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The quantale of Galois connections

Jorge Picado

Abstract. Galois connections were originally expressed in a contravariant form with trans-
formations that reverse (rather than preserve) order. Nowadays its covariant form (as
residuated maps) is more often used since it is more convenient; namely compositions of
residuated maps are handled more easily. In this paper we show that this is not a serious
disadvantage of the contravariant form (at least in the natural context for uniform struc-
tures, where we need it), by introducing an operation of composition in the complete lattice
Gal(L, L) of all (contravariant) Galois connections in a complete lattice L, that allows us to
work with Galois connections in the same way as one usually works with residuated maps.
This operation endows Gal(L, L) with a structure of quantale whenever L is a locale, al-
lowing the description of uniform structures in terms of Galois connections.

1. Introduction

Originally Galois connections were expressed in a symmetric but contravariant
form with transformations that reverse order (early references to this form are [3],
[6] and [17]). A Galois connection [3] between the partially ordered sets A and B is
a pair (f, f+) of order-reversing (antitone) maps f : A → B and f+ : B → A such
that

a ≤ f+f(a) for all a ∈ A and b ≤ ff+(b) for all b ∈ B (1.1)

or, equivalently,

a ≤ f+(b) iff b ≤ f(a) for every a ∈ A and b ∈ B. (1.2)

Gal(A, B), also denoted A ⊗ B [22], is the set of all Galois maps between A and
B, that is, all antitone maps f : A → B for which there is f+ : B → A such that
(f, f+) is a Galois connection, with the pointwise partial order. Galois connections
appear in many areas of mathematics (cf. the survey [5]).

Presented by J. Adámek.
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Nowadays many authors prefer to work with Galois connections in the covariant
form because of its convenience (the survey [5] contains a list of references to this
form). In order to avoid confusion we refer to this dualized form as a residuated
pair: a residuated pair between the partially ordered sets A and B is a pair (f, g)
of order-preserving maps f : A → B and g : B → A such that

a ≤ gf(a) for all a ∈ A and fg(b) ≤ b for all b ∈ B. (1.3)

The map f : A → B in a residuated pair (f, g) is called residuated and the map
g : B → A is called residual. Thus f is residuated (resp., residual) if and only if
f ∈ Gal(A, Bop) (resp., f ∈ Gal(Aop, B)).

As Blyth and Janowitz (in their monograph on Residuation Theory [4], p. 19)
and Erné, Koslowski, Melton and Strecker (in [5]) remarked, the reason for prefer-
ring residuated maps rather than Galois connections can be found in the fact that
compositions of residuated pairs are handled more easily: two residuated maps may
be composed to yield a new residuated map and this is not the case with antitone
maps. Indeed, if f : A → B and g : B → C are residuated maps, then gf is clearly
residuated with (gf)+ = f+g+ [4]. This composition endows Gal(A, Aop) with a
structure of quantale (complete residuated semigroup). We call it the quantale of
residuated maps.

But there remains the question: how to compose Galois connections directly,
in order to get a structure of quantale for Gal(A, A)? This is the problem which
motivated us to write this paper. Its relevance comes from the fact that this quan-
tale reveals to be an important tool in the entourage-like approaches to uniform
structures (cf. [7]). In this paper we present a composition operation ◦ for Galois
maps. Instead of presenting a direct proof that (Gal(A, A), ◦) is a quantale by
proving the associativity of ◦ and the distributivity of it over joins in Gal(A, A),
we prefer to follow an indirect but more general and elegant approach, by showing
that Gal(A, A) is a quotient of the set Ant(A, A) of all antitone maps from A to
itself, expressed in terms of a suitable quantic nucleus. This way Gal(A, A) simply
inherits the algebraic properties from the more general and simpler Ant(A, A), and
we avoid the technical difficulties inherent to proving associativity of ◦ and the
distributivity of it over joins.

