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Continuous Solutions for a Degenerate Free Boundary Problem(*). 

Jos~ MIGUEL URBANO 

A b s t r a c t .  - We prove existence of continuous solutions for 

at[r(o)] - div(IV01p-2V0) ~0, p > 2 ,  

where ~ is a maximal monotone graph~ by showing equicontinuity of a sequence of approxi- 
mate solutions. Relations of this type are models for certain free boundary problems like the 
Stefan problem with nonlinear diffusion. 

1. - I n t r o d u c t i o n .  

This paper deals with the question of the continuity of the solution of degenerate 
parabolic equations, with principal part in divergence form, of the type 

at[~ / (O)] -d iv ( IVOIp-2VO)~O,  p > 2 ,  

where ~, is a maximal monotone graph with a singularity at the origin. The equation is 
thus degenerate in the space part, due to the vanishing of its modulus of ellipticity 
I V01 p - at points where I V01 = 0, and singular in the time part since ,,? (0) = ~ ,,. We 
use the word singular with this meaning and not in reference to the principal part sin- 
gular case corresponding to 1 < p < 2, which is not considered here. 

An equation of this form occurs as a model for the well known two phase Stefan 
problem when a nonlinear law of diffusion is considered, 0 being in that case the tem- 
perature and ?(0) the enthalpy. The problem of the continuity of the temperature in 
the linear diffusion case (p = 2) was solved independently by Caffarelli and Evans (cf. 
[1]) and DiBenedetto (cf. [3]) in the early eighties. The technique developed in [3] is 
more powerful since it works not only for the Laplacian, whose properties are essential 
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in the proof of [1], but also for more general principal parts, satisfying appropriate 
structure assumptions. It covers also the case of equations with lower order terms de- 
pending on the temperature, which is relevant when we are taking convection into 
account. 

Concerning the case of nonlinear diffusion, the question of the existence was suc- 
cessfully tackled in [11] by means of a regularization method and the use of an extend- 
ed weak maximum principle. The very week regularity available in what concerns the 
time derivative, that only has a meaning as a distribution, prevented us so far from ob- 
taining a uniqueness result. We show here that the problem has at least a continuous 
solution, namely the one that was obtained in the proof of the existence result as the 
limit of the sequence of approximate solutions. These are the unique solutions of prob- 
lems obtained after regularization of the maximal monotone graph. The result is 
achieved by showing that the equibounded sequence of approximations is also 
equicontinuous. 

The regularity of solutions of degenerate parabolic equations has deserved a con- 
siderable amount of attention in recent years and a good reference in what concerns 
the state of the art is the book by DiBenedetto [6]. Results on the continuity of sol- 
utions at a point consist basically in constructing a sequence of nested and shrinking 
cylinders with vertex at that point, such that the essential oscillation of the function in 
those cylinders converges to zero when the cylinders shrink to the point. At the basis of 
the proof is an iteration technique, that is a refinement of the technique by DeGiorgi 
and Moser (cf. [2], [9] and [8]), based on energy (and logarithmic) estimates for the sol- 
ution, that in the degenerate case are not homogeneous in the sense that they involve 
integral norms corresponding to different powers, namely the powers 2 and p. The key 
idea is to look at the equation in its own geometry, i.e., in a geometry dictated by its de- 
generate structure. This amounts to rescale the standard parabolic cylinders by a fac- 
tor like 

where w is an upper bound for the oscillation of the solution in the rescalled cylinder. 
This procedure, which can be called accommodation of the degeneracy, allows one to 
recover the homogeneity in the energy estimates written over these rescalled cylinders 
and carry on with the proof. We can say heuristically that the equation behaves in its 
own geometry like the heat equation. 

In the present singular-degenerate case, when showing that the approximate sol- 
utions are equicontinuous, a third power (power 1) occurs at the energy estimates, as a 
consequence of estimating uniformly the regularization of the maximal monotone 
graph. No rescalling permits the compatibility of the three powers so we use the geom- 
etry of the nonsingular case to deal with the degeneracy and pay the price of a depen- 
dence on the oscillation in the various constants that are determined along the proof. 
Owing to this fact we are no longer able to exhibit a modulus of continuity but only to 
define it implicitly independently of the regularization. This is enough to obtain a con- 
tinuous solution for the original problem but the HSlder continuity, that holds in the 
nonsingular case, is lost. 
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The article is organized as follows. In the next section we formulate the problem 
and state the main result concerning the interior equlcontinuity of a sequence of ap- 
proximate solutions. In section 3 we derive the essential tools for the proof: the inde- 
pendent of ~ local energy and logarithmic estimates. The geometric setting is present- 
ed in section 4, where we also reduce the proof to the analysis of two alternative cases, 
that are considered separately in sections 5 and 6. The proof of the main results is the 
object of the last section. 

We made an effort to keep the article self contained and enjoyable to read without 
repeating too much of what is already known from the literature. Some duplication of 
arguments was although inevitable. 

Notation. 

�9 ~2 is a bounded and regular domain in R N, with boundary ~2. 

�9 Q = ~ • (0, T), for T > 0 is the space-time domain with lateral boundary 2: = 
= ~ 2  x (0, T) and parabolic boundary apQ=2:u  (Q • {0}). 

�9 We use the usual Sobolev spaces and define 

VoP(Q) = L  ~(0, T; LP( • ) )NLP(0 ,  T; W0~'P(~)) 

endowed with the norm 

P IlUlI~'~(Q) = ess sup Ilu(', t)]l~, ~ + IIVull~, O. 
O<~t<~T 

�9 The characteristic function of a set A is denoted by ZA. 

�9 Given a point Xo e R N, Ke(xo) denotes the N-dimensional cube with centre at Xo 
and wedge 2~: 

Ke(x~ := { xeRg:l~i<.Nmax x i - x ~ i  <Q}; 

given a point (Xo, t o ) o R  y+I,  the cylinder of radius Q and height r > 0  is 

(Xo, to) + Q(v, ~) := K~(xo) • (to - r, to). 

�9 Throughout the paper, the letter C denotes a constant that depends only on the 
data. The same C will be used to denote different constants depending on the data ex- 
cept if this occurs in the same line. In that case we use C1, C2, etc. 

2. - S t a t e m e n t  o f  the  prob lem and m a i n  result .  

In [11] we study a generalized Stefan problem from the point of view of the exis- 
tence of a solution. The novelty in the problem is the assumption of a nonlinear Fourier 
law relating the heat flux and the gradient of the renormalized temperature field 0, 
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that gives rise to a diffusion term in the equation involving the p-Laplacian operator 

A pO := div(IVOIP-2VO). 

