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Abstract. We give a unified approach to the Krall-type polynomials orthogonal with respect to

a positive measure consisting of an absolutely continuousperéurbed’ by the addition of one

or more Dirac delta functions. Some examples studied by different authors are considered from a
unique point of view. Also some properties of the Krall-type polynomials are studied. The three-
term recurrence relation is calculated explicitly, as well as some asymptotic formulas. With special
emphasis will be considered the second order differential equations that such polynomials satisfy.
They allow us to obtain the central moments and the WKB approximation of the distribution of zeros.
Some examples coming from quadratic polynomial mappings and tridiagonal periodic matrices are
also studied.
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1. Introduction

In this work, we present a survey and some new results relative to the Krall-type
orthogonal polynomials, i.e., polynomials which are orthogonal with respect to an
absolutely continuous measuperturbed’ by the addition of one or more Dirac
delta functions. These polynomials were firstly studied in 1940 by H. L. Krall
[31]. In his 1940’s work, H. L. Krall, studied certain fourth-order differential equa-
tions satisfied by families of orthogonal polynomials. In fact, his study is related
to an extension of the very well known characterization of classical orthogonal
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Table . The classical Krall-type polynomials [30, 31].

(P} Measure @ Supp(u)
Laguerre-type € dx + Ms(x), M >0 [0, c0)
Legendre-type % dx + &2_—1) + &;—1) a>0 (-1, 1]

Jacobi-type A1-—x)%dx +M8(x), M>0a>-1 1[01]

polynomials by S. Bochner (1929). H. L. Krall discovered that there only three
extra families of orthogonal polynomials satisfying such a fourth-order differential
equation which are orthogonal with respect to measures which are not absolutely
continuous with respect to the Lebesgue measure. The corresponding measures
are given in Table I. These polynomials were studied later by A. M. Krall [30] in
1981 and then named the Legendre-type, Laguerre-type and Jacobi-type polyno-
mials and sometimes they are called the Krall-type polynomials. However, in the
literature, the name the Krall polynomials is associated with some generalization
of the Legendre-type polynomials which satisfies a sixth order differential equation
of spectral type and were introduced by L. L. Littlejohn [33] in 1982.

The analysis of properties of polynomials orthogonal with respect to a perturba-
tion of a measure via the addition of mass points was introduced by P. Nevai [38].
There the asymptotic properties of the new polynomials have been considered. In
particular, he proved the dependence of such properties in terms of the location
of the mass points with respect to the support of the measure. Particular emphasis
was given to measures supported-ii, 1] and satisfying some extra conditions in
terms of the parameters of the three-term recurrence relation that the corresponding
sequence of orthogonal polynomials satisfies.

The analysis of algebraic properties for such polynomials attracted the interest
of several researchers. A general analysis when a maodification of a linear functional
in the linear space of real polynomials with real coefficients via the addition of one
Dirac delta measure was started by Chihara [13] in the positive definite case and
Marcellan and Maroni [34] for quasi-definite linear functionals. From the point of
view of differential equations, see [37]. For two point masses there exist very few
examples in the literature (see [29, 15, 27] and [32]). In this case the difficulties
increase as shows [16]. Spectral properties of the classical Krall-type polynomials
[30, 31] were considered in [11].

A special emphasis was given to the modifications of classical linear functionals
(Hermite, Laguerre, Jacobi and Bessel) in the framework of the so-called semi-
classical orthogonal polynomials. For example in [29] the Jacobi case with two
masses at points = +1 was considered. The hypergeometric representation of
the resulting polynomials as well as the existence of a second order differential
equation that such polynomials satisfy have been established. Also the particular
cases of the Krall-type polynomials [30, 31] have been obtained from this general
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case as special cases or limit cases. In [23, 25] (see also [27]) the Laguerre case
was considered in details. In particular an infinite order differential equation for
these polynomials as well as their representation as hypergeometric series have
been found. The case of modification of a classical symmetric functional (Hermite
and Gegenbauer functionals) was considered in [6].

The modification of classical functionals have been considered also for the
discrete orthogonal polynomials. In this direction Bavinck and van Haeringen [9]
obtained an infinite order difference equation for generalized Meixner polynomials,
i.e., polynomials orthogonal with respect to the modification of the Meixner weight
with a point mass at = 0. The same was found for generalized Charlier polynomi-
als by Bavinck and Koekoek [10]. In a series of papers by Alvarez-Nodzrak
[2-4] the authors have obtained the representation as hypergeometric functions
for generalized Meixner, Charlier, Kravchuk and Hahn polynomials as well as the
corresponding second order difference equation that such polynomials satisfy. The
connection of all these discrete polynomials with the Jacobi [29] and Laguerre [23]
type were studied in details in [5]. In particular, in [5] the authors proved that the
Jacobi—Koornwinder polynomials [29] are a limit case of the generalized Hahn as
well as the Laguerre—Koekoek [23, 25] are a limit case of the generalized Meixner
polynomials.

The aim of the present contribution is to give a unified approach to this subject
including the spectral properties by means of the central moments of the poly-
nomials [12] and the WKB (Brillouin-Wentzel-Kramer method, see [19, 40]) or
semiclassical approximation to the density of the distribution of zeros [8, 46, 47]
and some asymptotic formulas for the polynomials. Also a new interpretation of
the Krall-type polynomials in terms of special Jacobi matrices will be given.

The plan of the paper is the following. In Section 2 we give a general theory
which allows us to obtain some general formulas for the Krall-type polynomi-
als. From these formulas we obtain all the explicit formulas for the four fami-
lies under consideration, i.e., the Jacobi—Koornwinder [29], the Laguerre—Koekoek
[23, 25], and the Hermite—Krall-type and Gegenbauer—Krall-type [6]. Also a gen-
eral algorithm is given to generate the second order differential equations that such
polynomials satisfy.

In Section 3 we study the spectral properties of the Jacobi—Koornwinder [29],
Laguerre—Koekoek [23, 25], Hermite—Krall-type [6] and Gegenbauer—Krall-type
[6] polynomials by means of their central moments and the WKB or semiclassical
approximation to the density of the distribution of zeros. Some particular cases are
also included.

Finally, in Section 4 we consider some special cases of Krall-type polynomi-
als obtained from the analysis of certain types of Jacobi matrices and quadratic
polynomial mappings.
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2. The Definition and the Representation

Let {P,} be a sequence of monic polynomials orthogonal with respect to a linear
functional £ on the linear space of polynomidkswith real coefficients defined as
(a, b can beroo, respectively)

b
(L, P) =/ Px)p(x)dx, p e Cup, px)>0forx €la,b]. Q)

Through the papeP will denote the linear space of real polynomials with real
coefficients.

