tha&, = 1 for all the iterateg* in this neighbourhood
of X. O

We are now able to prove the main result of this section.

Theorem 2 Let the assumptions of lemma 3 be satisfied. Then there 3 such
thatx* OB(X, ) implies the termination of algorithm BAS with a local minimizer
of the quadratic programming problem (1) after a finite number of steps.

Proof. Without loss of generality, we can assume that the algorithm does not stop
with dX=0 ord¥*!* = 0. Consider [J(0, &,], wheres, is the positive value used in

the previous lemma. Then it follows from lemma 4 th'atlB(X, ) yields 6, = 1.
Moreover, using (37), we get
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X" =gl = lIxk +d = gl < [[XK = %l + 1" < & + (2 + c)e = B+ e

Setting £:= (3 +¢;) &, we obtaine< &, andx**! OB(X, &,). The latter yields
6c+1 =1, owing to lemma 4. With regard to lemma 3, we have

k+1 _ /1 k k — I ok+1l — Jk+1
Xg =(x*+d%)g =bg =Xz, X = X7
Thus,

dk+1= d_k+1, dg+1: 0, ng — Xk+l= )_(E
follows. Using (32) foik + 1 instead ok, we get
X2 = (X 4+ dR Y = %

Hence,xX*2 = x and, by lemma 1, algorithm BAS stops with"2 = 0. Finally, note
that under conditions (28) and (29) the stationary pgiig a local minimizer of
problem (1). ]

5. Concave programs

Consider the case when mathkin program (1) is negative semi-definite, i.e.
x"Mx < 0 for all x OJR". Then all the diagonal entries; of M with i (]I must be
negative or zero. Furthermore,rif; = 0 for somei [ll, then all elements in thigh
row and thdth column ofM must be zero, see, e.g., [19]. Therefore, the varigble
can be set equal to one of the bouhds u; depending on the sign of. If g, > 0,
thenx; has to be equal tp. Otherwise, we se¢ = u;. Hence, we can assume without
loss of generality that all the diagonal element§lare negative. Then, according to
the definition of the index sdt¥, this set must be empty for each iteration. So the
algorithm only uses extreme points of the constrainKset the quadratic program
(1), that is, each iterate' satisfies

xK =l orx=uy fordli=1..,n

Each iteratiork of the algorithm can be stated in a very simple form. To do this,
consider the active sets associated with the itedate

AL(X) ={i O X}, AU(xK) ={i O1[x<=u},

and let
=i O1x =I; and ¥ f(x¥) < O},

UK={i O1x¢=y and V f(x¥) > 0}.
Now two cases may occur:

(i) If LXu Uk=0, thenxXis the desired stationary point.
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(i) Otherwise, set
AL(xK*1) = AL(xX¥) u UK,

AU(xK*1) = AU(XK) U LK,
and
kel _ %h if i OAL(xK*D),

X (40)
Hu if i DAUX<HY).

It is interesting to note that then the algorithm BAS becomes the block algorithm that
was introduced in [11] for the solution of a general linear complementarity problem
with box constraints. Therefore, if the quadratic function is concave, then no strictly
convex subproblem has to be solved during the whole procedure, and each iteration
simply amounts to moving some variables from one bound to another according to the
rules presented above. It is also possible to exploit these simple ideas in the general
case of an indefinite matrid. To do this, letG C | be the set defined by

G:={i Ollm;<0.

Then againG N FX=0 for each iteratiork. The algorithm BAS realizes this fact
when performing the Cholesky factorizationf (x4 However, the computational
effort can be substantially reduced if these indicels do not come td=(x¥), but
instead the corresponding variabbdsstay in one of the bounds according to the
value of the componenbf the gradien¥V f (x*). So, we propose the following simple
modification in the definitions of the index sét&k) andU(x"):

L(x) = i O1Ix< <l +a(x*)V f(x*)} u
{i OG|x< =1,V f(x*)= 3} U
{i OGIxf =u,V f(x*) >3},
(41)
U(X) = {i D1 2 4+ B (xX)V F(xX)} U
{i OGIx =1, Vi f(x)< -t U
{i OG|x¢ = u, V f(x¥) < 8}.

It can easily be seen that this redefinition of the index Iset¥) andU(x¥) does not
modify the search directicdf. Therefore, algorithm BAS with this modification main-
tains the convergence properties proved in the two previous sections.