A more detailed description of this paper is as follows. We begin by recalling,
in Section 2, some general background about frames, locales, quantales and Ga-
lois connections. We also fix terminology and notation that will be used in later
sections. In the third section we introduce the composition operation ◦ for Galois
connections and in Section 4 we introduce an auxiliary operation for antitone maps
and prove that this is an associative operation when we specialize to frames. Then
we show that this operation endows Ant(A, A) with a structure of quantale when-
ever A is a frame (Proposition 4.4). In Section 5 we recall some facts about quantic
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nuclei and, as a useful intermediate step, we introduce the notion of quantic prenu-
cleus extending the definition of localic prenucleus of [1]. These facts allow us, in
Section 6, to conclude from Proposition 4.4 that (Gal(A, A), ◦) is also a quantale.
In the last section we illustrate the importance of this quantale with a brief survey
describing its application to uniform structures effected in [7]. Namely we refer that
the theory of uniform structures (both classical and pointfree) may be completely
described in terms of Galois connections and conclude that the equivalence between
the somewhat different approaches to uniform locales of [8] and [20] is a special case
of a very general phenomenon on Galois connections.

2. Background

In this section we introduce terminology and notation along with an overview of
the construction of tensor products of complete join-semilattices, presented in the
way which is appropriate for its application in the later sections.

2.1. Frames and locales A frame is a complete lattice L in which the infinite
distributive law

x ∧
∨

S =
∨

{x ∧ s | s ∈ S}
holds for all x ∈ L and S ⊆ L. Frames are exactly complete Heyting algebras with
the Heyting implication given by x → y :=

∨{s ∈ L | x ∧ s ≤ y}.
Frame homomorphisms are defined as maps between frames which preserve fini-

tary meets (including the top element 1 :=
∧ ∅) and arbitrary joins (including

the bottom element 0 :=
∨ ∅). The resulting category is called the category of

frames. The study of frames was motivated by the following observation. Let X

be a topological space and let O(X) be the complete lattice of open subsets of X .
Since finite meets and arbitrary joins correspond to the set-theoretic operations of
intersection and union, O(X) is a frame. Moreover, if f : X → Y is a continuous
map of spaces, the induced map f−1 : O(Y ) → O(X) is a frame homomorphism.
The functor X 	→ O(X), f 	→ f−1 is contravariant and therefore the category of
“generalized spaces” [12] should be the opposite of the category of frames. The
objects of this category are called locales and morphisms locale maps. Thus locales
form an order-theoretic counterpart of topological spaces. Locales were introduced
by J. Isbell [12] to provide a better categorical context for topology.

For more information on frames and locales we refer the reader to [13].

2.2. Quantales In the definition of a frame, by replacing the commutative op-
eration ∧ with a general associative binary operation, one obtains a quantale (a
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“non-commutative generalized space”). Thus a quantale is a complete lattice Q

equipped with an associative multiplication · which distributes over arbitrary joins:

x ·
∨

S =
∨

{x · s | s ∈ S} and (
∨

S) · x =
∨

{s · x | s ∈ S}
for all x ∈ Q and S ⊆ Q. A quantale homomorphism is a map between quantales
which preserves arbitrary joins and the multiplication.

The term quantale was suggested by C. J. Mulvey [15] as a “quantization” of
the term locale. Its definition provides a non-commutative extension of the concept
of locale. The intention was to develop the concept of non-commutative topology,
introduced by R. Giles and H. Kummer [9], while providing constructive foundations
for quantum mechanics and non-commutative logic. Further details about quantales
can be found in [18] and [21].

2.3. Galois connections Let A and B be complete lattices. In this case, as it
is well-known (and very easy to prove), maps f and f+ in a Galois connection
uniquely determine each other; indeed

f(a) =
∨

{b ∈ B | f+(b) ≥ a} and f+(b) =
∨

{a ∈ A | f(a) ≥ b}.
Furthermore, f ∈ Gal(A, B) if and only if

f(
∨

S) =
∧

f(S) for every S ⊆ A (in particular, f(0) = 1),

that is, if and only if f is a complete join-morphism A → Bop. The set Gal(A, B)
is also a complete lattice (meets are just defined pointwise). On the other hand,
f : A → B is residuated if and only if it is a join-homomorphism.

For a more categorical approach to Galois connections we refer to [11].