In the case p > 2, to which we ~ be restricted, this renders the equation degenerate 
since its modulus of ellipticity I V01 p- 2 vanishes at points where I V01 = 0. 

We assume the material under consideration occupies a domain g2, with two phases, 
a solid phase corresponding to the region { 0 < 0 } and a liquid phase corresponding to 
the region {0 > 0 }, separated by an interface r = {0 = 0 }, the free boundary. The 
problem in its strong formulation reads 

f 
(Ot+v.V) b(O) =ApO in Q\~b= { 0 < 0 }  u { 0 > 0 }  

[IVOIP-ZVO]+_.n = 2 ( w - v ) . n  on r  { 0 = 0 }  

(P) O= Oo on .,~ 

0(0) = Oo in g2 • {0} 

where v is a prescribed velocity field, b a given continuous and increasing function, n 
the unit normal to q), pointing to the solid region, w the velocity of the free boundary 
and 2 = [e]_ + > 0 the latent heat of phase transition (e is the internal energy), with [. ]_+ 
denoting the jump across ~b. 

Following the original ideas of [7] we derive a weak formulation, in which all explic- 
it references to the free boundary are absent, considering the maximal monotone graph 
H associated with the Heaviside function, 

0 i f s < O  

H(s)= [0 ,1 ]  f f s = O  

1 i f s > O  

and introducing a new unknown function, the enthalpy r/, such that 

~1 e ~,(0) := b(O) + ~.H(O). 

A formal integration by parts against appropriate test functions and the replacement of 
the initial condition for 0 by a more adequate initial condition for ~], leads to an integral 
relation that we adopt as definition of weak solution. 

We will restrict ourselves to the cases 

(1) v = 0 ,  b(s) ------ 8 ,  0 D = 0 ,  p > 2 .  

A more general b e C 0, 1 (R) satisfying the conditions b(0) = 0 and 0 < b .  ~< b'  ~< b .  can 
be considered; the problem can be reduced to the case b(s) = s in a simple way (see [3]). 
It is also possible to deal with the case of a convective term depending on the tempera- 
ture at the expense of a more technical analysis (see [6]). We don't consider it here to 
focus the attention on the really new difficulty, which is to deal with the singularity in 
time and the degeneracy in space at the same time. The case of a convective term de- 
pending on the enthalpy, like the convective term in [11], is more delicate and is left 
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open. As far as we know, not even in the nondegenerate case (p = 2) continuity results 
are available. The existence of weak solutions is obtained in [10], where it is also shown 
that ~tO eLSe(Q), a regularity result that may be relevant to obtain the continuity of 
the temperature. The last two restrictions in (1) reflect severe difficulties with which 
we are unable to deal at the present moment. We will refer to this later in the last 
section. 

With this restrictions in mind, the exact definition of weak solution, the space of 
test functions being 

if(Q) := {~eLP(0,  T; W~'P(~2)): ~t~L2(q) ,  ~(T) =0}, 

is the following (see [11]) 

D E F I N I T I O N  1. - We say that (r],  0 )  i8 a weak solution of problem (P), i f  

OeLP(O, T; W~'P(Q)) NL ~(Q); 

~IeL~(Q) and ~ey (0 ) ,  a.e. in Q; 

- f,7ot § f l v o l ' - 2 v o  = foot(O), 
q q s~ 

The proof of the existence result in [11], assuming 

~o~y(Oo) and IIOolIL ( ) <M, M>O 

consists in a regularization of the maximal monotone graph and some data, leading to 
approximated problems that are solved by a Galerkin method. The derivation of suit- 
able a pr/or/est imates and the use of monotonicity methods allow us to pass to the lim- 
it and obtain a bounded solution to the problem. More precisely, let 0 < s << 1 and con- 
sider the function 

7 ~(s) = s + ~.H~(s), 

where H~ is a e| of the Heaviside function, such that 

H~(s)=O if s--<0, H~(s) = 1 ifs>~e, 

H/I> 0 and H~--~H uniformly in the compact subsets of R\{0},  as e--*0. The function 
y ~ is bflipschitz and satisfies 

(2) 1 ~<7'~(s) ~< 1 +2L~, s ~ R ,  

with L~ --- (9(l/s) being the Lipschitz constant of H~. Its inverse fl~ = 7[~ satisfies 

1 
(3) 0 < - -  <<.fl'~(s) <. 1, s e R .  

1 + 2L~ 
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Taking also a sequence of functions 0o~ e WI'P(~2) such that 

00~--~0o, y~(0o~)-->~]o in LP(~2) and 100~1 ~<M, a.e. in ~2 

we define the approximated problem as follows 

(P~): For each 0 < e<<l, find a function 

0~ e H 1 (0, T; L2(~2)) A L ~ (0, T; W 1' P(~2)) N L ~ (Q) 

such that 

(4) -fy (op , +flvo, 
q Q D 

In the presence of the regularity required, equation (4) can be shown to be equivalent 
to the two conditions: 0~(0) = 0o~ and, for a.e. t e  (0, T), 

(5) f at[y~(Oplw+ f Ivo~l'-~vo~.vq~=o, vw~wJ,p(~). 
x { t }  ~ x { t }  

We show in [11] that this approximated problem has a unique solution and derive 
enough a priori estimates to pass to the limit and obtain a solution of the original prob- 
lem with the regularity required in Definition 1, that in addition satisfies an extended 
weak maximum principle: 

Iloll~ ~(Q) -< M .  

It is clear from the results of [6] that the solutions of the approximated problem are 
HSlder continuous. In fact, they satisfy in the distribution sense an equation of the 
type 

8tu - diva(x, t, u, Vu) = 0 

with u = y~(0~) and a(x, t, u, Vu) = IVfl~(u)IP-ZVfl~(u). We verify that the assump- 
tions on page 16 of [6] are satisfied due to (3): 

(Al) a(x,t,u, Vu).Vu=(fl,(u))p_ilVulp~(1 )p-1 
I+~L~ IVulP 

la(x,  t, u, Vu) I = ( f l ' ~ ( u ) Y  - 1  IVul " - '  < IVul ~-~ 

We also see that (A1) is not satisfied uniformly since 

Co(e) := ---,0 as 
1 + ~L~ 

e ---> 0 , 

which is in accordance with our expectations; in fact, that would imply the continuity of 
the enthalpy y whereas this is only expected to hold for the temperature. 
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We will show that there is a uniform, i.e. independent of e, interior modulus of con- 
tinuity for 0~ and this will allow us to obtain a locally continuous temperature as a sol- 
ution to the original problem as a consequence of the Theorem of Ascoli-Arzel~. The ex- 
act result is the following 

THEOREM 1 . -  The sequence (0~)~ is locally equicontinuous, i.e., there is an inde- 
pendent of s interior modulus of continuity for 0 ~. As a consequence, problem (P) has 
at least a locally continuous solution. 