6. Computational experience

In this section we describe some experiments with algorithm BAS. This
method was implemented irokRTrRAN 77 using double precision arithmetic. All the



90 L. Fernandes et al/ A BAS algorithm for large-scale BQP

computations were done on a SUN SPARCstation 10 (48 MHz, 64Mb RAM). The
parametergd andd and the functiom; (x) andb; (x), i = 1,...,n, were set tg8= 107",
0=10"7 a(x) =107 b,(x) = 10~ for all i = 1,...,n. Furthermore, for solving the
strictly convex subproblem in each iteration of the BAS algorithm, we used the code
of the block pivoting algorithm (see [12,21], with parameter10). The stopping
criterion for the BAS algorithm employs the projected gradi{¥tf(x*)), where

Omin(0,V; f(x)) if x =1,
R(VE(x¥) = OV f(x¥) it x U, w), (42)
Hmax(0,V; F(x¥) if % = u.

The algorithm terminates whéiP(Vf(x¥)|| < 107%° However, we also stopped the
method if||d¥|| < 107%% This second stopping criterion could be useful for highly
degenerate problems and is justified by the property of the method thti|it= 0,
thenxX is a stationary point.

For the sake of comparison, we solved all the test problems by the algorithm
ASN, that was implemented as described in [21]. We note that this latter procedure
also includes the same code for the block pivoting method [21]. As discussed before,
algorithm ASN was developed for general nonlinear programs with box constraints,
but can also deal with quadratic programs without computing the Hessian of the
objective function. Moreover, we tested the well-known code LANCELOT [17] and
an efficient implementation [15] of the Fletcher—Jackson active-set method [13]
ACTSET for each one of the test problems.

In the first experiments, we applied the four codes BAS, ASN, ACTSET and
LANCELOT to all large-scale BQPs of the CUTE collection [6]. These problems
are convex, that is, matriM is positive semi-definite. The results are presented in
table 1 and show that both algorithms ASN and BAS perform extremely well for these
problems. With regard to the number of iterations, there is no clear winner between
the two algorithms. However, algorithm BAS always needs less CPU time. This is
essentially due to the fact that no perturbation technique is used in the BAS algo-
rithm, whence the dimension of the strictly convex subproblem is always smaller for
this algorithm. Another interesting fact that can be found in table 1 is the extremely
low total number of inner iterations required by the block pivoting method for both
algorithms. In many cases, the block algorithm required exactly one iteration for each
of the subproblems. Actually, this type of behaviour also occurs for general nonlinear
programs with box constraints [21]. It follows from the description of algorithm BAS
that the number of function evaluations is equal to the number of the iterations plus
one because each exact line search requires exactly one function evaluation. In contrast
to this, the ASN method incorporates a honmonotone Armijo-type criterion which,
in general, increases the overall amount of function evaluations. This is another
advantage of the BAS algorithm over the ASN method.
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Table 1

CUTE quadratic programs.

inner function
iterations CPU time iterations | evaluations
n BAS ASN LANC ACTSET BAS ASN LANC ACTSET BAS ASN BAS ASN
INLBRNGA 1024 7 7 7 664| 097| 249| 163 348 7 7 8 15
INLBRNGB 1024 3 3 3 570| 037| 149| 223| 246 3 3 4 11
NOBNDTOR 1024 9 9 o| 1185 149| 324| 217| 873 9 9 10 17
OBSTCLAE 1024 3 2 3| 1020] 12| 233| 1554| 873 11 15 4 6
OBSTCLAL 1024 7 7 7| 1020] o054 207| 13| 882 7 7 8 15
OBSTCLBL 1024 5 5 5| 1083| 098] 327| 255 917 16 15 6 10
OBSTCLBM 1024 1 3 3| 1083| o062| 138 232| 822 6 4 2 9
OBSTCLBU 1024 6 5 6| 1083| 062 176| 1.33| 834 10 6 7 10
TORSION1 1024 9 9 o| 1332 o079| 254| 151 968 9 9 10 17
TORSION2 1024 1 8 4| 1332| 077| 251 21| 962 10 8 2 16
TORSION3 1024 4 4 4| 1644| 015| 139| 087 662 4 4 5 12
TORSION4 1024 1 3 4| 1e64| 056| 149| 094| 6.8 7 13 2 8
TORSION5 1024 2 2 2| 1676| 005| 1.01| o061| 448 2 2 3 10
TORSION6 1024 1 2 3| 1676| o051| 121| o8| 451 5 5 2 6
INLBRNGL 1024 10 4 5 664| 139| 191| 13| 349 12 4 11 8
INLBRNG2 1024 7 3 3 602| 085 156| 101| 277 7 3 8 7
TORSIONA 1024 9 9 9| 1300| o0s81| 302| 164| 954 9 9 10 17
TORSIONB 1024 1 8 5|  1300| 075| 265| 253| 958 7 8 2 16
TORSIONC 1024 4 4 4| 1628 015| 156| 081 679 4 4 5 12
TORSIOND 1024 1 3 4| 1628| 037| 163| 095 696 6 13 2 8
TORSIONE 1024 2 2 2| 1748| 004| 112| o061| 468 2 2 3 10
TORSIONF 1024 1 2 3| 1748| 05| 349| 075 446 5 5 2 6

