
DOI 10.1007/s10898-006-9001-8
Journal of Global Optimization (2006) 36: 89–114 © Springer 2006

A Complementarity-based Partitioning and
Disjunctive Cut Algorithm for Mathematical
Programming Problems with Equilibrium
Constraints

JOAQUIM J. JÚDICE1,∗, HANIF D. SHERALI2,‡, ISABEL M. RIBEIRO3

and ANA M. FAUSTINO3

1Departamento de Matemática da Universidade de Coimbra and Instituto de
Telecomunicações, Coimbra, Portugal (e-mail: joaquim.judice@co.it.pt)
2Grado Department of Industrial & Systems Engineering, Virginia Polytechnic Institute and
State University, Blacksburg, Virginia, United States (e-mail: hanifs@vt.edu)
3Secção de Matemática do Departamento de Engenharia Civil, Faculdade de Engenharia da
Universidade do Porto, Porto, Portugal (e-mail: iribeiro@ fe.up.pt, afausti@ fe.up.pt)

(Received 14 June 2005; accepted in revised form 20 January 2006)

Abstract. In this paper a branch-and-bound algorithm is proposed for finding a global min-
imum to a Mathematical Programming Problem with Complementarity (or Equilibrium)
Constraints (MPECs), which incorporates disjunctive cuts for computing lower bounds and
employs a Complementarity Active-Set Algorithm for computing upper bounds. Computa-
tional results for solving MPECs associated with Bilivel Problems, NP-hard Linear Comple-
mentarity Problems, and Hinge Fitting Problems are presented to highlight the efficacy of
the procedure in determining a global minimum for different classes of MPECs.

Key words: active-set algorithm, branch-and-bound method, complementarity, disjunctive
cuts, global optimization

1. Introduction

In this paper we address the Mathematical Programming Problems with
Complementarity (or Equilibrium) Constraints (MPECs) when all the con-
straints but the complementarity are linear and the objective function is
convex on the convex set defined by the linear constraints. Specifically, we
focus on the following problem

∗ Support for this author was provided by Instituto de Telecomunicações and by FCT under grant
POCTI/35059/MAT/2000.

‡ Support for this author was provided by the National Science Foundation under grant DMI-
0094462.

90 JOAQUIM J. JÚDICE ET AL.

MPEC: Minimize f (y, z),
subject to Ew=q+Mz+Ny,

z�0, w �0, y ∈Ky ,
zT w=0,

(1)

where q ∈R
l, z,w∈R

n, y ∈R
m, E∈R

l×n, M ∈R
l×n, N ∈R

l×m, f :Rm×n→R

is twice continuously differentiable on an open set that contains the feasible
region associated with the linear constraints of the problem, and Ky⊆ R

m

is a convex polyhedron in y given by

Ky=
{
y ∈R

m :Ay=b, y �0
}
,

with A∈R
p×m and b∈R

p. Note that inequality constraints in the definition
of Ky can always be reduced to equalities by introducing slack variables
and accommodating them within (1). In many applications of MPEC the
matrices E and M are square, with E the identity matrix and M a positive
semi-definite (PSD) or positive definite (PD) matrix [8, 11, 13, 20]. More-
over, we assume that the function f is convex on the convex set defined by
the linear constraints.

The MPEC (1) is an NP-hard optimization problem, since the deter-
mination of a feasible solution for MPEC consists of solving a Gener-
alized Linear Complementarity Problem (GLCP), which is NP-hard [15].
Due to this, we expect some sort of enumeration to be required for find-
ing a global minimum to such a problem. In the last few decades, several
algorithms of this sort have been proposed for the MPEC. Among these,
branch-and-bound algorithms [2, 9], a penalty technique [24] and a sequen-
tial complementarity method [12] are considered to be the most efficient
procedures to perform this task. A number of local methods [6–8, 10, 14,
16, 22] have also been recently developed to find stationary points for the
MPEC. Among these techniques, the complementarity active-set algorithm
introduced in [14] is particularly recommended to process the MPEC (1)
when E is the identity matrix and M is a PSD matrix or can be trans-
formed into an MPEC having this property. The algorithm employs an
active-set methodology, maintains complementarity during the entire pro-
cedure, and is shown to be quite efficient in practice for finding stationary
points to the MPEC (1).

In this paper a new branch-and-bound algorithm for the MPEC (1)
with a convex function f is introduced. The algorithm employs the
complementarity active-set algorithm to compute upper-bounds and dis-
junctive cuts to find lower-bounds. An interesting feature of this algo-
rithm that distinguishes it from other branch-and-bound methods is that
branching is done at the stationary points that are achieved during the
procedure. Due to the characteristics of the MPEC at hand, it is shown

PARTITIONING AND DISJUNCTIVE CUT ALGORITHM 91

that the new branch-and-bound method can be implemented within an
active-set code such as Minos [17]. Computational experience with the
algorithm is reported for solving MPECs associated with Bilevel Pro-
grams (BP) [12], Bilinear Programming formulations of LCPs [11, 13], and
Hinge-Fitting Problems (HFP) [20]. The numerical results indicate that
the branch-and-bound algorithm is particularly effective when the global
minimum of the MPEC has a known optimal value. The use of disjunc-
tive cuts can, in certain cases, help the search for a global minimum
for more difficult cases of MPEC where the optimal function value is
not known.

The remainder of this paper is organized as follows. In Section 2, a
branch-and-bound algorithm (Bbaset) for finding a global minimum for
MPEC is discussed. The computation of lower bounds is discussed in
Section 3, while Section 4 addresses the computation of upper bounds.
Finally, a report of the computational experience and some conclusions are
included in the last section.

2. Branch-and-Bound Algorithm

In this section, we describe a branch-and-bound algorithm for finding a
global minimum to the MPEC (1). This algorithm partially explores a
binary tree that is generated according to the dichotomy zi = 0 or wi = 0,
∀i, presented in any complementary solution. Thus, if k is a given node of
the branch-and-bound enumeration tree at any stage of this process, then
two children nodes of the form depicted in Figure 1 are generated.

Based on this partitioning process and by examining the chain from any
node k to the root, we define the following sets:

Jk={i : wi fixed at zero for node k}
Lk={i : zi fixed at zero for node k}. (2)

The corresponding subproblem at node k is as follows

zi=0 wi=0

k

k+1 k+2

Figure 1. Binary tree.

92 JOAQUIM J. JÚDICE ET AL.

MPECJL: Minimize f (z, y),
subject to Ew=Mz+Ny+q,

z�0, w �0
y ∈Ky={y ∈R

m : Ay=b, y �0},
zT w=0,
wi=0, i ∈J ,
zi=0 i ∈L,

(3)

where J =Jk and L=Lk are the sets defined by (2).
Within the framework of a branch-and-bound algorithm, a lower bound

LB(k) for the node k subproblem can be found by solving the convex
relaxation (linear if f is a linear function), obtained upon omitting the
complementarity constraint zT w= 0 in the MPECJkLk

. As we show later,
disjunctive cuts [1, 23] can also be gainfully employed for this purpose.

