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Abstract. We give a unified approach to the Krall-type polynomials orthogonal with respect to
a positive measure consisting of an absolutely continuous one‘perturbed’ by the addition of one
or more Dirac delta functions. Some examples studied by different authors are considered from a
unique point of view. Also some properties of the Krall-type polynomials are studied. The three-
term recurrence relation is calculated explicitly, as well as some asymptotic formulas. With special
emphasis will be considered the second order differential equations that such polynomials satisfy.
They allow us to obtain the central moments and the WKB approximation of the distribution of zeros.
Some examples coming from quadratic polynomial mappings and tridiagonal periodic matrices are
also studied.
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1. Introduction

In this work, we present a survey and some new results relative to the Krall-type
orthogonal polynomials, i.e., polynomials which are orthogonal with respect to an
absolutely continuous measure‘perturbed’ by the addition of one or more Dirac
delta functions. These polynomials were firstly studied in 1940 by H. L. Krall
[31]. In his 1940’s work, H. L. Krall, studied certain fourth-order differential equa-
tions satisfied by families of orthogonal polynomials. In fact, his study is related
to an extension of the very well known characterization of classical orthogonal
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28 R. ÁLVAREZ-NODARSE ET AL.

Table I. The classical Krall-type polynomials [30, 31].

{Pn} Measure dµ supp(µ)

Laguerre-type e−x dx + Mδ(x), M > 0 [0, ∞)

Legendre-type α
2 dx + δ(x−1)

2 + δ(x+1)
2 , α > 0 [−1, 1]

Jacobi-type (1 − x)α dx + Mδ(x), M > 0, α > −1 [0, 1]

polynomials by S. Bochner (1929). H. L. Krall discovered that there only three
extra families of orthogonal polynomials satisfying such a fourth-order differential
equation which are orthogonal with respect to measures which are not absolutely
continuous with respect to the Lebesgue measure. The corresponding measures
are given in Table I. These polynomials were studied later by A. M. Krall [30] in
1981 and then named the Legendre-type, Laguerre-type and Jacobi-type polyno-
mials and sometimes they are called the Krall-type polynomials. However, in the
literature, the name the Krall polynomials is associated with some generalization
of the Legendre-type polynomials which satisfies a sixth order differential equation
of spectral type and were introduced by L. L. Littlejohn [33] in 1982.

The analysis of properties of polynomials orthogonal with respect to a perturba-
tion of a measure via the addition of mass points was introduced by P. Nevai [38].
There the asymptotic properties of the new polynomials have been considered. In
particular, he proved the dependence of such properties in terms of the location
of the mass points with respect to the support of the measure. Particular emphasis
was given to measures supported in[−1, 1] and satisfying some extra conditions in
terms of the parameters of the three-term recurrence relation that the corresponding
sequence of orthogonal polynomials satisfies.

The analysis of algebraic properties for such polynomials attracted the interest
of several researchers. A general analysis when a modification of a linear functional
in the linear space of real polynomials with real coefficients via the addition of one
Dirac delta measure was started by Chihara [13] in the positive definite case and
Marcellán and Maroni [34] for quasi-definite linear functionals. From the point of
view of differential equations, see [37]. For two point masses there exist very few
examples in the literature (see [29, 15, 27] and [32]). In this case the difficulties
increase as shows [16]. Spectral properties of the classical Krall-type polynomials
[30, 31] were considered in [11].

A special emphasis was given to the modifications of classical linear functionals
(Hermite, Laguerre, Jacobi and Bessel) in the framework of the so-called semi-
classical orthogonal polynomials. For example in [29] the Jacobi case with two
masses at pointsx = ±1 was considered. The hypergeometric representation of
the resulting polynomials as well as the existence of a second order differential
equation that such polynomials satisfy have been established. Also the particular
cases of the Krall-type polynomials [30, 31] have been obtained from this general
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case as special cases or limit cases. In [23, 25] (see also [27]) the Laguerre case
was considered in details. In particular an infinite order differential equation for
these polynomials as well as their representation as hypergeometric series have
been found. The case of modification of a classical symmetric functional (Hermite
and Gegenbauer functionals) was considered in [6].

The modification of classical functionals have been considered also for the
discrete orthogonal polynomials. In this direction Bavinck and van Haeringen [9]
obtained an infinite order difference equation for generalized Meixner polynomials,
i.e., polynomials orthogonal with respect to the modification of the Meixner weight
with a point mass atx = 0. The same was found for generalized Charlier polynomi-
als by Bavinck and Koekoek [10]. In a series of papers by Alvarez-Nodarseet al.
[2–4] the authors have obtained the representation as hypergeometric functions
for generalized Meixner, Charlier, Kravchuk and Hahn polynomials as well as the
corresponding second order difference equation that such polynomials satisfy. The
connection of all these discrete polynomials with the Jacobi [29] and Laguerre [23]
type were studied in details in [5]. In particular, in [5] the authors proved that the
Jacobi–Koornwinder polynomials [29] are a limit case of the generalized Hahn as
well as the Laguerre–Koekoek [23, 25] are a limit case of the generalized Meixner
polynomials.

The aim of the present contribution is to give a unified approach to this subject
including the spectral properties by means of the central moments of the poly-
nomials [12] and the WKB (Brillouin–Wentzel–Kramer method, see [19, 40]) or
semiclassical approximation to the density of the distribution of zeros [8, 46, 47]
and some asymptotic formulas for the polynomials. Also a new interpretation of
the Krall-type polynomials in terms of special Jacobi matrices will be given.

The plan of the paper is the following. In Section 2 we give a general theory
which allows us to obtain some general formulas for the Krall-type polynomi-
als. From these formulas we obtain all the explicit formulas for the four fami-
lies under consideration, i.e., the Jacobi–Koornwinder [29], the Laguerre–Koekoek
[23, 25], and the Hermite–Krall-type and Gegenbauer–Krall-type [6]. Also a gen-
eral algorithm is given to generate the second order differential equations that such
polynomials satisfy.

In Section 3 we study the spectral properties of the Jacobi–Koornwinder [29],
Laguerre–Koekoek [23, 25], Hermite–Krall-type [6] and Gegenbauer–Krall-type
[6] polynomials by means of their central moments and the WKB or semiclassical
approximation to the density of the distribution of zeros. Some particular cases are
also included.

Finally, in Section 4 we consider some special cases of Krall-type polynomi-
als obtained from the analysis of certain types of Jacobi matrices and quadratic
polynomial mappings.
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2. The Definition and the Representation

Let {Pn} be a sequence of monic polynomials orthogonal with respect to a linear
functionalL on the linear space of polynomialsP with real coefficients defined as
(a, b can be∓∞, respectively)

〈L, P 〉 =
∫ b

a

P (x)ρ(x) dx, ρ ∈ C[a,b], ρ(x) > 0 for x ∈ [a, b]. (1)

Through the paperP will denote the linear space of real polynomials with real
coefficients.

Let us consider a new sequence{P̃n} of polynomials orthogonal with respect to
a linear functionalU defined onP which is obtained from the above functionalL
by adding Dirac delta functions at the pointsx1, x2, . . . , xm, i.e.,

〈U, P 〉 = 〈L, P 〉 +
m∑

i=1

AiP (xi), xi ∈ R, Ai > 0. (2)

We will determine the monic polynomials{P̃n} which are orthogonal with respect
to the functionalU and we will prove that they exist for all positiveAi . To obtain
this, we can write the Fourier expansion ofP̃n in terms of the polynomials{Pk}

P̃n(x) = Pn(x) +
n−1∑
k=0

an,kPk(x). (3)

In order to find the unknown coefficientsan,k we will use the orthogonality of the
polynomialsP̃n with respect toU, i.e.,

0 = 〈U, P̃nPk〉 = 〈L, P̃nPk〉 +
m∑

i=1

AiP̃n(xi)Pk(xi), ∀k < n.

We get

an,k = −
m∑

i=1

Ai

P̃n(xi)Pk(xi)

d2
k

, (4)

whered2
k = 〈L, [Pk]2〉. Finally, (3) becomes

P̃n(x) = Pn(x) −
m∑

i=1

AiP̃n(xi)

n−1∑
k=0

Pk(xi)Pk(x)

d2
k

= Pn(x) −
m∑

i=1

AiP̃n(xi) Kern−1(x, xi).