We strongly emphasize that a uniqueness result for the problem is still missing, so 
we are actually only showing that the solutions obtained via this regularization proce- 
dure are locally continuous. Anyway, these are the interesting solutions in terms of the 
applications since the numerical methods use regularizations of this type. 

The results presented here are local so we didn't have to associate to the equation a 
specific boundary value problem. We have just done it here to be consistent with the 
presentation of [11]. However, in section 7 we remark that this method can be extended 
up to the boundary in the case of Neumann or homogeneous Dirichlet conditions. 

3. - The local  energy and logar i thmic  est imates .  

In this section we derive certain uniform local estimates that will be the main tool in 
the proof of the interior continuity. 

Consider a cylinder (x0, to) + Q(r, Q) c Q and let 0 ~< ~ ~< 1 be a piecewise smooth 
cutoff function in (x0, to) + Q(r, ~) such that 

(6) IV~l < oo and ~ ( x , t ) = 0 ,  x~tKe(xo). 

We start with the energy estimates. For the sake of simplicity and without loss of 
generality, we will state them for cylinders that are centered at the origin (0, 0), the 
changes being obvious in the case the center is a point (Xo, to). 

PROPOSITION 1. - L e t  O ~ be a solution of (P~) and k < M.  There exists a constant 
C> O, that is independent of e, such that for  every cylinder Q(v, Q)r  

0 

-~<t<~ gQx{t } -~ K o 

0 

Iv l f 
-v Ko K O x { - , }  

0 

- r  K e 
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PROOF. - Let q~= - ( 0  t - k ) -  ~P in (5) and integrate in time over ( - r ,  t) for t e ( - r ,  0). 
The first term gives 

(8) - ~ ~ a~E~,~(e~)l((o~- k)_ ~) =~ a~ r '~(k- s) sds ~ = 
- ~  K~ - ~  0 

(O~fk)_ 
= ~_ ~ '~(k-s)  sds 

Kox {t} o 

- P  ! r'~(k - s) sds 
0 

(OEfk)- ) 
~P-  ~ r '~(k-  s) sds ~P-  

/ f o x  { - v }  0 

~P-l~t~>~ 

-2K~ x t} KQ x { -~} 

since we have, recalling (2), 

(Oe-k)_ 

f 7 '~(k-s)  sds>1 
0 

and 

( o ~ -  k)_ ~P - 

t 

-2p(M+A) f f(O~-k)_~P-i~t~, 
- r K  o 

(0~ - k)_ 
1 f sds = ~ ( 0 ~ -  k)~ 

0 

(0 ~ - k )_  (0 E - k)_ 

f ~'~(k- s)sds-< (o~- k)_ f ~'~(k- s)Us 
0 0 

Concerning the other term, we have 

(9) 

= ( 0 ~ -  k)_ [r  Ak) - r AoA] 

~< 2(M + A)(0~ - k)_. 

t t 
f f lvo~l~-~vo~v[-(o~-k)-~] = f f lv(o~-k)-~l ~- 

- v  K O -~K O 

t 
-p f f Ivo~l~-~vo~v~[~-~(o~-a)-] >>- 

- r K  o 

t t 
1 

~ -  f f lv(o~-k)_~l~-C(p)f f(o -kr_ Iv~l ~, 2 ~ -~ g o -~ I~ 
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using the inequality of Young 

e p 1 b p , (10) ab <. - - a  p + 
p p ' s  p ' 

valid for a,  b I> 0 and ~ > 0, with the choices 

a = ( O ~ - k ) _  IV~I, b= IV(Oe-k)_~l  p-1 

and s appropriate. Since t e ( -  v, 0) is arbitrary, we can combine estimates (8) and (9) 
to obtain (7). �9 

REMARK 1. - The price to be paid for the singularity at 0, i.e., for the fact that  ~'~ is 
not uniformly bounded above in a neighbourhood of 0, is the presence of ( 0 ~ -  k)_ 
(with exponent 1) in the right hand side of (7), instead of ( 0 ~ -  k) z_ as in [6]. 

PROPOSITION 2. - Let O ~ be a solution of (P~) and k > e. There exists a constant 
C > 0, that is independent of s, such that for every cylinder Q(v, Q)r Q, 

0 

(11) sup f f f lv(O -k)§ 
- r < t < O K o x { t }  - r  Ko 

0 0 

- v  K e K e x { - v }  - v  K O 

PROOF. - We are now above the singularity since we have k > e. This means that  
y '~ - 1 and estimate (11) is exactly estimate (3.8) in [6] without the part  coming from the 
absent lower order terms. �9 

We proceed with the logarithmic estimates. Given constants a ,  b, c, with 0 < c < a,  
define the nonnegative function 

a 

~p~-~,b,c}(s) = In ( a + c ) - ( s - b ) •  
+ 

{{ a } = In (a + c) +- ( b -  s) 

0 

if b + _ c ~ s ~ b + _ ( a + c )  

if s ~ b + _ c  
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whose first derivative is 

+ , [ 1 if b _ + c . ~ s X b _ _ ( a + c )  
(~])'(a,b,c}) ( 8 ) :  I ( b - s ) + ( a + c )  ~'0 

0 i f s ~ b + - c  
+ + , 

and second derivative (~O(-a,b,~})" = {(~f~-a,b,~}) }2 t> O. 
Now, given a bounded function u in a cylinder (Xo, to) + Q(~, O) and a number k, de- 

fine the constant 

H2k -= esssup [(u-k)• 
(Xo, to) + Q(v, O) 

The following function was introduced in [4] and since then has been used as a recur- 
rent tool in the proof of results concerning the local behaviour of solutions of degener- 
ate PDE's: 

~•177162 0 < c < H ~ k .  

From now on, when referring to this function we will write ~p • (u), omitting the sub- 
scripts; it will be clear what they are in every particular situation. 