The Complementarity Active-Set Algorithm (Caset) [14] can be used for
finding upper bounds on the optimal value of MPEC. This algorithm uses
the active-set strategy [18] along with a solution to the GLCP to reduce
the objective value, always maintains complementarity, and finds a station-
ary point for MPEC. Indeed, if (z̄, ȳ) is a stationary point for MPECJkLk

associated with node k, then Ub=f (z̄, ȳ) yields the desired upper bound.
The Caset algorithm is also used in the branching process employed by

the proposed algorithm for generating the tree. Let us assume that the nodes
of the tree generated by the algorithm constitute the elements of the list
L, and let |L | be its cardinality. Suppose further that at node k, the Ca-
set algorithm finds a stationary point (z̄, w̄, ȳ) for MPECJkLk

. If λw
i and

λz
i are the Lagrange multipliers associated with the respective constraints

wi � 0 and zi � 0, that are obtained for this solution, then there are two
possible cases:

1. If

λw
i �0, ∀i /∈Jk and λz

i �0, ∀i /∈Lk,

then (z̄, w̄, ȳ) is a global minimum of MPECJkLk
.

2. If

λw
i <0 for some i /∈Jk, or λz

i <0 for some i /∈Lk

then let λw
i1

<0, . . . , λw
ir

<0 and λz
j1

<0, . . . , λz
js

<0, with r+ s �1. In this
case, based on these multipliers, multiple simultaneous partitions of the
binary tree are generated. Figure 2 depicts the consequent partitioning
of node k that is constructed for the case where r= s=2.
In general this branching of the tree creates (r+ s+1) new active nodes
and (z̄, w̄, ȳ) is a global minimum for MPECJL associated with the

PARTITIONING AND DISJUNCTIVE CUT ALGORITHM 93

Figure 2. Branching scheme.

node |L | +2(r + s)− 1. Therefore this node can be fathomed and so,
just (r + s) active nodes need to be added to the list. It is also impor-
tant to notice that the stationary point (z̄, w̄, ȳ) can be used as an ini-
tial solution for each MPECJL associated with these (r+ s) new nodes
that have been introduced into the list L. In this way, the real number
Val(t)=f (z̄, ȳ) can be associated with each one of these nodes t .

The steps of the branch-and-bound algorithm are formally stated below.

Branch-and-Bound Algorithm

Step 0. Let L={1} be the initial list of active nodes, Ub=∞ and Val(1)=
∞.

Step 1. Optimality – If L = ∅, stop the algorithm. If Ub=∞, then
MPEC has no optimal solution (GLCP has no solution or MPEC is
unbounded). Otherwise, the solution (z̄, w̄, ȳ) associated with Ub<∞
is a global minimum of MPEC and the optimal value is Ub.

Step 2. Node Selection – If L �=∅, choose the node k∈L having the least
value of Val(k), breaking ties by selecting the least-indexed (highest
level) node. Let Jk and Lk be the sets of variables wi and zi fixed
at zero and let xk= (zk,wk, yk) be the initial solution associated with
this node having the value Val(k). Replace L←L\ {k}.

Step 3. Computing a Lower Bound – Find a lower bound Lb(k) at node
k, using xk as an initial solution. If Lb(k)�Ub return to Step 1.

94 JOAQUIM J. JÚDICE ET AL.

Step 4. Computing an Upper Bound – Let MPECJkLk
be defined by (3),

with J = Jk and L= Lk, and let xk be the initial solution for this
node k. Starting with xk, find a feasible solution for MPECJkLk

(that
is, a solution of the associated GLCP). If a solution does not exist,
return to Step 1. Otherwise, find a stationary point xk = (zk,wk, yk)

of MPECJkLk
using the Caset algorithm and set

Ub=min
{
Ub, f (zk, yk)

}
.

Update the incumbent solution (zk,wk, yk) if a decrease occurs in the
value of Ub.

Step 5. Let λw
i , and λz

j be the Lagrange multipliers associated with the
constraints wi �0 and zj �0, respectively, at the stationary point xk=
(zk,wk, yk) calculated in Step 4. If λw

i � 0 for all i /∈ Jk and λz
j � 0

for all j /∈Lk, return to Step 1. Otherwise, let i = i1, . . . , ir /∈ Jk and
j = j1, . . . , js /∈Lk be the respective indices corresponding to λw

i < 0
and λz

j < 0, with r + s � 1. Add (r + s) nodes to the list L accord-
ing to the branching process previously described (see Figure 2). For
each of these nodes, let xk= (zk,wk, yk) be the initial solution and set
Val(k)=f (zk, yk). Return to Step 2.

It follows from the description of this algorithm that at each node, a
GLCP corresponding to the constraints of the MPECJL has to be solved.
This topic is discussed in Section 4. Furthermore, the computation of the
lower bound is based on the solution of the relaxed convex program,
which is obtained from MPECJL by omitting the complementarity con-
straint zT w=0 and augmenting this problem with suitable disjunctive cuts,
to be described in Section 3.

The effectiveness of the proposed branch-and-bound algorithm naturally
depends on computing good quality lower and upper bounds. Some sim-
ple rules can be also incorporated in the algorithm to control the size of
the list L.
• Order of variable indices in the branching process (Step 5)

In the implementation of the branching process of Figure 2, the
pairs of complementary variables (wi, zi) are selected for branching in
increasing order of the (negative) values of the Lagrange multipliers
λw

i and λz
j .

• Node selection (Step 2)
Select the node k having the minimum value of Val(k), where Val(k)
is the objective function value at the initial solution associated with
node k. Break tries by choosing the least-indexed node, i.e., the node
at the highest level in the tree.

PARTITIONING AND DISJUNCTIVE CUT ALGORITHM 95

3. Computation of Lower Bounds

As stated in the previous section, the computation of the lower bound at
each node is based on solving the relaxed convex program, RMPECJL,
obtained from the corresponding MPECJL by omitting the complementar-
ity constraint zT w = 0. However, computational experience with MPECs
[11, 12] has shown that solving this simple relaxed program of each node
does not in general lead to good lower bounds. Therefore, additional dis-
junctive cuts (see [23], for example) may be useful for improving the derived
lower bounds.

Let us consider the optimal solution (z̄, w̄, ȳ) of RMPECJL associated
with a particular node of the tree. If this solution is complementary, then
it provides a new upper bound Ub= f (z̄, ȳ) and the node can be fath-
omed. Otherwise, there exists at least one pair of positive complementary
variables. To explain the disjunctive cut generation process for this solution
(z̄, w̄, ȳ), consider, without loss of generality, the constraints of the relaxed
program RMPECJL in the following form:

Ew=Mz+Ny+q,

Ay=b,

w �0, z�0, y �0,

wi=0, i ∈J,

zi=0, i ∈L.

Then these constraints can be written in the form (where uj can possibly
be infinity)

Cx=g,

0�xj �uj , ∀j

with

g=
[

q

b

]
, C=

[−M E −N

0 0 A

]
, x=

z

w

y

 .

