
Ann Oper Res (2006) 147:5–21

DOI 10.1007/s10479-006-0068-x

A comprehensive survey on the quickest path problem

Marta M. B. Pascoal · M. Eugénia V. Captivo ·
João C. N. Clı́maco

Published online: 22 August 2006
C© Springer Science + Business Media, LLC 2006

Abstract This work is a survey on a special minsum-maxmin bicriteria problem, known as

the quickest path problem, that can model the transmission of data between two nodes of a

network. Moreover, the authors review the problems of ranking the K quickest paths, and the

K quickest loopless paths, and compare them in terms of the worst-case complexity order.

The classification presented led to the proposal of a new variant of a known K quickest

loopless paths algorithm. Finally, applications of quickest path algorithms are mentioned,

as well as some comparative empirical results.

Keywords Bicriteria problem . Minsum-maxmin . Quickest path . Paths ranking

The quickest path problem is a particular case of optimal path problems, whose objective

function evaluates the time taken to transmit a given amount of data through each path. This

function depends on two parameters, an additive function that represents the path delay, and

a bottleneck function that represents the path capacity or bandwidth. Thus, the resolution of

This work was partially supported by FEDER and OE, under the projects POCTI/MAT/139/2001,
POCTI/ISFL-1/152, POSI/SRI/37346/2001, and POCTI/MAT/37707/2001.

M. M. B. Pascoal (�)
Departamento de Matemática—Centro de Informática e Sistemas,
Apartado 3008, 3001-454 Coimbra, Portugal
e-mail: marta@mat.uc.pt

M. E. V. Captivo
Universidade de Lisboa, Faculdade de Ciências, Centro de Investigação Operacional, Bloco C6,
Campo Grande, 1749-016 Lisboa, Portugal
e-mail: mecaptivo@fc.ul.pt

J. C. N. Clı́maco
Universidade de Coimbra, Faculdade de Economia, Avenida Dias da Silva, 165, 3004-512, Coimbra,
Portugal

Instituto de Engenharia de Sistemas e Computadores—Coimbra, Rua Antero de Quental, 199,
3000-033 Coimbra, Portugal
e-mail: jclimaco@inescc.pt

Springer

6 Ann Oper Res (2006) 147:5–21

Table 1 Worst-case complexities for quickest path algorithms in a network with n nodes, m
arcs and r bandwidth values

Time Space

Quickest path algorithms

Chen and Chin O(r (m + n log n)) O(r (n + m))

Rosen, Sun, and Xue O(r (m + n log n)) O(n + m)

Martins and Santos O(r (m + n log n)) O(n + m)

K -quickest path algorithms

Chen (with Martins et al.) O(m2 + mn log n + K n + K 3/2 log K) O(Krn + m)

K -quickest simple path algorithms

Rosen, Sun, and Xue O(K nr (m + n log n)) O(K n + m)

Chen (with Yen) O(K nr (m + n log n)) O(Krn + m)

Chen (with Katoh et al.) O(Kr (m + n log n)) O(Krn + m)

Pascoal, Captivo, and Clı́maco O(Kr (m + n log n)) O(K n + m)

a quickest path problem involves the minimisation of the first function and the maximisation

of the second one, resulting in a minsum-maxmin problem. In the sequel some of the

research papers on this subject are reviewed and compared. This paper also focuses on the

determination of K paths and of K loopless paths according to the total transmission time.

Potential applications are analysed and comparative studies of the algorithms summarised

are referred to. Table 1 summarises the problems considered in this paper, the algorithms

reviewed to solve them, besides the corresponding time and space bounds.

Section 1 is devoted to the introduction of the quickest path problem, whereas Section 2

addresses its generalisation, the ranking of K quickest paths and loopless paths. Section

2 also presents a new version of an algorithm for the K quickest loopless paths problem.

Finally, Section 3 concerns the potential applications and the computational efficiency of

quickest path algorithms.

1. The minsum-maxmin bicriteria problem

Let (N ,A) be a network with n nodes and m arcs, and s, t ∈ N (with s �= t) be the initial

and terminal nodes of (N ,A), respectively.

A path p from i ∈ N to j ∈ N in (N ,A) is a sequence of the form p = 〈i =
v1, v2, . . . , j = v�(p)〉, where �(p) denotes the length of p, that is, its number of nodes,

and (vk, vk+1) ∈ A, for any k ∈ {1, . . . , �(p) − 1}. Nodes i and j are called the initial and

terminal nodes of path p, respectively. Let x and y be two nodes of p, then subp(x, y) rep-

resents its subpath from x to y. A cycle (or loop) is a path with no repeated nodes, with

the exception of the first one, which coincides with the last. Therefore, a path is said to be

loopless (or simple) when it has no repeated nodes.

The set of paths (loopless paths) from i to j in (N ,A) will be denoted by Pi j (P̄i j), while

P (P̄) will denote the set Pst (P̄st). The concatenation of two paths, p ∈ Pi j and q ∈ P j�, is

denoted by p � q and is the path from i to � formed by path p followed by q . In the sequel

each arc (i, j) will be associated with two values, di j ∈ IR and bi j ∈ IR+.

One of the most well-known bicriteria problems is the minsum-maxmin problem, the

purpose of which is to minp∈P{d(p)} and maxp∈P{b(p)}, with d(p) = ∑
(i, j)∈p di j and b(p) =

min(i, j)∈p{bi j }, referred to in the classical paper by Hansen (1980). This problem considers

that a path p dominates q iff d(p) ≤ d(q) and b(p) ≥ b(q), and at least one of the inequalities

is strict. A path q is non-dominated if there exists no other path p dominating it. Hansen

Springer

Ann Oper Res (2006) 147:5–21 7

proposes an algorithm that alternates the determination of shortest paths and the deletion of

arcs with certain capacities, later adapted by Martins (1984) for another bicriteria problem,

where one of the objective functions is of the maxmin type, and algorithms to compute the

optimal path for the other function are known.

1.1. The quickest path problem

There are several applications of the minsum-maxmin problem and related problems as re-

ferred to by Hansen. One of those problems, first mentioned by Moore (1976), is related to the

transmission of data or to road transportation, where each edge is simultaneously associated

with a cost, delay or time value, di j ∈ IR, and an upper bound on the capacity or bandwidth of

the arc, bi j ∈ IR+. If one considers the transmission of σ ∈ IR+ data units of information (u.i.)

from s to t , T (p) = d(p) + σ
b(p)

represents the total time for that transmission throughout

p ∈ P . The aim of the quickest path problem is to find a path p∗, such that T (p∗) is minimum

over P . In the following di j will be called the delay of arc (i, j) and bi j its bandwidth. Unlike

the well-known shortest path problem, the quickest path problem does not satisfy the Opti-

mality Principle. Therefore a labelling algorithm cannot be used to solve it. However, Martins

and Santos (1997), and later Boffey et al. (2002), demonstrated that any optimal solution of

the quickest path problem is a non-dominated solution of (minP{d(p)}, maxP{b(p)}). Thus,

although several algorithms for the quickest path problem are known in the literature, they

are based on the computation of non-dominated paths for the above problem, followed by

the selection of the one with the lowest total transmission time.