Take a cutoff function satisfying (6) as before and such that it is independent of 
t �9 ( -  r, 0). The logarithmic estimates, again in the case (Xo, to) = (0, 0), are 

PROPOSITION 3. - Let  0 ~ be a solution of (P~), k �9 R and  0 < c < H ~ ,  k. There exists a 
constant C > O, that is independent of e, such that for every cylinder Q(r, Q)c Q, 

(12) sup f f 
- r<t<OKo•  K0• { - v }  

r '~(s)~p-(s)0P-) ' (s)  ds ~P+ 
+ 

0 

+c f f 
- ~  K o 

PROOF. - Let ~ = 2~f- (0 ~)[(~p- )' (0~)] ~P in (5) and integrate in time over ( - r ,  t) 
for t �9 ( -  r, 0). We have, recalling that at ~ -  0, 

t 

- rKq  

= 0t ~ 2 r  ;(s) (s)0p - ) '  (s) ~P I> 
- k + 

0e 

K o x {t} 
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due to the fact that, using (2), 

O~ ) O~ 
i I2y '~(s )~- (s ) (~ / - ) ' ( s )ds  >>- f2w-(s)(W-)'(s)ds= 

+ k 

= [ ~  - ( o , ) ]  2 - ( ~ ,  - ( k ) )  z = [ W  - ( 0 , ) ] 2 ,  

because y~- (k) = O. The other term gives 

t 

f f IVO, lP-2vo,'v{z~-(o,)[(~-)'(o~)]r : 
- v K  o 

= f f ]P{2(1 + W- (0~))[ (W-) ' (0~)]2~ p} + 

t 

+p f f IVO~l'-~vo,'vr (o~)[(~-)'(o~)] r '-1} 
- v  K o 

t 

f f IV0~IP{ 2(1 + y ) - ( O ~ ) - ~ f l - ( O ~ ) ) [ ( ~ O - ) ' ( O ~ ) ] z ~ P }  - 
- r K  o 

t 

-2(p- ly~ 1 f f~o(o~)i(~o-)'(o~)l~plv~lp~ 
- v K  o 

t 
~ - c  f f ~-<o~)l<~o-)'(o~)l~-~lv~l ~, 

- r K  o 

using again Young's inequality (10) with s = (p - 1 )(P- 1)/p and 

a =  [(~2-)'(Oe)[2/p-llv~l , b= IV0~ ] P - I ~ p - 1 1 ( F - ) ' ( 0 ~ )  ]2-2/P. 

Since t e ( - v ,  0) is arbitrary, we can combine both estimates to obtain (12). �9 

REMARK 2. - In this estimate there is a term that depends on s through 7 '~. We will 
see later how to avoid this difficulty. 

The proof of the next proposition follows from the same remark that was used in the 
proof of Proposition 2. 



206 Jos]~ MIGUEL URBANO: Continuous solutions for a degenerate, etc. 

PROPOSITION 4. - L e t  0 ~ be a solution of (P~), k > e a n d  O < c < H + There exists a 8~,k" 
constant C > O, that is independent of e, such that for every cylinder Q(v, Q)c Q, 

(13) sup ~ [~) + (0e)]2 ~P ~ f [~p + (Oe)]2 ~P -{" 
-v<t<OKQx {t} K Q •  

o 

+ e l  f w 12-  IVgl ' 
- v  K o 

4. - T h e  g e o m e t r i c  s e t t i n g  a n d  t h e  a l t e r n a t i v e .  

The proof of the equicontinuity will follow from these estimates, adapting the tech- 
nique introduced by DiDenedetto (cf. [6]). It  consists essentially in showing that for 
every point (Xo, to)~Q we can find a sequence of nested and shrinking cylinders 
(Xo, to) + Q(vn, Qn), such that the essential oscillation of each function 0~ in these 
cylinders goes to zero as n--* ~ in a way that is qualitatively independent of ~. 

This can be achieved, roughly speaking, by considering the equation in a geometry 
dictated by its own structure. This means that, instead of the usual cylinders, we have 
to work in cylinders whose dimensions take the degeneracy of the equation into ac- 
count. Let's make this idea precise. From now on we will drop the s in 0 ~. 

Consider a point (xo, to) e Q and, by translation and to simplify, assume (Xo, to) = 
= (0, 0). Consider R > 0 such that Q(R p-l ,  2 R ) c Q ,  define 

i t -  := ess inf  0 ;  i t +  := esssup  0 ;  w : =  essosc  0 = t ~ + - t t _  
Q(R p -  1, 2R) Q(R p- 1, 2R) Q(Rp- 1, 2R) 

and construct the cylinder 

Q(aoRP, R),  with ao= ( A )  2-p 

where the number A will be chosen in the course of the proof of the form 

(14) A = 2 '~, with s3 > Cw -a, a = 
2(p + 1)(N + p) 

P 

Note that for p = 2, i.e. in the nondegenerate case, ao = 1 and these are the standard 
parabolic cylinders. We will assume, without loss of generality, that w < 1 and also 
that 

(15) 
1 

- > R  
ao 
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and comment later on the case when this doesn't hold. Now, (15) implies that 
Q(ao Rp, R) r Q(R p- 2, 2R) and the relation 

(16) ess osc 0 < 
Q(aoR p, R) 

which will be the starting point of an iteration process that leads to our main results. 
Note that we had to consider the cylinder Q(R p- l ,  2R) and assume (15), so that (16) 
would hold for the rescalled cylinder Q(ao Rp, R). This is in general not true for a given 
cylinder since its dimensions would have to be intrinsically defined in terms of the es- 
sential oscillation of the function within it. We now consider subcylinders of 
Q(ao Rp, R) of the form 

(0, t*) + Q(dR p, R),  

that are contained in Q(aoR p, R), since A > 2 and if 

R p 
(2 p - 2 - A  p - 2 ) -  < t * < 0  

o.)p- 2 

The proof of our main result (Theorem 2 ahead) follows from the analysis of two com- 
plementary cases and the achievement of the same type of conclusion for both. We can 
briefly describe them in the following way: in the first case we assume that there is a 
cylinder of the type (0, t*)  + Q(dR p, R) where 0 is essentially away from its infimum. 
We show that going down to a smaller cylinder the oscillation decreases by a small fac- 
tor that we can exhibit and that depends on the oscillation. If that cylinder can not be 
found then 0 is essentially away from its supremum in all cylinders of that type and we 
can add up this information to reach the same conclusion as in the previous case. We 
state this in a precise way. 

For a constant r o e  (0, 1), that will be determined depending only on the data and 
oJ, we will assume that either 

(17) 

(C1) There is a cylinder of the type (0, t*)  + Q(dR p, R) for which 

I{ (x, t) e(O, t*) + Q(dR p, R): O(x, t) < ~ _ + -~ 

~ v o  
I Q(dR p, R) I 
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or this does not hold. In that case we have the complementary condition, and since 
t t + -  (~o/2)~>tt_ + (w/2), it can be stated as 

(18) 

(C2) For every cylinder of the type (0, t* + Q(dR p, R) I{ o}J 
(x, t) e(O, t*) + Q(dR p, R): O(x, t) > ~ +  - ~ 

<~1 - t o  
IQ(dR p, R) I 

5. - A n a l y s i s  o f  c a s e  (C1).  