The case where the optimal solution of the relaxed program is basic is
considered first, and the case in which the optimal solution does not ver-
ify this property is treated thereafter. Throughout, we assume that the final
solution obtained by solving the convex relaxation is presented in a simplex
tableau format with the partitioning of the variables into basic, nonbasic,
and superbasic variables, as in [17].

96 JOAQUIM J. JÚDICE ET AL.

3.1. disjunctive cuts for basic solutions

Let us assume that x̄ = (z̄, w̄, ȳ) is a noncomplementary basic solution.
Then there must exist a pair of positive complementary variables (zk,wk)
that are both basic. Let r and s be the basic rows corresponding to these
variables, and let (L,U,J) be the partition associated with this basic solu-
tion, where L and U are the indices of the nonbasic variables that are pres-
ently at their lower and upper bounds, respectively, and J is the index set
of the basic variables. Then, we can write

wk= ḡs−
∑

j∈L
c̄sj xj −

∑

j∈U
c̄sj xj ,

zk= ḡr −
∑

j∈L
c̄rj xj −

∑

j∈U
c̄rj xj ,

where ḡi and c̄ij are the elements of the simplex tableau corresponding to
the basic solution. Imposing the disjunction that wk �0 or zk �0, we get

∑

j∈L
c̄sj xj +

∑

j∈U
c̄sj xj � ḡs

∨ (4)∑

j∈L
c̄rj xj +

∑

j∈U
c̄rj xj � ḡr .

Since uj <∞, ∀j ∈U , then we can write (4)
∑

j∈L
c̄sj xj −

∑

j∈U
c̄sj (uj −xj)� g̃s

∨∑

j∈L
c̄rj xj −

∑

j∈U
c̄rj (uj −xj)� g̃r ,

where

g̃s= ḡs−
∑

j∈U
c̄sjuj >0, and g̃r = ḡr −

∑

j∈U
c̄rjuj >0.

As g̃s and g̃r , are the current positive values of wk and zk, respectively, then
we can divide the two expressions by g̃s and g̃r , respectively, to obtain

∑

j∈L

c̄sj

g̃s

xj −
∑

j∈U

c̄sj

g̃s

(uj −xj)�1

∨
∑

j∈L

c̄rj

g̃r

xj −
∑

j∈U

c̄rj

g̃r

(uj −xj)�1.

PARTITIONING AND DISJUNCTIVE CUT ALGORITHM 97

But

xj �0 and uj −xj �0 for all j ∈L∪U.

If we now choose

dj =

max
{

c̄sj

g̃s

,
c̄rj

g̃r

}
, ∀j ∈L,

min
{

c̄sj

g̃s

,
c̄rj

g̃r

}
, ∀j ∈U,

then the following disjunctive cut is obtained:
∑

j∈L
djxj +

∑

j∈U
(−dj)(uj −xj)�1

that is
∑

j∈L∪U
djxj �λ,

where λ=1+∑
j∈U djuj .

3.2. disjunctive cuts for solutions that are not basic

Analogous to the previous case, let us assume that there exists at least one
pair of positive complementary variables. As the solution is not basic, one
of the following three scenarios can occur:

• Both are basic variables.
• One is a basic variable and the other is a superbasic variable.
• Both are superbasic variables.

Let (zk,wk) be a pair of positive complementary variables. Let us first
assume that these two variables are basic in the rows r and s of the asso-
ciated optimal tableau. Thus, we have

wk= ḡs−
∑

j∈L∪U
c̄sj xj −

∑

j∈S
c̄sj xj and zk= ḡr −

∑

j∈L∪U
c̄rj xj −

∑

j∈S
c̄rj xj ,

where S, L, and U are the index sets of the superbasic variables, and the
nonbasic variables at their lower and upper bounds, respectively. The dis-
junction

wk �0 ∨ zk �0

can thus be restated as

98 JOAQUIM J. JÚDICE ET AL.

∑

j∈L∪U
c̄sj xj +

∑

j∈S
c̄sj xj � ḡr ∨

∑

j∈L∪U
c̄rj xj +

∑

j∈S
c̄rj xj � ḡs .

If x̄j for j ∈ S are the values of the superbasic variables, then we can
rewrite this disjunction as:

∑

j∈L
c̄sj xj −

∑

j∈U
c̄sj (uj −xj)+

∑

j∈S
c̄sj (xj − x̄j)� g̃s (5)

∨∑

j∈L
c̄rj xj −

∑

j∈U
c̄rj (uj −xj)+

∑

j∈S
c̄rj (xj − x̄j)� g̃r , (6)

where

g̃s=ḡs−
∑

j∈U
c̄sjuj−

∑

j∈S
c̄sj x̄j >0, and g̃r=ḡr −

∑

j∈U
c̄rjuj−

∑

j∈S
c̄rj x̄j >0.

We again note that g̃s and g̃r , are the current positive values of wk and zk,
respectively. If S =∅, then the disjunctive cut can be generated as in the
case for basic solutions. Otherwise, we shift indices from S to L or U , as
described below. To do this, we replace each term associated with j ∈S in
(5) and (6) by one of the following expressions:

c̄ij (xj − x̄j)= c̄ij xj − c̄ij x̄j , (7)

c̄ij (xj − x̄j)=−c̄ij (uj −xj)− c̄ij (x̄j −uj) (8)

with i= s, r, where (8) applies only if uj <∞. If we use the expression (7)
we have,

S←S \ {j} , L←L∪{j},
g̃s←gs+ c̄sj x̄j ,
g̃r←gr + c̄rj x̄j .

(9)

On the other hand, (8) leads to the following transformations (where
uj <∞):

S←S \ {j} , U←U ∪{j},
g̃s← g̃s+ c̄sj (x̄j −uj),
g̃r← g̃r + c̄rj (x̄j −uj).

(10)

As before for the generation of the disjunctive cuts, g̃s and g̃r must be
both positive after these transformations. Hence, the options (9) and (10)
must be chosen in such a way that this condition holds, if possible. Three
cases are possible and are discussed below.

PARTITIONING AND DISJUNCTIVE CUT ALGORITHM 99

Case 1. c̄sj �0 and c̄rj �0.
We update S, L, g̃s , and g̃r through (9).

Case 2. c̄sj �0 and c̄rj �0.
If uj <∞, update S, U , g̃s , and g̃r according to (10). Otherwise (uj =
∞), update S, L, g̃s , and g̃r by using (9).

Case 3. c̄sj >0 and c̄rj <0 (or symmetrically, vice versa).
In this case, determine

α=min
{
c̄sj (uj − x̄j), c̄rj (lj − x̄j)

}

and consider the following two possible cases:

1. If α= c̄sj (uj − x̄j), update S, U , g̃s , and g̃r according to (10);
2. If α= c̄rj (lj − x̄j), update S, L, g̃s , and g̃r by using (9).