(5)

ACAP1282.tex; 29/09/1998; 10:46; p.4



WKB APPROXIMATION AND KRALL-TYPE ORTHOGONAL POLYNOMIALS 31

In order to obtain the unknown values̃Pn(xi) for eachi = 1, 2, . . . ,m, we eval-
uate (5) inxj , j = 1, 2, . . . ,m. In this way, the corresponding system of linear
equations

P̃n(xj ) +
m∑

i=1

AiP̃n(xi) Kern−1(xj , xi) = Pn(xj ), j = 1, 2, . . . ,m, (6)

has a unique solution if and only if the determinant

∣∣∣∣∣∣∣∣∣∣

1 + A1 Kern−1(x1, x1) A2 Kern−1(x1, x2) · · · Am Kern−1(x1, xm)

A1 Kern−1(x2, x1) 1 + A2 Kern−1(x2, x2) · · · Am Kern−1(x2, xm)

...
...

. . .
...

A1 Kern−1(xm, x1) A2 Kern−1(xm, x2) · · · 1 + Am Kern−1(xm, xm)

∣∣∣∣∣∣∣∣∣∣
(7)

does not vanish for alln ∈ N. This is also a necessary and sufficient condition for
the existence of thenth degree polynomial̃Pn for all n ∈ N.

In this work we will consider the particular cases when we add one or two Dirac
delta functions. Let us consider these cases with more details.

2.1. THE CASE OF ONE POINT MASS ATx = x1

In this case from (5) and (6) we get

P̃n(x) = Pn(x) − AP̃n(x1) Kern−1(x, x1),

P̃n(x1) = Pn(x1)

1 + A
∑n−1

k=0

(Pk(x1))
2

d2
k

, (8)

and the condition (7) becomes

1 + A

n−1∑
k=0

(Pk(x1))
2

d2
k

6= 0,

which is always true for everyn ∈ N sinceA > 0.
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32 R. ÁLVAREZ-NODARSE ET AL.

2.2. THE CASE OF TWO POINT MASSES ATx = x1 AND x2

Again we start from (5) and (6). Then,

P̃n(x) = Pn(x) − A1P̃n(x1) Kern−1(x, x1) − A2P̃n(x2) Kern−1(x, x2),

P̃n(x1) =

∣∣∣∣∣
Pn(x1) A2 Kern−1(x1, x2)

Pn(x2) 1 + A2 Kern−1(x2, x2)

∣∣∣∣∣∣∣∣∣∣
1 + A1 Kern−1(x1, x1) A2 Kern−1(x1, x2)

A1 Kern−1(x2, x1) 1 + A2 Kern−1(x2, x2)

∣∣∣∣∣
,

P̃n(x2) =

∣∣∣∣∣
1 + A1 Kern−1(x1, x1) Pn(x1)

A1 Kern−1(x2, x1) Pn(x2)

∣∣∣∣∣∣∣∣∣∣
1 + A1 Kern−1(x1, x1) A2 Kern−1(x1, x2)

A1 Kern−1(x2, x1) 1 + A2 Kern−1(x2, x2)

∣∣∣∣∣
,

(9)

and (7) becomes

∣∣∣∣ 1 + A1 Kern−1(x1, x1) A2 Kern−1(x1, x2)

A1 Kern−1(x2, x1) 1 + A2 Kern−1(x2, x2)

∣∣∣∣ 6= 0.

Moreover, ifA1 andA2 are nonnegative real numbers then the above determinant
is always positive. To prove this it is sufficient to expand the determinant and use
the Cauchy–Schwarz inequality(

∑
akbk)

2 6
∑

a2
k

∑
b2

k .

3. Applications to Classical Polynomials

In the previous section we consider the polynomials orthogonal with respect to a
very general weight functionρ ∈ C[a,b], ρ(x) > 0, x ∈ [a, b]. In this section we
will consider some particular cases whenρ is one of the classical weight functions,
i.e., the Jacobi, Laguerre, Hermite or Gegenbauer weight functions, respectively.
Moreover, since in expressions (8) and (9) the kernel polynomials Kern−1(x, xi)

appear we will consider the case when we add some Dirac delta functions at the
origin x = 0 or at the ends of the interval of orthogonality of the classical poly-
nomials. The last consideration allows us to obtain explicit formulas for the kernel
polynomials in terms of the classical polynomials and their derivatives [5, 6].

In this way, if we consider the Jacobi case and add two masses atx = ±1
we obtain the well-known Jacobi–Koornwinder polynomials [29] and for special
values of the massesA1, A2 the classical Krall-type polynomials [30, 31]. For
Laguerre case whenx = 0 we obtain the Laguerre–Koekoek polynomials [23, 25].
Finally, for Hermite and Gegenbauer cases whenx = 0 (the symmetric case) we
obtain the Hermite–Krall-type and Gegenbauer–Krall-type polynomials introduced
in [6].

The main data of the classical polynomials can be found in [18, 39, 43], for the
monic polynomials see, for instance, [5, 6].
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3.1. THE JACOBI–KOORNWINDER POLYNOMIALS

The Jacobi–Koornwinder orthogonal polynomials were introduced by T. H. Koorn-
winder [29]. They can be obtained from the generalized Hahn polynomials intro-
duced in [4] as a limit case [5] and correspond to the case of adding two Dirac delta
functions at the ends of the interval of orthogonality of the Jacobi polynomials.

DEFINITION 1. The Jacobi–Koornwinder orthogonal polynomialsP
α,β,A,B
n are

the polynomials orthogonal with respect to a linear functionalU on P defined as
follows (A,B > 0, α > −1, β > −1)

〈U, P 〉 =
∫ 1

−1
(1 − x)α(1 + x)βP (x) dx + AP(1) + BP(−1). (10)

Using the expression (9) and the properties of monic Jacobi polynomialsP
α,β
n

we obtain the following representation ofP
α,β,A,B
n in terms of the Jacobi polyno-

mials and their derivatives [5, 29]

P α,β,A,B
n (x) = P α,β

n (x) + χ
n,α,β

A,B

d

dx
P α−1,β

n (x) − χ
n,β,α

B,A

d

dx
P α,β−1

n (x), (11)

whereχ
n,α,β

A,B = −AP
α,β,A,B
n (−1)η

α,β
n andχ

n,β,α

B,A = −BP
B,A,β,α
n (−1)η

β,α
n ,

P
α,β,A,B
n (−1) =

∣∣∣∣∣∣
P

α,β
n (−1) B KerJ,α,β

n−1 (−1,1)

P
α,β
n (1) 1 + B KerJ,α,β

n−1 (1, 1)

∣∣∣∣∣∣∣∣∣∣∣∣
1 + A KerJ,α,β

n−1 (−1,−1) B KerJ,α,β
n−1 (−1,1)

A KerJ,α,β
n−1 (−1, 1) 1 + B KerJ,α,β

n−1 (1, 1)

∣∣∣∣∣∣
, (12)

and

P α,β,A,B
n (1) = (−1)nP β,α,B,A

n (−1). (13)

For the kernel polynomials we get

KerJ,α,β

n−1 (−1,−1) = 0(β + n + 1)0(α + β + n + 1)

(n − 1)!0(β + 2)0(α + n)0(β + 1)2α+β+1
,

KerJ,α,β

n−1 (1, 1) = KerJ,β,α

n−1 (−1,−1),

KerJ,α,β

n−1 (−1, 1) = (−1)n−10(α + β + n + 1)

(n − 1)!0(α + 1)0(β + 1)2α+β+1
,

andη
α,β
n , η

β,α
n denote the quantities

η
α,β
n = (−1)n−10(2n + α + β)

n!0(α + n)0(β + 1)2α+β+n
,

η
β,α
n = (−1)n−10(2n + α + β)

n!0(β + n)0(α + 1)2α+β+n
,

(14)
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respectively.
Also the following equivalent representation, similar to the representation ob-

tained in [29] for the monic generalized polynomials, is valid

P
α,β,A,B
n (x) = (1 − nJ

n,α,β

A,B − nJ
n,β,α

B,A )P
α,β
n (x)+

+ [J n,α,β

A,B (x − 1) + J
n,β,α

B,A (1 + x)] d

dx
P α,β

n (x),
(15)

whereJ
n,α,β

A,B = −AP
α,β,A,B
n (−1)η̃

α,β
n , J

n,β,α

B,A = −BP
B,A,β,α
n (−1)η̃

β,α
n and η̃

α,β
n ,

η̃
β,α
n denote the quantities

η̃
α,β
n = − (−1)n0(2n + α + β + 1)

n!0(α + n + 1)0(α + β + 2)0(β + 1)2n+α+β+1
,

η̃
β,α
n = − (−1)n0(2n + α + β + 1)

n!0(β + n + 1)0(α + β + 2)0(α + 1)2n+α+β+1
.