LEMMA 1. - There exists a constant v o ~ (0, 1 ), depending only on the data and w, 
such that i f  (17) holds then 

(2) 
O(x, t) > t~ - + - -  

4 
a.e. ( x , t ) e ( O , t * ) + Q  d ~ 

PROOF. - Take the cylinder for which (17) holds and assume, by translation, that 
t* = 0. Let 

R R 
Rn= 2 + 2 n+l  ' n--O,  1, ..., 

and construct the family of nested and shrinking cylinders Q(dR~, Rn). Consider 
piecewise smooth cutoff functions 0 < ~ n ~< 1, defined in these cylinders, and satisfying 
the following set of assumptions 

~ n = l  in Q(dRP~+I,R,~+I) ~n~-O o n  c~pQ(dRPn,Rn) 

2n+ 1 2p(n+ 1) 

[V~n] < T O < 3 t ~ n <  dR --------~ 

Write the energy inequality (7) for the functions ( 0 -  kn)-, with 

o) o) 
k n - - - / t _  + - -  + - -  n = O ,  1 

4 2 n+~ ' ' " " '  
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in the cylinders Q(dR~, R~) and with ~ = ~ .  They read 

0 

(19) sup f (o-k~)~_~+ f f Iv(o-k~)_~;'~< 
-dRP <t<OKRnx {t} -dRPn KRn 

0 0 

<~c f f(o-k,~_lv~l~+c f f(o-k~)_~P-l~t~<~ 
- dR p KRn -dRPn KR n 

2p(,~ + 1) [ o 1 o 1 

-dR p KRn -dRZ KRn 

Next, observing that, when it is not zero, 

( 0  - k ~ ) _  = ( ~  _ - o )  + - -  + <~ - -  
a 2 - ~  2 

so that, since 2 - p  < 0, 

( o  - k ~ )  2_ = ( 0  - k ~ ) 2 _ - P (  O - k n )  p- >i ( 0  - k~)P_ , 

we obtain from (19) 

(20) J o sup (O-knY~_~;+ f f 
-dR~<t<OKR n {t} -dRPn KRn 

I V ( 0  - kn)_ ~n [P ~ 

{() o 
-dRn p Ken 

Recall that d = (~/2) 2.p and divide (20) by d to get 

(21) 
0 j 1 

-dRP <t<OKR. n {t} -dR p KRn 
] V ( O - - k n ) -  ~n I p • 

-c~ KR. 

co f g {(O-k~)_ >0}, 
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because ~ ~< 1. Now we perform a change of the time variable in (21), putting t = t/d and 
defining 

0(., t) = 0(., t) and ~,~(., t) = ~.(-, t), 

and obtain the simplified inequality 

(22) 
~" R p [ 2 Zl(~-~)- >o}. 

# - R n KR~ 

Define, for each n, 

0 

-e,  p K~ 

and observe that the following estimates hold 

(23) 2P(n+2) A m + l ~  I k ~ - k ~ + ~  I~An+~ <~II(-O-k~)-II~,Q(RZ+,,R~+,) <. 

-< I1(~ -k,,)_ ~11;, Q(~=", ~)-< cIl(~ -k,,)_ ~ II ~'~ (Q(,~Z, R.))A~/(N+') <~ --w ~ "~" " 

In fact, the first and the third inequalities are obvious; the second one holds due to the 
fact that ks + 1 < k~; the fourth inequality is a consequence of a well known imbedding 
theorem (see, e.g., Corollary 3.1 on chapter I of [6]) and the last one follows from (22). 
Next, define the numbers 

An X~-  
[Q(R~, R ~ ) [ '  

divide (23) by I Q(R~+ 1, Rn +1)1 and obtain the recursive relation 

C 4  pn 
Y y 1  + (pl(N + p)) 

O) 

since 

IQ(R~,R~)II+ P N+p ((2R~)N+P) I+(p/(N+p)) 

iQ(R~+I, R~+I)IR p (2Rn+ I)N +p R p 

((2 ~ + 1/2 n) R)N+2P 

((2 n + 2/2 . + 1) R)N+pRp 

i2,,+2) ) 
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We can use a lemma on the fast geometric convergence of sequences (see Lemma 4.1 on 
Chapter I of [6]) to conclude that if 

(24) 

then 

(25) 

( ~ )(N +p)/P4_(N +p)2/p = c o ( N  +p)/P = V o 
Xo <. --c 

Xn --> 0 .  

But (24) is nothing but the assumption (17) of the lemma and the conclusion easily fol- 
lows from (25). In fact, observe that 

R o) 
R n "~ ~ and kn x~ it _ + __,  

2 4 

and since (25) implies that As--)O, we conclude that 

I (x, t) e Q 
R) o} y :~(x,b<~_ + ~ 

I ((R) R)2 2 ~ ( x , t )  e Q  d -:- - -  : O ( x , t ) < . t t _ + - -  
4 

= 0  

and the lemma is proved. �9 

Our next aim is to show that the conclusion of Lemma 1 holds in a full cylinder 
Q(v, •). The idea is to use the fact that at the time level 

(26) 

the function O(x) is strictly above the level/~ _ + w/4 in the cube KR/2 and look at this 
time level as an initial condition to make the conclusion hold up to t = 0. Again this is a 
sophisticated way of showing that the equation behaves like the heat equation. As an 
intermediate step we need the following lemma. 