It is important to point out that in cases 1 and 2 with finite bounds, the
updated values of g̃s and g̃r are nondecreasing. However, if the other cases
occur, we are no longer guaranteed that g̃s and g̃r remain positive. Thus,
at the end of the process we examine the resulting disjunction in the form:

∑

j∈L
c̄sj xj −

∑

j∈U
c̄sj (uj −xj)� g̃s

∨∑

j∈L
c̄rj xj −

∑

j∈U
c̄rj (uj −xj)� g̃r .

If g̃s > 0 and g̃r > 0, then the disjunctive cut can be determined as in case
(I). Otherwise, the disjunctive cut is not generated.

In the case where the solution is not basic and at least one of the com-
plementary variables zk and wk of the pair that violates complementarity
is superbasic, then a pivot operation exchanging this variable with a basic
variable should be performed. If it is possible by pivoting to obtain a rep-
resentation of the current solution in which both the complementary vari-
ables zk and wk are basic, then the foregoing process for the construction
of the disjunctive cut can be applied. Otherwise, the disjunctive cut is not
constructed for this pair.

3.3. example of a disjunctive cut construction

Consider an MPEC with the following set of constraints (GLCP):

2x1+3x2+x3=6,

−x1+x2+x4=1,

xi �0, i=1,2,3,4,

x3x4=0

100 JOAQUIM J. JÚDICE ET AL.

and let x̄ = (2,0,2,3) be a noncomplementary solution that is not basic,
where the basic variables are x3 and x4, the nonbasic variable x2 is at its
lower bound, and the variable x1 is superbasic. Since there exists only one
superbasic variable, we have:

{
x3=2−2(x1−2)−3x2,

x4=3− (−1)(x1−2)−x2.

Then
{

x3 �0 ⇔ 2(x1−2)+3x2 �2,

x4 �0 ⇔ (−1)(x1−2)+x2 �3

and we are in Case 3. As u1=∞, we do:

S←S \ {1} , L←L∪{1}

and update g̃s and g̃r from (7). This yields

g̃s=2+2×2=6,

g̃r =3+ (−1)×2=1.

Since g̃s > 0, g̃r > 0, then the disjunctive cut can be generated according
to

2x1+3x2 �6
or
−x1+x2 �1

〉

⇒
1
3x1+ 1

2x2 �1
or
−x1+x2 �1

〉

⇒ 1
3
x1+x2 �1.

As depicted in Figure 3, this cut deletes the current solution and reduces
the feasible region without removing any complementary solutions.

Solutions of GLCP

Solutions of RMPEC

Cut: 1xx
3

1
21 ≥+

Figure 3. Example of a disjunctive cut application.

PARTITIONING AND DISJUNCTIVE CUT ALGORITHM 101

3.4. application of disjunctive cuts to compute lower bounds

The implementation of the disjunctive cuts is done in Step 3 of the
branch-and-bound algorithm. In this step, at node t , say, a lower bound
Lb(t) for the MPEC is first calculated by solving the relaxed problem
RMPECJtLt

associated with MPECJtLt
in which the complementary con-

straint is relaxed. If Lb(t)�Ub, then the algorithm returns to Step 1. If the
optimal solution is complementary, then this solution provides a new upper
bound Ub, where Ub=Lb(t), and so the algorithm again returns to Step 1.
Otherwise, the optimal solution of RMPECJtLt

is a noncomplementary
solution. For each pair (zk,wk) of positive complementary variables, a cor-
responding disjunctive cut is generated, according to the previously dis-
cussed process, if possible. The relaxed program with the addition of these
cuts is then resolved, a new lower bound Lb(t) is computed, and the
process is repeated. In practice, for each noncomplementary solution, a
number of disjunctive cuts equal to the number of pairs of positive com-
plementary variables is added. However, the generation of too many cuts
should be avoided and imposing a limit on the number of cuts to be added
is advisable.

4. Computing Upper Bounds

As stated in Section 2, computation of upper bounds is achieved using
the Complementarity Active-Set Algorithm (Caset) [14] for finding a sta-
tionary point of the MPECJL associated with each node, as given by (3),
where J ∩ L= ∅ and J ∪ L⊆ {1, . . . , n}. This algorithm needs a solution
of the GLCPJL, which corresponds to the set of constraints of MPECJL.
In [14], it is shown that if J =L=∅, E is the identity matrix and M is a
PSD matrix, then a solution of the corresponding GLCP can be obtained
from a stationary point of the function zT w subject to the set of the linear
constraints of this GLCP. In this section we first investigate if this result
remains valid or not for the GLCPJL. As E is the identity matrix, we con-
sider the following quadratic program:

QPGLCPJL
: Minimize zT (q+Mz+Ny),

subject to (Mz+Ny+q)i �0, i �∈J,

Ay−b=0,

(Mz+Ny+q)i=0, i ∈J,

zi �0, i �∈L,

zi=0, i ∈L,

y �0.

A stationary point for this program must verify the following conditions,
in addition to feasibility in QPGLCPJL

.

102 JOAQUIM J. JÚDICE ET AL.

q+ (M+MT)z+Ny=MT α+ β, (11)

NT z=NT α+AT µ+ γ, (12)

αi �0, αi(Mz+Ny+q)i=0, ∀i �∈J ,
αi unrestricted, ∀i ∈J ,
βi �0, βizi=0 ∀i �∈L,
βi unrestricted, ∀i ∈L,
µ unrestricted,
γ �0, γ T y=0.

Then, the following result holds.

THEOREM 1. Let M ∈PSD.

If (z, y, α,µ,β, γ) is a stationary point for the quadratic program
QPGLCPJL

and αT β �0, then (z,w, y) is a solution of GLCPJL.

Proof. To show that (z,w, y) is a solution of the GLCP, we have to prove
that

zT (q+Mz+Ny)=0.

Multiplying the constraints (11) by (α− z)T , we get

(α− z)T (q+Mz+Ny)= (α− z)T MT (α− z)+ (α− z)T β. (13)

As zT β=0, then

(α− z)T β=αT β.

Similarly, by primal feasibility and complementary slackness, we have

αT (q+Mz+Ny)=
∑

i∈J
αi(q+Mz+Ny)i+

∑

i �∈J
αi(q+Mz+Ny)i=0.

Hence, (13) becomes

−zT (q+Mz+Ny)= (α− z)T MT (α− z)+αT β. (14)

Since by assumption αT β �0 and M ∈PSD, then (α−z)T MT (α−z)�0,
and so by primal feasibility, this implies that

zT (q+Mz+Ny)=0.

Thus, (z, y) is a solution of GLCPJL.

As a consequence of this theorem the following result can be established.

PARTITIONING AND DISJUNCTIVE CUT ALGORITHM 103

THEOREM 2. Let (z, y, α,µ,β, γ) be a stationary point for QPGLCPJL
.

1. If M ∈PD, then

αT β �0⇒ zT w=0, α= z, β=w and αT β=0.

2. If M is skew symmetric (M=−MT), then

αT β �0⇔ zT w=0.

Proof.

1. If αT β � 0, then zT w = 0, by the proof of Theorem 1. By (14) this
implies that αT β = 0 and (α − z)T MT (α − z) = 0. Hence α = z, since
M ∈PD. Therefore by (11), we also have β=q+Mz+Ny=w.