The algorithms described below are based on the transformation of the quickest path

problem into the shortest path problem, by using three approaches: computation of the shortest

path from s to any node in a new network, and computation of the shortest paths from s to t
in a sequence of subnetworks of the original, without considering the pre-determined paths,

or using this information.

Chen and Chin’s algorithm. The first algorithm developed specifically for this problem was

proposed by Chen and Chin (1990), who noted that b(p) ∈ {b1, . . . , br } for any path p ∈ P ,

where b1, . . . , br , with r ≤ m, represent the distinct arc bandwidth values and are arranged

so as to satisfy b1 ≤ · · · ≤ br . Furthermore, when the arcs bandwidth values are constant, the

quickest path problem is reduced simply to the shortest path problem. Thus, Chen and Chin

proposed enlarging the original network, by creating r levels, where each level corresponds

to a subnetwork of the original, with a fixed bandwidth lower bound. The connection between

levels is achieved by duplicating the arcs in A, starting at a level whose bandwidth is higher

than the arriving one. The new network will be denoted by (N ′,A′), and is defined as:

– N ′ = {1i , . . . , ni : 1 ≤ i ≤ r},
– A′ = {(xi , yi) : (x, y) ∈ A ∧ bxy ≥ bi ∧ 1 ≤ i ≤ r} ∪ {(xi , y j) : (x, y) ∈ A ∧ bxy =

b j ∧ 1 ≤ j < i ≤ r}.
The new initial node is sr and t1, . . . , tr are all terminal nodes. In addition, the arcs’ delay

is maintained in the new network.

The paths of the augmented network, starting at sr and ending at node t i , correspond to

the paths from s to t in (N ,A), with a bandwidth of, at least, bi , which leads to:

Theorem 1. Let pi be the shortest path (in terms of delay) from sr to t i in (N ′,A′), for any
i = 1, . . . , r . Then, the quickest path in P is p∗ ∈ P such that T (p∗) = min1≤i≤r {T (pi)}.

Springer

8 Ann Oper Res (2006) 147:5–21

Fig. 1 Network (N ,A), σ = 100

Fig. 2 Chen and Chin’s network (N ′,A′)

Chen and Chin’s proposal consists of constructing (N ′,A′), computing the shortest path

from sr to any t i , i = 1, . . . , r , and choosing, from those paths, the one that corresponds to

the quickest path from s to t in the original network, according to Theorem 1.

An illustrative example of the algorithm summarised is now presented. The intention is

to compute the quickest path to transmit σ = 100 u.i. from 1 to 6 in the undirected network

(N ,A) represented in Fig. 1.

When applying Chen and Chin’s algorithm, the augmented network of (N ,A), which is

depicted in Fig. 2, is constructed, and the tree of shortest paths from s3 to any node in that

network is computed. Then the authors compute the paths 〈13, 23, 41, 61〉, 〈13, 33, 53, 42, 62〉
and 〈13, 33, 53, 63〉, respectively from s3 to t1, t2 and t3, with total transmission times of

85, 80 and 75 in the original network. The optimal solution is the one corresponding to

〈1, 3, 5, 6〉.

Rosen et al.’s algorithm. After the publication of Chen and Chin’s work, Rosen, Sun, and

Xue (1991) presented another algorithm to determine the quickest path. It improved on the

former insofar as it does not enlarge the original network. However, the main idea is still to

compute several paths, with the best values in one of the objective functions of the bicriteria

problem, while ensuring that the other function remains constant. This goal is achieved by

considering networks with b1, . . . , br as lower bounds of the arcs bandwidth and determining

the shortest paths in these networks. The arcs with a given bandwidth are deleted, as new

shortest paths are determined. Let (N ,A(w)), with w ≥ 0, be the subnetwork of (N ,A)

where A(w) = {(i, j) ∈ A : bi j ≥ w}.

Theorem 2. Let pi be the shortest path from s to t in (N ,A(bi)), i = 1, . . . , r . Then, the
quickest path in P is p∗ such that T (p∗) = min1≤i≤r {T (pi)}.

Rosen et al. have also pointed out that, if pi is a shortest path in (N ,A(bi)) and b(pi) > bi ′ ,

then pi is also a shortest path in (N ,A(bi ′)), and therefore, the number of paths computed is

Springer

Ann Oper Res (2006) 147:5–21 9

Fig. 3 Rosen et al.’s networks

smaller than r .1 In using this approach one can alternate between finding shortest paths and

removing the arcs with a bandwidth no greater than the bandwidth of the computed path. As

before, the quickest path is the computed path registering the minimum total transmission

time.

It should be noted that, as each (N ,A(bi)), i = 1, . . . , r , is a subnetwork of (N ,A) and

(N ,A(bi)) is a subnetwork of (N ,A(bi−1)), the only modification between two consecutive

networks is the deletion of some of the arcs, unlike the previous approach, by Chen and Chin,

which enlarges the original network.

Using Rosen et al.’s algorithm to solve the quickest path problem in the previous example,

the paths q1 = 〈1, 2, 4, 6〉 (b(q1) = 2, d(q1) = 35), q2 = 〈1, 3, 5, 4, 6〉 (b(q2) = 4, d(q2) =
55)2, and q3 = 〈1, 3, 5, 6〉 (b(q3) = 5, d(q3) = 55), are computed in networks (N ,A(2)),

(N ,A(4)) and (N ,A(5)), respectively, as displayed in Fig. 3. Since q3 records the best total

transmission time of the three paths determined (T (q1) = 85, T (q2) = 80, T (q3) = 75), this

path proves to be the solution to the problem.

Martins and Santos’ algorithm. Martins and Santos (1997) explicitly interpreted the quickest

path problem as the bicriteria problem seen above, and used the algorithm specifically for

minsum-maxmin problems published earlier by Martins (1984). The result is very similar

to the algorithm of Rosen et al.. However, Martins and Santos noted that in order to avoid

determination of dominated solutions, in other words to solve fewer shortest path problems,

the widest-shortest path (that is, the shortest path with a maximum bandwidth) should be

found. This can be performed by adapting Dijkstra’s algorithm, Dijkstra (1959), and labelling

a node when its delay is improved (as in the original algorithm), or when there is a tie in the

delay but the bandwidth is improved—see Martins et al. (1999a). As the set of arcs decreases

along the sequence of networks (N ,A(b1)), . . . , (N ,A(br)), Martins and Santos’ algorithm

(as well as Rosen et al.’s) halts when no further paths exist to determine in one of these

networks. As mentioned above, the use of the bicriteria variation of Dijkstra’s algorithm

enables one to omit some bandwidth levels that would lead to dominated paths.