(16)

From (15) we can obtain a lot of results, in particular the hypergeometric rep-
resentation of the new polynomials [29], the second-order differential equation
[29, 22, 5] (see Appendix I) and the three-term recurrence relation

xP
α,β,A,B
n (x) = P

α,β,A,B

n+1 (x) + βnP
α,β,A,B
n (x) + γnP

α,β,A,B

n−1 (x),

P
α,β,A,B

−1 (x) = 0, and P
α,β,A,B

0 (x) = 1, n > 0,
(17)

which is a consequence of the orthogonality of the polynomials (10). The co-
efficientsβn can be obtained equating the coefficients of thexn power in (17).
Then,

βn = β2 − α2

(2n + α + β)(2n + 2 + α + β)
+ n(J

n,α,β

A,B − J
n,β,α

B,A )−
− (n + 1)(J

n+1,α,β

A,B − J
n+1,β,α

B,A )+
+ n(α − β)

2n + α + β
(J

n,α,β

A,B + J
n,β,α

B,A ) − (n + 1)(α − β)

2n + α + β + 2
(J

n+1,α,β

A,B + J
n+1,β,α

B,A ).

To obtainγn we notice thatP α,β,A,B
n (1) 6= 0 for all n > 0. Then, from (17)

γn = (1 − βn)
P

α,β,A,B
n (1)

P
α,β,A,B

n−1 (1)
− P

α,β,A,B

n+1 (1)

P
α,β,A,B

n−1 (1)
.

Also from (15) it is possible to obtain the ratio asymptoticsP
α,β,A,B
n (x)/P

α,β
n (x).

Firstly, we use the asymptotic formula for the gamma function [1] to obtain

J
n,α,β

A,B ∼ β + 1

n2
, J

n,β,α

B,A ∼ α + 1

n2
.

Then, the asymptotic formulas for the Jacobi–Koornwinder polynomials in and off
the interval of orthogonality follow from the Darboux formula inθ ∈ [ε, π − ε],
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0 < ε � 1 (see [43, Theorem 8.21.8, p. 196]) and the the Darboux formula
in C\[−1, 1] (see [43, Theorem 8.21.7, p. 196]), respectively. From the above
considerations we find

n2n+α+β−1
[
P α,β,A,B

n (cosθ) − P α,β
n (cosθ)

]

= −1√
πn

(
sin

θ

2

)−α−3/2(
cos

θ

2

)−β−3/2

×

×
[

1

2
(α + β + 2) sinθ cos(Nθ + 01)+

+
(

(β + 1) sin2 θ

2
− cos2

θ

2
(α + 1)

)
sin(Nθ + 01)

]
+ O

(
1

n3/2

)
,

whereN = n + 1
2(α + β + 1), 01 = −(α + 1

2)
π
2 and

P
α,β,A,B
n (z)

P
α,β
n (z)

= 1 − α + β + 2

n
+

+ 1

n

(
(z + 1)(α + 1) + (z − 1)(β + 1)√

z2 − 1

)
+ o

(
1

n

)
,

valid in θ ∈ [ε, π − ε], 0 < ε << 1 and every compact subset ofC\[−1, 1],
respectively. The last formula holds uniformly in the exterior of an arbitrary closed
curve which enclose the segment[−1, 1], moreover, ifz ∈ C, z > 1, the right-hand
side expression is a real function ofz.

3.2. THE LAGUERRE–KOEKOEK POLYNOMIALS

The Laguerre–Koekoek orthogonal polynomials were introduced in [29] as a limit
case of the Jacobi–Koornwinder polynomials and studied with more details in sev-
eral works [23, 25, 27]. They also can be obtained as a limit case of the generalized
Meixner polynomials introduced in [9, 2] using an appropriate limit transition [5].

DEFINITION 2. The Laguerre–Koekoek orthogonal polynomialsLα,A
n are the

polynomials orthogonal with respect to a linear functionalU on P defined as
follows

〈U, P 〉 =
∫ ∞

0
xαe−xP (x) dx + AP(0), A > 0, α > −1. (18)

Using the algorithm described before (see formula (8)) we find for the Laguerre–
Koekoek polynomials the following representation formula (see [5, 27] for more
details)

Lα,A
n (x) = Lα

n(x) + 0n

d

dx
Lα

n(x), 0n = A(α + 1)n

n!(1 + A
(α+2)n−1
(n−1)!

)
0(α + 1)

. (19)
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From (19) we can obtain a lot of properties, for example, the hypergeometric repre-
sentation of the new polynomials [27], the second-order differential equation [27]
(see Appendix I) and the three-term recurrence relation

xLα,A
n (x) = L

α,A
n+1(x) + βnL

α,A
n (x) + γnL

α,A
n−1(x), n > 0,

L
α,A
−1 (x) = 0, and L

α,A
0 (x) = 1,

(20)

which is a consequence of the orthogonality of the polynomials (18). The coeffi-
cientsβn andγn are given by (Lα,A

k (0) 6= 0 for all n > 0)

βn = 2n + α + 1 + 0n − 0n+1, γn = βn

Lα,A
n (0)

L
α,A
n−1(0)

− L
α,A
n+1(0)

L
α,A
n−1(0)

.

To obtain the ratio asymptoticsLα,A
n (x)/Lα

n(x) we use the asymptotic formula for
the gamma function [1] to obtain

0n ∼ α + 1

n
.

Then from (19) and by using the Perron formula for the ratio 1/
√

n (Lα
n)

′(z)/Lα
n(z)

of the Laguerre polynomials (see [44, Equation (4.2.6), p. 133] or [43, Theorem
8.22.3]) we get

Lα,A
n (z)

Lα
n(z)

= 1 + α + 1√
nz

[
1 − 1

4
√−nz

(2α + 1 − z)

]
+ o

(
1

n

)
,

for z ∈ C\[0,∞).

3.3. THE HERMITE–KRALL -TYPE POLYNOMIALS

The Hermite–Krall-type polynomials were introduced in [6]. They can be obtained
as a quadratic transformation of the Laguerre–Koekoek polynomials [6].

DEFINITION 3. The generalized monic Hermite polynomialsHA
n are the poly-

nomials orthogonal with respect to the linear functionalU onP

〈U, P 〉 =
∫ ∞

−∞
e−x2

P(x) dx + AP(0), A > 0. (21)

Again, from formula (8) after some straightforward calculations we obtain that
the Hermite–Krall-type polynomialsHA

n admit the following representations in
terms of the classical polynomials

HA
2m−1(x) = H2m−1(x),

2xHA
2m(x) = 2xH2m(x) + Bm

d

dx
H2m(x), m = 0, 1, 2, . . . ,

(22)
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Bm = A(
1 + A

20(m+ 1
2)

π0(m)

) 0(m + 1
2)

πm! .

Notice that the odd polynomials coincide with the classical ones. They are quadratic
transformations of the Laguerre–Koekoek polynomials [6]

HA
2m−1(x) = xL

1/2
m−1(x

2),

HA
2m(x) = L

−1/2,A
m (x2) = L

−1/2
m (x2) + Bm

d

dx2
L−1/2

m (x2), m = 0, 1, 2, . . . .
(23)

Notice that from the above formula the connection with the Laguerre–Koekoek
polynomials follows. Again from the above representation we can obtain the hy-
pergeometric representation [6], the second order differential equation [6] (see
Appendix I) and the three-term recurrence relation

xHA
n (x) = HA

n+1(x) + βnH
A
n (x) + γnH

A
n−1(x), n > 0,

HA
−1(x) = 0 and HA

0 (x) = 1.
(24)

which is a consequence of the orthogonality. The coefficientβn is always equal to
zero since the functionalU is symmetric. For the coefficientsγn we have [6]

γ2m = m(1 + Bm),

γ2m−1 = (2m − 1)

2

1 + 2A
π

0(m− 1
2)

0(m−1)

1 + 2A
π

0(m+ 1
2)

0(m)

, m = 1, 2, 3, . . . .
(25)

For the asymptotic formula we get

Bm ∼ 1

2m
.