2. If M is skew symmetric, then (α − z)T MT (α − z) = 0. Therefore
zT w=−αT β.

We now provide some sufficient conditions for αtβ � 0 to hold. These
conditions guarantee that a stationary point of QPGLCPJL

is a solution of
GLCPJL.

THEOREM 3. Let M ∈PSD.

If (z, y, α,µ,β, γ) is a stationary point for the quadratic program
QPGLCPJL

and if one of the following conditions holds true:

1. J ∪L=∅
2. zi+wi >0, ∀i ∈J ∪L

3.
∑

i∈J∪L αiβi �0,

then αT β �0 and (z,w, y) is solution of GLCPJL.

Proof. Because αi �0 and βi �0, ∀i /∈J ∪L, we have,

αT β=
∑

i∈J∪L
αiβi+

∑

i /∈J∪L
αiβi �

∑

i∈J∪L
αiβi. (15)

Hence, the following hold true:

1. If J ∪L=∅, then (15) directly yields αT β �0.
2. If zi+wi >0, ∀i ∈J ∪L, then

{
i ∈J ⇒ zi >0 ⇒βi=0
i ∈L⇒ wi >0⇒αi=0,

and so,
∑

i∈J∪L
αiβi=0. Hence αT β �0, by (15).

104 JOAQUIM J. JÚDICE ET AL.

3. More directly, if
∑

i∈J∪L
αiβi �0, then (15) yields αT β �0.

The result now follows, noting Theorem 1.

It follows from this theorem that a stationary point of the quadratic pro-
gram QPGLCPJL

satisfying the strictly complementarity property (zi+wi >0
for all i) provides a solution of GLCPJL.

The next example shows that it is possible to find a point stationary for
QPGLCPJL

that is not a solution of GLCPJL. Let us consider the GLCPJL

[
w1

w2

]
=

[−2
2

]
+

[
1 1
−1 1

][
z1

z2

]
+

[
1
3

]
y,

z1=0,

w1 �0,w2 �0, z2 �0, y �0,

w2z2=0.

Note that M≡
[

1 1
−1 1

]
∈PD, J =∅, and L={1}. Moreover, by also set-

ting z2= 0, we see that this GLCP has infinite solutions of the following
form:

(w1,w2, z1, z2, y)= (−2+y,2+3y,0,0, y), with y �2.

A stationary point (w1,w2, z1, z2, y, α1, α2,µ,β1, β2) for the quadratic
program associated with this GLCP must verify the following conditions

[
w1

w2

]
=

[−2
2

]
+

[
1 1
−1 1

][
z1

z2

]
+

[
1
3

]
y

z1=0
[−2

2

]
+

[
2 0
0 2

][
z1

z2

]
+

[
1
3

]
y=

[
1 −1
1 1

][
α1

α2

]
+

[
β1

β2

]

[
1 3

] [
z1

z2

]
= [

1 3
] [

α1

α2

]
+γ

α1 �0, α1w1=0,
α2 �0, α2w2=0,
β2 �0, β2z2=0,
γ �0, γy=0,
w1 �0,w2≥0, z2 �0, y �0,
β1 unrestricted.

PARTITIONING AND DISJUNCTIVE CUT ALGORITHM 105

To show that there exists a stationary point for QPGLCPJL
that is not a

solution to GLCPJL, we must exhibit a solution to the above system for
which z2 >0 and w2 >0. It is readily verified that the solution

[
w1

w2

]
=

[
0
4

]
,

[
z1

z2

]
=

[
0
2

]
, y=0,

[
α1

α2

]
=

[
6
0

]
,

[
β1

β2

]
=

[−8
0

]
, and γ =0

provides such a stationary point. Note that αT β=−48 ��0 and z1+w1=0.
Since a solution exists to GLCPJL and the constraints of QPGLCPJL

are lin-
ear, there exists a stationary point of QPGLCPJL

that provides a solution

to the underlying GLCP. Indeed, such a solution is given by
[

w1

w2

]
=

[
0
8

]
,

[
z1

z2

]
=

[
0
0

]
, y=2,

[
α1

α2

]
=

[
0
0

]
,
[

β1

β2

]
=

[
0
8

]
, and γ =0. Note that αT β=0

in this case.
Computational experience with MPECs to be reported in next section

has shown that, in general, a solution to GLCPJL is obtained from a sta-
tionary point of the associated QPGLCPJL

. In case this does not happen,
then GLCPJL has to be solved by the enumerative method described in
[13]. It should be noted that the latter algorithm starts by finding a station-
ary point of GLCPJL at the initial node of the binary tree that is generated
through this process.

In order to avoid the use of this latter algorithm in this case, it is more
advisable to keep open the corresponding node until the end of search and
to expect this node to be fathomed in a later stage of the branch-and-
bound algorithm by showing that the lower-bound at this node is greater
than or equal to the current upper-bound. Since we use least lower bound
node selection rule, this would mean breaking ties, if any, in favor of nodes
other than the one pertaining to such a case.

It is also important to note that some structured MPECs the GLCPJL

can be solved by exploiting the special structure of the problems. This is
the case of the MPECs associated with the so-called linear and quadratic
HFP [20], to be discussed later in this paper.

5. Computational Experience

In this section we report some computational experience with the new
branch-and-bound algorithm for solving BP, HFP, and NP-hard linear
complementarity problems (LCP) associated with knapsack problems. All
runs have been performed on a Pentium IV 2.4 GHz machine having
256 MB of RAM.

106 JOAQUIM J. JÚDICE ET AL.

5.1. test problems

The generator for linear and quadratic bilevel problems (QBP) used in
our computations has been developed by Calamai and Vicente [4, 5], and
allows the construction of problems having a known optimal solution. The
BP generated by this technique has the following form:

Minimizex,y Q(x, y)

subject to x �0 and y is an optimal solution of:
Minimizey q(x, y),
subject to A1y+A2x �b,

where Q and q are twice continuously differentiable functions in an open
set that contains the feasible region of BP, x ∈R

n, y ∈R
m, A1∈R

r×m, A2 ∈
R

r×n, and b ∈R
r . Table 1 presents the characteristics of the linear bilevel

problems (LBP) obtained by this generator [14], and Table 2 displays the
specifications for five QBP that have been generated [5]. In these problems
we additionally assume that the feasible region is restricted to the nonneg-
ative orthant, that is, x �0 and y �0. This modification does not alter the
set of local and global minima for these test problems. In Tables 1 and 2,
as well as in the remaining tables of this section, Op.Obj. is the optimal
value of the objective function, while Ng and Ml are the total number of
global and local minima of the problem, respectively.