Following up the previous example, Martins and Santos’ algorithm determines the widest-

shortest path in (N ,A), and obtains q1 = 〈1, 2, 4, 6〉. Thus, after deleting the arcs with

bandwidths at the most b(q1) = 2 the widest-shortest path of the network is q2 = 〈1, 3, 5, 6〉
and, as b(q2) = 5, no further paths are found. Therefore the quickest path from 1 to 6 is

q2, but only two paths were obtained (while, using Rosen et al.’s method three paths were

computed).

1 Since d(p) < d(q) and b(p) ≥ b(q) implies that p dominates q, and therefore q is not a quickest path.
2 Note, however, that we could also have q2 = 〈1, 3, 5, 6〉, since it has the same delay as path 〈1, 3, 5, 4, 6〉.

Springer

10 Ann Oper Res (2006) 147:5–21

Boffey et al.’s algorithm. As mentioned above, Boffey et al. have also related the quickest

path problem and the bicriteria problem (minP{d(p)}, maxP{b(p)}). On the basis of the

procedure introduced by Rosen et al., Boffey et al. (2002) applied a method already used by

Boffey (1996) for minsum-maxmin problems. Its application sets out to take advantage of the

similarity between two successive Rosen et al. networks. Since the only difference between

two of these successive networks is that the set of arcs of each is a subset of the set of arcs of

the previous one, the proposal of Boffey et al. consists of replacing some resolutions of the

shortest path problem by a simplified version of Dijkstra’s algorithm. However, empirical tests

performed by these authors show no substantial improvement on the algorithm’s efficiency.

In terms of the number of operations undertaken, all the three algorithms, by Chen and

Chin, Rosen et al. and Martins and Santos, are reported to have an O(r (m + n log n)) worst-

case. This corresponds to computing the shortest path from s to any node in a network

with rn nodes and rm arcs, or to solving r shortest path problems in a sequence of (N ,A)

subnetworks, using Dijkstra’s algorithm. This worst-case occurs when r shortest paths have

to be found. But it should be remembered that the number of paths computed can be smaller

than r , when using Rosen et al.’s or Martins and Santos’ methods. It should also be noted

that the adaptation of Dijkstra’s algorithm to find the widest-shortest path shares the same

order of complexity as the usual algorithm.

Chen and Chin’s algorithm proves to be worse in terms of space complexity,O(r (m + n)),

as they have to store the augmented network (N ′,A′), whereas in the two other algorithms,

it is simply of O(m + n).

Albeit not included in this survey, several variants of the quickest path problem have also

been studied. Among them we can mention Chen and Hung (1993), Lee and Papadopoulou

(1993), who consider the quickest path among all node pairs, Calvete (2004), Lin (2003) and

Rao (2004) who address non-deterministic values associated with the arcs, and Kagaris et al.

(1999) who propose parallel algorithms to find the quickest path in sparse networks, besides

algorithms to find the dynamic quickest path problem, where the parameters of the problem

may change over time.

2. The K quickest path problems

One of the methods known for finding the non-dominated solutions of bicriteria path problems

was presented in Clı́maco and Martins (1981, 1982). Their algorithm ranks paths according

to one of the objective functions, that is, it lists the best path, the second best path and

so forth. Moreover, in analysing these paths, only the non-dominated ones are selected.

This leads to the interest in ranking algorithms, which also have applications in other areas

such as sensitivity analysis, dealing with the possible uncertainty of the problem, optimal

path problems with additional constraints, or simply the generation of alternative solutions.

Although most of the research about ranking problems has focused on the shortest paths, the

ranking of solutions for other combinatorial problems, such as spanning trees, assignments or

shortest paths in time-window networks, among others, has also been studied. Determination

of a sequence of non-decreasing “cost” quickest paths is one of the subjects that has merited

the attention of researchers. This problem is usually considered in the form of two versions:

the general case, known as the K quickest path problem, where every path is allowed, and

the constrained case, known as the K quickest loopless path problem, where only loopless

paths can be determined. Its goal is to compute paths (or loopless paths) p1, . . . , pK between

a pair of nodes, by non-decreasing order of the total transmission time, that is, such that

T (p1) ≤ · · · ≤ T (pK) ≤ T (p), for any p ∈ P − {p1, . . . , pK } (or p ∈ P̄ − {p1, . . . , pK },
for loopless paths).

Springer

Ann Oper Res (2006) 147:5–21 11

In the following, the k quickest path (loopless path) will be denoted pk = 〈v1 =
s, . . . , v�(pk) = t〉, for k = 1, . . . , K .

2.1. Ranking K quickest paths

As far as we know the only published work concerning this specific problem is due to Chen

(1993), and is based on the transformation of the K quickest path problem into the ranking

of shortest paths in a special sequence of subnetworks of (N ,A). Although some algorithms

for ranking optimal paths can be adapted for the K quickest path problem, Chen’s proposal

is the one with the best theoretical worst-case behaviour.

Chen’s algorithm. Similar to the method used in the quickest path problem, Chen’s idea is to

fix a bandwidth bound, while ranking shortest paths in a sequence of networks, and to keep

one candidate to next k-th quickest path for each bandwidth value. The usage of Rosen et al.’s

networks is not convenient, since the same path can be found in several networks.3 Therefore,

to prevent the determination of repeated paths, Chen considers the set of arcs arranged as

A = {a1, . . . , am} such that ba1
≥ · · · ≥ bam , and the sequence of networks {(N ,A(ai))}m

i=1,

where A(ai) = {a1, . . . , ai }, i = 1, . . . , m. Furthermore, he determines ai -constrained paths

in each (N ,A(ai)), i = 1, . . . , m, that is, paths from s to t with the form q � ai � q ′, where

q and q ′ are paths from s to x and from y to t in (N ,A(ai)), and ai = (x, y).

As one may see, p1 is the shortest ai -constrained path in (N ,A(ai)), for some i ∈
{1, . . . , m}, with the minimum total transmission time, and that, for k ≥ 1, pk+1 is the j-th

shortest ai -constrained path in (N ,A(ai)), with i ∈ {1, . . . , m} and j ∈ {1, . . . , k + 1}, thus

differing from the previously determined paths p1, . . . , pk , which registers a minimum total

transmission time. Let ai be the arc (x, y) and pk
ai

be the k-th shortest ai -constrained path

in (N ,A(ai)), i ∈ {1, . . . , m}, and assume paths p1
ai
, . . . , pk

ai
have been computed. Chen

has also proved that the next shortest ai -constrained path is pk+1
ai

= p j
sx � ai � p j ′

yt , with

j, j ′ ∈ {1, . . . , k + 1}, where pg
uv denotes the g-th shortest path from node u to node v in

(N ,A(ai)). According to this result, if the k shortest paths from s to x and from y to t , are

already known and stored by the algorithm, then the computation of pk+1
ai

can be summarised

in the following two steps:

– find the next shortest path from s to x and the next shortest path from y to t in (N ,A(ai)),

– choose the quickest path from the paths with the form pk+1
ai

= p j
sx � ai � p j ′

yt , j, j ′ ∈
{1, . . . , k + 1}.