Then, form large enough

HA
2m(z)

H2m(z)
= 1 − 1

2
√

miz

{
1 − iz√

m

}
+ o

(
1

m

)
, z ∈ C\R, (26)

which is a consequence of (23) and the ratio asymptotics of the Laguerre–Koekoek
polynomials.

3.4. THE GEGENBAUER–KRALL -TYPE POLYNOMIALS

The Gegenbauer–Krall-type polynomials were introduced in [6]. They can be ob-
tained as a quadratic transformation of the Jacobi–Koornwinder polynomials [6].

DEFINITION 4. The generalized monic Gegenbauer polynomialsGλ,A
n are the

polynomials orthogonal with respect to the linear functionalU onP

〈U, P 〉 =
∫ 1

−1
(1 − x2)λ−1/2P(x) dx + AP(0), A > 0, λ > −1

2
. (27)
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From formula (8) after some straightforward calculations we obtain that the
generalized Gegenbauer polynomialsGλ,A

n have the following representation in
terms of the classical ones

G
λ,A
2m+1(x) = Gλ

2m+1(x), m = 0, 1, 2, . . . ,

2xG
λ,A
2m (x) = 2x(1 + mWA

m)Gλ
2m(x) + WA

m(1 − x2)
d

dx
Gλ

2m(x),
(28)

WA
m = A(

1 + A
20(m+ 1

2)0(m+λ)

π(m−1)!0(m+λ− 1
2)

) 0(m + 1
2)0(m + λ)

πm!0(m + λ + 1
2)

.

Notice that, like in the previous case, the odd polynomials coincide with the classi-
cal ones. They are a quadratic transformation of the Jacobi–Koornwinder polyno-
mials [6]

G
λ,A
2m (x) = 2−mP

λ− 1
2 ,− 1

2 ,2λA,0
m (2x2 − 1),

G
λ,A
2m+1(x) = 2−mxP

λ− 1
2 , 1

2 ,

m (2x2 − 1), m = 0, 1, 2, . . . .

(29)

The above formula represents the connection with the Jacobi–Koornwinder poly-
nomials. Again from the above representations we can obtain the hypergeometric
representation [6], the second order differential equation (see Appendix I), and the
three-term recurrence relation

xGλ,A
n (x) = G

λ,A
n+1(x) + βnG

λ,A
n (x) + γnG

λ,A
n−1(x), n > 0,

G
λ,A
−1 (x) = 0 and G

λ,A
0 (x) = 1.

(30)

where the coefficientsβn = 0 and theγn are given by (m = 1, 2, 3, . . .)

γ2m = m(2m + 2λ − 1)

2(2m + λ)(2m + λ − 1)

[
1 + WA

m(m + λ)
]
,

γ2m−1 = (2m − 1)(m + λ − 1)

2(2m + λ − 1)

1 + A
20(m− 1

2)0(m+λ−1)

π(m−2)!0(m+λ− 3
2 )

1 + A
20(m+ 1

2)0(m+λ)

π(m−1)!0(m+λ− 1
2 )

.

(31)

Finally,

WA
m ∼ 1

2m2
.

Then, we obtain for the generalized Gegenbauer polynomials the following asymp-
totic formula valid forθ ∈ [ε, π − ε]\{π/2} ( 0 < ε � 1 ), a2m = (2m + 2λ)2m/

22m−12m!
a2m cosθ

(
G

λ,A
2m (cosθ) − Gλ

2m(cosθ)
)

= 1√
2πm3

(
1

2 sinθ

)λ

×
[

cosθ cos(2mθ + λθ − 1

2
λπ)+ (32)

+ 1

4
sinθ sin(2mθ + λθ − 1

2
λπ)

]
+ O

(
1

m5/2

)
.
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Forx = cosπ
2 = 0 we can use the expression

G
λ,A
2m (0) = Gλ

2m(0)

1 + A
∑m−1

k=0

[
Gλ

2k(0)

dG
2k

]2 ,

wheredG
n is the norm of the Gegenbauer polynomials, which yields

G
λ,A
2m (0)

Gλ
2m(0)

= π

2Am
+ O

(
1

m2

)
.

For the ratio asymptotics off the interval of orthogonality we find

G
λ,A
2m (z)

Gλ
2m(z)

= 1 + 1

2m

(
1 −

√
1 − 1

z2

)
+ o

(
1

m

)
. (33)

which holds uniformly in the exterior of an arbitrary closed curve which enclose
the segment[−1, 1]. The last expression is a consequence of the Darboux formula
in C\[−1, 1] (see [43, Theorem 8.21.7, p. 196]).

4. The Distribution of Zeros: The Momentsµr and the WKB Density

In this section we will study the distribution of zeros of the Jacobi–Koornwinder,
Laguerre–Koekoek, Hermite–Krall-type and Gegenbauer–Krall-type polynomials.
We will use a general method presented in [12] for the moments of low order and
the WKB approximation [8, 46, 47] in order to obtain an approximation to the
density of the distribution of zeros.

First of all we point out that, since our polynomials are orthogonal with respect
to a positive definite functional all their zeros are real, simple and located in the
interior of the interval of orthogonality. This is a necessary condition in order to
apply the next algorithms.

4.1. THE MOMENTS OF THE DISTRIBUTION OF ZEROS

The method presented in [12] allows us to compute the momentsµr of the distrib-
ution of zerosρn around the origin, i.e.,

µr = 1

n
yr = 1

n

n∑
i=1

xr
n,i , ρn = 1

n

n∑
i=1

δ(x − xn,i).

Buendía, Dehesa and Gálvez [12] have obtained a general formula to find these
quantities (see [12, Section II, Equations (11) and (13), p. 226]). We will apply
these two formulas to obtain the general expression for the momentsµ1 andµ2,
but firstly, we will introduce some notations.
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We start with the second-order linear differential equation (SODE)

σ̃ (x;n)
d2

dx2
P̃n(x) + τ̃ (x;n)

d

dx
P̃n(x) + λ̃(x;n)P̃n(x) = 0,

that such polynomials satisfy. Here

σ̃ (x;n) =
c2∑

k=0

a
(2)
k xk, τ̃ (x;n) =

c1∑
k=0

a
(1)
k xk, λ̃(x;n) =

c0∑
k=0

a
(0)
k xk, (34)

and c2, c1, c0 are the degrees of the polynomialsσ̃ , τ̃ and λ̃, respectively. The
valuesa

(i)
j can be found from (A.5) in a straightforward way. Letξ0 = 1 and

q = max{c2 − 2, c1 − 1, c0}. Then from [12, Section II, Equations(11) and (13),
p. 226]

ξ1 = y1, ξ2 = y2
1 − y2

2
, (35)

and

ξs = −
∑s

m=1(−1)mξs−m

∑2
i=0

(n−s+m)!
(n−s+m−i)!a

(i)
i+q−m∑2

i=0
(n−s)!

(n−s−i)!a
(i)
i+q

. (36)

In general

ξk = (−1)k

k! Yk(−y1,−y2,−2y3, . . . ,−(k − 1)!yk),

whereYk-symbols denote the well-known Bell polynomials in number theory [42].
Let us now to apply these general formulas to obtain the first two central mo-

mentsµ1 andµ2 of our polynomials. Equation (36) give the following values.

4.1.1. Jacobi–Koornwinder PolynomialsP α,β,A,B
n

ξ1 = n
( − α + β + 2αJ

n,α,β

A,B − 2βJ
n,β,α

B,A + 2J
n,α,β

A,B n − 2J
n,β,α

B,A n
)

α + β + 2n
.

Then

µ1 = −α + β + 2αJ
n,α,β

A,B − 2βJ
n,β,α

B,A + 2J
n,α,β

A,B n − 2J
n,β,α

B,A n

α + β + 2n
.