Let us consider a new sequer{@&} of polynomials orthogonal with respect to
a linear functionafl defined onP which is obtained from the above functional
by adding Dirac delta functions at the points x», . .., x,, i.e.,

(U, P)= (L. P)+ ) AiP(x), x€R A =0 2)
i=1

We will determine the monic polynomials?, } which are orthogonal with respect
to the functionaft and we will prove that they exist for all positiv;. To obtain
this, we can write the Fourier expansion®fin terms of the polynomial§P, }

n—1
Po(x) = Pa(x) + ) an i Pe(x). (3)

k=0

In order to find the unknown coefficients , we will use the orthogonality of the
polynomialsP, with respect tdl, i.e.,

0= (U, PP} = (L PaP)+ Y AiP(x) Pe(xi), Yk <n.
i=1

We get

m

an,k=—2AiM, (4)

2
i=1 dk

whered? = (£, [P,]?). Finally, (3) becomes

m n—1
ﬁ”(.X) = P,(x) — Z Aiﬁ”(_xi) Z w
i=1 k=0 k &
= P"(x) - Z Aiﬁn(xi) Kel’n_l(x, xi)_
i=1
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In order to obtain the unknown valugs (x;) for eachi = 1,2, ..., m, we eval-
uate (5) inx;, j = 1,2,...,m. In this way, the corresponding system of linear
eguations

Paxj) + Y AP (x) Ket_a(xj, x0) = Pu(xp),  j=12....m,  (6)
i=1

has a unique solution if and only if the determinant

1+ AjKer,_1(x1, x1)  AxKer,_1(x1,x2) -+ Ay, Ken,_1(x1, x,)
Al Kern—l(XZ» X]_) 1+ AZ Kern—l(-XZ, -x2) T Am Kern—l(-XZ» xm)
(7)
Al Kern—l(xma xl) A2 Kern—l(XMa xZ) e 14 Am Kern—l(xma xm)

does not vanish for alt € N. This is also a necessary and sufficient condition for
the existence of theth degree polynomiab, for all n € N.

In this work we will consider the particular cases when we add one or two Dirac
delta functions. Let us consider these cases with more details.

2.1. THE CASE OF ONE POINT MASS ATx = x3

In this case from (5) and (6) we get

P, (x) = Py(x) — AP, (x1) Ker,_1(x, x1),

Py (xy) = Falort) ®)

144 Z" 1 (Pk(xl))

and the condition (7) becomes
14 AZ (Pk(xl)) 0.

which is always true for every € N sinceA > 0.
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2.2. THE CASE OF TWO POINT MASSES ATt = x1 AND x»

Again we start from (5) and (6). Then,

Pn(-x) = Pn(-x) - Alpn(-xl) Kern—l(x, )C]_) - A2Pn(-x2) Kern—l(x, -x2)»
Pu(x1)  AgKer,_1(x1, x2)
Pn(x2) 1+ ApKer,_1(x2, x2)
1+ AjKer,_1(x1, x1) Ao Ker, _1(x1, x2) ’
AgKer,_1(xp.x1) 1+ ApKer,_1(xp, x2) )
1+ AgKer,—1(x1,x1) Pn(x1)

P,(x1) =

P‘ ()C ) _ A1 Ker,_1(x2, x1) Py (x2)
ni\r2) = 1+ AjKer,_1(x1, x1) Ao Ker, _1(x1, x2)
A1 Ker,_1(x2, x1) 1+ Ao Ker,_1(x2, x2)

and (7) becomes

1+ ArKer,_1(x1, x1) Az Ker,_1(x1, x2)
ArKer,_1(x2,x1) 1+ AzxKer,_1(x2, x2)

Moreover, ifA; and A, are nonnegative real numbers then the above determinant
is always positive. To prove this it is sufficient to expand the determinant and use
the Cauchy—Schwarz inequality_ aiby)? < Y. a? " b2,

3. Applications to Classical Polynomials

In the previous section we consider the polynomials orthogonal with respect to a
very general weight functiop € Cj, 5, p(x) > 0, x € [a, b]. In this section we
will consider some particular cases wheris one of the classical weight functions,
i.e., the Jacobi, Laguerre, Hermite or Gegenbauer weight functions, respectively.
Moreover, since in expressions (8) and (9) the kernel polynomials_Ket, x;)
appear we will consider the case when we add some Dirac delta functions at the
origin x = 0O or at the ends of the interval of orthogonality of the classical poly-
nomials. The last consideration allows us to obtain explicit formulas for the kernel
polynomials in terms of the classical polynomials and their derivatives [5, 6].

In this way, if we consider the Jacobi case and add two masses=at+1
we obtain the well-known Jacobi—Koornwinder polynomials [29] and for special
values of the masses;, A, the classical Krall-type polynomials [30, 31]. For
Laguerre case when= 0 we obtain the Laguerre—Koekoek polynomials [23, 25].
Finally, for Hermite and Gegenbauer cases whesa 0 (the symmetric case) we
obtain the Hermite—Krall-type and Gegenbauer—Krall-type polynomials introduced
in [6].

The main data of the classical polynomials can be found in [18, 39, 43], for the
monic polynomials see, for instance, [5, 6].
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3.1. THE JACOBHKOORNWINDER POLYNOMIALS

The Jacobi—Koornwinder orthogonal polynomials were introduced by T. H. Koorn-
winder [29]. They can be obtained from the generalized Hahn polynomials intro-
duced in [4] as a limit case [5] and correspond to the case of adding two Dirac delta
functions at the ends of the interval of orthogonality of the Jacobi polynomials.

DEFINITION 1. The Jacobi—-Koornwinder orthogonal ponnomiB]%ﬂ‘A’B are
the polynomials orthogonal with respect to a linear functictiabn P defined as
follows (A, B > 0, > —1,8 > —1)

1
(U, P) :/ 1—x)*A+x)PPx)dx + AP(1) + BP(-1). (10)
-1

Using the expression (9) and the properties of monic Jacobi polynowmjzis
we obtain the following representation 8”2 in terms of the Jacobi polyno-
mials and their derivatives [5, 29]

[04 d o
x5 =5 A-1(x), (11)

wherex ;%" = —APIP AP (i P andyy i = BRI (— 1),

d
Pty = PrPoo + 0350 o Pt ) — x

PeP—y  Brer 4 (-11)
PEP@) 1+ BKer 1)

0{ ,B A,B
b= 1+ Aker P (-1 -1 Bker % (-11 |’ (12)
Aker’ %P1 1+ BKer (@D
and
PePAB(1) = (—1)" PPeBA(-D). (13)
For the kernel polynomials we get
Jaﬂ( 1-1)= r+n+LHlr(e+pB+n+1
(n—DIT(B+ 2T (a +n)[(B + L2oFh+L’
Ker %/ (1,1) = Ker"f;* (-1, -1),
Ker A (~1, 1) = ()" M@+ B+n+1
(n — D!T(a + DT (B + 12«6+
andn2*?, 52 denote the quantities
wp (DT 4a+p)
T atftn’
n!l'a +n)I'(B + 1)2 (14)

pa _ (DTt a+p)
" alD(B + )T (a + D2t
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respectively.
Also the following equivalent representation, similar to the representation ob-
tained in [29] for the monic generalized polynomials, is valid