Algorithm 1. Chen’s algorithm to rank K quickest paths
Sort A by non increasing order of the arc bandwidths

For (i ∈ {1, . . . , m}) Do
A′ ← {a1, . . . , ai }
Pi ← the shortest ai -constrained path in (N ,A′)

EndFor
k ← 0

While (k < K and {P1, . . . , Pm} �= ∅) Do
k ← k + 1

pk ← Pi such that T (Pi) = min1≤ j≤m{T (Pj)}
A′ ← {a1, . . . , ai }

3 For instance, in the example, path 〈1, 3, 5, 6〉 is the shortest path in, both, (N ,A(4)) and (N ,A(5))

Springer

12 Ann Oper Res (2006) 147:5–21

Pi ← the next shortest ai -constrained path in (N ,A′)
EndWhile

Now consider the ranking of K = 3 quickest paths from 1 to 6 in the network

(N ,A) of Fig. 1 with Chen’s algorithm. First assume that A = {(1, 2), (1, 3), (2, 3),

(3, 5), (4, 6), (5, 6), (4, 5), (2, 4)}. Then the shortest ai -constrained paths found are 〈1, 3, 5〉 �
〈5, 6〉 in (N ,A(5, 6)) (with a transmission time of 75), 〈1, 3, 5〉 � 〈5, 4〉 � 〈4, 6〉 in

(N ,A(4, 5)) (with a transmission time of 80), and 〈1, 2〉 � 〈2, 4〉 � 〈4, 6〉 in (N ,A(2, 4))

(with a transmission time of 85). Thus, p1 = 〈1, 3, 5, 6〉, and is replaced by the 2-nd short-

est (5, 6)-constrained path in (N ,A(5, 6)), 〈1, 2, 3, 5〉 � 〈5, 6〉 (with a transmission time of

80), and the second quickest path will be p2 = 〈1, 3, 5, 4, 6〉 in (N ,A(4, 5)). Then, path

〈1, 2, 3, 5〉 � 〈5, 4〉 � 〈4, 6〉 (with a transmission time of 85) replaces p2 in (N ,A(4, 5)).

Therefore p3 = 〈1, 2, 3, 5, 6〉 and the algorithm halts.

According to Chen, given an arc ai = (x, y) the next shortest ai -constrained path, pk+1
ai

,

can be found by selecting the pair of paths (p j
sx , p j ′

yt) with a minimum delay, such that j × j ′ ≤
k + 1, while ignoring previously obtained paths. Thus, this step takes O(

√
k + k log k), for

any k ∈ {1, . . . , K }. The number of operations to find the next shortest path from s to x and

from y to t depends on the ranking shortest paths algorithm employed. For instance, by using

Martins et al.’s algorithm, Martins, Pascoal, and Santos (1999b), one may conclude that, in a

worst-case scenario, the K quickest paths can be found by following Chen’s algorithm with

O(m2 + mn log n + K n + K 3/2 log K) operations.

2.2. Ranking K quickest loopless paths

The algorithms for this problem can be classified in two groups, according to the methodology

used. On the one hand we have adaptations of K shortest loopless path algorithms, while on

the other hand we can consider a generalisation of the methods used to solve the quickest

path problem. In the first group we describe the approaches by Rosen, Sun, and Xue (1991),

which is an adaptation of the algorithm by Yen (1971), and Pascoal, Captivo, and Clı́maco

(2005), who, in turn, adapted the algorithm by Katoh, Ibaraki, and Mine (1982). In the

second we review the algorithm by Chen (1994). Furthermore, we propose a new variant of

Chen’s algorithm, with the same worst-case theoretical complexity, but we anticipate that its

behaviour will be better in practice.

Rosen et al.’s algorithm. The algorithm presented in Rosen, Sun, and Xue (1991) was the first

one to compute K quickest loopless paths. It uses a set X where the loopless paths generated

are stored, and each pk is the quickest path selected from X , when k − 1 loopless paths have

already been determined, k ∈ {1, . . . , K }. The first path stored in X is the quickest one, and

after p1 is selected, other paths with a short transmission time are generated.

Let pk = 〈v1 = s, . . . , v�(pk) = t〉 be the k quickest loopless path from s to t , k =
1, . . . , K . Yen (1971) proposed a partition of the set of loopless paths in order to rank

shortest loopless paths, such that

P̄ − {p1} =
�(p1)⋃
i=1

P̄1(vi) ,

P̄ j
(
vd(pk)

) − {pk} =
�(pk)⋃

i=d(pk)

P̄k(vi), k > 1,

(1)

Springer

Ann Oper Res (2006) 147:5–21 13

where P̄ j (vi) is the set of the loopless paths, different from p1, . . . , p j , that have subp j (s, vi)

as the initial subpath, common with path p j , for some 1 ≤ j < k. When a pk is picked up

in X , k ≥ 1, the set P̄ j (vd(pk)) where pk was determined is considered, which means that

it is partitioned by computing the shortest loopless path in each of the subsets in (1). Yen

used this method for ranking shortest loopless paths, after noticing that the best deviation

from pk at node vi is subpk (s, vi) � qi , where qi is the shortest path from vi to t , when the

nodes v1, . . . , vi−1 and the arcs (vi , x) ∈ {p1, . . . , pk} are removed from the network. Then

pk is called the parent of the new paths determined (which are known as their sons or pk

deviations) and vd(pk) the deviation node of pk .

Partition (1) is independent of the objective function considered and can still be used,

so long as we are able to find the best constrained path in P̄k(vi). Rosen et al. proved the

following result,

Theorem 3. Let p = 〈s = v1, . . . , vα〉be a loopless path from s tovα in (N ,A), and (N ′,A′)
be a network where N ′ = N − {v1, . . . , vα−1}, and A′ = A|N ′ . Let q j be the shortest path
from vα to t in (N ′,A′(b j)) and p j = p � q j , j = 1, . . . , r . Then:

1. T (p j) = d(p) + d(q j) + σ
min{b(p),b(q j)} , j = 1, . . . , r ;

2. the quickest path with p as the initial subpath is p∗, such that T (p∗) = min1≤ j≤r {T (p j)}.

Thus, the best path in P̄k(vi) may be determined by resorting to the following steps:

– construct (N ′,A′) such that N ′ = N − {v1, . . . , vi−1} and A′ = A|N ′ − {(vi , vi+1)} −
{(vd(pk), x) ∈ {p1, . . . , pk}},

– apply Theorem 3 and compute the shortest path in (N ′,A′(b j)), j = 1, . . . , r ,

then choose the loopless path subpk (s, vi) � q j with the minimum total transmission time.