2.4. Tensor products Let A and B be complete join-semilattices. As Shmuely
proved in [22], Gal(A, B) is the tensor product of A and B in the category of
complete join-semilattices (whose objects are complete join-semilattices, that is,
complete lattices, and morphisms are maps preserving arbitrary joins). This is the
analogue for complete join-semilattices of the construction of tensor products of
modules over a commutative ring (cf. [14]). There is an equivalent way of describing
the tensor product of complete join-semilattices, which will be very useful in the
next section. As Shmuely proved ([22], Theorem 1.3; see also [10]), the elements of
Gal(A, B) stand in a one-to-one correspondence with certain semi-ideals of A×B.
Let us say that E ⊆ A × B is a G-ideal of A × B when

(a) E ∈ D(A × B) (the set of all down-sets of A × B), that is,

↓E := {(x, y) | (x, y) ≤ (a, b) for some (a, b) ∈ E}
coincides with E;

(b)
(
{x} × S ⊆ E ⇒ (x,

∨
S) ∈ E

)
and

(
S × {y} ⊆ E ⇒ (

∨
S, y) ∈ E

)
.
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Note that the case S = ∅ in (b) implies that every G-ideal contains the set
↓ (1, 0) ∪ ↓ (0, 1). We denote by A ⊗ B the set of all G-ideals of A × B, partially
ordered by inclusion. This is clearly a complete lattice, because the intersection of
G-ideals is always a G-ideal. In summary, A⊗B ∼= Gal(A, B) is the tensor product
in the category of complete join-semilattices.

For every a ∈ A and b ∈ B,

pa,b : A −→ B

x 	−→
⎧⎨
⎩

1 if x = 0
b if 0 < x ≤ a

0 if x �≤ a.

is a Galois map. These maps generate Gal(A, B) by joins, that is, every f ∈
Gal(A, B) is a join of some family {pai,bi}i∈I ⊆ Gal(A, B) [22]. Under the isomor-
phism Gal(A, B) ∼= A ⊗ B, the Galois map pa,b corresponds to the least G-ideal
containing (a, b), that is,

a ⊗ b := ↓(a, b) ∪ ↓(1, 0) ∪ ↓(0, 1).

This is called a pure tensor. The tensor product construction above gives us the
construction of products in the category of locales. Indeed, A ⊗ B is a frame
whenever A and B are frames and (A ⊗ B, u1, u2) is the coproduct of A and B in
the category of frames, where

u1 : A −→ A ⊗ B

a 	−→ a ⊗ 1

and
u2 : B −→ A ⊗ B

b 	−→ 1 ⊗ b.

3. The Galois composition

From now on, for complete lattices A and B, let Ant(A, B) denote the set of all
antitone maps from A to B. This is, clearly, a complete lattice (meets and joins
are just defined pointwise).

For f ∈ Ant(A, B) and g ∈ Ant(B, C) let Ef,g denote the G-ideal
∨

{a ⊗ c ∈ A ⊗ C | ∃b ∈ B \ {0} : f(a) ≥ b and g(b) ≥ c}.
The Galois composition g ◦ f : A → C is defined by

(g ◦ f)(a) :=
∨

{c ∈ C | (a, c) ∈ Ef,g}.
Proposition 3.1. For every f ∈ Ant(A, B) and g ∈ Ant(B, C), g ◦f ∈ Gal(A, C).
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Proof. Let us show that (g ◦ f)(
∨

i∈I ai) =
∧

i∈I(g ◦ f)(ai). Since G-ideals are
downwards closed, g ◦ f is clearly order-reversing. Therefore (g ◦ f)(

∨
i∈I ai) ≤

(g ◦ f)(ai) for every i ∈ I. On the other hand, let c ≤ (g ◦ f)(ai) for every i ∈ I.
By the definition of G-ideal, we have, for each i ∈ I,

(
ai,

∨
{d ∈ C | (ai, d) ∈ Ef,g}

) ∈ Ef,g,

that is, (ai, g ◦ f(ai)) ∈ Ef,g. Thus (ai, c) ∈ Ef,g and, consequently, (
∨

i∈I ai, c) ∈
Ef,g, which implies c ≤ (g ◦ f)(

∨
i∈I ai). Hence (g ◦ f)(

∨
i∈I ai) =

∧
i∈I(g ◦ f)(ai),

which means that g ◦ f ∈ Gal(A, C). �

For a categorical description of the Galois composition, that justifies the “cor-
rectness” of the chosen definition, see [7].

The following fact about Gal(A, B) will be decisive in the sequel:

Lemma 3.2. Let f ∈ Gal(A, B) and E ∈ D(A × B) satisfy

(a, b) ∈ E ⇒ b ≤ f(a).