(15)
WhereJ" o _AP,ft,ﬁ,A,B(_l)ﬁZl,ﬂ, J;:/j,ol — _BPnB,A,ﬁ,a(_l)ﬁg ““ and ﬁgﬂ,
77n denote the quantities
p_ D' T@n+a+p+D
= nC(a+n+ D0 (a+ B+ 2T (B + 1)2ntatp+l’ (16)
o (-D'T2n+a+p+1)
= nCB+n+ Dl (a+ B+ 2 (a + 1)2ntetp+l’

From (15) we can obtain a lot of results, in particular the hypergeometric rep-
resentation of the new polynomials [29], the second-order differential equation
[29, 22, 5] (see Appendix ) and the three-term recurrence relation

PPy = PEEY @) + B PEP ) v P (),

(17)
PP Py =0, and PPAP(y=1, n>0,

which is a consequence of the orthogonality of the polynomials (10). The co-
efficients 8, can be obtained equating the coefficients of tHepower in (17).
Then,

182 o O[2

— n,o,pB nﬂa _
P = (2n+a+ﬁ)(2n+2+ +ﬁ)+n(JA’B )

o — ) n,a, n,B,a (n+l)(a— ) n «, n o
ﬂ (J B Jﬁ )_ :8 ( +1 B J:;l’ﬂ’ )
2n+a+p 2n+a+p+2

+

To obtainy, we notice that?*#*#(1) 0 for alln > 0. Then, from (17)

PR i
R R R €

Also from (15) it is possible to obtain the ratio asymptotR” "% (x)/ P*? (x).
Firstly, we use the asymptotic formula for the gamma function [1] to obtain

Jn,ot,ﬂ ~ :8 + 1 Jn,ﬂ,a o+ 1

A,B ) BA
, n2 . n2

Then, the asymptotic formulas for the Jacobi—Koornwinder polynomials in and off
the interval of orthogonality follow from the Darboux formulaéne [e, 7 — ¢],
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0 < & « 1 (see [43, Theorem 8.21.8, p. 196]) and the the Darboux formula
in C\[—1, 1] (see [43, Theorem 8.21.7, p. 196]), respectively. From the above
considerations we find

p2r+ectB=1[ pehAB(cosy) — PoP(cosh)]

1/ g\ 32 o\ 312
= ——| Sin: COS—-
Jmn ( 2) ( 2) x

1
X [E(a + B+ 2)sinf cogNO +TI'y) +

+ ((,3 +1) sinzg — co¥ %(a + 1)) SiN(NO + Fl)} + O(i)

1372

whereN =n+ 3(@+f + 1), I'1 = —(a + 3)% and

o,B,A,B
P, (z)zl_a+ﬁ+2+
PP () n
1/ +De+D)+z-D(B+D 1
() ()

validind € [e,m — €], 0 < ¢ << 1 and every compact subset ©f[—1, 1],
respectively. The last formula holds uniformly in the exterior of an arbitrary closed
curve which enclose the segméntl, 1], moreover, if; € C, z > 1, the right-hand
side expression is a real function of

3.2. THE LAGUERRE-KOEKOEK POLYNOMIALS

The Laguerre—Koekoek orthogonal polynomials were introduced in [29] as a limit
case of the Jacobi—Koornwinder polynomials and studied with more details in sev-
eral works [23, 25, 27]. They also can be obtained as a limit case of the generalized
Meixner polynomials introduced in [9, 2] using an appropriate limit transition [5].

DEFINITION 2. The Laguerre—Koekoek orthogonal polynomiafs* are the
polynomials orthogonal with respect to a linear functionalon P defined as
follows

(U, P) 2[ x*e*P(x)dx+AP0O), A>0 o> -1 (18)
0

Using the algorithm described before (see formula (8)) we find for the Laguerre—
Koekoek polynomials the following representation formula (see [5, 27] for more
details)

A 1),
LEA(x) = L9(x) + Ty L), Ty = @+

- (@+2)— ’
dx n!(1+ AT (@ + 1)

(19)
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From (19) we can obtain a lot of properties, for example, the hypergeometric repre-
sentation of the new polynomials [27], the second-order differential equation [27]

(see Appendix I) and the three-term recurrence relation
XLEAWX) = L0 + B LA (0 + vu Ly (), n >0, (20)
L**x)=0, and LI*(x) =1,

which is a consequence of the orthogonality of the polynomials (18). The coeffi-
cientsg, andy, are given by L (0) # 0 for alln > 0)

LeA©O)  LyhO)

,3"=2n+01+1+rn_rn+1» yn:ﬂn o a .
Ly Ly5(0)

To obtain the ratio asymptotids® 4 (x)/L®(x) we use the asymptotic formula for
the gamma function [1] to obtain

~
n

a+1
—
Then from (19) and by using the Perron formula for the rafig/& (L%)'(z)/L%(z)

of the Laguerre polynomials (see [44, Equation (4.2.6), p. 133] or [43, Theorem
8.22.3]) we get

L%4(2) oa+1 1 1
n g 1—— = (Qu+1-— -
Li T ﬁ[ W= Z)}“’(n)’

for z € C\[0, 00).

3.3. THE HERMITE—KRALL -TYPE POLYNOMIALS
The Hermite—Krall-type polynomials were introduced in [6]. They can be obtained
as a quadratic transformation of the Laguerre—Koekoek polynomials [6].

DEFINITION 3. The generalized monic Hermite polynomidig' are the poly-
nomials orthogonal with respect to the linear functiobabn PP

(U, P) = /Oo e’ P(x)dx + AP©), A>0. (21)

o0

Again, from formula (8) after some straightforward calculations we obtain that
the Hermite—Krall-type polynomial#gZ* admit the following representations in
terms of the classical polynomials

Hy,, 1(x) = Hap-1(x),

d
ZxHZ’jn(x) = 2xH5,, (x) + BmaHgm(x), m=012...,

(22)
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B — A Lm+3)
m — m l- | .
(1+A2r7;(r(;)2)> Tm!