Algorithm 2. Rosen et al.’s algorithm to rank K quickest loopless paths
p ← the quickest loopless path from s to t in (N ,A); vd(p) ← s
X ← {p}
k ← 0

While (X �= ∅ and k < K) Do
k ← k + 1

pk ← the quickest loopless path in X /* pk = 〈v1, . . . , v�(pk)〉 */

X ← X − {pk}
A′ ← A − {(vd(pk), x) ∈ p1, . . . , pk−1}
For (vi ∈ {vd(pk), . . . , v�(pk)}) Do

A′ ← A′ − {(vi , vi+1)}
q∗ ← the quickest path from s to t , with initial path subpi (s, vi) in (N ,A′)
vd(q∗) ← vi

X ← X ∪ {q∗}
EndFor

EndWhile

Procedure 1. The quickest loopless path from s to t, containing p = 〈s = v1, . . . , vα〉, in
(N ,A)

(b1, . . . , br) ← arc bandwidth values by increasing order

N ′ ← N − {v1, . . . , vα−1}; A′ ← A|N ′

L ← ∅
Springer

14 Ann Oper Res (2006) 147:5–21

i ← 1

While (i ≤ r) Do
A′ ← {(x, y) ∈ A′ : bxy ≥ bi }
q ← the shortest path from vα to t in (N ′,A′)
L ← L ∪ {q}
j ← k such that b(q) = bk ; i ← j + 1

EndWhile
p∗ ← the quickest path in {p � q : q ∈ L}

Now consider the ranking of K = 3 quickest loopless paths from 1 to 6 in the net-

work (N ,A) of Fig. 1. Rosen et al.’s algorithm begins by determining the quickest

path from 1 to 6 in the network (N ,A) of Fig. 1, p1 = 〈1, 3, 5, 6〉 (with transmis-

sion time of 75). Its nodes are then analysed and the new loopless paths stored in

the set of candidates X = {〈1, 2, 3, 5, 6〉, 〈1, 3, 2, 4, 6〉, 〈1, 3, 5, 4, 6〉}. Since loopless path

〈1, 2, 3, 5, 6〉 is the quickest in X , it is p2 (with a transmission time of 80), which

is selected and analysed, generating 〈1, 2, 4, 6〉 and 〈1, 2, 3, 5, 4, 6〉. Set X is updated

as X = {〈1, 3, 2, 4, 6〉, 〈1, 3, 5, 4, 6〉, 〈1, 2, 4, 6〉, 〈1, 2, 3, 5, 4, 6〉}, where we can pick up

p3 = 〈1, 3, 5, 4, 6〉 (with a transmission time of 80).

Pascoal et al.’s algorithm. Recently Pascoal, Captivo, and Clı́maco (2005) have proposed an

approach analogous to Rosen et al.’s algorithm, since they adapted Katoh et al.’s algorithm

for ranking shortest loopless paths in undirected networks. As in Rosen et al.’s, a set X of

candidates is used, where each pk is selected, k = 1, . . . , K . The difference between the two

algorithms is the partition used to generate new candidates to store in X , as presented by

Katoh, Ibaraki, and Mine (1982). Let p j be the parent of some loopless path pk and:

– vδ be the deviation node of a son of p j , previous to vd(pk) and farther from s,

– vγ be the deviation node of another son of p j , closer to s but after vd(pk).

If P̄ j
k (vδ, vγ) denotes the set of loopless paths of the form q ′ = subp j (s, vδ) � q �∈

{p1, . . . , pk}, where q is a path from vδ to t that deviates from p j before vγ , then,

P̄ − {p1} = P̄1
2 (s, t) ,

P̄ j
k (vδ, vγ) − {pk} = P̄ j

k+1

(
vδ, vd(pk)

) ∪ P̄ j
k+1

(
vd(pk), vγ

) ∪ P̄k
k+1

(
vd(pk)+1, t

)
, k > 1.

(2)

As before, this partition does not depend on the objective function considered. It can therefore

be applied to the ranking of loopless paths according to the total transmission time. The

analysis of each pk consists of determining the quickest loopless path in each of the above

subsets, namely:

– the best path in P̄ j
k+1(vδ, vd(pk)), i.e., which deviates from p j between vδ and vd(pk),

– the best path in P̄ j
k+1(vd(pk), vγ), i.e., which deviates from p j between vd(pk) and vγ ,

– and the best path in P̄k
k+1(vd(pk)+1, t), i.e., which deviates from pk between vd(pk)+1 and t .

To find the quickest loopless path in some P̄ j
k (vx , vy) Katoh et al. calculate the shortest

path from vx to t , that deviates from p j before vy , after deleting the nodes of subp j (s, vx−1)

and the arcs in paths p1, . . . , p j−1, that is, the second shortest loopless path in that network,

and concatenate it with subp j (s, vx). This method cannot be used in a straightforward manner,

Springer

Ann Oper Res (2006) 147:5–21 15

since when T (q ′) < T (q ′′) one may not be sure that T (subp j (s, i) � q ′) < T (subp j (s, i) � q ′′),
with q ′, q ′′ ∈ P̄i t . Thus the determination of the quickest path from vx to t that deviates before

vy is not sufficient. However, Pascoal et al. proved a result analogous to Theorem 3, which

reduces the problem of finding the quickest path in P̄ j
k (vx , vy) to several (at most r) shortest

path related problems.

Theorem 4. Let vx and vy be two nodes of a loopless path p from s to t in (N ,A), and let qi

be the shortest loopless path from s to t, deviating from p between vx and vy , in (N ,A(bi)),
i = 1, . . . , r . Then, the quickest loopless path from s to t, that deviates from p between vx

and vy in (N ,A) is q∗ such that T (q∗) = min1≤i≤r {T (qi)}.

Let (N ′,A′) be a network (similar to the one used by Rosen et al.), such that N ′ =
N − {v1, . . . , vx−1} and A′ = A|N ′ − {(vx , vx+1)} − {(vd(pz), vl) ∈ {p1, . . . , p j } ∧ d(p j) ≤
d(pz) ≤ x}. Then the shortest path from s to t that deviates from p j between vx and vy in

some (N ,A(bi)), with i ∈ {1, . . . , r}, is qi = subp j (s, vx) � q , where q is the shortest path

to deviate from subp j (vx , t) before vy in (N ,A(bi)). Still the remaining problem of finding

such a path q is different from the one solved by Katoh et al., where the path subp j (vx , t) is

always the shortest path in (N ′,A′), which may not be so in this case.