Then

(a, b) ∈ 〈E〉 ⇒ b ≤ f(a),

where 〈E〉 denotes the G-ideal generated by E.

Proof. Consider the non-empty set

F := {F ∈ D(A × B) | E ⊆ F ⊆ 〈E〉, (a, b) ∈ F ⇒ b ≤ f(a)}.

If F ∈ F then also

F0 :=
{
(a,

∨
S) | {a} × S ⊆ F

}
∪

{
(
∨

S, b) | S × {b} ⊆ F
}

is in F :
Let (a, b) ∈ F0. If (a, b) = (a,

∨
S) for some S with {a} × S ⊆ F , then s ≤ f(a)

for every s ∈ S. Thus
∨

S ≤ f(a). On the other hand, if (a, b) = (
∨

S, b) for some
S with S × {b} ⊆ F , then b ≤ f(s) for every s ∈ S. This implies b ≤ ∧

f(S) =
f(

∨
S) = f(a).

Besides, for any non-empty H ⊆ F ,
⋃

H∈H H ∈ F . Therefore T :=
⋃

F∈F F

belongs to F , that is, F has a largest element T . But then, as we proved above,
T0 also belongs to F so T = T0, that is, T is a G-ideal. Hence 〈E〉 = T ∈ F which
means that b ≤ f(a) whenever (a, b) ∈ 〈E〉. �
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4. The quantale of antitone maps

In order to prove that ◦ is a quantic multiplication on Gal(L, L) we introduce
the following auxiliary operation on antitone maps:

Let f ∈ Ant(A, B) and g ∈ Ant(B, C); the antitone composition g · f : A → C is
defined by

(g · f)(a) :=
∨

{c ∈ C | ∃b ∈ B \ {0} : f(a) ≥ b and g(b) ≥ c}.
Remarks 4.1. (1) It is obvious that (g · f)(a) =

∨{g(b) | b ∈ B \ {0}, b ≤ f(a)}
and g · f ∈ Ant(A, C).

(2) It is also easy to see that (g · f)(a) coincides with
∨{

c ∈ C | (a, c) ∈ {(x, z) ∈ A × C | ∃b ∈ B \ {0} : f(x) ≥ b and g(b) ≥ z}
}
.

Thus g · f ≤ g ◦ f . As we shall see in Proposition 6.4, g ◦ f is the least Galois map
containing g · f .

Note that g · f1 ≤ g · f2 whenever f1 ≤ f2.

Lemma 4.2. Let f ∈ Ant(A, B) and g ∈ Ant(B, C). If C is a frame then c ≤
(g · f)(a) if and only if c =

∨
S for some S ⊆ C such that for each s ∈ S there

exists b ∈ B \ {0} satisfying f(a) ≥ b and g(b) ≥ s.

Proof. Let C be a frame. If c ≤ (g · f)(a) then, using Remark 4.1(1), we have

c = c ∧ (g · f)(a)

= c ∧
∨

{g(b) | b ∈ B \ {0}, b ≤ f(a)}
=

∨
{c ∧ g(b) | b ∈ B \ {0}, b ≤ f(a)},

where, for each such b, c ∧ g(b) ≤ g(b) and b ≤ f(a).
Conversely, let c =

∨
i∈I si where, for each i ∈ I, there exists bi ∈ B \ {0} such

that si ≤ g(bi) and bi ≤ f(a). Then, obviously, si ≤ (g · f)(a) and, consequently,
c ≤ (g · f)(a). �

In order to conclude the associativity of the antitone composition we have to
restrict ourselves to frames.

Proposition 4.3. Let f ∈ Ant(A, B), g ∈ Ant(B, C) and h ∈ Ant(C, D). If C

and D are frames then (h · g) · f = h · (g · f).