For the moments of second orderµ2 the expression can be found by straightfor-
ward but cumbersome calculation and we will not give it explicitly. The asymptotic
behavior of the momentµ1 is

µ1 ∼ α − β

2
+ O

(
1

n

)
.
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As particular cases we will consider the Legendre–Koornwinder polynomials
P 0,0,A,B

n and the Gegenbauer–Koornwinder polynomialsGν,A,B
n ≡ P ν,ν,A,B

n . For
the first onesP 0,0,A,B

n we get

µ1 = −J
n,0,0
A,B + J

n,0,0
B,A ,

µ2 = 1

2n − 1

( − 1 + 2J
n,0,0
A,B + 2J

n,0,0
B,A + n − 2J

n,0,0
A,B n − J

n,0,0
A,B

2
n − 2J

n,0,0
B,A n +

+ 2J
n,0,0
A,B J

n,0,0
B,A n − J

n,0,0
B,A

2
n + 2J

n,0,0
A,B

2
n2 − 4J

n,0,0
A,B J

n,0,0
B,A n2 + 2J

n,0,0
B,A

2
n2),

and for Gegenbauer–Koornwinder polynomials

µ1 = −J
n,ν,ν
A,B + J

n,ν,ν
B,A ,

µ2 = 1

2n + 2ν − 1

( − 1 + 2J
n,ν,ν
A,B + 2J

n,ν,ν
B,A + n − 2J

n,ν,ν
A,B n − J

n,ν,ν
A,B

2
n −

− 2J
n,ν,ν
B,A n + 2J

n,ν,ν
A,B J

n,ν,ν
B,A n − J

n,ν,ν
B,A

2
n + 2J

n,ν,ν
A,B

2
n2 − 4J

n,ν,ν
A,B J

n,ν,ν
B,A n2 +

+ 2J
n,ν,ν
B,A

2
n2 + 2J

n,ν,ν
A,B

2
nν − 4J

n,ν,ν
A,B J

n,ν,ν
B,A nν + 2J

n,ν,ν
B,A

2
nν

)
.

Notice that in both cases ifA = B, J
n,ν,ν
A,B ≡ J

n,ν,ν
A,A = J

n,ν,ν
B,A and then,µ1 = 0.

4.1.2. Laguerre–Koekoek PolynomialsLα,A
n

ξ1 = n(α − 0n + n), ξ2 = (1 − n)(1 − α + 20n − n)n(α + n)

2
.

Then

µ1 = α − 0n + n,

µ2 = −α + α2 − 2α0n − n + 3αn − 2n0n + n0n
2 + 2n2.

The asymptotic behavior of the moments is

µ1 ∼ n + O(1) and µ2 ∼ 2n2 + O(n).

4.1.3. Hermite–Krall-type PolynomialsHA
n

• If n = 2m, m = 0, 1, 2, . . . , then

ξ1 = 0, ξ2 = (1 + 2Bn − 2m)m

2
,

and the moments are

µ1 = 0, µ2 = (2m − 1 − 2Bm)

2
.
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• If n = 2m − 1, m = 1, 2, . . . , then,HA
2m−1(x) ≡ H2m−1(x)

ξ1 = 0, ξ2 = (1 − m)m,

and the moments are

µ1 = 0, µ2 = (m − 1).

The asymptotic behavior of these two moments in both cases is

µ1 = 0 and µ2 ∼ n

2
+ O(n).

4.1.4. Gegenbauer PolynomialsGλ,A
n

• If n = 2m, m = 0, 1, 2, . . . , then

ξ1 = 0, ξ2 = m(−1 + 2m + Wm − n2Wm − 2λWm)

2(−1 + 2m + λ)(−1 + 2mWm)
,

and the moments are

µ1 = 0, µ2 = 1 − 2m − Wm + 4m2Wm + 2λWm

2(−1 + 2m + λ)(−1 + 2mWm)
.

• If n = 2m − 1, m = 1, 2, . . . , then,Gλ,A
2m−1(x) ≡ G2m−1λ(x)

ξ1 = 0, ξ2 = 2m(2 − 2m)

4(−2 + 2m + λ)
,

and the moments are

µ1 = 0, µ2 = 2m − 1

2(2m − 2 + λ)
.

The asymptotic behavior of these two moments in both cases is

µ1 = 0 and µ2 ∼ 1

2
+ O(n−1).

Notice that Equation (36) and relation

ξk = (−1)k

k! Yk(−y1,−y2,−2y3, . . . ,−(k − 1)!yk)
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provide us a general method to obtain all the momentsµr = (1/n)yr , but it is
hightly nonlinear and cumbersome. This is a reason why it is useful to analyze
only for the moments of low order.

4.2. THE WKB DENSITY OF THE DISTRIBUTION OF ZEROS

Next, we will analyze the so-called semiclassical or WKB approximation of the
distribution of zeros (see [8, 46, 47] and references contained therein). Denoting
the zeros ofP̃n by {xn,k}n

k=1 we can define its distribution function as

ρn(x) = 1

n

n∑
k=1

δ(x − xn,k). (37)

We will follow the method presented in [46] in order to obtain the WKB density of
zeros, which is an approximate expression for the density of zeros of solutions of
any second order linear differential equation with polynomial coefficients

a2(x)y′′ + a1(x)y′ + a0(x)y = 0. (38)

The main result is established in the following theorem:

THEOREM 1. LetS andε be the functions

S(x) = 1

4a2
2

{2a2(2a0 − a′
1) + a1(2a′

2 − a1)}, (39)

ε(x) = 1

4[S(x)]2

{
5[S′(x)]2

4[S(x)] − S′′(x)

}
= P(x, n)

Q(x, n)
, (40)

whereP(x, n) andQ(x, n) are polynomials inx as well as inn. If the condition
ε(x) � 1 holds, then the semiclassical or WKB density of zeros of the solutions of
(38) is given by

ρWKB(x) = 1

π

√
S(x), x ∈ I ⊆ R, (41)

in every intervalI where the functionS is positive.

The proof of this theorem can be found in [8, 46].

Now we can apply this result to our differential equation (A.4)–(A.5). Using
the coefficients of the equation (A.4)–(A.5) we obtain that in all cases under con-
sideration we have for sufficiently largen, ε(x) ∼ n−1. Then, from the above
theorem the corresponding WKB density of zeros of the polynomials{P̃n} follows.
The computations are very long and cumbersome. For this reason we write a little
program using MATHEMATICA [45] and provide here only some special cases and
some graphics representation for theρWKB function.
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4.2.1. Jacobi–Koornwinder PolynomialsP α,β,A,B
n

In this case the explicit expression ofρwkb is very large and cumbersome, so we
will provide some particular cases. If we take the limitA → 0, B → 0 in the
obtained expression we recover the classical one [46, 47]

ρwkbclas(x) =
√

R(x)

2π(1 − x2)
,

R(x) = 4 + 2α − α2 + 2β + 2αβ − β2 + 4n + 4αn + 4βn + 4n2 −
− 2α2x + 2β2x − 2αx2 − α2x2 − 2βx2 − 2αβx2 − β2x2 −
− 4nx2 − 4αnx2 − 4βnx2 − 4n2x2.

For the Jacobi–Koornwinder polynomials, taking the limit limn→∞ 1
n
ρ

α=0,β=0
wkb (x),

we find

ρ(x) = 1

π
√

1 − x2
.

The last expression coincides with the known expression for the Legendre poly-
nomials (see e.g. [46]), i.e., the asymptotic distribution of zeros of the Jacobi–
Koornwinder is the same that the classical ones.

In Figure 1 we represent the WKB density of zeros for the Legendre–Koornwin-
der and Gegenbauer–Koornwinder (withα = β = 5) polynomials. We have plotted
the Density function for different values ofn (from the top to the bottom)n =
106, 105, 104. Notice that the value of the mass doesn’t play a crucial role, since
for n � 1 J

n,α,β

A,B ∼ β+1
n

, J
n,β,α

B,A ∼ α+1
n

, independently of the values of the masses
A andB.

4.2.2. Laguerre–Koekoek PolynomialsLα,A
n

Again the explicit expression ofρwkb is very large and cumbersome. Firstly we can
convince ourselves that using (41) and taking the limit whenA → 0 we find

ρwkbclas(x) =
√

(1 − α2 + 2x + 2αx + 4nx − x2)

2πx
.

which coincides with the classical expression [46, 47]. If we now consider the
special caseα = 0 we obtain

ρα=0
wkb (x) =

√
R(x)

2πx2(−0n + 0n
2n + x + 0nx)

,

where

R(x) = x2(20n − 2n0n
2 − 5x − 4x0n − nx0n

2 − x2 − x20n) ×
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Figure 1. WKB density of zeros ofPA,B,α,β
n (x).