Let Ts be the tree of shortest paths from s to any node, and Tt be the tree of shortest

paths from any node to t . Let Ts(i) also be the path from s to i ∈ N in Ts , and ξs(i) be

the index of the node where Ts(i) and p∗ = Ts(t) = Tt (s) split (analogously for Tt (i) and

ξt (i)). It can be assumed, with no loss of generality, that ξs(i) ≤ ξt (i), i ∈ N—see Katoh,

Ibaraki, and Mine (1982)—, and thus the shortest path q in (N ,A(bi)), that deviates from

p′ = 〈s = v1, v2, . . . , v�(p′) = t〉 before vα ∈ p′, can be obtained according to the following

scheme:

– if p′ �= Ts(t) then q = Ts(t) = Tt (s),

– or else, p′ = Ts(t) = Tt (s) and Katoh et al.’s result can be applied, which states that q is

the shortest path of type 1 or 2:

1. Ts(i) � Tt (i), with i ∈ N such that ξs(i) < α,

2. Ts(i) � 〈i, j〉 � Tt (j), with (i, j) ∈ A − (Ts ∪ Tt) and ξs(i) < α.

Algorithm 3. Pascoal et al.’s algorithm to rank K quickest loopless paths
p1 ← the quickest path from s to t in (N ,A)

p ← the quickest loopless path from s to t , that deviates from p1 before t
X ← {p}
k ← 1

While (X �= ∅ and k < K) Do
k ← k + 1

pk ← the quickest loopless path in X /* pk = 〈v1, . . . , v�(pk)〉 */

X ← X − {pk}
p j ← loopless path parent of pk

vδ ← deviation node of a son of p j farther from s and preceding vd(pk)

vγ ← deviation node of a son of p j closer to s and following vd(pk)

/* The quickest loopless path in P̄ j
k+1(vδ, vd(pk)) */

A′ ← A − {(vδ, x) : (vδ, x) ∈ {p j , . . . , pk−1}}
Pc ← the quickest loopless path, that deviates from p j between vδ and vd(pk) in (N ,A′)
X ← X ∪ {Pc}

Springer

16 Ann Oper Res (2006) 147:5–21

/* The quickest loopless path in P̄ j
k+1(vd(pk), vγ) */

A′ ← A′ − {(vd(pk), x) : (vd(pk), x) ∈ {p j , . . . , pk}}
Pb ← the quickest loopless path, that deviates from p j between vd(pk) and vγ in (N ,A′)
X ← X ∪ {Pb}

/* The quickest loopless path in P̄k
k+1(vd(pk)+1, t) */

Pa ← the quickest loopless path, that deviates from pk between vd(pk)+1 and

t in (N ,A′)
X ← X ∪ {Pa}

EndWhile

Procedure 2. The quickest loopless path that coincides with q up to vα and deviates before
vβ

(b1, . . . , br) ← arc bandwidth values by increasing order

N ′ ← N − {v1, . . . , vα−1}; A′ ← A|N ′

L ← ∅
i ← 1

While (i ≤ r) Do
A′ ← {(x, y) ∈ A′ : bxy ≥ bi }
p ← the shortest loopless path from vα to t , that deviates from q before vβ in (N ′,A′)
L ← L ∪ {p}
j ← k such that b(p) = bk ; i ← j + 1

EndWhile
p∗ ← the quickest loopless path in {q � p : p ∈ L}

In the following procedure π s
i denotes the delay of path Ts(i), for any i ∈ N , and analo-

gously for π t
i .

Procedure 3. The shortest loopless path that deviates from q before vα in (N ,A)

Compute Ts

If (q is not defined or q �= Ts(t)) Then p ← Ts(t)
Else

Compute Tt

d∗ ← +∞; L ← {s}
While (L �= ∅) Do

i ← element of L; L ← L − {i}
If (ξs(i) = ξt (i)) Then

For ((i, j) ∈ A − Ts − Tt such that ξs(i) < ξt (j)) Do
If (π s

i + di j + π t
j < d∗) Then

d∗ ← π s
i + di j + π t

j ; i∗ ← i ; j∗ ← j
EndIf

For ((i, j) ∈ Ts such that ξs(j) < α) Do L ← L ∪ { j}
EndIf
If (ξs(i) < ξt (i)) Then

If (π s
i + π t

i < d∗) Then
d∗ ← π s

i + π t
i ; i∗ ← i

EndIf
For ((i, j) ∈ Ts such that ξs(j) < α) Do L ← L ∪ { j}

EndIf

Springer

Ann Oper Res (2006) 147:5–21 17

EndWhile
If ((i∗, j∗) is defined) Then p ← Ts(i∗) � 〈i∗, j∗〉 � Tt (j∗)

If (i∗ is defined) Then p ← Ts(i∗) � Tt (i∗)

EndIf

Fewer loopless paths need be determined when applying Pascoal et al.’s algorithm to the

K = 3 quickest loopless path problem in the network of Fig. 1. In fact, after computing

p1 = 〈1, 3, 5, 6〉 (with T (p1) = 75), p2 = 〈1, 2, 3, 5, 6〉 (with T (p2) = 80) is the quickest

path from 1 to 6 that deviates from p1 between nodes 1 and 6. From p2, loopless paths

〈1, 3, 5, 4, 6〉, different from p2 and that deviates from p1 after 1, and 〈1, 2, 4, 6〉, that deviates

from p2 after 1, are computed. Then X = {〈1, 3, 5, 4, 6〉, 〈1, 2, 4, 6〉} and p3 = 〈1, 3, 5, 4, 6〉
(with T (p3) = 80), since that is the quickest path in that set.

Chen’s algorithm. In 1994 Chen looks at the problem from a different perspective, analogous

to the one used in the quickest path problem. In fact, Chen (1994) transforms the K quickest

loopless path problem into that of finding K shortest loopless paths m times. However, with

a minor modification his procedure may compute K shortest loopless paths only r times,

based on the following result,

Theorem 5. Let p jk be the k-th shortest loopless path from s to t in (N ,A(b j)), for k ∈
{1, . . . , K } and j ∈ {1, . . . , r}. Then, pi , the i-th quickest path from s to t in (N ,A), is such
that pi ∈ {p jk : 1 ≤ k ≤ i ∧ 1 ≤ j ≤ r}.

Chen finds the K shortest loopless paths in every network of the sequence (N ,A(b1)), . . . ,

(N ,A(br)), and then selects the K quickest loopless paths from the Kr candidates obtained,

at most, p11, . . . , p1K , . . . , pr1, . . . , pr K , which are paths p1, . . . , pK . Since a path can

belong to several networks, it can be computed more than once. Therefore it is possible to

store only the distinct loopless paths in the set of candidates which can be represented by a

heap. It should be noted that any shortest loopless path ranking algorithm can be applied and

this may modify the theoretical and computational behaviour.

The main difference between this algorithm and the other ranking quickest loopless path

algorithms described here lies in the fact that, in this case, the paths computation and the se-

lection of p1, . . . , pK is separated into two phases, while in the other algorithms, computation

and selection alternate.