Proof. First, let us show that ((h · g) · f)(a) ≤ (h · (g · f))(a), for every a ∈ A, that
is,

∨{d ∈ D | ∃b ∈ B \{0} : f(a) ≥ b and (h ·g)(b) ≥ d} ≤ (h · (g ·f))(a). Of course,
it suffices to ensure that d ≤ (h ·(g ·f))(a) whenever f(a) ≥ b �= 0 and (h ·g)(b) ≥ d.
So let f(a) ≥ b �= 0 and (h · g)(b) ≥ d. Then, since D is a frame, we may apply
Lemma 4.2 and write d as a join

∨
i∈I di of a family {di | i ∈ I} ⊆ D for which there
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exist ci ∈ C \{0}, i ∈ I, satisfying g(b) ≥ ci and h(ci) ≥ di. Then (g ·f)(a) ≥ ci �= 0
and h(ci) ≥ di for every i ∈ I, and we may conclude that (h · (g · f))(a) ≥ di for
every i ∈ I; consequently, (h · (g · f))(a) ≥ ∨

i∈I di = d.
Finally, let us prove the reverse inequality ((h · g) · f)(a) ≥ (h · (g · f))(a). We

need to show that d ≤ ((h · g) · f)(a) whenever (g · f)(a) ≥ c �= 0 and h(c) ≥ d.
Again by Lemma 4.2, since C is a frame, we may write c =

∨
i∈I ci for ci ∈ C \ {0}

satisfying f(a) ≥ bi and g(bi) ≥ ci for some bi ∈ B \ {0}. But d ≤ h(c) ≤ h(ci) so
d ≤ (h · g)(bi) for each i ∈ I. Hence d ≤ ((h · g) · f)(a). �

Theorem 4.4. If L is a frame then (Ant(L, L), · ) is a quantale.

Proof. By Remark 4.1(3), we have immediately that g · (∨i∈I fi) ≥
∨

i∈I(g ·fi). Let
us check that (g · (∨i∈I fi))(a) ≤ (

∨
i∈I(g · fi))(a), for every a ∈ L, that is,

∨{
c ∈ L | ∃b ∈ L \ {0} :

∨
i∈I

fi(a) ≥ b and g(b) ≥ c
}

is equal or less than
∨
i∈I

∨
{c ∈ L | ∃b ∈ L \ {0} : fi(a) ≥ b and g(b) ≥ c}.

So, consider c ∈ L for which there exists b ∈ L \ {0} satisfying b ≤ ∨
i∈I fi(a) and

c ≤ g(b). Then b = b ∧ ∨
i∈I fi(a) =

∨
i∈I(b ∧ fi(a)). This implies the existence

of i ∈ I for which b ∧ fi(a) �= 0. Denoting this element b ∧ fi(a) by b′ we have
c ≤ g(b) ≤ g(b′) and 0 �= b′ ≤ fi(a). This proves (g ·(∨i∈I fi))(a) ≤ (

∨
i∈I(g ·fi))(a).

Similarly,
(
∨
i∈I

gi) · f =
∨
i∈I

(gi · f).

This, together with Proposition 4.3, shows that (Ant(L, L), · ) is a quantale. �

5. Quantic nuclei and prenuclei

We need some facts about quotients of quantales, most of which can be found in
[16] or [21].

A quantic nucleus [16] on a quantale Q is a closure operator j : Q → Q such that
j(x) · j(y) ≤ j(x · y), for all x, y ∈ Q. Note that if j is a quantic nucleus, then

j(x · y) = j(x · j(y)) = j(j(x) · y) = j(j(x) · j(y)),

for all x, y ∈ Q. The set of j-closed elements

Qj := Fix(j) = {x ∈ Q | j(x) = x}
is closed under

∧
and hence is complete (of course, this is true for any closure

operator j on a complete lattice Q). In this case, j being a quantic nucleus on a
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quantale Q, Qj is a quantale with joins
j∨

xi = j(
∨

xi) and multiplication x ·j y =
j(x · y). Indeed,

(x ·j y) ·j z = j(j(x · y) · z) = j((x · y) · z) = j(x · (y · z)) = j(x · j(y · z)) = x ·j (y ·j z),

x·j (
j∨

yi) = j(x·j(
∨

yi)) = j(x·
∨

yi) = j(
∨

(x·yi)) ≤ j(
∨

(j(x·yi))) =
j∨

(x·j yi)

and, consequently, x ·j (
j∨

yi) =
j∨

(x ·j yi); similarly, (
j∨

xi) ·j y =
j∨

(xi ·j y).
Furthermore, the map j : Q → Qj is a homomorphism of quantales and every

surjective quantale homomorphism arises in this manner, up to isomorphism [16].
In the next section, in order to conclude that (Gal(L, L), ◦) is a quantale, we will

define a quantic nucleus generated by certain data. As a useful intermediate step
we introduce the following notion, which generalizes Banaschewski’s definition of a
(localic) prenucleus [1, 2]:

Definition 5.1. A quantic prenucleus on a quantale L is a map j0 : Q → Q such
that, for all x, y ∈ Q,

(1) x ≤ j0(x),
(2) if x ≤ y then j0(x) ≤ j0(y),
(3) j0(x) · y ≤ j0(x · y) and x · j0(y) ≤ j0(x · y).