Using the generator in [4], it is also possible to modify the problems pre-
sented in Table 1 to obtain new LBPs that have the same characteristics

Table 1. Characteristics of LBP problems

Prob n m Op.Obj. Ng Nl

Lbp1 4 2 6.000 1 3
Lbp2 10 5 16.000 2 14
Lbp3 15 10 30.200 1 511
Lbp4 20 7 6.000 1 3
Lbp5 20 7 14.000 4 12
Lbp6 30 20 7.500 1 7
Lbp7 30 20 23.500 8 56
Lbp8 30 50 50.500 4 1020

Table 2. Characteristics of QBP problems

Prob n m Op.Obj. Ng Nl

Qbp1 4 2 0.313 1 3
Qbp2 6 4 0.593 1 15
Qbp3 10 5 0.790 2 14
Qbp4 25 15 1.040 4 28
Qbp5 30 20 2.436 32 8160

PARTITIONING AND DISJUNCTIVE CUT ALGORITHM 107

Table 3. Characteristics of modified LBP problems

Prob vx vy D

Lbp1m (−0.7,0.7,0.1,−0.1) (0.8,−0.6) (20,10,20,10,10,20)
Lbp2m (−0.8,0,0,0.5,0, (0.6,0,0.7, (50,30,80,60,24,64,78,82,

−0.3,0,0,−0.1,0.1) 0.4,−0.3) 38,60,90,28,85,70,38)
(−0.8,0,0,−0.5,0,0.3, (−0.6,0.7,0, (50,30,80,60,24,64,78,82,

Lbp3m 0,0,0.3,0.1,0,0,0,0) 0,−0.4,0,0, 38,60,90,28,85,70,38,25,
0,0,−0.3) 45,36,87,37,75,86,65,24,57)

and solutions as the initial LBPs, but are less sparse. As an illustration,
we performed modifications for the three first problems listed in Table 1
to generate three new LBPs, which are denoted with the same name as the
initial problem but with the addition of the letter ‘M’ (Lbp1m, Lbp2m, and
Lbp3m, respectively). These modifications were conducted using the param-
eters described in [4] as displayed in Table 3.

As a second class of test problems, we considered the NP-hard LCP
associated with knapsack problems [13]. As discussed in [13], the knapsack
problem can be formulated as an LCP in four different manners. We denote
by N1, N2, I or P the four types of LCPs that result from these formu-
lations. Furthermore we use the letter A, B, C to denote knapsack prob-
lems whose right-hand side are generated so that 75%, 50%, or 25% of
the variables are set to one in a feasible solution [13]. Finally the number
t=22,52,102, and 152 is used to denote the dimension of the LCPABt .

The third class of test problems is related to the so-called HFP [3, 19].
As discussed in [20], this problem can be reformulated as a linear or qua-
dratic MPEC, depending on whether the chosen norm is l1 or l2 respec-
tively. The hinge fitting test problems used in our computational experience
are the same as those described in [20].

5.2. determination of a global minimum for MPEC

In this subsection we describe three sets of experiments. In the first exper-
iment we did not use any disjunctive cuts, and we assumed that the opti-
mal value of MPEC is known a priori. Note that, in general, a solution
to the LCP requires the computation of a global minimum to a quadratic
program whose objective function is the function zT w. The optimal value
in this case is known, as the LCP has a solution if and only if there exists
a global minimum for this quadratic program with a value equal to zero.

In the second computational experiment, the performance of the branch-
and-bound algorithm without the incorporation of disjunctive cuts and
without knowledge of the optimal value was studied, while in the third com-
putational experiment the incorporation of disjunctive cuts for finding better
lower bounds was investigated, again assuming an unknown optimal value.

These three experiments are discussed in turn below.

108 JOAQUIM J. JÚDICE ET AL.

5.2.1. No Disjunctive Cuts and Assuming a Known Optimal Value

As stated in [11, 12], and confirmed by our computational experience,
the simple solution of the relaxed convex program at each node does not
generally lead to good lower bounds. In order to assess the best case sce-
nario, in this first experiment, we used the known optimal objective func-
tion value of the MPEC as the lower bound Lb(k) for each node k. Hence,
the overall algorithm termines as soon as the procedure detects an upper-
bound with this optimal value. The results of this experience illustrate
the efficiency of the branching and upper bounding techniques and are
reported in Tables 4 and 5. In these tables, as well as in the sequel, N rep-
resents the dimension of the MPEC, Nc, Nd and N i are, respectively, the
total number of pairs of complementary variables, the number of searched
nodes and the number of iterations (pivot steps) performed by the branch-
and-bound algorithm, T is the total CPU time in seconds for solving the
MPEC, and Op.Obj. is the global minimum of the MPEC.

The results displayed in Tables 4 and 5 show that the process is quite
efficient for finding a global minimum of the MPEC. It should be noted
that in all these test problems, the GLCPJL at each node was always solved
via a stationary point of QPGLCPJL

as discussed in Section 4. This means
that there was no need to use the enumerative method [13] for solving these
GLCPs in order to compute a stationary point of MPECJL at each node.

5.2.2. No Disjunctive Cuts and Unknown Optimal Value

In this second experiment, the MPECs associated with HFP and BP were
solved without previous knowledge of their optimal values and without the
incorporation of disjunctive cuts in the branch-and-bound algorithm. In all
these test problems the value zero was taken as a trivial lower bound for
the objective function value, since this function is either the square of a
given expression, or is the sum of nonnegative variables.

Table 6 presents the results obtained in the solution of the euclidean
HFP. In this table, as well as in the sequel, the additional parameters N is,
T s, and Nds denote, respectively, the number of iterations (pivotal oper-
ations), the time in CPU seconds, and the number of searched nodes until
detecting the best incumbent solution.

The results presented in Table 6 shows that when the optimal objec-
tive function value is equal to zero, the algorithm easily obtains the global
minimum for the problem, revealing little sensitivity to the dimension of
the problem. In the remaining cases, the difficulty of finding an optimal
solution increases with the dimension of the problem. In Problem 4, the
solution was interrupted because the maximum imposed limit of 107 iter-
ations (pivot steps) was exceeded.

PARTITIONING AND DISJUNCTIVE CUT ALGORITHM 109

Table 4. Branch-and-bound algorithm for MPECs with known optimal value

Prob Nc N N i T Nd Op. Obj.

LBP

Lbp1 12 12×28 14 0.02 2 6.0000
Lbp1m 12 12×28 10 0.01 1 6.0000
Lbp2 30 30×70 47 0.03 15 16.0000
Lbp2m 30 30×70 21 0.02 1 16.0000
Lbp3 55 55×125 182 0.05 114 30.2000
Lbp3m 55 55×125 87 0.06 5 30.2000
Lbp4 48 48×116 35 0.02 2 6.0000
Lbp5 48 48×116 37 0.02 2 14.0000
Lbp6 110 110×250 65 0.06 3 7.5000
Lbp7 110 110×250 81 0.03 3 23.5000
Lbp8 190 190×410 283 0.02 125 50.5000

QBP

Qbp1 8 8×20 12 0.02 2 0.3125
Qbp2 16 16×38 25 0.02 4 0.5925
Qbp3 20 20×50 28 0.00 2 0.7900
Qbp4 60 60×145 65 0.02 2 1.0400
Qbp5 80 80×190 135 0.08 16 2.4356