LEMMA 2. - Given v i e  (0, 1), there exists sigN, depending on the data and w, 
such that 

I{x   /4oxt  .+ )1281 
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PROOF. - We use the logarithmic estimate (12) applied to the function (~ - k)_ in 
the cylinder Q(t, R/2), with the choices 

(2) (D 
k = t t _  + - -  and c = 

4 2 ~+2 

where n �9 N will be chosen later. We have 

(27) k - 0 ~ < H ~ k = e s s s u p  0 - i t _ - - -  ~<-- 
Q(t, R/2) 4 _ 4 

and, since if H~k  = 0 the result is trivial, we may assume it is strictly positive and 
choose n big enough so that  c < H ~  k. We recall that  in this case the logarithmic func- 
tion is defined in the whole domain of ~, Q(t, R/2)  (since it is obvious that  H ~  + 0 - 
- k + c > 0), and given by 

~ -  = ~' -(~,~, k, ,~/~§ ~ ( o )  = 

f{ H.:k } 
In H ~ ' ~ + O - k + w / 2 " +  2 ff O < k - - -  

0 f fO>~k  - ~  

o) 

2 n + 2  

~) 

2 . + 2  �9 

From (27), we can easily estimate 

(28) ~ -  ~< n In 2 since 
H~, k w/4 

<~ - -  - -  2 n 
H ~  + t~ - k + (0 /2  "+2  ~o/2 ~ + 2  

and the derivative (here in the nonvanishing case 0 < k -  c) 

(29) I - 1  12_p= ( H ~ , k + O _ k + c ) p _ 2 <  ~ 
I ( ~ - ) ' ( e )  12-P = U ~ , k + - O - k + c  

Now observe that  as a consequence of Lemma 1, we have O(x, - t) > k in the cube KR/2, 
which implies that  

- ( x ,  - ~) = O, x �9 KR/2. 

Choosing a piecewise smooth cutoff function 0 < ~(x) ~< 1, defined o n  KR/2 and such 
that  

8 
= 1 in KR/4 and I V~ I ~< - -  

R '  
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inequality (12) reads 

0 

(30) ~sup ~ [ ~ - ( 0 ) ] 2 ~ ' - - < C ~  f ~ - ( O ) ] ( ~ - ) ' ( O ) ] 2 - ' [ V ~ ]  ' .  
-t<t<OKR~• {t} -~ KR~ 

The right hand side is estimated above, using (28) and (29), by  

Cn(ln2)(2)P-2(8)Pt]KRfz]<~ Cn(2)P-2(8)P(Af -PRP2N,KR/4 ,<--CnAP-2]KR/4J  

observing also that  

( )2p (31) t <. aoR p = R p. 

Since the integrand is nonnegative, we estimate the left hand side of (30) below inte- 
grating over the smaller set  

{ ~ S = xeKR/4: O(x, t) < ~ _  + ~ cK~2 

and observing that in S,  ~ = 1 and 

Ho~ k (/-/s k - o)/4) + o)/4 o)/4 2 n - 1 
, I>  , I > _  , 

o) (H~.k-o)/4)+o)/2 ~+1 w/2 ~§ 
H ~ k  + O - k + 2~+---- ~ 

because ( H ~ k - o ) / 4 ) < ~ 0  and ( 0 / 4 ) >  (o)/2~+1), n > 1, which implies that  

[~p- (0)]2 ~ > [ln (2~- 1)] 2=  ( n -  1)2(ln2) 2. 

F rom both estimates we get  (n - 1)2(ln2) 2 IS I <~ CnA p-2 IKR/4 I, i.e. 

xeKR/4:O(x,t)<#-+2--~-~- i ~< C (n _ 1)------ ~ 

and to prove the lemma we jus t  need to choose 

(32) Sl = n + 2 with n > 1 + 2CAp-2 ,  
Ul 

since if n i> 1 + 2/a then n/(n - 1 )2 <. a, a > 0 m. 

REMARK 3. - A crucial step towards the proof of the equicontinuity occured in the 
previous proof. In fact, this is the only place where we make use of estimate (12), that  
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has a term depending on s, namely 

; 7"(s) ~ - ( s ) (~2 - ) ' ( s )d s  ~P. 

We get rid of it (and keep the independence of e) by choosing appropriately the initial 
time - v  for which ~ -  vanishes. 

We now state the main result of this section. 

PROPOSITION 5. - There exist constants r o e  (0, 1), 1 < s l e N ,  depending on the 
data and co, such that i f  (17) holds then 

O(x, t) >/~ _ + - -  a.e. (x, t) e Q t, -~ 
281 + 1 

PROOF. - Consider the cylinder for which (17) holds, let 

R R 
R~ 8 + 2 ~+a ' n = 0, 1, ... 

and construct the family of nested and shrinking cylinders Q(t, R.), where t is given by 
(26). Take piecewise smooth cutoff functions 0 < ~ ( x )  ~< 1, not depending on t, defined 
in KRn and satisfying the assumptions 

2n+4 
~ . = 1  in  KR~§ I V a n  [ ~ - -  

R 

Write the local energy inequalities (7) for the functions ( 0 -  k s ) -  in the cylinders 
Q(t, R~), with 

(_O O) 
k~=t t_  + + - - ,  n = 0 ,  1, ..., 

281 + 1 281 + 1 + n 

(sl> 1 is to be chosen) and ~=~ . .  Observing that, due to Lemma 1, we have O(x, - t ) >  
> t t -  + (w/4)I> kn in the cube KRtz~KR~, which implies that 

(O-k~)_ (x ,  - t )  = 0 ,  XeKR,,, n = 0 ,  1, ..., 

they read 

0 

(38) 
- t < t < 0 K R  n {t} - t  KRn 

o 2P(n + 4) 0 

- t Kt~ - t KRn 



Jos~. MIGUEL URBANO: Continuous solutions for a degenerate, etc. 215 

Next, since (O-k~)_ <<. (~/281) and 2 - p  <0 ,  we have, using also (31), 

(0-k,~) 2_ I> ~;  (o-kn~_ e2-P - - ( o - k , J ' _  
( R/2 )P 

>I - - (  ~ - k.)p_ , 
( R /2  )P 

choosing sl > log2A + p/(p - 2). So, from (33), dividing by t/(R/2) p, we get 

0 
sup f ( o - k ~ _ g ? +  (R /2 f  [ I IV(O-k.)_g.l ' -< 

-t<t<OKRn~<{t} t -tJ~ KRn 

2p(n + 3) o 

I I t 

The change of the time variable ~ = t((R/2]'/t), with the new function 

0(., t) = 0(., t), 

leads to the simplified inequality 

Define, for each n, 

0 

-(R/g) p KRn 

and observe that the following estimates hold, by a reasoning similar to the one that led 
to (23): 

2p(.+2 ) 28- ~ A.+I ~< Ik.- kn+l IPAn+I ~< II(~-k~)-II~.Q((R/2)p R~+~)~< 

P -< Cll(~-k.)- ~. HV~<Q(<R/2f, R,,))APn/(N+p)<~ ~< II( ~ -- k n ) -  ~ n ][p, Q((R/2) p, R n) P 

Next, define the numbers 

<-c 2~ /~IPA~ §247 
(R/2 ) p ~ 28, ] 

A n  X~= 
I Q((R/2) p, Rn )1 
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divide the inequality by ]Q((R/2)P, Rn + 1)l and obtain the recursive relation 

Xn + 1 <~ C 4~  X1 + O,/(N + p)) 

Using again the lemma on the fast geometric convergence of sequences (see Lemma 4.1 
on Chapter I of [6]) we conclude that  if 

X 0 <~ C-(N+p)/P4 -(N+p)2/p ---- Y 1E (0 ,  I) (34) 

then 

(35) X n  --> 0 .  