It follows immediately from the first two conditions that Qj0 = Fix(j0) is a
closure system and the associated closure operator is given by

j(x) :=
∧

{y ∈ Qj0 | x ≤ y}.
Lemma 5.2. The closure operator j is a quantic nucleus.

Proof. Let us show that j(x) ·y ≤ j(x ·y) for all x, y ∈ Q. For this, consider the set

E := {z ∈ Q | x ≤ z ≤ j(x), z · y ≤ j(x · y)}.
This is a non-empty set (since x ∈ E) and j0(z) ∈ E whenever z ∈ E by the
properties of j0 and j. Moreover, for any non-void F ⊆ E ,

∨
z∈F z belongs to E , by

the distribution law of quantales. Therefore E has a largest element z :=
∨

z∈E z.
But then j0(z) ∈ E thus z = j0(z) i.e., z ∈ Qj0 . Then j(x) = z ∈ E and,
consequently, j(x) · y ≤ j(x · y).

By symmetry, x·j(y) ≤ j(x·y). Hence j(x)·j(y) ≤ j(x·j(y)) ≤ j2(x·y) = j(x·y)
as claimed. �
Remarks 5.3. (1) It can be also proved that the quantale homomorphism j : Q →
Qj0 is universal among all quantale homomorphisms h : Q → Q′ for which h(x) =
h(j0(x)) for all x ∈ Q.

(2) The quantic nucleus j may alternatively be described as the stable transfinite
iterate of j0, and then the Lemma can be proved by transfinite induction.
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6. The quantale of Galois connections

For each f ∈ Ant(A, B) let us define j0(f) : A → B by

j0(f)(a) :=
∨

{b ∈ B | ∃S ⊆ A :
∨

S = a and f(s) ≥ b for every s ∈ S}.
Clearly, j0 is an extensive operator, that is, j0(f) ≥ f . The motivation for the
definition of j0 comes from the following proposition asserting that Galois maps are
precisely the fixed points of j0.

Proposition 6.1. For each f ∈ Ant(A, B) we have:

(1) If A is a frame then j0(f) ∈ Ant(A, B).
(2) j0(f) = f if and only if f ∈ Gal(A, B).

Proof. (1) Let a ≤ a′ in A. We need to show that j0(f)(a′) ≤ j0(f)(a), that is,
∨

{b ∈ B | ∃S ⊆ A :
∨

S = a′ and f(s) ≥ b for every s ∈ S}
≤

∨
{b ∈ B | ∃S ⊆ A :

∨
S = a and f(s) ≥ b for every s ∈ S}.

So, consider b in the first join, that is, b ∈ B satisfying b ≤ f(s) for every s in
some S ⊆ A for which

∨
S = a′. Then a = a ∧ a′ = a ∧ ∨

S =
∨

s∈S(a ∧ s), by the
frame distributive law. Thus, since b ≤ f(s) ≤ f(a∧ s), b is also in the second join.
(2) By the definition of j0 it is clear that j0(f)(

∨
S) ≥ ∧

f(S) for every S ⊆ A.
Therefore, if j0(f) = f then f(

∨
S) ≥ ∧

f(S). Thus, since f(
∨

S) ≤ ∧
f(S) is

always true, f(
∨

S) =
∧

f(S), that is, f is a Galois map.
Conversely, let f ∈ Gal(A, B) and a ∈ A. For each b in

{b ∈ B | ∃S ⊆ A :
∨

S = a and f(s) ≥ b for every s ∈ S}
we have b ≤ ∧

f(S) = f(
∨

S) = f(a), which shows that j0(f)(a) ≤ f(a). Hence
j0(f) ≤ f . Then, immediately, j0(f) = f since j0 is extensive. �

Proposition 6.2. If L is a frame then j0 : Ant(L, L) → Ant(L, L) is a quantic
prenucleus.