KNAPSACK

N1a1 44 44×110 66 0.02 2 0.0000
N1a2 104 104×260 11894 2.71 280 0.0000
N1a3 204 204×510 206 0.06 2 0.0000
N1a4 304 304×760 528 0.17 2 0.0000
N1b1 44 44×110 304 0.19 18 0.0000
N1b2 104 104×260 72 0.05 2 0.0000
N1b3 204 204×510 415 0.17 2 0.0000
N1b4 304 304×760 205 0.09 2 0.0000
N1c1 44 44×110 163 0.09 6 0.0000
N1c2 104 104×260 217 0.06 2 0.0000
N1c3 204 204×510 208 0.11 2 0.0000
N1c4 304 304×760 162 0.11 2 0.0000

Ia1 44 44×110 66 0.05 2 0.0000
Ia2 104 104×260 11886 2.85 280 0.0000
Ia3 204 204×510 206 0.06 2 0.0000
Ia4 304 304×760 528 0.27 2 0.0000

Comparing the computational effort until first detecting an optimal solu-
tion with the effort of the entire process, we conclude that the difference is
not very significant in most of the test examples, except for the most chal-
lenging cases such as problems 2–4.

It is also worth mentioning that the objective function value found for
Problem 4 by the branch-and-bound method is about 83% better than the
one obtained in [20], and that obtained for Problem 3 is slightly better than
the value 0.1256 reported in [20].

Table 7 displays the computational results obtained for the linear HFP.
The conclusions observed for the quadratic problems generally hold for this
linear case as well. Again, the results presented in Table 7 shows that when

110 JOAQUIM J. JÚDICE ET AL.

Table 5. Branch-and-bound algorithm for MPECs with known optimal value (cont.)

Prob Nc N N i T Nd Op. Obj.

KNAPSACK

Ib1 44 44×110 304 0.06 18 0.0000
Ib2 104 104×260 72 0.02 2 0.0000
Ib3 204 204×510 415 0.19 2 0.0000
Ib4 304 304×760 205 0.09 2 0.0000
Ic1 44 44×110 163 0.05 6 0.0000
Ic2 104 104×260 217 0.06 2 0.0000
Ic3 204 204×510 208 0.08 2 0.0000
Ic4 304 304×760 162 0.09 2 0.0000

N2a1 44 44×110 191 0.06 2 0.0000
N2a2 104 104×260 443 0.14 2 0.0000
N2a3 204 204×510 974 0.41 2 0.0000
N2a4 304 304×760 593 0.27 2 0.0000
N2b1 44 44×110 1357 0.25 46 0.0000
N2b2 104 104×260 638 0.14 2 0.0000
N2b3 204 204×510 256 0.09 2 0.0000
N2b4 304 304×760 682 0.36 2 0.0000
N2c1 44 44×110 29 0.08 2 0.0000
N2c2 104 104×260 1126 0.33 22 0.0000
N2c3 204 204×510 1269 0.33 2 0.0000
N2c4 304 304×760 733 0.36 2 0.0000

Pa1 44 44×110 328 0.11 27 0.0000
Pa2 104 104×260 3457 0.56 113 0.0000
Pa3 204 204×510 1516 0.36 3 0.0000
Pa4 304 304×760 1102 0.36 2 0.0000
Pb1 44 44×110 34 0.03 2 0.0000
Pb2 104 104×260 154 0.05 2 0.0000
Pb3 204 204×510 726 0.17 2 0.0000
Pb4 304 304×760 3864 1.23 8 0.0000
Pc1 44 44×110 31 0.06 1 0.0000
Pc2 104 104×260 72 0.02 1 0.0000
Pc3 204 204×510 209 0.08 2 0.0000
Pc4 304 304×760 343 0.11 2 0.0000

Table 6. Branch-and-bound algorithm for the Euclidean HFP

Prob Nc N N i T Nd N is T s Nds Op.Obj.

1 30 60×100 14597 1.77 227 11972 1.47 174 1.2024
2 35 70×125 271215 42.08 1855 200661 31.93 1347 0.5307
3 40 80×150 2910363 596.30 15974 1529475 309.62 8252 0.1226
4 45 90×175 >107 2968.49 44255 3019314 807.54 12660 0.0029
5 50 100×200 54826 19.0 44 54826 19.0 44 0.0000
6 55 110×225 632 0.25 1 632 0.25 1 0.0000
7 60 120×250 2268 1.03 2 2268 1.03 2 0.0000
8 65 130×275 698 0.38 1 698 0.38 1 0.0000
9 70 140×300 589 0.41 1 589 0.41 1 0.0000

10 75 150×325 823 0.52 1 823 0.52 1 0.0000

PARTITIONING AND DISJUNCTIVE CUT ALGORITHM 111

Table 7. Branch-and-bound algorithm for the Linear HFP

Prob Nc N N i T Nd N is T s Nds Op.Obj.

1 30 60×130 119039 10.47 5879 1973 0.19 22 4.3627
2 35 70×160 438178 28.84 11673 1878 0.17 25 2.6287
3 40 80×190 2264946 189.04 54638 117415 10.01 2728 1.1231
4 45 90×220 >107 1242.56 242161 1267456 140.76 29178 0.1457
5 50 100×250 432 0.09 2 432 0.09 2 0.0000
6 55 110×280 193 0.06 1 193 0.06 1 0.0000
7 60 120×310 221 0.09 1 221 0.09 1 0.0000
8 65 130×340 233 0.13 1 233 0.13 1 0.0000
9 70 140×370 222 0.16 1 222 0.16 1 0.0000

10 75 150×400 255 0.19 1 255 0.19 1 0.0000

the optimal objective value is equal to zero, the process quickly finds an
optimal solution, while in the first four test problems, the solution diffi-
culty increases in proportion to the dimension of the problem. Problem
4 was prematurely interrupted because the algorithm exceeded the maxi-
mum limit of 107 iterations (pivot steps). Also, for the first four problems,
the algorithm is able to find an optimal solution, but requires significantly
more effort in verifying its optimality. As stated before, for these linear and
quadratic MPECs associated with HFP, the GLCPJL instances examined
by the branch-and-bound algorithm are easily solved by a special purpose
algorithm [21].

Table 8 displays the results obtained for the solution of the BP with the
branch-and-bound algorithm. As for the HFP, the results show that the
algorithm efficiently finds an optimal solution, but needs greater effort in

Table 8. Branch-and-bound algorithm for BP

Prob N i T Nd N is T s Nds Op.Obj.