Figure 2. WKB density of zeros ofL0,A
n (x).

× (20n − 2n0n
2 − x − 2x0n + nx0n + x2 + x20n) +

+ 2x2(n0n
2 + x − 0n + x0n) ×

× (20n − 2n0n
2 − 2x − 4x0n − 4nx0n + 2n2x0n

2 + 3x2 +
+ 3x20n + 2nx2 + 2nx20n).

In Figure 2 we represent the WKB density of zeros for the Laguerre–Koekoek
polynomials withα = 0. We have plotted the density function for different values
of n (from the top to the bottom)n = 105, 5 × 104, 104, 103. Notice that the value
of the mass doesn’t play a crucial role, since, forn � 1, 0n ∼ ((α + 1)/n),
independently ofA.
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4.2.3. Hermite–Krall-type PolynomialsHA
2m

We will analyze only the polynomials of even degree, i.e.,P̃2m. In this case from
(39) and (41)

ρwkbclas(x) =
√

R(x)

(−Bm + 2B2
mm + 2x2 + 2Bmx2)

,

R(x) = − 6Bm − 3B2
m + 24B2

mm + 8B3
mm − 32B3

mm2 − 4B4
mm2 +

+ 16B4
mm3 − 8Bmx2 − 9B2

mx2 − 32Bmmx2 − −32B2
mmx2 +

+ 4B3
mmx2 + 32B2

mm2x2 + 32B3
mm2x2 − 4B4

mm2x2 + 4x4 +
+ 12Bmx4 − 8B2

mx4 + 16mx4 + 32Bmmx4 + 8B2
mmx4 −

− 8B3
mmx4 − 4x6 − 8Bmx6 − 4B2

mx6.

If we take the limitA → 0, again we recover the classical expression [46, 47]

ρλ
wkb(x) =

√
1 + 4m − x2

π
.

In Figure 3 we represent the WKB density of zeros for our generalized Hermite
polynomials. We have plotted the Density function for different values ofn (from
the top to the bottom)n = 2×104, 1.5×104, 104, 103. Notice that the value of the
mass doesn’t play a crucial role since, forn � 1,Bm ∼ 1/2m, independently ofA.

4.2.4. Gegenbauer–Krall-Type PolynomialsGλ,A
2m

We will analyze only the polynomials of even degree, i.e.,P̃2m. In this case the
expression is very large and we will provide only the limit case whenA → 0
which agrees with the classical expression [46, 47]

ρλ
wkb(x) =

√
2 + 16m2 + 4λ + 16mλ + x2 − 16m2x2 − 16mλx2 − 4λ2x2

2π(1 − x2)
.

In Figure 4 we represent the WKB density of zeros for our generalized Gegenbauer
polynomials. Notice that the value of the mass doesn’t play a crucial role, since for
n � 1, Wm ∼ 1

2m2 , independently ofA. We have plotted the Density function
for different values of the degree of the polynomials (from the top to the bottom)
n = 2× 104, 1.5 × 104, 104, 103 for two different cases: the generalized Legendre
polynomials (λ = 1

2) and the generalized Gegenbauer withλ = 5.

5. Other Interesting Examples

In this section we will give some other examples of families of Krall-type orthog-
onal polynomials, obtained using quadratic transformations of the variable in a
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Figure 3. WKB density of zeros of theHA
n (x).

Figure 4. WKB density of zeros of theGλ,A
n (x).

given sequence of orthogonal polynomials. These examples can be obtained as an
application of the following theorem [36].

THEOREM 2. Let{Pn} be a monic orthogonal polynomial sequence(MOPS) with
respect to some uniquely determined distribution functionσ and let[ξ, η] be the
true interval of orthogonality of{Pn}, with −∞ < ξ < η 6 +∞. Leta andλ be
fixed real numbers,T (x) ≡ (x − a)(x − b) + c a real polynomial of degree two
and put1 = (b − a)2 − 4c. Let{Qn} be a sequence of polynomials such that

Q2(a) = λ, Q2n+1(x) = (x − a)Pn(T (x))

for all n = 0, 1, 2, . . . . Assume that one of the following conditions hold

(i) c 6 ξ + λ,
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(ii) c 6 ξ, −∞ < lim
n→+∞

Pn(ξ)

P
(1)
n−1(ξ)

≡ A 6 λ 6 B ≡ Pn(η)

P
(1)
n−1(η)

,

whereB ≡ +∞ if η = +∞ and {P (1)
n } denotes the sequence of the associated

polynomials of the first kind[14] corresponding to{Pn}. Then,{Qn} is a MOPS
with respect to a positive definite linear functional if and only if

λ < 0, Q2n(x) = Pn(T (x)) − an(λ, c)

an−1(λ, c)
Pn−1(T (x))

hold for all n = 0, 1, 2, . . . and

an(λ, c) = Pn(c) − λP
(1)
n−1(c).

In these conditions,{Qn} is orthogonal with respect to the uniquely determined
distribution functionσ̃ defined as

dσ̃ = Mδ(x − a) − λ

|x − a|
dσ(T (x))

T ′(x)
, r <

∣∣∣∣x − a + b

2

∣∣∣∣ < s,

where

M = µ0 + λF(c;σ) > 0, r =
√

ξ + 1

4
, s =

√
η + 1

4
,

F (z;σ) = ∫ ∞
−∞

dσ(t)

t−z
is the Stieltjes function associated to the distribution function

σ andµ0 = ∫ ∞
−∞ dσ(x).

5.1. GENERALIZED HERMITE POLYNOMIALS WITH A POINT MASS ATx = 0

Let {Lα
n} be the sequence of the monic Laguerre polynomials which are orthogonal

with respect to the weight functionw(x) = xαe−x, x ∈ [0,∞), α > −1. If α > 0,
it follows from the last theorem [36] that, for eachλ such that−α < λ < 0, the
sequence of monic polynomials defined by

Q2n+1(x) = xLα
n(x

2), Q2n(x) = Lα
n(x

2) − an

an−1
Lα

n−1(x
2),

where

an = Lα
n(0) − λ

(
Lα

n−1

)(1)
(0), n = 0, 1, 2, . . . ,

and(Lα
n−1)

(1) denotes the associated polynomials of the first kind of the Laguerre
polynomials is orthogonal with respect to the measure

dσ(x) = 0(α + 1)

(
1 + λ

α

)
δ0(x) dx − λ|x|2α−1e−x2

dx, x ∈ (−∞,∞).
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Choosingλ = −α we deduce that, up to a constant factor, dσ(x) = |x|2µe−x2
dx,

with µ = α − 1
2. Hence{Qn} is the sequence of the monic generalized Hermite

polynomialsQn ≡ H(µ)
n , µ > −1

2 (cf. [14, p. 157]). However, if we chooseλ such
that −α < λ < 0, then one can see that there is always a mass point, located at
x = 0. This example generalizes the Hermite–Krall-type polynomials considered
before.

5.2. A FINITE 2-PERIODIC JACOBI MATRIX

Let Bn be a tridiagonal 2-Toeplitz matrix, which has the general form

Bn =




a1 b1 0 0 0 . . .

c1 a2 b2 0 0 . . .

0 c2 a1 b1 0 . . .

0 0 c1 a2 b2 . . .

0 0 0 c2 a1 . . .
...

...
...

...
...

. . .




∈ C
(n,n), (42)

where we assume thatb1, b2, c1 and c2 are positive real numbers. This special
matrix has been firstly studied from the point of view of the eigenvalue problem in
[17] and more recently in [21] and also in [35].

Sincebi > 0 andci > 0 for i = 1, 2 then there exists a sequence of orthogonal
polynomials{Sn}, such thatBn is the corresponding Jacobi matrix of ordern. Let
{Qn} be the corresponding MOPS. Then

Q2n(x) = (b1b2)
nS2n(x), Q2n+1(x) = b1(b1b2)

nS2n+1(x).