Proof. Obviously j0 is extensive and monotone. Let us prove that (g · j0(f))(x) ≤
(j0(g · f))(x) for all x ∈ L and f, g ∈ Ant(L, L).

So, consider y ∈ L satisfying j0(f)(x) ≥ z and g(z) ≥ y for some nonzero z ∈ L.
Then

z = z ∧ j0(f)(x)

= z ∧
∨

{a ∈ L | ∃S ⊆ L :
∨

S = x and f(s) ≥ a for every s ∈ S}
=

∨
{z ∧ a | a ∈ L, ∃S ⊆ L :

∨
S = x and f(s) ≥ a for every s ∈ S}.
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The fact z �= 0 implies the existence of a ∈ L and S ⊆ L such that x =
∨

S,
f(s) ≥ a for all s ∈ S and z ∧ a �= 0. Then g(z ∧ a) ≥ g(z) ≥ y and, for each
s ∈ S, f(s) ≥ a ≥ z ∧ a �= 0. This means (g · f)(s) ≥ y for every s ∈ S. Therefore
(j0(g · f))(x) ≥ y.

The condition j0(g) · f ≤ j0(g · f) may be proved in a similar manner. �

Then Ant(L, L)j0 (which, by Proposition 6.1(2), coincides with Gal(L, L)) is a
closure system and, by Lemma 5.2, the associated closure operator j : Ant(L, L) →
Ant(L, L) given by

j(f) :=
∧

{g ∈ Gal(L, L) | f ≤ g}
is a quantic nucleus. Hence, by Theorem 4.4 and the results on quantic nuclei of
[16] recalled at the beginning of Section 5, we have:

Corollary 6.3. If L is a frame then (Gal(L, L), ·j) is a quantale.

Now the conclusion that the operation ·j coincides with the Galois composition
◦ introduced in Section 3 follows from the following general result:

Proposition 6.4. Let A, B and C be complete lattices. For every f ∈ Ant(A, B)
and g ∈ Ant(B, C), j(g · f) = g ◦ f .

Proof. By Remark 4.1(2), g · f ≤ g ◦ f . Now let h ∈ Gal(A, C) satisfying h ≥ g · f .
We need to show that h ≥ g ◦ f in order to conclude the proof. Let a ∈ A. Since
(g ◦ f)(a) =

∨{c ∈ C | (a, c) ∈ Ef,g}, by Lemma 3.2 it suffices to check that
c ≤ h(a) whenever (a, c) ∈ {(x, z) ∈ A×C | ∃y ∈ B \ {0} : f(x) ≥ y and g(y) ≥ z},
which is easy: if (a, c) = (x, z) for such a pair (x, z) then c = z ≤ g(y) and
0 �= y ≤ f(x) = f(a), which implies c ≤ (g · f)(a) ≤ h(a). �

Corollary 6.5. If L is a frame then (Gal(L, L), ◦) is a quantale.

7. Applications

For any set X , the power set P(X × X) equipped with the usual composite
relation S ◦ R is a quantale. This quantale of binary relations on X is the basic
structure on which the theory of uniform spaces of Weil [23] relies (the calculus of
relations has also played an important rôle in the interaction between algebra and
logic since the middle of the nineteenth century; a first adequate development of
such algebras was given by de Morgan and Peirce).

Binary relations can be described by polarities (i.e., Galois connections between
power sets) [5]. In fact, there is a one-to-one correspondence between relations
R ⊆ X × X and Galois connections on P(X), that assigns to each relation R the
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Galois connection (R∀, R∀) : P(X) → P(X) defined by

R∀(U) :=
⋂

a∈U

{b ∈ X | (a, b) ∈ R} = {b ∈ X | ∀a ∈ U (a, b) ∈ R} for U ⊆ X

and

R∀(V ) :=
⋂
b∈V

{a ∈ X | (a, b) ∈ R} = {a ∈ X | ∀b ∈ V (a, b) ∈ R} for V ⊆ X.