LBP
Lbp1 17 0.02 8 14 0.02 2 6.0000
Lbp1m 28 0.05 4 10 0.05 1 6.0000
Lbp2 113 0.02 112 47 0.00 15 16.0000
Lbp2m 114 0.03 75 21 0.00 1 16.0000
Lbp3 3104 1.26 6144 182 0.05 114 30.2000
Lbp3m 3105 0.81 2305 87 0.03 5 30.2000
Lbp4 38 0.00 8 35 0.00 2 6.0000
Lbp5 76 0.00 48 46 0.00 3 14.0000
Lbp6 74 0.03 20 65 0.02 3 7.5000
Lbp7 438 0.23 576 81 0.03 3 23.5000
Lbp8 49243 47.77 131072 316 0.12 127 50.5000

QBP
Qbp1 15 0.00 5 12 0.00 2 0.3125
Qbp2 55 0.02 16 25 0.00 4 0.5925
Qbp3 61 0.02 16 28 0.00 2 0.7900
Qbp4 143 0.02 32 74 0.02 6 1.0400
Qbp5 24630 7.08 8192 1581 0.47 496 2.4356

112 JOAQUIM J. JÚDICE ET AL.

verifying its optimality. So the incorporation of disjunctive cuts to boost
the lower bound computation in the algorithm can potentially improve its
performance. This is the subject of the next experiment.

5.2.3. Disjunctive Cuts and Unknown Optimal Value

In this third experiment the disjunctive cuts were implemented in the
branch-and-bound algorithm according to the procedure discussed in Sec-
tion 3. Table 9 displays the results obtained in the solution of the LBP and
QBP test problems, where Ct denotes the maximum number of cuts gen-
erated at each node.

Comparing Tables 8 and 9, it is evident that the use of the disjunctive
cuts in the branch-and-bound algorithm is a beneficial strategy, at least for
this class of test problems. Indeed, the algorithm finds an optimal solution
in many cases without having to enumerate beyond the initial node. But
such an effectiveness of the disjunctive cuts does not hold in general. For
example, when the disjunctive cuts were used in the solution of the HFP,
they did not produce much improvement in the performance of the process.
Therefore, the computational experience with this version of the method in
the solution of the HFP is not presented in this section.

Since disjunctive cuts are relatively easy to generate and can potentially
reduce the search process by tightening the lower bounding relaxations, we

Table 9. Branch-and-bound algorithm with disjunctive cuts

Prob N i T Nd Ct Obj

LBP
Lbp1 22 0.00 1 11 6.000
Lbp1m 197 0.02 5 12 6.000
Lbp2 53 0.01 1 24 16.000
Lbp2m 62 0.01 1 17 16.000
Lbp3 102 0.03 1 51 30.200
Lbp3m 116 0.02 1 35 30.200
Lbp4 43 0.02 1 11 6.000
Lbp5 59 0.00 1 23 14.000
Lbp6 74 0.01 1 16 7.500
Lbp7 105 0.03 1 38 23.500
Lbp8 170 0.14 1 74 50.500

QBP
Qbp1 22 0.00 3 2 0.313
Qbp2 45 0.00 5 4 0.593
Qbp3 78 0.02 9 4 0.790
Qbp4 164 0.05 16 5 1.040
Qbp5 4807 1.16 515 13 2.436

PARTITIONING AND DISJUNCTIVE CUT ALGORITHM 113

recommend their incorporation within the implementation of the proposed
branch-and-bound algorithm.

References

1. Balas, E. (1979), Disjunctive programming, Annals of Discrete Mathematics 5, 3–51.
2. Bard, J. and Moore, J. (1990), A branch-and-bound algorithm for the bilevel linear pro-

gram, SIAM Journal on Scientific and Statistical Computing 11, 281–292.
3. Breiman, L. (1993), Hinging hyperplanes for regression, classification and function

approximation, IEEE Transactions on Information Theory 39, 999–1013.
4. Calamai, P. and Vicente, L. (1993), Generating linear and linear-quadratic bilevel pro-

gramming problems, SIAM Journal on Scientific Computing 14, 770–782.
5. Calamai, P. and Vicente, L. (1994), Generating quadratic bilevel programming test prob-

lems, ACM Transactions on Mathematical Software 20, 103–119.
6. Facchinei, F., Jiang, H. and Qi, L. (1999), A smoothing method for mathematical pro-

grams with equilibrium constraints, Mathematical Programming 85, 107–134.
7. Fletcher, R., Leyffer, S. and Toint, P. (2002), On the global convergence of a filter-sqp

algorithm, SIAM Journal on Optimization 13(1), 44–59.
8. Fukushima, M., Luo, Z. and Pang J. (1998), A globally convergent sequential quadratic

programming algorithm for mathematical programs with linear complementarity con-
straints, Computational Optimization and Applications 10, 5–34.

9. Hansen, P., Jaumard, B. and Savard, G. (1992), New branch-and-bound rules for linear
bilevel programming, SIAM Journal on Scientific Computing 13(5), 1194–1217.

10. Jiang, H. and Ralph, D. (2000), Smooth sqp methods for mathematical programs with
nonlinear complementarity constraints, SIAM Journal on Optimization 10(3), 779–808.

11. Júdice, J. and Faustino, A. (1991), A computational analysis of lcp methods for bilinear
and concave quadratic programming, Computers and Operations Research 18, 645–654.

12. Júdice, J. and Faustino, A. (1992), A sequential lcp algorithm for bilevel linear program-
ming, Annals of Operations Research 34, 89–106.

13. Júdice, J., Faustino, A. and Ribeiro, I. (2002), On the solution of np-hard linear com-
plementarity problems, TOP-Sociedad de Estatística e Investigacion Operativa 10(1), 125–
145.

14. Júdice, J., Sherali, H., Ribeiro, I. and Faustino, A. (2005), A complementarity active-set
algorithm for mathematical programming problems with equilibrium constraints, Work-
ing Paper.

15. Júdice, J. and Vicente, L. (1994), On the solution and complexity of a generalized linear
complementarity problem, Journal of Global Optimization 4, 415–424.

16. Luo, Z., Pang, J. and Ralph, D. (1997), Mathematical Programs with Equilibrium Con-
straints, Cambridge University Press, New York.

17. Murtagh, B. and Saunders, A. (1983), MINOS 5.0 User’s Guide, Technical Report SOL
83-20, Department of Operations Research, Stanford University.

18. Nocedal, J. and Wright, S. (1999), Numerical Optimization, Springer-Verlag, New York,
N.Y.

19. Pucar, P. and Sjoberg, J. (1998), On the hinge finding algorithm for hinging hyperplanes,
IEEE Transactions on Information Theory 44, 1310–1318.

20. Queiroz, M., Humes Jr, C. and Júdice, J. (2004), On finding global optima for the hinge
fitting problem, Computers and Operations Research 31, 101–122.

21. Ribeiro, I. (2005), Global Optimization and Applications to Structural Engineering (in
Portuguese), PhD thesis, University of Porto, Porto.

114 JOAQUIM J. JÚDICE ET AL.

22. Scholtes, S. (1999), Active set methods for inverse linear complementarity problems,
Judge Institute of Management Research Paper Series No. 28/1999.

23. Sherali, H. and Shetty, C. (1980), Optimization with disjunctive constraints, In: Beckman,
M. and Künzi, H. (eds.), Lecture Notes in Economics and Mathematical Systems, Vol. 181,
Springer-Verlag, New York, N.Y.

24. White, D. and Annandalingam, G. (1993), A penalty function approach for solving
bilevel linear programs, Journal of Global Optimization 3, 397–419.