Notice that the odd polynomials coincide with the classical ones. They are quadratic
transformations of the Laguerre—Koekoek polynomials [6]

HE . (x) = xL7% (x?),

(23)

HA (x) = L,**(xd) = L, ?(xd) + By——L;Y2(x»), m=0,1,2,....

dx? L
Notice that from the above formula the connection with the Laguerre—Koekoek
polynomials follows. Again from the above representation we can obtain the hy-
pergeometric representation [6], the second order differential equation [6] (see
Appendix I) and the three-term recurrence relation

xHAx) = HA L (x) + B HA(X) + v H 1 (x), n >0,
H%(x)=0 and Hi(x) =1

which is a consequence of the orthogonality. The coeffighens always equal to
zero since the functionall is symmetric. For the coefficienis we have [6]

Yom = m(1+ Bm),

(24)

24 T'(m— 2)

2m — 1) 1+ = 1o 25
)/2m—1—( 5 ) ;( 1), m=123,.... (25)
Py
For the asymptotic formula we get
1
B, ~ —.
2m
Then, form large enough
Hj (z) 1 iz 1
mel =1 - 1- — ol — |, e C\R, 26
Hy,,(2) 2 /miz Jm + m ¢ \ (26)

which is a consequence of (23) and the ratio asymptotics of the Laguerre—Koekoek
polynomials.

3.4. THE GEGENBAUER-KRALL-TYPE POLYNOMIALS

The Gegenbauer—Krall-type polynomials were introduced in [6]. They can be ob-
tained as a quadratic transformation of the Jacobi—Koornwinder polynomials [6].

DEFINITION 4. The generalized monic Gegenbauer polynomiz]s® are the
polynomials orthogonal with respect to the linear functiobiabn P

1
(U, P) =/ 1—x?>*"12px)dx + AP@©0), A>0, A> —%. (27)
-1
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From formula (8) after some straightforward calculations we obtain that the
generalized Gegenbauer polynomigls# have the following representation in
terms of the classical ones

Ghl () =Gh ,(x), m=012..., ] o8
2xGhA(x) = 2x(1+mWHGh (x) + WAL — xz)aGém(x),

WA = A L+ PTim+1)
: (1+Aw) amll(m + A +3)

7 (=D (m+3.—3)

Notice that, like in the previous case, the odd polynomials coincide with the classi-
cal ones. They are a quadratic transformation of the Jacobi—Koornwinder polyno-
mials [6]

1 5
~3,2"4,0

1
GhA(x) =27mp, 2 (2x2 — 1),

11
GhA () =2"xPy 2T (22 —1), m=012,....

The above formula represents the connection with the Jacobi—Koornwinder poly-
nomials. Again from the above representations we can obtain the hypergeometric
representation [6], the second order differential equation (see Appendix 1), and the
three-term recurrence relation

XGpA(x) = Gy (o) + BG4 ) + 7G4 (), n >0,

(29)

30
G*(x)=0 and Gyt(x) =1 (30)
where the coefficient§, = 0 and they, are givenbyf: =1,2,3,...)
m(2m + 21 — 1)
= 14+ wA M1,
Yon = S+ ay@m 4L W)
2r (m=3)r (m+3-1)
_@m=D(m+1r-1) 1+4 7 (m=2)IT (m+3—3) (31)
Yom-1= 22m+1-1) A 20 mA D m4n)
a(m—DIT (m+r—3)
Finally,
1
A
Wm ~ ﬁ

Then, we obtain for the generalized Gegenbauer polynomials the following asymp-
totic formula valid for@ € [e, 7 — e]\{7/2} (0 < e € 1), a2, = (2m 4+ 21.) 2,/
22m=12m!

azn, €089 (G2 (cosh) — G, (cosh))

1 1\ 1
= W(zsine) X [cos@ cog2mb + A0 — EM) + (32)

1. 1 1
+ y sind sin(2mo + 10 — 5/\”)} + o<m5/z)'
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Forx = cos% = 0 we can use the expression
G5,(0)
G5, (0
1+AY " [ a )]

G54(0) =

whered€ is the norm of the Gegenbauer polynomials, which yields

G540 1
G3,,(0) 2Am m

For the ratio asymptotics off the interval of orthogonality we find

Gy (2) 1 ( [ 1 ) ( 1)
A =1+ —(1-,/1-=)+o0 33
G5 (2) 2m z? m (33)
which holds uniformly in the exterior of an arbitrary closed curve which enclose

the segmenf—1, 1]. The last expression is a consequence of the Darboux formula
in C\[—1, 1] (see [43, Theorem 8.21.7, p. 196]).

4. The Distribution of Zeros: The Moments u, and the WKB Density

In this section we will study the distribution of zeros of the Jacobi—Koornwinder,
Laguerre—Koekoek, Hermite—Krall-type and Gegenbauer—Krall-type polynomials.
We will use a general method presented in [12] for the moments of low order and
the WKB approximation [8, 46, 47] in order to obtain an approximation to the
density of the distribution of zeros.

First of all we point out that, since our polynomials are orthogonal with respect
to a positive definite functional all their zeros are real, simple and located in the
interior of the interval of orthogonality. This is a necessary condition in order to
apply the next algorithms.

4.1. THE MOMENTS OF THE DISTRIBUTION OF ZEROS

The method presented in [12] allows us to compute the moment$ the distrib-
ution of zerosp, around the origin, i.e.,

n
) YT D S
i=1

Buendia, Dehesa and Galvez [12] have obtained a general formula to find these
guantities (see [12, Section Il, Equations (11) and (13), p. 226]). We will apply
these two formulas to obtain the general expression for the momegrdad w,,

but firstly, we will introduce some notations.
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We start with the second-order linear differential equation (SODE)
d? d
dsz(x)—l-T(x n) P(x)—l—k(x n)P,(x) =0,

that such polynomials satisfy. Here

o(x;n) = Za(z) kKo Fogn) = Za(l) ko ix:n) = Za(o) k. (34)

o(x;n)

andcy, c1, co are the degrees of the polynomiaits 7 and X, respectively. The
valueSa;’) can be found from (A.5) in a straightforward way. L&t = 1 and

g = maX{c; — 2, c1 — 1, co}. Then from [12, Section I, Equations(11) and (13),
p. 226]

2
Y1 — )2
&1 =1, £ = > (35)
and
s m 2 (n—s+m)! (i)
;;-' _ _Zm:l(_l) g& mZ' O(I’LT_;!)I)'CZI-H{ —m (36)
S Z (n—s)! (l)
=0 (n—s—i)! l+q
In general
(— 1)k
Sk yk( Y1, —y2, _2y377_(k_1)'yk)9

Whereyk-symbols denote the well-known Bell polynomials in number theory [42].
Let us now to apply these general formulas to obtain the first two central mo-
mentsy1 andu, of our polynomials. Equation (36) give the following values.