Moreover, according to [35],{Qn} can be obtained by a quadratic polynomial
mapping on a linear transformation of the monic Chebyshev polynomials of second
kind {Un}. In fact, if

T (x) = (x − a1)(x − a2), α = 2
√

b1b2c1c2, β = b1c1 + b2c2,

then

Q2n+1(x) = (x − a1)Pn(T (x)), Q2n(x) = Rn(T (x)),

where

Pn(x) = αnUn

(
x − β

α

)
, Rn(x) = Pn(x) + b2c2Pn−1(x)

for n = 0, 1, 2, . . . . Notice thatPn is orthogonal with respect to the distribution
function

σP (x) = σU

(
x − β

α

)
, supp(σP ) = [β − α, β + α],
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whereσU is the distribution function of the Chebyshev polynomials [18, 43]

dσP (x) = 2

πα2

√
α2 − (x − β)2 dx.

From [36] the Stieltjes function of{Qn} is

FQ(z) = M

a1 − z
+ b1c1

z − a1
[FP (T (z)) − FP (0)], (43)

whereFP denotes the Stieltjes function associated withσP , M = µ0 − b1c1FP (0)

andµ0 is the first moment ofσP , µ0 = ∫ β+α

β−α
dσP (x) = 1. Using the Stieltjes

functionFU of the Chebyshev polynomials [44, p. 176]

FP (z) = 1

α
FU

(
z − β

α

)
= −2

α2

(
z − β −

√
(z − β)2 − α2

)
,

where the square root is such that|z − β + √
(z − β)2 − α2| > α whenever

z 6∈ [β − α, β + α]. Since 0 6∈ [β − α, β + α] for b1c1 6= b2c2 (this is no
restriction, because the caseb1c1 = b2c2 corresponds to constant values along
the diagonal of the corresponding Jacobi matrix), elementary computations give
FP (0) = min{b1c1, b2c2}/b1c1b2c2. Hence

M = 1 − min{b1c1, b2c2}
b2c2

.

It turns out from (43) that the Stieltjes function of{Qn} reads as

FQ(z) = M

a1 − z
− (αb2c2)

−1

z − a1

[
T (z) − β − √

(T (z) − β)2 − α2

2
+

+ min{b1c1, b2c2}
]
.

From this we deduce (see [36]) that{Qn} is orthogonal with respect to the distrib-
ution function

dσQ(x) = Mδ(x − a1) + b1c1

|x − a1| dσP (T (x))

= Mδ(x − a1) + 1

2πb2c2

1

|x − a1|×
× √

4b1b2c1c2 − (T (x) − b1c1 − b2c2)2 dx.

Its support is the union of two intervals ifM = 0 and the union of two intervals
with a singular point ifM > 0 either

supp(σQ) = T −1(supp(σP )) if b1c1 6 b2c2,
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or

supp(σQ) = T −1(supp(σP )) ∪ {a1} if b1c1 > b2c2.

We notice that
T −1(supp(σP )) = T −1([β − α, β + α])

=
[
a1 + a2

2
− s,

a1 + a2

2
− r

]
∪

[
a1 + a2

2
+ r,

a1 + a2

2
+ s

]
,

where

r =
(∣∣∣∣

√
b1c1 − √

b2c2

∣∣∣∣
2

+
∣∣∣∣a1 − a2

2

∣∣∣∣
2)1/2

,

s =
(∣∣∣∣

√
b1c1 + √

b2c2

∣∣∣∣
2

+
∣∣∣∣a1 − a2

2

∣∣∣∣
2)1/2

.

As we can see, for the case whenb1c1 > b2c2, we obtain a set of polynomials
orthogonal with respect to a weight function of the formρ(x) + δ(x − x0) where
ρ is a nonnegative continuous function, i.e., a Krall-type weight function appears
in a very natural way.

WKB Approximation for the Distribution of Eigenvalues of a Tridiagonal Two-
Periodic Symmetric Matrix.To conclude this work let us to consider an special
case of a symmetricn × n matrix [7]

Bm =




a c 0 0 0 . . .

c b d 0 0 . . .

0 d a c 0 . . .
...

...
...

...
...

. . .


 . (44)

For this matrix we will obtain the density of the distribution of eigenvalues, i.e.,
the WKB density of the corresponding sequence of orthogonal polynomials which
are, in general, of the Krall-type. Here we want to point out that in the odd case
(m = 2n + 1) the corresponding polynomials areQ2n+1(x) = (x − a)Pn(T (x)),
so we can consider only the distribution of zeros ofPn, since for anyn, x = a

is always a zero of the polynomial and then an eigenvalue ofB2n. Furthermore,
Pn(T (x)) is a quadratic modification of the Chebyshev polynomialsUn and then
they satisfy a SODE which follows from the classical one

(1 − x2)U ′′
n (x) − 3xU ′

n(x) + n(n + 2)Un(x) = 0, (45)

just providing the changex ↔ T (x). In fact we have thatPn(T (x)) satisfies a
SODE (38) with the coefficients

a2(x) = (
4c2d2 − (−(ab) + c2 + d2 + ax + bx − x2)

2)
,

a1(x) = 3(−a − b + 2x)(−(ab) + c2 + d2 + ax + bx − x2)−
− 2

(
4c2d2 − (−(ab) + c2 + d2 + ax + bx − x2)

2)
,

a0(x) = n(2 + n)(−a − b + 2x)2.

(46)
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Figure 5. WKB density of the distribution of the eigenvalues of the symmetric matrixH .

For the even case the situation is more complicated since we need to calculate the
SODE for theRn(T (x)) polynomials. Using the symbolic program MATHEMAT-
ICA [45], as well as the packagePowerSeriesdeveloped by Koepf [28] we obtain
for the polynomialsRn(x) a SODE (38) with coefficients

a2(x) = (1 + n + c4n + c2x + 2c2nx)(−1 + x2),

a1(x) = c2 + 2c2n + 3x + 3nx + 3c4nx + 2c2x2 + 4c2nx2,

a0(x) = −2n + c4n − 3n2 − n3 − c4n3 − c2nx − 3c2n2x − 2c2n3x.

(47)

The change of variablesx ↔ T (x) (T (x) = (x −a)(x −b)) in the previous SODE
yields

ã2(x)Q′′
2n(x) + ã1(x)Q′

2n(x) + ã0(x)Q2n(x) = 0,

where

ã2(x) = 4c2d2T ′′(x)a2

(
T (x) − a2 − b2

2cd

)
,

ã1(x) = 2cdT ′(x)2a1

(
T (x) − a2 − b2

2cd

)
− 8c2d2p

(
T (x) − a2 − b2

2cd

)
,

ã0(x) = T ′(x)3a0

(
T (x) − a2 − b2

2cd

)
.

(48)

Substituting (46), (48) in (41) we can find the WKB density of the eigenvalues of
the Hamiltonian matrixBn. A straightforward calculation shows that the conditions
of the Theorem 1 are satisfied ifn � 1. The expression for theρWKB, in both cases,
is very large and we will only show the typical behaviour of the WKB density (see
Figure 5).

As we can see in Figure 5 we have that all eigenvalues are located inside the sup-
port of the measure up toa in the odd case. In the picture the valuesa = 1, b = 2,
c = 3 andd = 4 are used (from the top to the bottomn = 10000, 5000, 1000, 100).
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Appendix: The Second-Order Differential Equation for the Krall-Type
Polynomials

Table A.1.The values ofq, a, b.

P̃n(x) q(x; n) a(x; n) b(x; n)

P
α,β,A,B
n (x) 1 1− nJ

n,α,β
A,B

− nJ
n,β,α
B,A

J
n,α,β
A,B

(x − 1) + J
n,β,α
B,A

(1 + x)

L
α,A
n (x) 1 1 0n

HA
2m

(x) 2x 2x Bm

G
λ,A
2m

(x) 2x 2x(1 + mWA
m) WA

m(1 − x2)

In this section we give a general algorithm to obtain the second order linear dif-
ferential equation (SODE) which satisfy the considered Krall-type polynomials,
denoted here bỹPn, i.e., the Jacobi–Koornwinder, the Laguerre–Koekoek, the Her-
mite–Krall-type and Gegenbauer–Krall-type polynomials. The main fact that we
will use is that all of them can be represented in terms of the classical families{Pn}
in the form

q(x;n)P̃n(x) = a(x;n)Pn(x) + b(x;n)P ′
n(x), (A.1)

whereq, a, b are polynomials inx and some function onn (see formulas (15), (19),
(22) and (28)). In the next table we representq, a, b for each of the families{P̃n}. It
is known that the classical polynomials satisfy a certain SODE of hypergeometric
type [39, 43]