Apply Lemma 2 with this v 1 and conclude that  there exists sl, depending only on the 
data, and w such that  

XeKR/4: 0(X, t) < i t -  + 2-- 7 , , 

and obtain (34) as follows 

Xo 

0 

- ( R /2  )P KR/4 

I Q((R/2 ) p, R/4 ) I 

0 

f z {(o - ~ _ + ~M1))_ >o} 
(R/2 )P -~ KR/4 

I Q((R/2 ) p, R/4) I 

(R/2) p t l { xeKR/4 :  O(x, t) < t t _  + og2"} [ 

(R/2) p [ KR/4 [ 

Now the conclusion easily follows from (35). In fact, observe that  

R 03 
Rn x~ 8 and kn x~/~ _ + _ _  

2s1+1 ' 

and since (35) implies that  An--> 0, we conclude that  

(x,b~Q ~- ,~- : ~ ( x , ~ ) ~ _ + 2 - ~ -  r ; 

i{ = . (x , t )  eQ t, ~ :O(x , t )< . t t_+  

~<V 1 . 

~ 2sl + 1 

and the proposition is proved. �9 
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REMARK 4. - The dependence of sl on o~ occurs only through A. Recalling the depen- 
dence of A on w, tha t  was already announced in (14), al though it will only be deter-  
mined in the next  section, we find f rom (32) tha t  it is sufficient to choose 

(36) 81 > C2 C ' ~ - a  > C 1 + C2 2C3(p-2)~-~ ,  

tha t  a l ready takes  into account the condition 

sl > Iog2A + ~ - Co) -~ + 
p - 2  p - 2  

COROLLARY 1. - There exist constants r 0, a o e (0, 1 ), depending on the data and w, 
such that i f  (17) holds then 

(38) ess osc 0 ~< a0 w .  
O(d(R/8 )P, R/8 ) 

PROOF. - We can use Proposition 5 to obtain 81 e N such tha t  

o) 
ess inf 0 I> tt _ + - -  
Q(t, R/8) 2 sl + 1 

and f rom this we ge t  

ess osc 0 = ess sup 0 - ess inf 0 ~< tt + - / ~  - 2,~71 - 1 2,1+ 1 w .  
Q(t, R/8) Q(t, R/S) O(t, R/8) 

Since d(R/8) p <<. t = - t *  + d(R/2) p, t*  < 0, we have 

and the corollary follows with 0 o =  ( 1 -  1/(2"1+1)). �9 

6 .  - A n a l y s i s  o f  c a s e  ( C 2 ) .  

I f  (C1) doesn ' t  hold then (C2) is necessari ly true.  We will show tha t  also in this case 
a conclusion similar to (37) can be taken.  Recall tha t  the constant  v 0 has a l ready been 
determined in the previous section and is given by  (24). 

LEMMA 3. - Fix a cylinder (0, t*)  + Q(dR p, R)  r  p, R)  for which (18) holds. 
There exists a time level 

i toe  t * - d R  p, t * -  V~ 
2 
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such that 

i[ O(x ,  t ~  > l ,  + - <- [ K s  l . 
1 - Vo12 

PROOF. - The proof can easily be obtained by contradiction (see Lemma 7.1. on 
Chapter III of [6]). �9 

The next lemma asserts that the set where O(x) is close to its supremum is small, 
not only at a specific time level, but for all time levels near the top of the cylinder 
(0, t*) + Q(dR p, R). 

LEMMA 4. - There exists 1 < s 2 e N ,  depending on the data and Oo, such that 

X e K R : O ( x , t ) > t t +  w--- <~ 1-- [KR[, 
2s2 

for  all t e [ t * -  (Vo/2)dR p, t*]. 

PROOF. - The proof consists in using the logarithmic inequalities of Proposition 4, 
and since these are the same as in the nonsingular case, the proof is the same as in 
Lemma 7.2 on Chapter III  of [6]. We just  trace the dependence of s2 on to. The number 
s2 is chosen in [6], s2 = n + 1 where n is chosen so large that 

and n ~ C v  o 2(p + 1). 

Assuming Vo ~< 1/2, which is always possible, we conclude that 

4 4 28 Z+v  
- - + 2 1 >  + 2 -  > ~  
V2o Vo(1-  Vo) 8 - 1  8 - 1  

since fl > 1, so it is sufficient to choose 

n > m a x  + 2 ,  C v o  2(p + 1) . 

Recalling the dependence of v o on oo, it is sufficient to choose 

C 
8 2 > = Coo - a .  �9 

oo 2(p + 1 )(N + p)/p 

Now we want to show that the same type of conclusion holds in an upper portion of 
the full cylinder Q(aoR p, R), say for all t e (  - (ao/2) R p, 0). We just have to use the 
fact that (18) holds for all cylinders of the type (0, t*) + Q(dR p, R) so that the conclu- 
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sion of the previous lemma holds true for all time levels 

t > t - ( a o - d )  R p -  V ~  
2 

So if we choose 

(38) 

we get 

ao >12_  vo r - ( a o -  d)  R p -  V~ dRP <. - a~ R p  
d 2 2 

and obtain 

COROLLARY 2. - F o r  all t e  ( - ( a o / 2 ) R  p, 0), 

x e g R : O ( x , t ) > t t +  w-- <<. 1 -  I g ,  I . 
2s2 

This information can be used to prove the main result of this section. 

PROPOSITION 6. - There exists  a cons tant  1 < s3 ~ N, depend ing  on the da ta  a n d  w ,  
such  that  

o) 
(39) O(x, t) <<. tt + - - -  a.e. 

2sa + 1 
( x , t ) ~ Q - ~  -~ , -~ . 