4.1.1. Jacobi—Koornwinder Polynomialg”*-*

n(—a+B+2ady5P — 28050 + 2775 n — 20,0 %n)

s1= a4 B+

Then
—a+ B+ 20y 5P — 28I + 2045 n — 20
A.B A.B B.,A
a+B+2n )

For the moments of second ordes the expression can be found by straightfor-
ward but cumbersome calculation and we will not give it explicitly. The asymptotic
behavior of the moment; is

— 1
Hl“‘a ﬁ4-0(—).
2 n

M1 =
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As particular cases we will consider the Legendre—Koornwinder polynomials
P204.B and the Gegenbauer-Koornwinder polynomigls®-? = pvv-4-B. For
the first onesP%%4-2 we get

mo= =3 T
1 2
e = 5 (=14 20350 + 27500 4 n = 20350 — 13500 — 27550 +

1,0,0 y1,0,0 n,0,02 n,0,02 2 17,0,0 71,0,0_ 2 n,0,02 2
+2]A,B Jpan—Jgy n+2]A’B n —4JA’B Jpan +2]B’A n )

and for Gegenbauer—Koornwinder polynomials

mo= IRy
1 RIRY n,v,v n,v,v n,v,v2
He = S (= 1+ 200" + 205" = 200 = T

n,v,v n,v,v yn,v,v n,v,v2 n,v,v2 2 n,v,v yn,v,v_2
=2 an+2 g Jpsn—Jgs n+2)p nT—4J g Jp T+
n,v,v2 2 n,v,v2 n,v,v yn,v,v n,v,v2
+ 20 n+ 200 v — A g g i + 20 nv).

Notice that in both cases if = B, Jy " = J;')" = Jp)" and thenu; = 0.

4.1.2. Laguerre—Koekoek Polynomialg:4

_ A-nQ-a+2I'y —n)n(a +n)
= > )

§1=n(a_rn+n)’ 52

Then

/"Ll == a_Fn"i_n,
py = —a+a?—2al, —n + 3an — 2T, + nl,2 + 2n2.

The asymptotic behavior of the moments is

pr~n+0@) and -~ 2n%+ On).

4.1.3. Hermite—Krall-type Polynomial#f*
elfn=2m,m=0,1,2,...,then

_ (1+2B, —2m)m
= 2 ,

&, =0, &

and the moments are

(2m —1—2B,)
p1 =0, Mo = > .
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elfn=2m—-1m=1,2,..., then,HZ’jn_l(x) = Hy,,_1(x)
& =0, 2= 1 —m)m,
and the moments are
p1 =0, p2 = (m —1).
The asymptotic behavior of these two moments in both cases is

u1=0 and up~ % + O(n).

4.1.4. Gegenbauer Polynomials*4
elfn=2mn,m=0,1,2,...,then

L—0 & _m(=1+2m+ W,, —n®W,, — 24W,,)
1= 27 21+ 2m + M) (—1+ 2mW,)

and the moments are

1—2m — W, + 4m?W,, + 2AW,,
2(=1+2m + M (=1+2mW,,)

w1 =0, W2 =

elfn=2m—-1,m=12 ..., thenGy" (x) = Gap_11(x)

_ 2m(2-2m)
A2+ 2m+ )]

&, =0, &

and the moments are

2m —1

—0, e
H1 H2= Som -2+

The asymptotic behavior of these two moments in both cases is
1 -1
u1 =0 and M2N§+O(n ).

Notice that Equation (36) and relation

(=D*
Y

%.k %k(_ylv —Y2, _2y377_(k_1)'yk)
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provide us a general method to obtain all the moments= (1/n)y,, but it is
hightly nonlinear and cumbersome. This is a reason why it is useful to analyze
only for the moments of low order.

4.2. THE WKB DENSITY OF THE DISTRIBUTION OF ZEROS

Next, we will analyze the so-called semiclassical or WKB approximation of the
distribution of zeros (see [8, 46, 47] and references contained therein). Denoting
the zeros ofP, by {x, «};_, we can define its distribution function as

1 n
prx) ==} 80 = ). (37)
k=1

We will follow the method presented in [46] in order to obtain the WKB density of
zeros, which is an approximate expression for the density of zeros of solutions of
any second order linear differential equation with polynomial coefficients

az(x)y" + ai(x)y’ + ao(x)y = 0. (38)
The main result is established in the following theorem:

THEOREM 1. LetS ande¢ be the functions

1
S() = 45 {2a2(2a0 — a}) + ax(2a; — ap)}, (39)
2
1 (5P, | _ PG.n)
o = 4[S<x)]2{ ascn 0 (X)} ) (40)

where P (x, n) and Q(x, n) are polynomials inc as well as inx. If the condition
£(x) « 1holds, then the semiclassical or WKB density of zeros of the solutions of
(38)is given by

1
PwkB (X) = Y Sx), xelCR, (41)
in every intervall where the functior$ is positive.

The proof of this theorem can be found in [8, 46].

Now we can apply this result to our differential equation (A.4)—(A.5). Using
the coefficients of the equation (A.4)—(A.5) we obtain that in all cases under con-
sideration we have for sufficiently large, e(x) ~ n~'. Then, from the above
theorem the corresponding WKB density of zeros of the polynongilsfollows.

The computations are very long and cumbersome. For this reason we write a little
program using MTHEMATICA [45] and provide here only some special cases and
some graphics representation for igg function.



44 R. ALVAREZ-NODARSE ET AL.

4.2.1. Jacobi-Koornwinder Polynomialgy"#*-*

In this case the explicit expression afyy is very large and cumbersome, so we
will provide some particular cases. If we take the limit— 0, B — 0 in the
obtained expression we recover the classical one [46, 47]

v R(x)

PwkbeladX) = m ,

R(x) = 4420 —a?+ 28 + 2aB — B2+ 4n + dan + 4Bn + 4n® —
—20%x + 2;32x — 2ax? — a’x? — 2,8x2 — 20{,3x2 — B%x?% —
— dnx? — danx® — 4Bnx? — 4n’x°.

For the Jacobi—Koornwinder polynomials, taking the limit,Jim, %p\‘,"vfk?’ﬂzo(x),
we find

1
Tv/1—x2

The last expression coincides with the known expression for the Legendre poly-
nomials (see e.g. [46]), i.e., the asymptotic distribution of zeros of the Jacobi—
Koornwinder is the same that the classical ones.

In Figure 1 we represent the WKB density of zeros for the Legendre—Koornwin-
der and Gegenbauer—Koornwinder (witk= 8 = 5) polynomials. We have plotted
the Density function for different values af (from the top to the bottom} =
10°, 10°, 10*. Notice that the value of the mass doesn't play a crucial role, since
forn > 1J44P ~ £ yphe ~ et findependently of the values of the masses

A,B
A andB.

p(x) =

4.2.2. Laguerre—Koekoek Polynomials"4

Again the explicit expression gf,, is very large and cumbersome. Firstly we can
convince ourselves that using (41) and taking the limit whAen- 0 we find

V(1 — a2 4 2x + 2ax + dnx — x2)
2w x )

PwkbcladX) =

which coincides with the classical expression [46, 47]. If we now consider the
special case = 0 we obtain

Pl () = -
wkb 27x2(—T, +T,2n +x + T,x)

where

R(x) = x2(2Fn —2nTl,%2 — 5x — 4xT, — nxI,% — x% — sz,,) X
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Figure 1. WKB density of zeros o, (x).
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Figure 2. WKB density of zeros OLQ’A(x).

x (2T, — 2nT,% — x — 2xT, + nx[, 4+ x% + x°T,) +
+2x2(nT,%2 + x — T, 4 xT,) x

x (2T, — 2nT,2 — 2x — 4xT,, — 4nxT, + 2n°xT,% + 3x2 +
+3x2%T, + 2nx? + 2nx°T,).