σ(x)
d2

dx2
Pn(x) + τ(x)

d

dx
Pn(x) + λnPn(x) = 0, (A.2)

where degree(σ ) 6 2, degree(τ) = 1, degree(λn) = 0. Now if we take derivatives
in (A.1) and use the SODE (A.2) we can obtain formulas similar to (A.1) but for
the derivativesP̃ ′

n(x;n) andP̃ ′′
n (x;n)

r(x;n)P̃ ′
n(x) = c(x;n)Pn(x) + d(x;n)P ′

n(x),

s(x;n)P̃ ′′
n (x) = e(x;n)Pn(x) + f (x;n)P ′

n(x),
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54 R. ÁLVAREZ-NODARSE ET AL.

wherer, s, c, d, e, f are depending onx andn (they are polynomials inx of
bounded degree independent ofn). The above two expressions and (A.1) lead to
the condition∣∣∣∣∣∣

q(x;n)P̃n(x) a(x;n) b(x;n)

r(x;n)P̃ ′
n(x) c(x;n) d(x;n)

s(x;n)P̃ ′′
n (x) e(x;n) f (x;n)

∣∣∣∣∣∣ = 0. (A.3)

Expanding the determinant (A.3) we get

σ̃ (x;n)
d2

dx2
P̃n(x) + τ̃ (x;n)

d

dx
P̃n(x) + λ̃(x;n)P̃n(x) = 0, (A.4)

where

σ̃ (x;n) = s(x;n) [a(x;n)d(x;n) − c(x;n)b(x;n)],

τ̃ (x;n) = r(x;n)[e(x;n)b(x;n) − a(x;n)f (x;n)],
λ̃(x;n) = q(x;n)[c(x;n)f (x;n) − e(x;n)d(x;n)].

(A.5)

In some cases the coefficients can be simplified by some factor and the equation
(A.4) becomes more simple. To conclude this section we will provide the SODE
for the four considered polynomials. We want to remark that in order to obtain the
explicit formulas of the coefficients of the SODE (A.5) we have used the symbolic
package MATHEMATICA [45].

Jacobi–Koornwinder Polynomials.The existence of this SODE was proved by
Koornwinder [29] and the coefficients were calculated explicitly in [22] and [5].
Using (A.5) we find

σ̃ (x;n) = (x2 − 1)
{
2nJ

n,α,β

A,B

2
(α + n)(1 − x) + J

n,α,β

A,B

[
(x − 1)2 −

− α(1 + x)
(
1 + 2nJ

n,β,α

B,A − x
) + β(x − 1)

(
2nJ

n,β,α

B,A + x − 1
) −

− 2n
(
1 + 2J

n,β,α

B,A − x2
)] + (1 + x) × [

1 − x + J
n,β,α

B,A

(
1 + x +

+ α(1 + x) + 2n
(
J

n,β,α

B,A n + x − 1
) + β

(
2nJ

n,β,α

B,A + x − 1
))]}

,

τ̃ (x;n) = −α2( − 1 + 2J
n,α,β

A,B n − x
)
(1 + x)

( − J
n,α,β

A,B + J
n,β,α

B,A +
+ (

J
n,α,β

A,B + J
n,β,α

B,A

)
x
) + β2(−1 + x)

( − 1 + 2J
n,β,α

B,A n + x
) ×

× ( − J
n,α,β

A,B + J
n,β,α

B,A + (
J

n,α,β

A,B + J
n,β,α

B,A

)
x
) +

+ β
[
(x − 1)2(J n,α,β

A,B

[
3(x − 1) + 2n

(
1 + 3J

n,β,α

B,A + x
)] −

− 2J
n,α,β

A,B

2
n2

) + (1 + x) × (
2nJ

n,β,α

B,A

2
(1 + n(x − 1) + 3x) +
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+ (x − 1)
[
J

n,β,α

B,A (1 + 2n(x − 1) + 3x) − x + 1
])] +

+ α
{
2nJ

n,α,β

A,B

2
(1 − x)(n − 1 − β + (3 + β + n)x) +

+ J
n,α,β

A,B (1 + x)
[
1 + 2β(x − 1)2 − 4x + 3x2 −

− 2n
(
1 + 3J

n,β,α

B,A − x
)
(1 + x)

]
+ (1 + x)2

[
1 − x +

+ J
n,β,α

B,A

(
3(1 + x) + 2β

(
J

n,β,α

B,A n + x − 1
) +

+ 2n
(
J

n,β,α

B,A n + x − 1
))]} + 2

{
n2J

n,α,β

A,B

2
(1 − x)(3x − 1) +

+ (
1 + x

)[
x − x2 + n2J

n,β,α

B,A

2
(3x + 1) + J

n,β,α

B,A (1 + x(2 +
+ 2n(−1 + x) + x))

]
+ J

n,α,β

A,B

[
− 1 + x

(
3 + (−3 + x)x −

− 2n
(
1 + 4J

n,β,α

B,A − x2))]},

λ̃(x;n) = n(1 + α + β + n)
{
2J

n,α,β

A,B

2
(n − 1)(α + n)(x − 1) +

+ J
n,α,β

A,B

[
2n − 3 − β − 8J

n,β,α

B,A − 2βJ
n,β,α

B,A + 2(4 + β)J
n,β,α

B,A n +
+ 4x − 2β

(
J

n,β,α

B,A (n − 1) − 1
)
x − (1 + β + 2n)x2 +

+ α
(
1 + 2J

n,β,α

B,A (n − 1) − x
)
(1 + x)

]
− (1 + x) ×

×
[
1 + 2J

n,β,α

B,A

2
(n − 1)(β + n) − x + J

n,β,α

B,A

(
3 + α − β − 2n +

+ (1 + α + β + 2n)x
)]}

.

Laguerre–Koekoek Polynomials.The equation for the Laguerre–Koekoek polyno-
mials was found in [27]. From (A.5) we obtain

σ̃ (x;n) = x
( − 0n − α0n + n0n

2 + x + x0n

)
,

τ̃ (x;n) = ( − 20n − 3α0n − α20n + 2n0n
2 + αn0n

2 + x + αx+
+ 2x0n + 2αx0n − nx0n

2 − x2 − x20n

)
,

λ̃(x;n) = n
( − 20n − α0n − 0n

2 + n0n
2 + x + x0n

)
.

Hermite–Krall-Type Polynomials.The equation for the Hermite–Krall-type poly-
nomials was found in [6]. Using (A.5) we deduce

σ̃ (x;m) = x
( − Bm + 2B2

mm + 2x2 + 2Bmx2
)
,

τ̃ (x;m) = 2
( − Bm + 2B2

mm + Bmx2 − 2B2
mmx2 − 2x4 − 2Bmx4

)
,

λ̃(x;m) = 4mx
( − 3Bm − 2B2

m + 2B2
mm + 2x2 + 2Bmx2

)
.
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Gegenbauer–Krall-Type Polynomials.The equation for the Gegenbauer–Krall-type
polynomials was found in [6]. Equation (A.5) yields

σ̃ (x;m) = x(1 − x2)
(
WA

m + mWA
m

2 − 2m2WA
m

2 − 2mνWA
m

2 −
− 2x2 − 4mWA

mx2 − 2νWA
m x2

)
,

τ̃ (x;m) = −2WA
m − 2mWA

m

2 + 4m2WA
m

2 + 4mνWA
m

2 + 3WA
mx2 +

+ 2νWA
m x2 + 3mWA

m

2
x2 − 6m2WA

m

2
x2 − 4mνWA

m

2
x2 −

− 4m2νWA
m

2
x2 − 4mν2WA

m

2
x2 − 2x4 − 4νx4 −

− 4mWA
m x4 − 2νWA

mx4 − 8mνWA
m x4 − 4ν2WA

mx4,

λ̃(x;m) = 4m(m + ν)x
( − 3WA

m + WA
m

2 − 3mWA
m

2 + 2m2WA
m

2 −
− 2νWA

m

2 + 2mνWA
m

2 + 2x2 + 4mWA
mx2 + 2νWA

mx2
)
.

In all cases if we take the limit when the masses tend to zero we obtain the SODE
of the corresponding classical polynomials. Remind that all explicit expressions for
the coefficients of the SODE were obtained by using the computer algebra package
MATHEMATICA [45] and they will be useful to study the spectral properties of the
polynomials under consideration.
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