Algorithm 4. Chen’s algorithm to rank K quickest loopless paths
(b1, . . . , br) ← arc bandwidth values by increasing order

A′ ← A
X ← ∅
For (i ∈ {1, . . . , r}) Do

A′ ← {(x, y) ∈ A′ : bxy ≥ bi }
For (j ∈ {1, . . . , K }) Do

p j ← the j-th shortest loopless path in (N ,A′)
X ← X ∪ {p j }

EndFor
EndFor
k ← 0

Springer

18 Ann Oper Res (2006) 147:5–21

While (X �= ∅ and k < K) Do
k ← k + 1

pk ← the quickest loopless path in X
X ← X − {pk}

EndWhile

Returning to the network of Fig. 1 where K = 3 quickest loopless paths are to be de-

termined, Chen’s algorithm solves the K = 3 shortest loopless paths problem in networks

(N ,A(2)), (N ,A(4)) and (N ,A(5)), thus obtaining the loopless paths:4

– q2
1 = 〈1, 2, 4, 6〉, q2

2 = 〈1, 3, 2, 4, 6〉 and q2
3 = 〈1, 2, 4, 5, 6〉 in (N ,A(2));

– q4
1 = 〈1, 3, 5, 4, 6〉, q4

2 = 〈1, 3, 5, 6〉 and q4
3 = 〈1, 2, 3, 5, 4, 6〉 in (N ,A(4));

– q5
1 = 〈1, 3, 5, 6〉 and q5

2 = 〈1, 2, 3, 5, 6〉 in (N ,A(5)).

By selecting the 3 quickest paths among the distinct ones, q2
1 , q2

2 , q2
3 , q4

1 , q4
2 , q4

3 , q5
2 , we have

p1 = q4
2 , p2 = q5

2 and, finally, p3 = q4
1 .

As mentioned above, besides the motivation, Chen’s algorithm also differs from Rosen

et al.’s and Pascoal et al.’s algorithms in the methodology. In fact, only when all the Kr
paths have been computed and stored are we able to pick up p1, . . . , pK . This also requires

that K be known in advance. In terms of the execution time, this results in a sharp increase

in the phase of determining the Kr paths, and it becomes almost irrelevant when simply

selecting the K best ones among those paths. On the other hand, Rosen et al.’s and Pascoal et

al.’s algorithms alternate determination of each pk (selected in X) and computation of new

candidates stored in X .

Furthermore, Chen’s algorithm has to determine more paths than the two other algorithms.

As for the memory, both Rosen et al. and Pascoal et al. use O(m + K n) worst-case space,

when considering that only K loopless paths are stored, while in this respect, Chen’s ap-

proach is of O(m + Krn). The computational time depends on the use of Yen’s or Katoh

et al.’s approach. Therefore, Rosen et al. and Chen’s algorithms (if using Yen’s method)

have O(Krn(m + n log n)) worst-case, since, for each pk analysed, they solve O(n) short-

est path problems in each of the r subnetworks of (N ,A). Here Pascoal et al. and Chen’s

algorithms (with Katoh et al.’s method) solve at the most three shortest path problems in

(N ,A(b1)), . . . , (N ,A(br)), for each pk . Therefore the time complexity is of O(Kr(m +
n log n)). It should be noted that Katoh et al.’s method, and therefore Pascoal et al.’s and

Chen’s algorithm, when using the former researcher’s method, are only valid in undirected

networks.

A new variant of Chen’s algorithm. As mentioned above, in terms of efficiency, it is dif-

ficult to compare the methods of Rosen et al. and of Pascoal et al., which determine and

select each pk along the algorithm, with Chen’s method, which separates determination and

selection of paths into two distinct phases. It was also noted that the two phases are re-

flected in the need for a larger storage space. These two issues may be solved by adapting

Chen’s algorithm for ranking simple paths. This variant is also inspired in Chen’s algo-

rithm for ranking unconstrained paths, as it keeps several candidates for p1, . . . , pK , each

of a certain type. Whenever one of these candidates is chosen as some pk , it is replaced

by another loopless path of the same type. This variant is an immediate consequence of

Theorem 5,

4 Note that, in this case all the loopless paths from 1 to 6 have to be determined.

Springer

Ann Oper Res (2006) 147:5–21 19

Corollary 1. Let p jk be the k-th shortest loopless path from s to t in (N ,A(b j)), for any
k ∈ {1, . . . , K } and j ∈ {1, . . . , r}. Then, pi is the quickest loopless path in {p jk : 1 ≤ k ≤
i ∧ 1 ≤ j ≤ r} − {p1, . . . , pi−1}.

Therefore, not unlike Chen’s algorithm for loopless paths, one intends to transform

the ranking of the K quickest loopless paths into the ranking of K shortest loopless

paths in (N ,A(b1)), . . . , (N ,A(br)). The new variant maintains the shortest loopless path

that has not been chosen as some pk , k ∈ {1, . . . , K }, in each (N ,A(bi)), which will

be denoted by Pi , i = 1, . . . , r . Loopless path pk is found by selecting a Pi such that

T (Pi) = min1≤ j≤r {T (Pj)}, once p1, . . . , pk−1 are determined. After that Pi is updated with

the next shortest loopless path in (N ,A(bi)), obtained by any algorithm for ranking shortest

loopless paths. Since the same loopless path can be traversed in several networks, some of

them can be computed more than once, therefore pk = Pi if and only if Pi �∈ {p1, . . . , pk−1}.
The new variant of Chen’s algorithm is summarised below.

Algorithm 5. Variant of Chen’s algorithm to rank K quickest loopless paths
(b1, . . . , br) ← arc bandwidth values by increasing order

A′ ← A
For (i ∈ {1, . . . , r}) Do

A′ ← {(x, y) ∈ A′ : bxy ≥ bi }
Pi ← the shortest path in (N ,A′)

EndFor
k ← 0

While (k < K and {P1, . . . , Pr } �= ∅) Do
p ← Pi such that T (Pi) = min1≤ j≤r {T (Pj)}
A′ ← {(x, y) ∈ A : bxy ≥ bi }
Pi ← the next shortest loopless path in (N ,A′)
If (p �∈ {p1, . . . , pk}) Then

k ← k + 1

pk ← p
EndIf

EndWhile

In applying Chen’s new variant to the previous example we obtain q2
1 = 〈1, 2, 4, 6〉,

q4
1 = 〈1, 3, 5, 4, 6〉 and q5

1 = 〈1, 3, 5, 6〉 in networks (N ,A(2)), (N ,A(4)) and (N ,A(5)),

respectively, thus concluding that p1 = 〈1, 3, 5, 6〉. This loopless path is replaced by the

second shortest path in (N ,A(5)), q5
2 = 〈1, 2, 3, 5, 6〉, which is also p2. No new loopless

path is found now, and so p3 = q4
1 = 〈1, 3, 5, 4, 6〉. Note that only 4 loopless paths were

computed, instead of the 7 determined with the former algorithm.

The theoretical worst-case for this variant coincides with Chen’s original algorithm for

the K quickest loopless paths, since the number of loopless paths listed is, at most, Kr. So

this variant is of O(Knr) in memory and of O(Knr(m + n log n)) or O(Kr(m + n log n)) in

time, when using Yen’s or Katoh et al.’s algorithm, respectively, as the original algorithm.