In Figure 2 we represent the WKB density of zeros for the Laguerre—Koekoek
polynomials witha = 0. We have plotted the density function for different values
of n (from the top to the bottom) = 10°, 5 x 10%, 10*, 10°. Notice that the value

of the mass doesn'’t play a crucial role, since, fors> 1, T, ~ ((« +1)/n),
independently ofA.



46 R. ALVAREZ-NODARSE ET AL.

4.2.3. Hermite—Krall-type Polynomialé/;}

We will analyze only the polynomials of even degree, iR,,. In this case from
(39) and (41)

Pukboiadx) = VR
whocla (—Bp + 2B2m + 2x2 + 2B, x2)’
R(x)= —6B,, —3B2 + 24B2m + 8B3m — 32B2m? — 4Bim? +

+ 16B,f'1m3 — 8B, x% — S)an1 2 _ 32B,mx? — —323,721mx2 +
+ 4B3mx? + 32B2m?x? + 32B3m?x? — 4BAm2x? + 4x* +
+ 12B,,x* — 8B2x* + 16mx* + 32B,,mx* + 8B2mx* —

— 8B3mx* — 4x% — 8B,,x® — 4B2x5.

If we take the limitA — 0, again we recover the classical expression [46, 47]

1+ 4m — x?
fr) = LI

In Figure 3 we represent the WKB density of zeros for our generalized Hermite
polynomials. We have plotted the Density function for different values @fom

the top to the bottom) = 2 x 10%, 1.5x 10, 10%, 10°. Notice that the value of the
mass doesn’t play a crucial role since, #oyp> 1, B,, ~ 1/2m, independently oA.

4.2.4. Gegenbauer—Krall-Type Polynomiaig;

We will analyze only the polynomials of even degree, i®,,. In this case the
expression is very large and we will provide only the limit case wher> 0
which agrees with the classical expression [46, 47]

V2 + 16m? + 4xh + 16mA + x2 — 16m2%x2 — 16mAx2 — 402x2
27 (1 — x2) '

Pa\,kb(x ) =

In Figure 4 we represent the WKB density of zeros for our generalized Gegenbauer
polynomials. Notice that the value of the mass doesn't play a crucial role, since for
n>» 1 W, ~ ﬁ independently ofdA. We have plotted the Density function

for different values of the degree of the polynomials (from the top to the bottom)
n=2x10% 1.5 x 10%, 10%, 1C® for two different cases: the generalized Legendre
polynomials § = }) and the generalized Gegenbauer witk: 5.

5. Other Interesting Examples

In this section we will give some other examples of families of Krall-type orthog-
onal polynomials, obtained using quadratic transformations of the variable in a
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Figure 3. WKB density of zeros of théi,{‘ (x).
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Figure 4. WKB density of zeros of thé}ﬁ’A(x).

given sequence of orthogonal polynomials. These examples can be obtained as an
application of the following theorem [36].

THEOREM 2. Let{P,} be a monic orthogonal polynomial sequeritOP9 with
respect to some uniquely determined distribution functioand let[&, n] be the
true interval of orthogonality of P,}, with —co < & < n < +o00. Leta and A be
fixed real numbersT' (x) = (x — a)(x — b) + ¢ a real polynomial of degree two
and putA = (b — a)?> — 4c. Let{Q,} be a sequence of polynomials such that

Qa(a) = A, Q2n+1(x) = (x — a) Py(T (x))
foralln =0,1,2,.... Assume that one of the following conditions hold

(i) c<&+A,
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i) c<t —co< tim 28 _ 4 s cp=

n=ioo p0 (6) PO

where B = +oo if n = 400 and {PV} denotes the sequence of the associated
polynomials of the first kingtL4] corresponding tq P,}. Then,{Q,} is a MOPS
with respect to a positive definite linear functional if and only if

a, (A, c)
A<0, Q2x)=P(Tx) - ————P1(T(x))
ap— 1()L )

hold foralln =0,1,2,... and
an (A, ¢) = Py(c) — AP (0).

In these conditions{Q,} is orthogonal with respect to the uniguely determined
distribution functions defined as

do = MS8(x —a) —

A do(T(x)) ) a—l—b‘
, r<|x— <,
lx —al T'(x)

where

[ A [ A
M =po+ArF(c;0) 20, r= §+Z, s = n+z,

F(z;0) = [* %W jsthe Stieltjes function associated to the distribution function

o0 -z

oanduo= [ do(x).

5.1. GENERALIZED HERMITE POLYNOMIALS WITH A POINT MASS ATx = 0

Let {L} be the sequence of the monic Laguerre polynomials which are orthogonal
with respect to the weight functiom(x) = x“€™*,x € [0,00), @ > —1. If @ > O,

it follows from the last theorem [36] that, for eaghsuch that-o < A < 0, the
sequence of monic polynomials defined by

ar. .2 a2 an [ 2
Qont1(x) = xL; (x%), Qo (x) = L, (x%) — P 1L,1_1(X ),

where
ay = L%(0) —A(Le_1)P(©0), n=012 ...,

and(L*_,)P denotes the associated polynomials of the first kind of the Laguerre
polynomials is orthogonal with respect to the measure

A
do(x) = T'(a + 1)(1+ —)50(x) dr — Alx|Z e dr, x € (=00, 00).
o
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Choosing. = —a we deduce that, up to a constant factos,(d) = |x|¥e" dx,

with © = a — % Hence{Q,} is the sequence of the monic generalized Hermite
polynomialsQ, = H", u > —3 (cf. [14, p. 157]). However, if we choosesuch
that—a < A < 0, then one can see that there is always a mass point, located at
x = 0. This example generalizes the Hermite—Krall-type polynomials considered
before.

5.2. A FINITE 2-PERIODIC JACOBI MATRIX

Let B, be a tridiagonal 2-Toeplitz matrix, which has the general form

a1 b1 0 0 O ... ]
c1 ar bz 0O 0 ...
0 C2 aiq bl 0 ...
B" = 00 c1 ar bz . € C(n,n)’ (42)
0 0 Oc¢aq ...

where we assume that, b,, ¢c; andc, are positive real numbers. This special
matrix has been firstly studied from the point of view of the eigenvalue problem in
[17] and more recently in [21] and also in [35].