In particular, Weil entourages E of X (that is, reflexive binary relations on X)
correspond to Galois connections (E∀, E∀) satisfying {x} ⊆ E∀({x}) for all x ∈ X

or, equivalently,
⋃{A ⊆ X | A ⊆ E∀(A)} = X.

Similarly, binary relations may also be described by axialities, that is, residuated
pairs between power sets (see [5] for the details).

Therefore the classical description of uniform spaces, introduced by Weil in terms
of entourages, may be immediately formulated in terms of polarities and axialities.
In all these entourage-like approaches to uniform structures the main tool is a cer-
tain quantic structure. The theory of uniform spaces of Weil can be generalized to
the pointfree context of frames and locales (see [20] for a survey on this generaliza-
tion). Of course, it seems desirable to have characterizations of uniform frames that
are analogous to those of uniformities which are given by polarities and axialities.
In order to pursue this goal one needs “good” quantic structures for Gal(L, L) and
Gal(L, Lop). The former is presented in this paper; we get it precisely in the context
that we need it: when L is a frame. In [7] it is shown how to apply it to get a new
(equivalent) approach to uniform frames. The latter is the well-known quantale of
residuated maps ([5], [21]). By applying it to the study of uniform frames, as it
is shown in [7], one gets precisely Fletcher-Hunsaker-Lindgren’s approach [8]. This
puts some light on the nature of this approach: Galois connections rather than
entourages are at its root.

We can say more; the equivalence between the aproaches to frame uniformities
presented in [8] and [19] is a special case of the following very general phenome-
non on Galois connections, relating the elements of the quantales Gal(L, L) and
Gal(L, Lop). For each f ∈ Gal(L, L) let f↑ : L → L be defined by

f↑(x) :=
∨

{y ∈ L | y ∧ x �= 0, y ≤ f(y)}.
This is a residuated map on L and f ≤ g implies f↑ ≤ g↑. Conversely, given
f ∈ Gal(L, Lop), define f↓ : L → L by putting

f↓(x) :=
∨{

y ∈ L | (x, y) ∈
∨

{a ⊗ a | a is f -small}
}
,

where a ∈ L is said to be f -small whenever a ∧ b �= 0 implies a ≤ f(b). This way
we get a Galois map f↓ on L and f ≤ g implies f↓ ≤ g↓. Since f↑↓ and f↓↑ may
differ from f , these correspondences do not establish a one-to-one correspondence
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between Gal(L, L) and Gal(L, Lop). Nevertheless we have the following (cf. [7] for
the details):

Let us say that a Galois map f is symmetric [7] whenever f+ = f . It is straight-
forward to check that f↓, for every residuated f , is symmmetric. Similarly, a
symmetric residuated map [7] is a residuated map f for which

f(x) ∧ y �= 0 ⇔ x ∧ f(y) �= 0 for all x, y ∈ L.

The map f↑, for every Galois f , is symmetric. Let us also extend the concepts of
polarity and axiality to any frame L by saying that f ∈ Gal(L, L) is a polarity of
L whenever

∨{x ∈ L | x ≤ f(x)} = 1, and that f ∈ Gal(L, Lop) is an axiality of L

if
∨{x ∈ L | x is f -small } = 1. Then, for every symmetric polarity f of L,

f ≤ (f ◦ f)↑↓ and f↑↓ ≤ f ◦ f

and, for every symmetric axiality f of L,

f ≤ (f ◦ f ◦ f)↓↑ and f↓↑ ≤ f [7].

This means that, in the presence of the square-refinement axiom (which asserts
that for every f in the structure there exists g in the structure satisfying g ◦ g ≤ f)
and the axiom of symmetry, we get a bijection. More precisely, the correspondences
f 	→ f↑ and f 	→ f↓ establish an isomorphism between the filters of polarities of L

satisfying the symmetry and square-refinement axioms and the filters of axialities of
L satisfying the symmetry and square-refinement axioms. This fact about Galois
connections explains why the somewhat different approaches to uniform frames
presented in [8] and [19] are equivalent. The details can be found in [7].
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35 (1994), 227–237.

[3] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloquium Publications, Providence, Rhode
Island, 1st edition, 1940 (3rd edition 1967).

[4] T. S. Blyth and M. F. Janowitz, Residuation Theory, International Series of Monographs in
Pure and Applied Mathematics, Vol. 102, Pergamon Press, 1972.
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