PROOF. - Again the proof is the same as in Lemma 9.1 of Chapter III  of [6]. We trace 
here the dependence of s3 on oJ. In [6], s3 is determined using an auxiliary lemma (Lem- 
ma 8.1 on Chapter III) that says that given any vae  (0, 1), there exists s~ > s2 such 
that 

2 ' 2 ,  3 8 �9 

The v 8 used to determine ss depends only on the data and the choice of s8 is made so 
that 

C 
V3~ 

V2o ( S8 _ s2 )(p - x )/p 
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that  is 

c c1 c2 
S 3 > S 2 ~  v 2 p / ( p _  l)  (L)2(p + I)(N +p)/p -[- g92(N +p) / (p_1  ) �9 

I t  is clearly enough to choose 

C 
(40) s3 > = Cw -"  

(/) 2(p + 1 )(N + p)/p 

It  is still here that  A is chosen equal to 

A = 283, 

(s3 so large that  (38) holds) which also determines the length of the cylinder 
Q(ao Rp, R). Observe that  in this way we determine a level/~ + - w/288 + 1 and a cylinder 
(fixing A and consequently ao) so that  (39) holds in that  particular cylinder. 

COROLLARY 3. - There exist constants Vo, a l  �9 (0, 1), depending on the data and w, 
such that i f  (18) holds then 

essosc  0~<az~o. 
Q(a~/2(R/2) p, R/2) 

PROOF. - It  is similar to the proof of Corollary 1. We find a1=(1-1/2"~+1). �9 

7. - P r o o f  o f  t h e  m a i n  r e s u l t s .  

In this section we prove our main results using the the information obtained previ- 
ously. An immediate consequence of Corollaries 1 and 3 is 

LEMMA 5. - There exists a constant a = a( w ) e (0, 1), that depends only on the data 
and w, such that 

ess osc 0 ~< a(oJ)  a~ .  
Q ( d( R/S ) p, R/S ) 

PROOF. - Since one of (17) or (18) has to be true, the conclusion of at least one of 
Corollaries 1 or 3 holds. Choosing 

o =  max {Oo, Ol},  

and observing that, due to (38), 

we obtain the conclusion. �9 
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We  are  now going to define recurs ive ly  two sequences  of  positive rea l  numbers .  
Set  

with 

R 
w 1 = a ( w )  w and R1 - - -  

~(oJ1) 

K(wl) 8 1 (A(Wl) -2/p 

A(w 1) to be fixed depending  on w 1. Then  defining 

and since 

we have 

> 8 ,  

Q1 = Q(al R~, R1) with al A(w 1) ] ' 

alRP=(~wll)I2-P( ~a(w) -P\--IA(21))2-p(R)P-8 

\s  

QlcQ(aoRP, R) and ess osc 0 ~< w l .  
Q1 

W e  are  in the  se t t ing  (16) and this means  tha t  the  whole process  can now be r e p e a t e d  
s ta r t ing  f rom Q1. So we define recurs ive ly  the  following sequences  of  positive real  num-  
bers ,  for  n = 0, 1 . . . .  , 

f R~ { Rn + 1 - Rn and w o = w 
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and consider the family of cylinders 

Q,~ = q ( a ~ R ~ ,  R~)  , with an = 

THEOREM 2. - The sequences  ( w ~ ) ,  a n d  (R~) ,  are decreas ing  sequences  that  con- 
verge to zero. Moreover ,  f o r  all n = 0, 1, 2, . . . ,  

(41) Q,, + 1C_. Q,~ a n d  ess osc 8 ~< aJ , .  
Q.  

P R O O F .  - The sequences are obviously decreasing and bounded below by zero, so to 
show that  they converge to zero we jus t  need to show that  they  cannot converge to a 
positive number. As far as (R~). is concerned this conclusion follows immediately 
from 

R,+  1 1 1 

R~ K(o~+I)  8 

With (Wn). the situation is more delicate since 

O J n + l  - -  O'(( .On) 7 1. 
o)  n 

So we suppose that  ~ .  '~ a > 0 and observe that, in that  case, 

recalling that  

a(o~,) z o(a) < 1,  

a ( w , ~ )  = 1 - - -  
2s+l ' s = s ( w ~ )  = max {Sl(W~), s3(w,)} 

and the dependence of Sl and s3 on w ~, given respectively by (36) and (40). Consequent- 
ly, O)n+ 1 -~ (:/((.on) (Dn ~ o'(a ) (o n and 

w~ <<. [ a ( a ) ] ~ w ,  n =  0, 1, . . . ,  

which implies that  w , - + 0 ,  a contradiction. 
Relations (41) follow at once from the recursive process used to define the 

sequences. �9 

Theorem 2 was obtained assuming (15). I f  this doesn't hold, we have, recalling the 
dependence of A on o~ given by (14), 

~<R ~ 2c,-------~ ~< 2 c~-~ ~<R 1/(p-2), 

since w < 1. Now, taking logarithms and assuming without loss of generality that  R < 
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< 1, we obtain 

C' }l/a 
C' a)-a >~ - log2R 1/(p-2) =~ m <~ ---'>0 

- l o g 2  R ~ / ( p -  2) 
R ---> 0 ,  

and there is nothing to prove. 

PROOF OF THEOREM 1. - The conclusion of Theorem 2 implies that 

ess lim O~(x, t) exists for all (Xo, to) e Q,  
(x, t) --* (x0, to) 

so we can choose a continuous representative for each 0 ~ out of its equivalence class. It 
also defines implicitly an interior modulus of continuity, i.e., for each Kr  Q, a continu- 
ous and nondecreasing function fK: R § --*R § , that depends only on the data and K, 
such that 

10~(x, t ) -O~(x ' ,  t ' ) l  <.fK(IX-X' l + l t - t '  ll/P). 

Since this modulus of continuity is independent of ~ (cf. Remark 3), the conclusion of 
the theorem follows. �9 

REMARK 5 .  - The results can be extended up to the parabolic boundary of Q. In fact, 
we can obtain a continuous solution at t = 0 and at the boundary X, in the case of Neu- 
mann or homogeneous Dirichlet data. The proof consists in adapting the energy and 
logarithmic estimates and the proof of the interior continuity as in [3] and [6]. The case 
of nonhomogeneous Dirichlet data presented unexpected difficulties in the case p = 2, 
dealt with at [5], and is left open in the case p > 2. 

REMARK 6.  - Also the principal part singular case 1 < p < 2 is left open. Apart from 
the extra difficulties that may arise from the more elaborate techniques that have to be 
applied, there is also a problem concerning the regularization that is used in [11] to ob- 
tain the solution for 1 < p < 2. It consists in adding a perturbation of the Laplacian to 
the equation, i.e., an extra term of the form 

s~vo~.v~ 
Q 

to (4) and this is clearly a bad term as far as the derivation of independent of e energy 
and logarithmic estimates is concerned. So we should first try to obtain a solution using 
a different, and more adequate for this purpose, type of regularization. We expect to 
overcome these difficulties in the future. 
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