Sinceb; > 0 and¢; > 0 fori = 1, 2 then there exists a sequence of orthogonal
polynomials{s,}, such thatB, is the corresponding Jacobi matrix of orderLet
{Q,} be the corresponding MOPS. Then

Q2 (x) = (b1b2)" Sou (x), Q2p41(x) = b1(b1b2)" Sou41(x).

Moreover, according to [35[{Q,} can be obtained by a quadratic polynomial
mapping on a linear transformation of the monic Chebyshev polynomials of second
kind {U,.}. In fact, if

T(x) =(x—a)(x —ay), o = 2v/bibycicy, B = bic1 + baco,
then

02,41(x) = (x —a1) P,(T (x)), 02,(x) = R,(T (x)),

where
x—p
P,(x) = Ot"Un( ) R,(x) = P,(x) + baco P,_1(x)
o
forn = 0,1, 2,.... Notice thatP, is orthogonal with respect to the distribution
function

op(x) = UU<x — 'B), Suppop) = [B —a, B+ a],
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whereoy is the distribution function of the Chebyshev polynomials [18, 43]

2
dop(x) = —5va?— (x — p)?dx.
T
From [36] the Stieltjes function dfQ,} is

M bic
Fo(z) = +Z11

[Fp(T(2)) — Fp(O)], (43)
a — 2

whereFp denotes the Stieltjes function assomated with M = o — bic1Fp(0)
and g is the first moment obp, g = “ dop(x) = 1. Using the Stieltjes
function Fy of the Chebyshev polynomlafs [44, p. 176]

1 - -2
Fp(z) = EFU<Z aﬁ) = ?(Z —B—V(@—B?—a?),

where the square root is such that— B8 + /(z — )2 — «?| > « whenever

7z € [B—a B+ a]l. Since 0& [ —a, B + «] for bici # bacy (this is no
restriction, because the cabgr; = bycy corresponds to constant values along
the diagonal of the corresponding Jacobi matrix), elementary computations give
Fp(0) = min{blcl, szz}/blclbzcz. Hence

min{byc1, boca)
boc '

M=1-

It turns out from (43) that the Stieltjes function o, } reads as

M (abxcp)™! [T<z) —B— (T (@)~ p)?—a?

Fo(z) = +

ar—z 7—ap 2

+ min{blcl, b2C2}i| .

From this we deduce (see [36]) tha®,,} is orthogonal with respect to the distrib-
ution function

dog(x) = MS(x —ap) + dop (T (x))

bic
lx — a1 |
1 1
27Tb2€2 |x —a1|

X /Ab1bocicz — (T (x) — bicy — bacp)? dx.

= M5(x — al) +

Its support is the union of two intervals M = 0 and the union of two intervals
with a singular point ifM > O either

supfog) = T H(supfop)) if  bicy < bacy,
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or

Supfop) = T H(suppop)) U fai} if  bicy > bacy.
We notice that
T-Ysuppop)) = TX(B -, B +al)
_ |:a1+a2_ a1+a2_r:|u|:a1+a2+ a1+a2+Si|,

2 0T 2 T
where
2 12
:(‘\/b_—\/b_ | ) ,
2 172
=(}¢b—+¢b— | ) |

As we can see, for the case whefr, > bycp, we obtain a set of polynomials
orthogonal with respect to a weight function of the foprtx) + §(x — xo) where

0 is a nonnegative continuous function, i.e., a Krall-type weight function appears
in a very natural way.

WKB Approximation for the Distribution of Eigenvalues of a Tridiagonal Two-
Periodic Symmetric MatrixTo conclude this work let us to consider an special
case of a symmetrie x n matrix [7]

ac00O0...
cbdO0oO0...
Bi=0daco..]|: (44)

For this matrix we will obtain the density of the distribution of eigenvalues, i.e.,
the WKB density of the corresponding sequence of orthogonal polynomials which
are, in general, of the Krall-type. Here we want to point out that in the odd case
(m = 2n + 1) the corresponding polynomials af®, . 1(x) = (x — a) P,(T (x)),

so we can consider only the distribution of zerosR)f since for anyn, x = a

is always a zero of the polynomial and then an eigenvalug,pf Furthermore,
P,(T (x)) is a quadratic modification of the Chebyshev polynomig|sand then
they satisfy a SODE which follows from the classical one

(1 — xAHU/(x) — 3xU, (x) + n(n + 2)U,(x) = 0, (45)

just providing the change < T(x). In fact we have tha®, (T (x)) satisfies a
SODE (38) with the coefficients

ax(x) = (4c%d® — (—(ab) + ¢ + d? + ax + bx — x))7),

a1(x) = 3(—a — b+ 2x)(—(ab) + ? + d? + ax + bx — x?) —
— 2(4c2d® — (—(ab) + @ + d® + ax + bx — x2)%),

ao(x) = n(2+n)(—a — b + 2x)°.

(46)
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Figure 5. WKB density of the distribution of the eigenvalues of the symmetric mairix

For the even case the situation is more complicated since we need to calculate the
SODE for theR, (T (x)) polynomials. Using the symbolic programAvVHEMAT-
ICA [45], as well as the packad®werSeriesleveloped by Koepf [28] we obtain
for the polynomialsk, (x) a SODE (38) with coefficients

az(x) = (L+n + c*n + cx + 2¢%nx) (=1 + x?),

ar(x) = c® 4+ 2¢%n + 3x + 3nx + 3c*nx + 2¢2x? + 4c?nx?, 47

ao(x) = —2n + c¢*n — 3n% — n® — *n® — ?nx — 3c?n?x — 2¢%nsx.
The change of variables < T (x) (T (x) = (x —a)(x — b)) in the previous SODE
yields

ap(x) 03,(x) + ai(x) 03, (x) + ao(x) @2, (x) =0,

where
2 32
&Z(X) — kzdzT//(x)QZ(%)v
22 2 g2
a;(x) = 2ch’(x)2a1(%) — &Zdzp(%), (48)
T 42 b2
aop(x) = T’(JC)%(%).

Substituting (46), (48) in (41) we can find the WKB density of the eigenvalues of
the Hamiltonian matrixg,,. A straightforward calculation shows that the conditions
of the Theorem 1 are satisfiediifs>> 1. The expression for theykg, in both cases,
is very large and we will only show the typical behaviour of the WKB density (see
Figure 5).

As we can see in Figure 5 we have that all eigenvalues are located inside the sup-
port of the measure up toin the odd case. In the picture the values- 1,5 = 2,
¢ = 3andd = 4 are used (from the top to the bottam= 1000Q 500Q 100Q 100).
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Appendix: The Second-Order Differential Equation for the Krall-Type
Polynomials

Table A.1.The values of;, a, b.