As stated before, to gain a better impression of algorithm BAS (and ASN), we
solved all the test problems with LANCELOT and an active-set method ACTSET.
The results show that algorithm BAS always performs better than LANCELOT. How-
ever, it is important to note that LANCELOT has others variants [17] which can be
more efficient for solving some of the test problems.

The number of iterations of the ACTSET method is quite large, since this method
changes exactly one active constraint in each iteration. This is reflected in the CPU
time and makes this code not too competitive in comparison with algorithm BAS.
However, it is interesting to note that the efficiency of the implementation described
in [16] as the difference in the number of iterations is in no way comparable with the
gap in the CPU time (for instance, in problem TORSIONF, 2 iterations of ASN take
3.49 seconds, while 1748 iterations of ACTSET only need 4.46 seconds).

Since all the CUTE problems are convex and simple to solve, we decided to
generate some nonconveM {s indefinite) and concave problems. For the nonconvex
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case, we chose some indefinite matrices from the HARWELL-BOEING collection [9].
The matricesM of the concave problems have been obtained by multiplying by (-1)
all the entries of some positive semi-definite matrices of the same collection. We
employed a quite simple technique for generating the vecitmrsuch a way that at
least a stationary point is known. LMt the matrix of the quadratic program, be given.
First we determine the largest positive definite submaix. Then all the lower
boundsl; are set equal to zero. Furthermore, the upper boundare randomly
generated real numbers uniformly distributed onS€sl, where $al is a positive
integer. Then a subsé& of F and setd. andU are chosen such that

FuLuU=4{,..,n

and
FANL=FNU=LNU-=10.
Then we set
z=0 if i CIL,
z O@;,w) ifi OF, (43)
Z =y if i U.

Finally, the vecton is constructed so that is a stationary point, i.eg has to satisfy
the following conditions:

(@+Mz), 20 ifilL,
(@+Mz), =0 ifiOF, (44)
(@+Mz), <0 ifiOu.

Since the problems are not strictly convex, they can have more than one stationary
point. Thus, we note that the algorithm could converge to a stationary point that is
distinct from the one generated above.

We studied the effects caused by the size of the upper bounds as well as by the
dimension of the active-s¢h — | F |) at the generated stationary point. If we compare
the results displayed in tables 2, 3 and 4, we immediately come to the conclusion
that these two characteristics have no effect in algorithm BAS and a very small one
in method ASN. On the other hand, the ACTSET method evidently depends on the
number of active constraints of the stationary point obtained by the algorithm, but the
size of the upper bound does not influence the efficiency of the method. In contrast to
this, LANCELOT seems to perform worse when the size of the upper bounds is large.
However, the number of active constraints at the stationary point obtained by the
method does not seem to be an important factor for the efficiency of the LANCELOT
code.