However, in an average case the new variant is expected to achieve better results than the

former version.

It is also possible to adopt a similar strategy to rank paths eventually with loops, although

in this case the complexity order is worse than the one established by Chen for that problem.

Springer

20 Ann Oper Res (2006) 147:5–21

3. Applications and empirical experiments

This formulation of quickest path problems tends naturally to be used to model transmission

issues, where the required transmission time depends both on the size of the data and the

characteristics of the network. This includes transportation and telecommunication problems,

such as the transportation of cargo between two locations, road transportation, or information

to be sent via a communications network. Very recently Clı́maco et al. (2003) presented the

application of Pascoal et al.’s algorithm to the Internet packet routing. Their work focuses

on determining alternative routes for data packets, taking into account uncertainty and/or

reliability issues, and reports the corresponding computational results.

Despite the practical interest of the quickest path problem and the quickest paths ranking

problem, to the best of our knowledge the work by Pascoal, Captivo, and Clı́maco (2005) is

the only one to present comparative computational results. The versions tested in their work

concern the ranking of loopless path algorithms by Rosen et al., Chen (using both Yen and

Katoh et al.’s algorithms) and Pascoal et al.. The computational tests reported considered

random, complete and grid undirected networks. The results differ in the case of Rosen et al.’s

or Pascoal et al.’s approaches, that use a K shortest loopless paths algorithm-like method,

besides Chen’s approach. The main conclusion to be drawn from these results, in keeping

with the theoretical complexities of the algorithms, is that, in general, the algorithms based

on Katoh et al.’s method outperform the ones based on Yen’s method.

As mentioned above, the experimental results are also presented in Clı́maco et al. (2003),

concerning the application of Pascoal et al.’s algorithm to the specific problem of routing

packets in the Internet.

References

Boffey, T.B. (1996). “Multiobjective Routing Problems.” TOP, 3(2), 167–220.
Boffey, T.B., R.C. Williams, B. Pelegrı́n, and P. Fernandez. (2002). “The Maximum Capacity Shortest Path

Problem: Generation of Efficient Solution Sets.” RAIRO Oper. Res., 36, 1–19.
Calvete, H.I. (2004). “The Quickest Path Problem with Interval Lead Times.” Computers & Operations

Research, 31(3), 383–395.
Chen, G.-H. and Y.-C. Hung. (1993). “On the Quickest Path Problem.” Information Processing Letters, 46(3),

125–128.
Chen, Y.L. (1993). “An Algorithm for Finding the K Quickest Paths in a Network.” Computers & Operations

Research, 20, 59–65.
Chen, Y.L. (1994). “Finding the K Quickest Simple Paths in a Network.” Information Processing Letters, 50,

89–92.
Chen, Y.L. and Y.H. Chin. (1990). “The Quickest Path Problem.” Computers & Operations Research, 17(2),

153–161.
Clı́maco, J.C.N. and E.Q.V. Martins. (1981). “On the Determination of the Nondominated Paths in a Mul-

tiobjective Network Problem.” In Proc. of the V Sympösium über Operations Research, Köln, 1980, in
Methods in Operations Research, vol. 40, pp. 255–258. Anton Hain, Königstein.

Clı́maco, J.C.N. and E.Q.V. Martins. (1982). “A Bicriterion Shortest Path Algorithm.” European Journal of
Operational Research, 11, 399–404.

Clı́maco, J.C.N., M.M.B. Pascoal, M.E.V. Captivo, and J.M.F. Craveirinha. (2003). “Internet Packet Rout-
ing: Application of a K -Quickest Path Algorithm.” In Proc. of the III International Conference
on Decision Support for Telecommunications and Information Society, pp. 29–36. Warsaw, Poland.
(www.mat.uc.pt/∼marta/Publicacoes/rank IP.ps.gz).

Dijkstra, E. (1959). “A Note on Two Problems in Connection with Graphs.” Numerical Mathematics, 1,
269–271.

Hansen, P. (1980). “Bicriterion Path Problems.” In G. Fandel and T. Gal (Eds.), Multiple Criteria Decision
Making: Theory and Applications, Lectures Notes in Economics and Mathematical Systems, vol. 177,
pp. 109–127. Springer Heidelberg.

Springer

Ann Oper Res (2006) 147:5–21 21

Kagaris, D., G.E. Pantziou, S. Tragoudas, and C.D. Zaroliagis. (1999). “On the Computation of Fast Data
Transmissions in a Network with Capacities and Delays.” Networks, 33(3), 167–174.

Katoh, N., T. Ibaraki, and H. Mine. (1982). “An Efficient Algorithm for K Shortest Simple Paths.” Networks,
12, 411–427.

Lee, D.T. and E. Papadopoulou. (1993). “The All-Pairs Quickest Path Problem.” Information Processing
Letters, 45(5), 261–267.

Lin, Y.-K. (2003). “Extend the Quickest Path Problem to the System Reliability Evaluation for a Stochastic-
Flow Network.” Computers & Operations Research, 30(4), 567–575.

Martins, E.Q.V. (1984). “On a Special Class of Bicriterion Path Problems.” European Journal of Operational
Research, 17, 85–94.

Martins, E.Q.V., M.M.B. Pascoal, D.M. L.D. Rasteiro, and J.L.E. Santos. (1999a). “The Optimal Path Prob-
lem.” Investigação Operacional, 19(1), 43–60, 1999. (www.mat.uc.pt/∼marta/Publicacoes
/opath.ps.gz).

Martins, E.Q.V., M.M.B. Pascoal, and J.L.E. Santos. (1999b). “Deviation Algorithms for Ranking
Shortest Paths.” The International Journal of Foundations of Computer Science, 10(3), 247–263.
(www.mat.uc.pt/∼marta/Publicacoes/deviation.ps.gz).

Martins, E.Q.V. and J.L.E. Santos. (1997). “An Algorithm for the Quickest Path Problem.” Operations Research
Letters, 20, 195–198.

Moore, M.H. (1976). “On the Fastest Route for Convoy-Type Traffic in Flowrate-Constrained Networks.”
Transportation Science, 10, 113–124.

Pascoal, M.M.B., M.E.V. Captivo, and J.C. N. Clı́maco. (2005). “An Algorithm for Ranking Quickest Simple
Paths.” Computers & Operations Research, 32(3), 509–520.

Rao, N.S.V. (2004). “Probabilistic Quickest Path Algorithm.” Theoretical Computer Science, 312(2–3), 189–
201.

Rosen, J.B., S.Z. Sun, and G.L. Xue. (1991). “Algorithms for the Quickest Path Problem and the Enumeration
of Quickest Paths.” Computers & Operations Research, 18(6), 571–584.

Yen, J.Y. (1971). “Finding the K Shortest Loopless Paths in a Network.” Management Science, 17, 712–716.

Springer