P, (x) q(x;n) a(x;n) b(x; n)

pePABy 1 N N [l i CRRE VIS Al )
L&A (x) 1 1 Ty

HE (x) 2x 2x B

GhA 0 2x 20(L+mW) WAL — x2)

In this section we give a general algorithm to obtain the second order linear dif-
ferential equation (SODE) which satisfy the considered Krall-type polynomials,
denoted here by,, i.e., the Jacobi-Koornwinder, the Laguerre—Koekoek, the Her-
mite—Krall-type and Gegenbauer—Krall-type polynomials. The main fact that we
will use is that all of them can be represented in terms of the classical faflj¢s

in the form

q(x; n) B, (x) = a(x; n) Py(x) + b(x; n) P(x), (A.1)

whereg, a, b are polynomials ixand some function on (see formulas (15), (19),
(22) and (28)). In the next table we represent, b for each of the familie$P, }. It

is known that the classical polynomials satisfy a certain SODE of hypergeometric
type [39, 43]

2
U(x)ipn (x) + r(x)iP,, (x)+ A, P,(x) =0, (A.2)
dx2 dx

where degre& ) < 2, degregt) = 1, degregi,,) = 0. Now if we take derivatives
in (A.1) and use the SODE (A.2) we can obtain formulas similar to (A.1) but for
the derivativesP, (x; n) and P,/ (x; n)

r(x; n) Pl (x) = c(x; n) P (x) +d(x; n) Pl (x),

s(xin) P/ (x) = e(x; n) Py(x) + f(x; n) PL(x),
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wherer, s, ¢, d, e, f are depending om andn (they are polynomials irx of
bounded degree independent)f The above two expressions and (A.1) lead to
the condition

q(x;n) B, (x) a(x;n) b(x;n)
r(x;n)ﬁ,;(x) c(x;n) d(x;n) | =0. (A.3)
s(x;n) P/ (x) e(x;n) f(x;n)

Expanding the determinant (A.3) we get

2
& (x; n) dian(X) +Tn) - d PH(X) +A(x; ) Py(x) =0, (A.4)
where
o (x;n) = s(x;n) [alx; n)d(x; n) — c(x; n)b(x; n)],
T(x;n) =r(x;n)le(x; n)b(x;n) —a(x;n) f(x;n)l, (A.5)

Axsn) = g m)ex; n) £ (x; n) — e(x; n)d(x; n)].

In some cases the coefficients can be simplified by some factor and the equation
(A.4) becomes more simple. To conclude this section we will provide the SODE
for the four considered polynomials. We want to remark that in order to obtain the
explicit formulas of the coefficients of the SODE (A.5) we have used the symbolic
package MTHEMATICA [45].

Jacobi—Koornwinder PolynomialsThe existence of this SODE was proved by
Koornwinder [29] and the coefficients were calculated explicitly in [22] and [5].
Using (A.5) we find

G(xin) = (x*— 1){2n1;1;3;”’2<a +n)(L—x)+ I35 [ — 1P -
— @+ 1)1+ 2055 —x) + Bx — (205K +x - 1) -
—2n(1+ 2750 =]+ A+ x [L—x+ A (1 +x +
+a@+x) +20(J5hn +x — 1) + B(2n "ﬁa—i-x—l))]},

T(x;n) = ( 1+2J"°§ﬁn—x)(l+x)( "aﬂ—k]"ﬁa—i-
+(J”‘”’+J"ﬂ“) )+ BA(—1+x)(— 1+ 2750 + x) x
x (= I45P + I B+ (157 + IR )x) +
+ B[ (x = DAL 5 [80 — D + 20(1+ 355 +2)] -

—21,’;3;" 2) + (L +x) x (2n ;A’“ (L4+n(x—1) +3x) +
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+ 6= DA @+ 200 = D +30) - x + 1)) | +
+ a{Zan;f;ﬁz(l —xX)(n—1—B+@+B+nx)+
+ TP 4 x)[1+ 28(x — 1)? — 4x + 322 —
—20(1+ 3pE =)@+ 0 |+ A+ 01— x +
+ Jgjﬁ’“(S(l +x) + Z/B(Jgjﬁ’“n +x—1)+
+2n (g 4 x — 1))]} + 2{n2Jg;°g/32(1 — 0@ —1) +
(L4 x)[x -2t 205 B 1) + JEP (L x 2+
+20(=1+ ) +0) |+ 55 [~ 14+ x(3+ =3+ 0x -

- (LAt - )],

rx:n) = n(l4+a+ B+ n){ZJZ:OgﬂZ(n —Da+nx—-1)+
+ JX:%’ﬂ[Zn —3— B — BTN 2BTE 4 24+ B)IpE N +
+ax = 28(J5 R — 1) — 1)x — 1+ B+ 20)x% +
+a(l+ 2755 = 1) = x) A+ 0] = A+ x
x [1+ 2705 — 1)(B+n) —x + IpE (Bt a— B — 20+

+(1+a+,3+2n)x)]}.

Laguerre—Koekoek PolynomialShe equation for the Laguerre—Koekoek polyno-
mials was found in [27]. From (A.5) we obtain

g(x;n) = x( =T, —al, +nl0,% +x +x1,),

T(x;n) = ( —2r, — 3al, — 2T, + 20,2 + anl,% + x + ax+
+ 2xT, + 2axT, — nxl,%2 — x2 — szn),

Axin) = n(—2T, —al, — T2 +nl,% 4+ x +xT,).

Hermite—Krall-Type PolynomialsThe equation for the Hermite—Krall-type poly-
nomials was found in [6]. Using (A.5) we deduce

o(x;m) = x( — B, + ZBflm +2x% + 2Bmx2),
T(x;m) = 2( — B, + ZB,%m + B,,x% — ZB,%lmx2 —2x* — ZBmx4),
A(x;m) = 4mx( — 3B,, — 2B2 + 2B2m + 2x% + 2B,,x?).
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Gegenbauer—Krall-Type Polynomialhe equation for the Gegenbauer—Krall-type
polynomials was found in [6]. Equation (A.5) yields

F;m) = x(1—xD(WE +mWA2 — 2m®WA? — 2mowA? —
— 2x% — AmWAx? — 2an?x2),

T(x;m) = —2W2 — 2mWn/f2 + 4m2W,f22 + 4van/32 + 3WAx2 +
+2uWAx? + SmW,fzx2 - GmZW,fzx2 - 4va£2x2 —
- 4m2an’1*2x2 - 4mv2Wn?2x2 — 2% — dux? —
—AmWAx* — 20WAx* — 8mvWAx* — 42wy,

Cesm) = dmm +v)x(— 3WA + WAZ = 3mWA 4 2m? W% —
— 20WA% £ 2muWA? 4 207 4 AmWAX? + 20W2x?).

In all cases if we take the limit when the masses tend to zero we obtain the SODE
of the corresponding classical polynomials. Remind that all explicit expressions for
the coefficients of the SODE were obtained by using the computer algebra package
MATHEMATICA [45] and they will be useful to study the spectral properties of the
polynomials under consideration.
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