The results shown in tables 1—4 confirm that algorithm BAS is the most efficient
procedure for solving all the test problems. The concave prolide2d®3 andctml5
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Table 2
Test problems from generator witl | = | F|/2 andScal= 1.
inner function

iterations CPU time iterations | evaluations

n BAS ASN LANC | ACTSET BAS ASN LANC | ACTSET BAS ASN BAS ASN

bc2101 | 3600 5 99 5| 1552| 3.02| 112.2| 27.25| 14.86 8| 124 6| 483

bc2102 | 3600 8| 145 8| 1406| 251| 1414 30 9.57 13| 177 9| 677

bc2103 | 3600 5 5 5 828 014| 14.91| 247 2.96 0 22 6 9

bess13 | 2003 2 2 3| 1207| 243| 899| 67.23 3.95 7 7 3 6

betm13 | 1473 3 3 4 771| 012| 625| 81.24 1.26 10 19 4 7

bctml4d | 1473 3 4 4 370| 007| 6.68| 10.49 0.6 5 22 4 8

betm15 | 1473 3 3 3 149| 006| 511| 0.99 0.22 0 17 4 7

00p210| 3000 3 3 3| 1523| 063| 573 1.84 9.3 3 3 4 7

pplatl | 1919 3 3 3|  1030| 1.02| 24.63| 414 2.92 9 9 4 7

1031 | 1086 3 40 3 676 1.42| 63.65| 241 3.38 6 74 4| 151

Table 3
Test problems from generator witlF | = | F|/2 andScal= 100.

inner function

iterations CPU time iterations | evaluations

n BAS ASN LANC | ACTSET BAS ASN LANC | ACTSET BAS ASN BAS ASN
bc2101 3600 5/ 100 10| 1552| 3.02| 116.1| 70.77| 15.37 8| 125 6| 483
bc2102 3600 8| 146 13| 1406 25| 143.4| 17.28 9.6 13| 178 9| 676
bc2103 3600 5 5 10 828| 0.15| 14.67| 4.5 2.95 0 22 6 8
bcss13 2003 2 2 9| 1297| 241 9.2| 79.56 4.04 7 7 3 5
bctm13 1473 3 3 11 771 0.13| 6.17| 7.44 1.24 10 19 4 6
bctmld 1473 3 4 8 370| 007| 599| 255 0.62 5 21 4 7
bctml5 1473 3 3 8 149| 005| 501| 157 0.21 0 17 4 6
00p210 3000 3 3 7| 1523 062| 569| 3.27 9.18 3 3 4 6
pplatl 1919 3 3 9| 1030 1| 11.69| 583 2.99 9 9 4 6
m1031 1086 3 40 7 676| 1.42| 62.49| 11.73 3.39 6 74 4] 150

have been solved without any inner iteration, since we have implemented the improve-
ments presented in section 5. The gap between algorithms BAS and ASN is quite
large for three problems, not only with respect to the CPU time, but also in terms of
iterations. It is also interesting to notice that the behaviour of the active-set method
for some test problems is better than algorithms ASN and LANCELOT. As a final
conclusion of this study, we recommend algorithm BAS for computing a stationary
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Table 4
Test problems from generator witlF | = | F| andScal= 1.
inner function
iterations CPU time iterations | evaluations
n BAS ASN LANC ACTSET BAS ASN LANC | ACTSET BAS ASN BAS ASN

bc2101| 3600 50 112 5/ 1509| 3.13| 1329| 28.79| 16.38 6| 138 6| 556
bc2102| 3600 8| 120 9| 1380 257| 125.3| 30.63 9.9 12| 176 9| 536
bc2103| 3600 5 5 5 828| 0.14| 14.84 2.6 2.96 0 22 6 9
bess13 | 2003 2 2 2| 1593| 567| 13.94| 393| 16.07 3 4 3 6
bctm13| 1473 4 3 6 798| 0.18| 6.42| 8427 1.41 11 20 5 7
bctmld| 1473 3 4 4 369| 0.06| 605 1235 0.59 5 22 4 8
bctml5| 1473 3 3 3 149 004| 514| 094 0.21 0 17 4 7
00p210| 3000 3 3 3| 1666 072| 575 192| 1055 3 3 4 8
pplatl | 1919 3 3 3| 1134 275| 143| 531 8.98 8 8 4 7
1031 | 1086 3 27 3 681| 1.27| 4352| 224 3.51 5 50 a4 96

point of large-scale nonconvex and concave quadratic programs with box constraints.
We believe that this algorithm can be quite useful if it is incorporated in a code for
finding global minima for this type of quadratic programs. This is certainly one of the
main areas for our future research.
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